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Abstract

Metabolic diseases and obesity are developing worldwide in a context of plethoric intake of high energy diets. The intestine
may play a pivotal role due to diet-induced alterations in microbiota composition and increased permeability to bacterial
lipopolysaccharide inducing metabolic inflammation. Early programming of metabolic disorders appearing in later life is
also suspected, but data on the intestine are lacking. Therefore, we hypothesized that early disturbances in microbial
colonization have short- and long-lasting consequences on selected intestinal components including key digestive enzymes
and protective inducible heat shock proteins (HSP). The hypothesis was tested in swine offspring born to control mothers
(n = 12) or mothers treated with the antibiotic amoxicillin around parturition (n = 11), and slaughtered serially at 14, 28 and
42 days of age to assess short-term effects. To evaluate long-term consequences, young adult offspring from the same
litters were offered a normal or a fat-enriched diet for 4 weeks between 140 and 169 days of age and were then
slaughtered. Amoxicillin treatment transiently modified both mother and offspring microbiota. This was associated with
early but transient reduction in ileal alkaline phosphatase, HSP70 (but not HSP27) and crypt depth, suggesting a milder or
delayed intestinal response to bacteria in offspring born to antibiotic-treated mothers. More importantly, we disclosed long-
term consequences of this treatment on jejunal alkaline phosphatase (reduced) and jejunal and ileal dipeptidylpeptidase IV
(increased and decreased, respectively) of offspring born to antibiotic-treated dams. Significant interactions between early
antibiotic treatment and later diet were observed for jejunal alkaline phosphatase and sucrase. By contrast, inducible HSPs
were not affected. In conclusion, our data suggest that early changes in bacterial colonization not only modulate intestinal
architecture and function transiently, but also exert site- and sometimes diet-specific long-term effects on key components
of intestinal homeostasis.
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Introduction

Metabolic diseases, including insulin resistance, type 2-diabetes,

obesity, hypertension and cardiovascular diseases are spreading

worldwide, in a context of plethoric access to high energy-low fiber

diets and limited physical activity [1]. Various tissues and organs

are involved in these diseases. However, the intestine seems to play

a pivotal role due to high fat (HF)-mediated increase in

permeability to bacterial lipopolysaccharide (LPS) and LPS-

induced metabolic inflammation [2]. The gut microbiota, the

composition of which is sensitive to the diet appears crucial [2].

Even single bacteria (e.g. Akkermansia muciniphila) may control both

intestinal and systemic outcomes as verified in mice [3].

The microbiota is now recognized as a vector of host

development with respect to anatomy, physiology and metabolism

[4]. In particular, neonatal bacterial colonization has been shown

to impact gut angiogenesis, villus-crypt architecture, epithelial

proliferation and apoptosis, and permeability [4]. Intestinal

alkaline phosphatase (IAP) is a key enzyme in LPS detoxification

and down-regulation of intestinal inflammation [5,6]. Incidentally,

IAP has been also considered as a heat shock protein (HSP)-like

protein, due to its up-regulation upon heat stress [7]. Intestinal

HSPs (HSP27 and HSP70) and enzymes like IAP are modulated

by the microbiota [8,9,10]. HSP27 and HSP70 are induced

following various kinds of stressors and are cytoprotective to the

intestine [11,12]. This could also be the case for intestinal HSP60

[13] although much less data are available. Both IAP and

inducible HSP are defense systems highly conserved across

evolution [12,14].

Early programming of metabolic diseases appearing later in life

was hypothesized three decades ago [15]. Since then, many tissues

and organs have disclosed imprinted responses to nutritional or

environmental disturbances in utero and (or) neonatally [16].

However, data on intestinal programming and long-term issues

are still scarce [17]. We recently demonstrated in a rat model of

intra-uterine growth retardation (IUGR) that IAP activity was
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imprinted as it increased in normal adult rats, but not in IUGR

rats upon intake of a high fat (HF) diet [18]. As other intestinal

enzymes (e.g. sucrase) and villus-crypt architecture were not

influenced by IUGR itself or its interaction with adult diet in this

model, we concluded that imprinting of intestinal function is a

highly selective process. Work on early disturbances in neonatal

gut colonization, e.g. by providing antibiotics to mothers or

offspring revealed alterations in intestinal transcriptome and

functional development [19,20], but long term outcomes were

not reported.

In the present study, we hypothesized that early changes in

neonatal gut colonization have long-lasting consequences on

selected intestinal functions, including protective HSPs and key

enzymes involved in intestinal homeostasis. The hypothesis was

tested in a swine model in which the mothers received a broad

spectrum antibiotic orally around parturition, and offspring were

serially sacrificed up to the age of 42 days (short-term study, ST),

or submitted to a HF diet between 140 and 169 days and then

slaughtered (long-term study, LT). The main outcome is that

specific intestinal enzymes are selectively and site-specifically

imprinted along the small intestine while inducible HSPs are not

so in this swine model.

Materials and Methods

Experimental Procedure
Ethics statement: The experiment was designed and executed in

2010 in compliance with French and European law (Decree

No. 2001–464 29/05/01, 86/609/CEE) for the care and use of

laboratory animals. At that time (2010) getting approval from an

ethic committee was not mandatory. One of us (JPL) held the

authorization certificate No. 006708 for experimentation on living

animals delivered by the French Veterinary Services. INRA Saint-

Gilles, including the on-site slaughterhouse has an institutional

license (agreement No. A35-622) from the French Veterinary

Services.

Data relating to the present publication will be made available

upon request.

All the animals of this experiment were reared in the

conventional experimental premises of INRA Saint-Gilles (France)

according to general rearing practices on site. Twenty four

crossbred (Large White6Landrace) sows from our experimental

herd, inseminated with Piétrain semen were used in two successive

batches, taking into account parity and resistance of selected fecal

bacteria to amoxicillin. This was determined for three bacteria

(Escherichia coli, Campylobacter sp. and Enterococcus sp.) according to

specific and accredited procedures carried out by the public

veterinary laboratory of Rennes, France (ISAE, Rennes, France).

Sows with amoxicillin-sensitive bacteria were assigned to the

antibiotic group in priority, the remaining sows being assigned to

the control (CTL) group. Groups of sows were located into

different rooms of the same farrowing unit, and specific measures

(e.g. separate rearing and intervention materials, circulation

between rooms after changing clothes, etc.) were put in place to

minimize cross contaminations between rooms. Broad spectrum

antibiotic amoxicillin (Vetrimoxin PO containing 10% amoxicil-

lin; CEVA Santé Animale, Loudéac, France) was provided daily to

the sows (40 mg/kg body weight, BW) orally together with their

morning meal (2 kg/day) in order to ensure total intake of offered

amoxicillin. They were fed the rest of their daily feed allowance

without supplemental antibiotic afterwards. The amoxicillin

dosage used here was intermediate between values found in the

literature for pigs (20 mg/kg BW/day [21]) and rats (100 mg/kg

BW/day [22]). Amoxicillin was distributed from 10 days before

the estimated farrowing date till 21 days after farrowing.

Parturition was not induced.

Litter size was adjusted within treatment groups at n = 12 piglets

per litter at the end of farrowing. Males were not castrated.

Offspring were weighed at birth and then weekly until the end of

the whole (ST and LT) experiment. Offspring were assigned to

slaughter at the ages of 14, 28 (age of weaning), 42 (ST exp.) and

169 (LT exp.) days. Two days before each slaughter date in the ST

experiment, offspring to be slaughtered (1 per litter) were selected

from all litters so as to keep essentially similar means BW and BW

variability between whole experimental groups and the sub-groups

to be killed. Selected sub-groups were balanced for sex at each age

of slaughter whenever possible. A similar selection process of

offspring was made in the LT experiment, with the exception that

homogeneous pairs of males or females were taken within litters

and randomly assigned to either low (LF) or HF diet (see below)

starting at the age of 140 days and lasting until day 169 (n = 10

litters per treatment). This experimental design allowed us to test

the effect of diet within litters.

Sows and offspring were fed balanced diets formulated to cover

nutritional requirements for gestating and lactating sows, and for

starting (pre-starter and starter) and growing pigs [23] (Table S1,

supplemental material). Sows were fed the gestating diet (3.5 kg/

day) or the lactating diet (ad libitum) in two meals. Offspring had ad

libitum access to all the feed formulas successively offered to them.

The periods of feeding were as follows: pre-starter diet from

Table 1. Zootechnical data and plasma a-acid glycoprotein and haptoglobin concentrations in pigs born to control or antibiotics-
treated sows and slaughtered at different ages (LSmeans and SEM, n = 9–12 per treatment and age).

Sow’s treatment Control Antibiotics Statistics (P= )1

Offspring’s age d14 d21 d28 d14 d21 d28 SEM treat. diet treat.*diet

Performance

Birth BW (kg) 1.46 1.52 1.43 1.64 1.66 1.62 0.08 0.15 0.30 0.72

Slaughter BW (kg) 4.5 8.7 14.2 4.5 8.3 13.3 0.8 0.34 ,0.0001 0.63

Daily BW gain (g) 222 254 286 216 253 283 15 0.86 0.0004 0.98

Plasma proteins of inflammation

a-Acid glycoprotein (mg/mL) 905 722 994 839 756 950 54 0.58 0.001 0.63

Haptoglobin (mg/mL) 579 896 1038 760 234 1262 386 0.79 0.29 0.43

1treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
doi:10.1371/journal.pone.0087967.t001

Early Microbial Changes and Gut Function in Pig

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e87967



weaning at 28 days till day 42, starter diet from day 43 till day 56;

and growing diet (called LF) from day 57 till day 169. However,

between day 140 and 169, a HF diet was obtained by adding palm

oil (90 g/kg feed) to the LF diet. During this period, the pigs were

reared in individual pens (2.25 m60.85 m=1.91 m2) and indi-

vidual feed intake was measured. Finally, all the animals had free

access to water.

Collection of Feces in Sows
Sows’ feces were collected in sterile vials 4 weeks before

theoretical farrowing date for determining amoxicillin sensitivity of

selected bacteria. Feces were kept at +4uC during collection and

then deposited within 2–3 hours at the veterinary laboratory

(ISAE, Rennes, France). Sows’ feces were also collected at the

initiation of antibiotic treatment and after 21 and 28 days of

lactation for determining fecal microbiota composition. The

samples were stored at 220uC and sent to the laboratory of

Microbiology, Wageningen University (Wageningen, The Nether-

lands) on dry ice at the completion of each experimental (ST, LT)

part.

Animal Slaughter, and Digesta and Tissue Sample
Collection
At the time points of interest, offspring were killed on site in our

on-site EU-labelled slaughterhouse by electronarcosis immediately

followed by exsanguination. A sample of blood was collected for

analyzing acute phase proteins of inflammation in plasma. After

laparotomy, 20-cm segments of proximal jejunum [beginning

10 cm (pigs aged 42 days or less) to 20 cm (pigs aged 169 days)

distal to the ligament of Treitz] and distal ileum [beginning 5 cm

(pigs aged 42 days or less) to 10 cm (pigs aged 169 days) proximal

to the ileo-cecal valvula] was removed. Digesta were collected and

Figure 1. A. Diversity of offspring ileal microbiota expressed using the Shannon diversity index calculated based on probe-level signal intensities as
implemented in the Microbiome package (http://microbiome.github.com). Maternal antibiotic treatment transiently reduced diversity on day 14 of
age (P,0.05). B. Composition of offspring ileal microbiota was affected during the first weeks of life by maternal treatment, as evaluated by Principle
Response Curve analysis of approximate genus-level microbial groups.
doi:10.1371/journal.pone.0087967.g001
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frozen at 220uC, and empty tissue segments then flushed with

sterile cold saline. Cross-sectional tissue samples were made for the

following preparations or analysis: 5 cm for fixation (in buffered

formalin 10%) paraffin embedding and histology of villi and crypts

[18,24]; 1 cm of whole tissue (cut in 3–4 pieces) for HSP analysis

and another one stored in RNALater (Ambion, Austin, TX) 24

hours at +4uC and then storage at 220uC until mRNA extraction.

The rest of collected segments was scraped using a glass slide for

mucosal enzyme determination (rough homogenization, snap-

freezing in liquid nitrogen and then storage at –20uC).

Microbiota Analysis
Five sows and their offspring in each treatment were randomly

selected in the first batch of pigs for microbial analysis in order to

characterize our pig model. Microbial composition of fecal

samples of sows collected at both beginning and end of antibiotic

treatment (ATB) were analyzed using the Porcine Intestinal Tract

Table 2. Morphology of the jejunum of pigs born from control or antibiotics-treated sows and slaughtered at different ages
(LSmeans and SEM, n = 9–12 per treatment and age).

Sow’s treatment Control Antibiotics Statistics (P= )1

Offspring’s age d14 d21 d28 d14 d21 d28 SEM treat. diet treat.*diet

Jejunum

Villous height (VH, mm) 556 427 421 492 390 453 24 0.27 ,0.0001 0.13

Villous width (mm) 112 147 161 115 143 163 4.6 0.96 ,0.0001 0.75

Villous surface area (mm2,6103) 55.2 52.7 60.9 48.9 47.9 64.3 2.9 0.31 0.0004 0.22

Crypt depth (CD, mm) 194 229 403 173 277 374 26 0.97 ,0.0001 0.29

Crypt width (mm) 35.6c 42.7b 52.0a 40.2b 48.0a 49.4a 1.7 0.098 ,0.0001 0.051

Crypt surface area (mm26103) 6.6 8.8 18.6 6.6 12.6 17.0 1.3 0.49 ,0.0001 0.11

VH: CD ratio 2.94 2.04 1.34 3.01 1.76 1.67 0.19 0.82 ,0.0001 0.32

Absorption surface magnif. ‘M’ 12.1a 7.6c 6.3c 10.0b 6.4c 6.9c 0.5 0.054 ,0.0001 0.057

Ileum

Villous height (VH, mm) 528 280 354 507 338 348 34 0.74 ,0.0001 0.48

Villous width (mm) 113 106 151 109 115 145 4.5 0.98 ,0.0001 0.16

Villous surface area (mm2,6103) 50.0 25.3 46.5 48.3 33.0 41.6 4.3 0.93 0.0002 0.33

Crypt depth (CD, mm)2 124b 119b 189a 135b 121b 169a 7 0.72 ,0.0001 0.092

Crypt width (mm) 44.6 43.1 56.3 44.3 45.8 53.9 1.6 0.99 ,0.0001 0.28

Crypt surface area (mm26103) 4.88c 4.53c 9.19a 5.39c 4.84c 7.76b 0.45 0.59 ,0.0001 0.068

VH: CD ratio 4.34 2.39 1.92 3.90 2.79 2.15 0.28 0.79 ,0.0001 0.30

Absorption surface magnif. ‘M’ 10.2 5.8 5.4 9.7 6.6 5.8 0.5 0.64 ,0.0001 0.52

1treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
2Crypt depth: tended to be lower in ATB than CTL group at day 42 (P= 0.067).
a,b,c,Means within rows with different letters differ (P,0.05).
doi:10.1371/journal.pone.0087967.t002

Table 3. Total Activities1 of aminopeptidase N, dipeptidyl-peptidase IV and sucrase in the jejunum and ileum of pigs born to
control or antibiotics-treated sows and slaughtered at different ages (LSmeans and SEM, n = 9–12 per treatment and age).

Sow’s treatment Control Antibiotics Statistics (P= )2

Offspring’s age d14 d21 d28 d14 d21 d28 SEM treat. diet treat.*diet

Jejunum

Aminopeptidase N (APN) 10.1 10.9 10.3 9.4 8.4 8.1 1.4 0.13 0.92 0.75

Dipeptidyl-peptidase IV (DPP-IV) 0.82 0.80 0.73 0.71 0.77 1.05 0.11 0.53 0.48 0.13

Sucrase 2.9 3.2 1.2 3.0 3.0 1.6 0.6 0.83 0.014 0.88

Ileum

Aminopeptidase N (APN) 8.3b 9.8ab 12.6a 6.1b 11.9a 10.2ab 1.1 0.38 0.0006 0.070

Dipeptidyl-peptidase IV (DPP-IV) 3.65a 1.78b 1.89b 2.77ab 3.28a 2.37ab 0.47 0.37 0.075 0.047

Sucrase (log) 20.09 0.47 0.62 20.41 0.50 0.55 0.11 0.20 ,0.0001 0.027

1Total activity (mmoles/min/g mucosa); 6 1023 for DPP-IV.
2treat.: Treatment of sows pre- and post-partum (control versus antibiotics); age (d14 and d28, unweaned; d42 weaned at d28); treat.*age: treatment by age interaction.
a,bMeans within rows with different letters differ (P,0.05).
doi:10.1371/journal.pone.0087967.t003
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Chip (PITChip), a phylogenetic microarray targeting the 16S

ribosomal RNA genes of 627 porcine intestinal microbial species-

level phylotypes [25,26]. Accordingly, microbial composition of

ileal and colonic content of their offspring collected at day 14, 21,

28 and 42 were analyzed by PITChip. Resulting images were

processed using Agilent’s Feature Extraction Software version 9.1

and further processed in R (library ‘microbiome ’ available from:

http://microbiome.github.com).

Villous and Crypt Morphometry
Intestinal tissue sections were prepared and characteristics of

villi and crypts were measured as reported previously [18,24].

Intestinal full size, well-oriented villi and crypts (10–15 per section)

were measured for their length, width and surface area. Intestinal

villus height-to-crypt depth ratio, and ‘M’ ratio for estimating

three-dimension mucosal surface area [27] were calculated.

Morphology parameters were averaged per animal prior to

statistical analysis.

Digestive Enzyme Activity Determination
The activities of alkaline phosphatase (IAP; E.C. 3.1.3.1),

dipeptidyl-peptidase IV (DPP4; E.C. 3.4.14.5), aminopeptidase N

(APN; E.C. 3.4.11.2) and sucrase (E.C. 3.2.1.48) were determined

in intestinal mucosa homogenates as previously reported [18,24].

Enzymes activities (or concentrations for IAP) were finally

expressed per g of mucosa.

Heat Shock Proteins and Heat Shock Factor-1
Soluble proteins from intestinal tissues were obtained as follows:

frozen tissues were ground in liquid nitrogen and then extracted in

borate buffer and protease inhibitor cocktail [28]. Proteins were

assayed using PierceTM BCA protein assay kit (ref. 23225; Thermo

Scientific, Rockford, IL). Tissue HSP relative concentrations using

b-actin as the reference protein were assayed by Western blotting

as previously reported [28]. The equipment used for these analyses

was new, and was applied together with commercially available

gels, membranes and reagents (Bio-Rad, Marne-La-Coquette,

France). They included: Mini Protean Tetra Cell system (ref. 165-

8005) as the electrophoresis system, pre-casted 12% TGX gels (ref.

4561043) for protein migration and Trans Blot Turbo Transfer

Starter System (ref. 170-4155) for protein transfer on PVDF

membranes (ref. 170-4156). Molecular weight standards were also

from Bio-Rad (ref. 161-10393). Ten micrograms of sample protein

were deposited in each well and the electrophoresis was conducted

at 160 V in a Tris/Glycine/SDS buffer (ref. 161-0772). Protein

transfer was conducted at 2.5 A and 25V for 7 min in the Trans

blot apparatus. Membranes were then blocked for 1 hour at room

temperature in defatted milk powder prepared (50 g/L, ref. 170-

6404) in Tris buffer saline (ref. 170-6435) and 0.1% Tween 20 (ref.

170-6531). The membranes were then incubated for 3 hours with

primary antibodies prepared in the same mixture as for blocking.

Except the anti-actin antibody that was from Sigma-Aldrich (ref.

A2066), all the primary antibodies used were from Stressgen

(Victoria, British Columbia, Canada), were produced in rabbits

(except anti-HSP60 that was produced in goat) and were sold by

Enzo Life Sciences (Villeurbanne, France): references SPA -803, -

828-J, -812, -816, and -901 for anti-HSP27, -HSP60, -HSP70, -

HSC70 and -HSF-1, respectively. Membranes were then washed

3615 min in TBS Tween buffer before being incubated for 1 hour

at room temperature with the second antibody coupled to

horseradish peroxidase (ref. NA934, GE Healthcare Amersham

for all the primary antibodies, except anti-HSP60 that was

incubated with an anti-goat antibody ref. G50007 from InVitro-

gen, Camarillo, CA). After a final 3615 min washing, protein

bands on the membranes were stained by chemiluminescence

using ECL-Plus reagent (ref. RPN2132, GE Healthcare Amer-

sham) (2 ml per membrane, 5 min in the dark). Revealed bands

were analyzed using an imager (ImageQuantTM LAS 4000, GE

Healthcare). Protein band density was determined using UN-

Figure 2. Intestinal alkaline phosphatase (IAP) concentration in
jejunal and ileal mucosae and IAP mRNA expression in ileal
tissue of offspring born to control or antibiotic-treated sows
and slaughtered at different ages (LSmeans and SEM, n=9–
12 per treatment and age). Jejunal IAP was not influenced by
treatments, but ileal IAP was transiently lower at day 14 (P,0.05) in
offspring born to antibiotic-treated sows compared to controls
(treatment by time interaction, P = 0.003). Differences in Ileal IAP mRNA
levels did not reach significance, but ileal IAP concentrations and mRNA
levels were positively correlated (P,0.01).
doi:10.1371/journal.pone.0087967.g002
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SCAN-IT gel 6.1 (Silk Scientific Inc., Orem, UT) and results of a

given HSP band were expressed as a ratio to b-actin band density

as determined for the same sample on the same membrane.

qPCR Analysis
Intestinal mRNA was extracted, cDNA prepared and qPCR

analysis performed as previously described [29]. Primers specific

for intestinal enzymes and HSP were used [30–34] (Table S2,

supplemental material).

Blood Plasma a-acid Glycoprotein and Haptoglobin
Blood plasma a-acid glycoprotein (AGP) was measured using a

commercial kit based on a radial immuno-diffusion assay

according to the manufacturer’s instructions (Cardiotech, Spring

Lake, NJ, USA). Haptoglobin was determined by colorimetry

using a commercial kit (Tridelta Ltd, Maynooth, Co. Kildare,

Ireland) [35].

Statistical Analysis
To relate changes in total bacterial community composition to

treatment and sampling time (ST) or diet composition (LT),

redundancy analysis (RDA) and Principal response curves were

used as implemented in the CANOCO 4.5 software package

(Biometris, Wageningen, the Netherlands). RDA is the canonical

form of principle component analysis and is a multivariate linear

regression method where several response parameters are related

to the same set of environmental (explanatory) variables. The

signal intensities for 144 genus-level phylogenetic groups of

PITChip were used as responsive variables. Partial RDA was

employed to analyze the effect of antibiotic treatment of sows on

microbiota.

Statistical analysis of other data was carried out using the

Statistical Analyzing System (SAS, version 8.1, 2000; SAS Institute

Inc., Cary, NC, USA). Farrowing data were analyzed by GLM

procedure for comparing CTL and ATB treatments. Offspring

Table 4. Protein expression of heat shock proteins and heat shock factor-1 in intestinal tissues of pigs born to control or
antibiotics-treated sows and slaughtered at different ages (LSmeans and SEM, n = 9–12 per treatment and age).

Sow’s treatment Control Antibiotics Statistics (P= )1

Offspring’s age d14 d21 d28 d14 d21 d28 SEM treat. diet treat.*diet

Jejunum

HSP27/b-Actin 0.97 1.08 1.20 0.89 0.91 1.02 0.12 0.17 0.30 0.90

HSP70/b-Actin 0.61 0.74 0.81 0.52 0.59 0.63 0.07 0.031 0.12 0.84

Ileum

HSP27/b-Actin 0.77 0.38 0.82 0.53 0.68 0.61 0.15 0.69 0.46 0.12

HSC70/b-Actin 0.82 0.76 0.75 1.04 1.12 0.73 0.11 0.050 0.11 0.23

HSP60/b-Actin 0.62 0.31 0.54 0.70 0.64 0.72 0.12 0.07 0.25 0.58

HSF1/b-Actin 0.33 0.38 0.41 0.33 0.31 0.41 0.08 0.69 0.51 0.87

1treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
doi:10.1371/journal.pone.0087967.t004

Figure 3. Heat shock protein 70 concentration (relative to b-actin) in ileal tissue of offspring born to control or antibiotic-treated
sows and slaughtered at different ages (LSmeans and SEM, n=9–12 per treatment and age). Ileal HSP70 relative concentration was not
different between groups at day 14, but it was significantly lower (P,0.05) at day 28 and day 42 in offspring born to antibiotic-treated sows
compared to controls (treatment by time interaction, P = 0.009).
doi:10.1371/journal.pone.0087967.g003
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data were analyzed using MIXED models for testing the effects of

treatment (against an error calculated between litters) and time of

slaughter (error within litters) for the ST experiment, and the

effects of treatment (between litters) and diet (within litters) for the

LT experiment, respectively. The models also included the

interaction term between early treatment and age of slaughter

(ST exp.) or late diet (LT exp.). Results are presented as least-

squares means and pooled SEM. Least-squares means compari-

sons for each combination of treatment and time were made only

when a tendency (P#0.10) for an interaction between these terms

was observed. In these cases, means were separated using

Bonferroni post-hoc comparisons. Data displaying a non-Gaussian

distribution were log-transformed before statistical analysis. Effects

were considered significant at P#0.05 and as a trend at P#0.10.

Perinatal ATB treatment by age (ST exp.) or diet (LT exp.) and

interaction (but not age effects per se) are commented.

Correlation of offspring ileal microbiota and enzymes (DPP-IV,

PAI and APN) was analyzed by RDA in CANOCO 4.5.

Treatments (control and antibiotic) were defined as nominal

variables, whereas Age, DPP-IV, PAI and APN were defined as

non-nominal variables. An interaction of age and treatments

(control and antibiotic) was defined. Monte Carlo permutation test

was used for assessing the significance of the contribution of

environmental variables to the observed microbial variation.

Results

Sows’ Reproduction Performance
One sow in the ATB group died for unknown reasons two days

after farrowing and its litter was excluded from the experiment.

Antibiotic treatment of sows had no significant impact on

reproduction performance. In particular, litter weight at birth

amounted to 21.9 (1.4) and 21.0 (1.4) kg in CTL and ATB groups,

respectively (P = 0.65). Pig numbers per litter at birth were not

different between CTL and ATB groups [16.1 (1.03) and 14.1

(1.08), respectively; P = 0.19]. Average offspring birth weight was

1.38 (0.07) and 1.53 (0.07) kg in CTL and ATB groups,

respectively (P = 0.12).

Short-term Experiment
Zootechnical data and plasma proteins of

inflammation. Offspring grew equally well between birth and

day 42 and blood plasma analysis did not reveal significant

treatment effects or interactions for AGP and haptoglobin

(Table 1).

Microbiota composition in sows and their offspring. In

order to characterize the model described here, and to show that

antibiotic treatment of sows had repercussion on gut microbiota in

both the sows and their offspring, we analyzed the microbial

composition in sows’ feces as well as in intestinal contents of

offspring for a subset of animals using the PITChip phylogenetic

microarray. A more detailed description of microbial data will be

published separately. ATB treatment of the sows transiently

reduced microbial diversity in the ileum of piglets on day 14 after

Figure 4. Correlations between microbiota composition and
intestinal parameters, using RDA as implemented in CANOCO
4.5. Treatments (control and antibiotic) were defined as nominal
variables, whereas Age, DPP-IV, PAI and APN were defined as non-
nominal variables. An interaction of age and treatments (control, C*Age,
and antibiotic, T*Age) was defined. Monte Carlo permutation test was
used for assessing the significance of the contribution of environmental
variables to the observed microbial variation.
doi:10.1371/journal.pone.0087967.g004

Table 5. Zootechnical data and plasma concentrations of a-acid glycoprotein and haptoglobin in offpsring born to control or
antibiotics-treated sows and fed a low (LF) or high (HF) fat diet between 140 and 169 days of age (LSmeans and SEM, n = 10 per
treatment).

Sow’s treatment Control Antibiotics Statistics (P = )1

Offspring’s diet LF HF LF HF SEM treat. diet treat.*diet

Performance

BW, day 140 (kg) 93.2 92.0 93.0 88.8 1.1 0.14 0.32 0.15

BW, day 169 (kg) 127.8 124.9 128.4 125.3 1.5 0.79 0.38 0.93

ADG, day 140-day 169 (kg) 1.21 1.15 1.21 1.25 0.04 0.26 0.88 0.19

ADFI day 140-day 169 (g/kg BW)2 27.6 24.3 26.6 24.6 0.7 0.65 0.046 0.31

ADMEI day 140-day 169 (KJ/kg BW)3 347 349 334 354 11 0.66 0.29 0.31

Plasma proteins of inflammation

a-Acid glycoprotein (mg/mL) 357 344 421 465 37 0.028 0.67 0.45

Haptoglobin (mg/mL) 1650 2219 1906 2359 265 0.47 0.070 0.83

1treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
2BW: body weight. ADFI: average daily feed intake: 27.1 (0.5) and 24.4 (0.5) g/kg BW for pigs fed the LF and HF diets, respectively (P = 0.046).
3ADMEI: Average daily metabolizable energy intake.
doi:10.1371/journal.pone.0087967.t005
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birth (Figure 1). Diversity in the colon was not affected at any time

point (data not shown). Furthermore, composition of ileal

microbiota was affected by the maternal ATB treatment, leading

to a reduction in the relative abundance of several presumed

beneficial bacterial populations such as lactobacilli and bifidobac-

teria, whereas increased relative abundance of potential patho-

genic bacteria, including Clostridium difficile, C. perfringens and E. coli,

was associated with the treatment group before day 21 (Figure 1).

A similar trend was observed for colonic microbiota (data not

shown).

Fecal microbiota composition of sows was affected by ATB

treatment, leading to a similar reduction in relative abundance of

lactobacilli as was also observed for the offspring (data not shown).

Intestinal architecture. In the jejunum, crypts tended to be

wider (P = 0.098), and the M absorption factor lower (P= 0.054) in

offspring born to ATB sows (Table 2). However, the treatment by

age interaction was significant for these variables (P,0.10),

showing wider crypts at day 14 and day 28 (but not at day 42)

(P,0.05) and lower M absorption factor at day 14 (P,0.05) in

ATB offspring. In the ileum, there was no significant ATB

treatment effect, but interactions were observed for crypt depth

and surface area (P,0.10). Crypt depth tended to be lower in ATB

offspring at day 42 (P = 0.067) while differences between treatment

groups for crypt surface area at a given age did not reach

significance.

Mucosal enzymes. Jejunal enzyme activities were not

influenced by the factors tested (Table 3). By contrast, significant

interactions between treatment and age were observed for ileal

APN and DPP-IV (P= 0.070 and P= 0.047, respectively). Indeed,

differential age effects between ATB and CTL offspring were seen

for APN, while DPP-IV activity was higher in ATB offspring than

in controls at day 28 (P,0.05). Jejunal IAP activity did not vary

significantly according to treatments (Figure 2). Contrasting with

this, there was a highly significant interaction between ATB

treatment and age for ileal IAP activity (P = 0.003) (Figure 2). IAP

activity was nearly three-fold lower in ATB offspring at day 14

(P,0.01), with no treatment differences thereafter. Although

effects of tested factors did not reach significance for ileal IAP

mRNA levels, positive correlations (P,0.01) were observed

between IAP activity and mRNA levels.

Heat shock proteins and heat shock factor-1. Jejunal

HSP70 (but not HSP27) was influenced by ATB treatment of sows

(global effect 220%, P= 0.031) (Table 4). Offspring ileal HSP27

was not influenced by the tested factors. By contrast, ileal HSP70

was lower in ATB than CTL offspring (P = 0.003) and there was a

significant treatment by age interaction (P= 0.017) (Figure 3).

While there was not treatment effect at day 14, ileal HSP70

protein level was two- to three-fold lower in ATB than CTL

offspring at day 28 and day 42 (P,0.05). Ileal tissue expression

levels for HSP27 and HSP70 were not significantly influenced by

the tested factors (Table S4). Ileal HSC70 protein level was higher

in ATB than CTL offspring (P= 0.05). This effect precluded the

use of HSC70 as a reference protein for inducible HSPs. HSP60 in

the ileum (not assayed in the jejunum) tended to be higher in ATB

than CTL offspring (P = 0.070). HSF-1, the heat shock factor

regulating inducible HSP expression was not influenced in the

ileum by the factors tested (Table 4).

Correlations between microbiota composition and

intestinal parameters. Correlation analysis between microbi-

ota composition and intestinal parameters revealed that IAP and

DPP4 activities were positively correlated with L. delbrueckii and

negatively correlated with C. perfringens (Figure 4). The activity of

APN was correlated positively with C. perfringens, E. coli and L.

acidophilus, and negatively correlated with L. delbrueckii (Figure 4).

Furthermore, age was found to significantly contribute to the

microbial variation (P = 0.004) and DPP-IV tended to contribute

significantly (P = 0.084).

Long-term Experiment
Zootechnical data and plasma proteins of

inflammation. There were no differences in body weight

between treatment groups at the beginning and at the end of

the LT trial, so that growth rates were essentially similar (Table 5).

The level of intake of feed that were offered ad libitum was 10%

lower in HF offspring (P,0.05), but the level of metabolizable

energy intake did not differ between treatment groups. Plasma

AGP concentration was 26% higher in offspring born to ATB sows

(P,0.05) while haptoglobin concentration tended to be higher in

HF pigs (+29%, P=0.070) compared to LF pigs.

Table 6. Enzyme activities1 of jejunal and ileal mucosa in pigs born to control or antibiotics-treated sows and fed a low (LF) or high
(HF) fat diet between 140 and 169 days of age (LSmeans and SEM, n = 10 per treatment).

Sow’s treatment Control Antibiotics Statistics (P = )1

Offspring’s diet LF HF LF HF SEM treat. diet treat.*diet

Jejunal mucosa

Aminopeptidase N (APN) 6.8 6.1 6.1 7.2 0.6 0.80 0.69 0.14

Dipeptidyl-peptidase IV (DPP-IV)3 0.42 0.35 0.77 0.65 0.08 0.001 0.26 0.76

Sucrase4 3.8a 2.6c 3.0b 2.9b 0.3 0.37 0.020 0.047

Ileal mucosa

Aminopeptidase N (APN) 12.4 10.7 11.1 9.9 1.2 0.41 0.23 0.84

Dipeptidyl-peptidase IV (DPP-IV)5 1.9 1.8 1.3 1.2 0.2 0.028 0.69 0.99

Sucrase 4.9 3.8 4.8 4.6 0.4 0.58 0.18 0.34

1Total activity (mmoles/min/g mucosa) (nmoles/min/g mucosa for DPP-IV).
2treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
3Treatment effect for dipeptidyl-peptidase activity: 0.38 (0.06) and 0.71 (0.06) nmoles/min/g mucosa for controls and antibiotics, respectively (P = 0.001).
4Diet effect for sucrase TA: 3.4 (0.2) and 2.7 (0.2) nmoles/min/g mucosa for LF and HF, respectively (P = 0.020).
5Treatment effect for dipeptidyl-peptidase activity: 1.8 (0.2) and 1.2 (0.2) nmoles/min/g mucosa for controls and antibiotics, respectively (P = 0.028).
a,b,cMeans with different superscript letters within rows differ (P,0.05).
doi:10.1371/journal.pone.0087967.t006
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Microbiota composition in 6 month-old offspring. In

contrast to the observations made during the first 6 weeks of life in

piglets, no significant effects of ATB on microbiota was observed

at the long term, even though there was a tendency for an

interaction between ATB treatment and offspring adult diet

(P = 0.065, data not shown).

Intestinal architecture. Intestinal architecture of pigs in the

LT trial was very little influenced by treatments as the only

observed difference was for crypts that were slightly (+6%) wider in

ATB offspring compared to CTL (P,0.05) (Table S3, Supple-

mental material).

Mucosal enzymes. Jejunal DPP-IV activity was 86% higher

in ATB offspring than in CTL (P,0.01) (Table 6). Jejunal sucrase

was on average 20% lower in HF compared to LF offspring

(P= 0.020). In fact, there was an interaction between ATB

treatment and diet composition for this enzyme (P = 0.047).

Figure 5. Intestinal alkaline phosphatase (IAP) concentration in jejunal and ileal mucosae in jejunal tissue of offspring born to
control or antibiotic-treated sows and fed a LF or a HF diet between 140 and 169 days of age (LSmeans and SEM, n=10 per
treatment and diet). Jejunal IAP was significantly lower (P,0.05) in jejunal mucosa of offspring born to antibiotic-treated sows compared to
controls when fed the LF diet (treatment by diet interaction, P = 0.03). The effects of the tested factors were not significant for ileal IAP concentration
or mRNA levels.
doi:10.1371/journal.pone.0087967.g005
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Sucrase activity was lower in CTL offspring fed the HF diet

compared to those fed the LF diet (P,0.05) while it was not

influenced by the diet in the ATB offspring. Opposed with

observations in the jejunum, ileal DPP-IV activity was lower in

ATB offspring compared to CTL (232%, P= 0.028) while ileal

sucrase activity was not influenced by the tested factors. Jejunal

and ileal APN activities were not influenced, but jejunal IAP

activity was 24% lower in ATB compared to CTL offspring

(P = 0.021) (Figure 5). There was also a treatment by diet

interaction for this enzyme (P = 0.033). ATB offspring displayed

a nearly halved jejunal IAP activity (P,0.05) compared to CTL

offspring with the LF diet while there was no difference between

ATB and CTL with the HF diet. Ileal IAP displayed only a trend

(P = 0.067) for lower activity in HF compared to LF offspring.

Finally, in terms of gene expression, only sucrase mRNA relative

levels displayed a treatment by diet interaction (P= 0.013)

(Table 7). Sucrase mRNA level was lower in ATB than in CTL

offspring when fed the LF diet, with non-significant differences

between treatments when fed the HF diet. However, gene

expression data may have been biased by the fact that one fourth

(11/40) of the samples displayed poor quality mRNA and where

therefore discarded.

Heat shock proteins and heat shock factor-1. Protein

levels of HSPs and HSF-1 in intestinal tissues of pigs reared in the

LT experiment were not influenced by early ATB treatment or

composition of the growing diet (Table 8). Therefore, correspond-

ing mRNA relative levels were not assessed.

Discussion

We report important data on ST and LT effects of early

changes in microbial colonization on small intestinal biology in a

swine model of maternal antibiotic treatment around parturition.

We show that this treatment transiently induced diverse temporal

and regional patterns of selective modifications in crypt depth, IAP

activity and HSP70 protein production that collectively suggest a

lower or delayed host response to bacteria especially in the ileum.

Importantly, LT investigations reveal region-specific and selective

changes in particular enzymes (e.g. IAP, sucrase) while other

protective components like inducible HSPs were not influenced in

the long term in this model.

The Pig Model: Effects of ATB Treatment on the
Microbiota of Sows and Offspring
In line with changes in intestinal microbiota observed in this

study, amoxicillin nearly eradicated lactobacilli in the small

intestine of rat pups [19]. It is interesting to note that we found

similar changes in the relative abundance of groups within the

Table 7. mRNA expression levels of housekeeper and digestive enzyme genes in jejunal tissue of pigs born to control or
antibiotics-treated sows and fed a low (LF) or high (HF) fat diet in young adulthood (LSmeans and SEM, n= 5–9 per treatment1).

Sow’s treatment Control Antibiotics Statistics (P = )1

Offspring’s diet LF HF LF HF SEM treat. diet treat.*diet

Cyclophilin A 2.60 3.13 2.24 2.51 0.32 0.16 0.25 0.70

Aminopeptidase N/Cyclo A 0.68 0.42 0.54 0.50 0.10 0.76 0.16 0.33

DPPIV/Cyclo A3 nd nd nd nd nd

Sucrase/Cyclo A4 2.03a 1.06b 1.23b 1.61ab 0.23 0.61 0.23 0.013

Alkaline phosphatase/Cyclo A 1.33 1.03 0.93 0.99 0.19 0.28 0.55 0.37

1Due to poor quality of mRNA in 11 out of 40 samples.
2treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
3nd: not done because the primers used (Petersen et al. 2001) did not work.
4Treatment by diet interaction (P= 0.013). CTL-LF different from CTL-HF (P= 0.013) and from ATBQ-LF (P= 0.016).
a,bMeans with different superscript letters within rows differ (P,0.05).
doi:10.1371/journal.pone.0087967.t007

Table 8. Protein expression of heat shock proteins and heat shock factor-1 in intestinal tissues of pigs born to control or
antibiotics-treated sows and fed a low (LF) or high (HF) fat diet in young adulthood (LSmeans and SEM, n= 10 per treatment).

Sow’s treatment Control Antibiotics Statistics (P = )1

Offspring’s diet LF HF LF HF SEM treat. diet treat.*diet

Jejunum

HSP27/b-Actin 0.56 1.06 0.85 0.78 0.20 0.96 0.28 0.15

HSP70/b-Actin 1.02 0.87 0.86 0.85 0.11 0.43 0.45 0.11

Ileum

HSP27/b-Actin 0.99 1.13 1.00 1.07 0.10 0.81 0.31 0.70

HSP70/b-Actin 1.01 0.86 1.05 0.90 0.17 0.82 0.37 1.00

HSC70/b-Actin 0.66 0.48 0.55 0.64 0.10 0.80 0.65 0.18

HSF1/b-Actin 0.10 0.13 0.13 0.15 0.02 0.15 0.29 0.77

1treat.: Treatment of sows pre- and post-partum (control versus antibiotics); diet (low versus high fat diet); treat.*diet: treatment by diet interaction.
doi:10.1371/journal.pone.0087967.t008
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lactobacilli in the sows’ fecal microbiota as were observed for ileal

and colonic microbiota of offspring during the first 6 weeks of life.

This points towards an indirect effect of maternal ATB treatment

via the sow’s own microbiota that is transmitted to their offspring

during the initial colonization of the newborn piglet. By contrast,

long-term effects on offspring gut microbiota composition

appeared to be limited.

Influences on small Intestinal Morphology, Enzymes and
Inducible HSPs

Short-term influence of maternal ATB treatment on

offspring small intestine. The consequences of maternal

ATB treatment, although mild were more pronounced in the

distal ileum as compared to the proximal jejunum. Regarding

intestinal morphology, shorter crypt depth and smaller crypt

surface area in ATB offspring were observed at 42 days of age.

This would suggest an impaired or delayed host response to

bacteria in the ileum in this group, mediated by the observed

differences in microbiota diversity and composition early in life.

To this end, it is interesting to note that conventional pigs display

deeper crypts than germ-free or mono-colonized pigs [36].

However, villus architecture remained essentially unaffected in

the present study. Elongated villi were observed in the ileum (but

not in the proximal jejunum) of germ-free or mono-colonized

piglets with a non-pathogenic E. coli strain [36]. When amoxicillin

was given to weanling pigs for 21 or 27 days, no effects on villus or

crypt architecture were noted [37] ), and it is tempting to speculate

that treatment-mediated changes in microbiota composition

significantly affect architecture very early during initial coloniza-

tion, rather than later in life. Although calculated jejunal

absorptive surface area (‘M’ factor) was lower at day 14 in ATB

offspring, in association with reduced IAP activity, this had no

apparent consequence on growth performance or on systemic

inflammation during that period.

For intestinal enzymes, ileal IAP activity was transiently reduced

in ATB offspring, suggesting also a lower threat possibly caused by

less Gram-negative bacteria (or less bacterial pro-inflammatory

components, e.g. LPS) on this segment. Indeed, conventionaliza-

tion of zebrafish with Gram-negative (but not Gram-positive)

bacteria increased IAP activity [9]. In pigs, reduced specific

activity (/g protein) of IAP was reported after mono-association

with non-pathogenic E. coli strains, but total activities were not

reported [38] so that comparisons with our work are difficult.

Finally, interactions between treatment and age for ileal APN and

DPP-IV are difficult to interpret as they did not reveal very clear

patterns of variation (Table 3). Conventional pigs were reported to

display reduced APN activity compared to germ-free pigs, possibly

as a consequence of APN protein degradation by enteric bacteria

[39].

Little is known on the possible relationships between intestinal

microbiota and digestive enzymes. Various L. delbrueckii strains

display anti-inflammatory properties on intestinal epithelial cell

lines in cultures [40]. This may contribute to explain the positive

correlation seen here between L. delbrueckii and IAP as this enzyme

is down-regulated by inflammation [5]. However, the cause-and-

effect relationship cannot be determined from the present work

because IAP is a potent anti-inflammatory component of the small

intestine, and inflammation by itself impacts gut microbiota

composition [5,6]. A negative correlation was found between C.

perfringens and IAP (Figure 4). Again, this may reflect the anti-

inflammatory properties of IAP as anti-inflammatory substances or

probiotic strains were able to reduce C. perfringens-induced

intestinal lesions and to increase ileal IAP in chickens [41,42].

To the best of our knowledge, no information is available thus far

on putative relationships between bacteria correlating positively

(e.g. C. perfringens, E. coli and L. acidophilus) or negatively (e.g. L.

delbrueckii) with activities of enzymes like IAP, DPP4 or APN.

Luminal bacteria were responsible for physiological expression

of protective HSP25 and HSP72 (corresponding to HSP27 and

HSP70 in human) in the small intestine of rats, while treatment

with the antibiotic metronidazole depressed intestinal HSP

expression [43]. This is consistent with our present observation

Figure 6. Dipeptidylpeptidase IV-to-intestinal alkaline phosphatase ratio in jejunal mucosa of offspring born to control or
antibiotic-treated sows and fed a low fat (LF) or a high fat (HF) diet between 140 and 169 days of age (LSmeans and SEM, n=10 per
treatment and diet). Jejunal DPP-IV-to-IAP ratio was higher in offspring born to antibiotic-treated sows compared to controls (P = 0.003) and
tended to be lower in offspring fed the HF compared to the LF diet (P = 0.055).
doi:10.1371/journal.pone.0087967.g006
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that offspring born to ATB-treated dams displayed reduced

HSP70 protein levels in the ileum and jejunum at 28 and 42 days

of age. HSP70 is a molecular chaperone protecting intestinal

epithelial cell structure and function [11,12]. The regulatory

mechanism of HSP70 decrease was not transcriptional, and

HSP70 response was not linked to changes in protein production

of HSF-1, a key transcription factor involved in the initiation of the

heat shock response [44]. Our data thus suggest a post-

translational regulation of intracellular HSP70 concentration, a

point which needs to be investigated deeper in future studies.

Reduced HSP70 protein level further supports lower or delayed

host response to bacteria in the small intestine of offspring born to

ATB-treated sows. Intestinal HSP27 was not impacted in the

present work. Comparisons between studies (e.g. [43]) are difficult

because of differences in animal species, relative age and antibiotic

used, but this may suggest a mild effect of dam ATB treatment on

offspring intestine as only HSP70 was affected. Microbiota data

could suggest that decreased HSP70 may be related to the

depletion of various lactobacilli. This is because certain lactobacilli

have been shown to stimulate inducible HSP expression [45,46].

Conversely, increased E. coli relative counts in the ileum may

probably not account for such HSP changes. Indeed, E. coli LPS

was shown to stimulate only HSP25 protein production, but this

was in cultured intestinal epithelial cells [47], and HSP27

expression was not influenced by the treatment in the present

study. Ileal HSP60 tended to be higher in ATB offspring. Recent

data with cultured intestinal epithelial cells suggest a protective

role for this HSP against oxidative stress and inflammation [13],

but much less is known on it, as compared to HSP27 and HSP70

in vivo. The decrease in ileal HSP70 associated with a trend for

increased HSP60 may be suggestive of compensatory mechanisms

within the HSP family, with final outcomes (e.g. sensitivity to

oxidative or inflammatory stress) being difficult to predict.

Systemically, we did not find any evidence of differential

inflammation between ATB and CTL offspring. This is in sharp

contrast with data by Fak et al. [20] who reported twice higher

plasma levels of haptoglobin in rats born to dams treated with an

antibiotic mixture (metronidazole, neomycin, polymyxin B)

compared to non-treated controls. As in vivo intestinal permeability

was altered, aberrant intestinal colonization by Enterobacteriaceae

(e.g. E. coli) in ATB offspring was suggested to be responsible for

this inflammation [20]. Plasma AGP is an inflammatory protein

[48] and recent data suggest AGP as a potential marker of growth

impairment in newborn pigs [49]. The lack of difference in plasma

AGP concentration between treatment groups is in agreement

with similar growth patterns between groups observed here.

Collectively, the results from our ST experiment suggest a

transiently disturbed or delayed host response to bacteria mainly

in the distal small intestine of offspring born to ATB-treated

mothers. This is suggested by transient reductions in IAP,

inducible HSPs and crypt depth.

Long-term influence of maternal ATB treatment on

offspring small intestine. The major finding of the present

work is that early disturbances in bacterial colonization can have

long-lasting effects on specific intestinal traits (e.g. some key

intestinal enzymes) although bacterial diversity seemed to be little

affected. In particular, we observed a two-fold reduction in jejunal

IAP activity of ATB offspring. IAP is a key enzyme recently

demonstrated to dephosphorylate and thus detoxify bacterial LPS

[5,6]. LPS is known to be pro-inflammatory, and anti-inflamma-

tory properties of intestinal IAP both locally and systemically are

well documented [5,6]. Our data could indicate differential

variations in LPS detoxification capacity along the small intestine

of ATB offspring as compared to controls. Adult rats born IUGR

showed early programming of jejunal IAP, but this was disclosed

only under the HF diet [18]. Although our two studies differ in

animal species and models of early disturbances, the common

conclusion is the susceptibility of IAP to early influences as

revealed in adulthood. This is an important finding because

intestinal detoxification of LPS by IAP is a highly conserved

function across evolution [14]. However, underlying mechanisms

of IAP modulation warrant further investigation.

DPP-IV and APN peptidases have been investigated due to

their putative broad pro-inflammatory role [47,50]. More

specifically, intestinal DPP-IV is causally involved in glucose

intolerance in mice [51]. DPP-IV hydrolyzes the incretins

glucagon-like peptide 1 and glucose-dependent insulinotropic

peptide, a process that generates two bioactive dipeptides

responsible for glucose tolerance deterioration and reduced insulin

secretion [51]. Here, we found that DPP-IV activity responded

differentially in the jejunum (ATB.CTL) and the ileum (ATB,

CTL) (Table 3). However, it is difficult to conclude on the global

outcomes of such effects because we did not make an assessment of

total quantities of DPP-IV enzyme along the small intestine, and

investigating plasma incretins was not our aim here. Anyhow, the

major conclusion of the present observation is that intestinal DPP-

IV is modulated in the long-term, although underlying mecha-

nisms are still unclear. As high intestinal DPP-IV may be

detrimental [51] and IAP protective [5,6], we calculated the

jejunal DPP-IV to IAP ratio (Figure 6) as an ‘intestinal risk index’

for metabolic disorders. We found this index to highly discriminate

between ATB and CTL offspring, as it was so in adult rats born

IUGR compared to controls [18]. Incidentally, plasma AGP was

also higher in adult offspring born to ATB sows, suggesting some

form of systemic inflammation in these pigs. However, the actual

function of AGP, which does not correlate with haptoglobin

remains obscure [48,49].

Sucrase has long been considered as a maturation marker of

intestinal epithelial cells [52]. In the present study, jejunal (but not

ileal) sucrase activity and mRNA levels were influenced by adult

diet composition in CTL, but not in ATB offspring, suggesting an

imprinting. This is in contrast with our rat study where jejunal

sucrase was not influenced [18], highlight species-specific differ-

ences.

Finally, inducible HSP27 and HSP70 (and possibly HSP60)

have been reported many times to be protective against oxidative

stress and inflammation of the intestine [11,12]. In the present

study, the investigated intestinal HSPs did not appear to be

influenced in the long-term.

Influence of the diet in adulthood. Although testing dietary

influences per se in our LT study was not our aim, it is a useful tool

for investigating how early life events may interact with the diet,

and especially unbalanced diets (like HF) at risk for metabolic

diseases and obesity in later life. Here, effects of the HF diet were

rather limited contrary to rodent experiments where larger

amounts of fatty diets (fat providing between 30 and 60% of

energy intake) are usually offered (e.g. [2,18]). No differences in

energy intake or in growth rate were observed between ATB and

CTL offspring. However, plasma haptoglobin concentrations

tended to be higher in HF than LF offspring, suggesting a trend

for higher inflammation in HF pigs. This could reflect increased

intestinal LPS entry into the body and the subsequent develop-

ment of metabolic inflammation as observed in mice [2]. Data on

this matter are still scarce in pigs [53], but recent investigation

reported higher intestinal translocation of LPS with saturated fats

than with unsaturated fats in this species [54]. We also observed a

large reduction in jejunal sucrase activity in HF pigs, as already

reported in pigs and rats [55,56]. More importantly, the
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interaction between early ATB treatment and growing diet

suggests that mechanisms of sucrase adaptation to an HF diet

are altered in ATB offspring. This may be partially so for jejunal

IAP (trend for an interaction).

Conclusions and Perspectives
We developed a swine model of mild neonatal changes in

microbial colonization induced by antibiotic treatment of dams

around parturition. Our data show early but transient changes in

intestinal enzymes and epithelial protection systems. More

importantly, we disclose long-term effects of neonatal disturbances

in gut colonization on intestinal function. This appears to be

complex, trait-specific, site- and sometimes diet-dependent. Work

is in progress to investigate the mechanisms underlying such

phenotypic/functional changes deeper and to decipher the role

played by gut microbiota.
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