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Abstract

MYCN gene amplification in neuroblastoma drives a gene
expression program that correlates strongly with aggressive dis-
ease. Mechanistically, trimethylation of histone H3 lysine 4
(H3K4) at target gene promoters is a strict prerequisite for this
transcriptional program to be enacted. WDR5 is a histone H3K4
presenter that has been found to have an essential role in H3K4
trimethylation. For this reason, in this study, we investigated the
relationship between WDR5-mediated H3K4 trimethylation and
N-Myc transcriptional programs in neuroblastoma cells. N-Myc
upregulated WDR5 expression in neuroblastoma cells. Gene
expression analysis revealed that WDR5 target genes included
those with MYC-binding elements at promoters such as MDM2.
We showed that WDR5 could form a protein complex at the
MDM2 promoter with N-Myc, but not p53, leading to histone

H3K4 trimethylation and activation of MDM2 transcription.
RNAi-mediated attenuation of WDR5 upregulated expression of
wild-type but not mutant p53, an effect associated with growth
inhibition and apoptosis. Similarly, a small-molecule antagonist
of WDR5 reduced N-Myc/WDR5 complex formation, N-Myc
target gene expression, and cell growth in neuroblastoma cells.
In MYCN-transgenic mice, WDR5 was overexpressed in precan-
cerous ganglion and neuroblastoma cells compared with normal
ganglion cells. Clinically, elevated levels of WDR5 in neuroblas-
toma specimens were an independent predictor of poor overall
survival. Overall, our results identify WDR5 as a key cofactor for
N-Myc–regulated transcriptional activation and tumorigenesis
and as a novel therapeutic target forMYCN-amplified neuroblas-
tomas. Cancer Res; 75(23); 5143–54. �2015 AACR.

Introduction
Neuroblastoma is the most common solid tumor in early

childhood (1, 2). It accounts for approximately 15% of all
childhood cancer-related death despite the use of combination
chemotherapy, radiotherapy, and bone marrow transplantation
(1, 3). Amplification of the MYCN oncogene strongly correlates
with an aggressive tumor behavior and is currently used as an
indicator for poor patient prognosis (1, 3, 4).

Myc oncoproteins N-Myc and c-Myc induce tumorigenesis by
binding to target gene promoters and consequently activating the
transcription of target genes such as the E3 ubiquitin-protein
ligase MDM2 (5–7), which induces p53 protein degradation
(8–10). Paradoxically, N-Myc oncoprotein directly activates gene
transcription of p53 by binding to its gene promoter (6). By
analyzing 35 histone marks after genomic binding by Myc,
Guccione and colleagues have revealed that histone H3 lysine
4 (H3K4) trimethylation at Myc-responsive elements of target
gene promoters is a strict prerequisite for Myc-induced transcrip-
tional activation (11). However, the mechanism through which
histone H3K4 is trimethylated duringMyc-induced transcription-
al activation, is unknown.

WDR5 is a core subunit of theMLL, ASH2L, and RBBP5 histone
H3K4 methyltransferase complex (12). WDR5 directly associates
with transcription factors, and is required for the binding of the
histone methyltransferase complex to histone H3K4, H3K4
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trimethylation, and transcriptional activity of the transcription
factors (13–15). By direct binding to Oct4 and causing H3K4
trimethylation at Oct4 target gene promoters, WDR5 activates the
transcription of Oct4 target genes and is required for the forma-
tion of induced pluripotent stem cells (16). By direct binding to
MLL and causing histone H3K4 trimethylation at MLL target gene
promoters, WDR5 induces the transcription of MLL target genes
and promotes leukemia (13–15).

In the current study, we showed, for the first time, that WDR5
formed a protein complex with N-Myc at N-Myc target gene
promoters, leading to histone H3K4 trimethylation, transcrip-
tional activation of the N-Myc target genes, including MDM2,
and reduction in wild-type p53 protein, that repression of
WDR5 resulted in neuroblastoma cell growth inhibition and
apoptosis, and that high levels of WDR5 expression in human
neuroblastoma tissues independently predicted poor patient
prognosis.

Materials and Methods
Cell culture

BE(2)-C human neuroblastoma, RAT fibroblasts and HEK293
primary embryonic kidney cells were cultured in DMEM supple-
mentedwith 10%FBS. CHP134, SK-N-BE(2), and SHEP Tet-21/N
human neuroblastoma cells were cultured in RPMI1640medium
supplemented with L-glutamine and 10% FBS. BE(2)-C, HEK293,
SK-N-BE(2), and RAT1 were obtained from ATCC, and CHP134
and Kelly cells from the EuropeanCollection of Cell Cultures. The
identity of all cell lines was verified by small tandem repeat
profiling conducted by at Garvan Institute or Cellbank Australia.

Chromatin imunoprecipitation assays and dual cross-linking
ChIP assays

Chromatin imunoprecipitation (ChIP) assays and dual cross-
linking ChIP assays were performed with a control, anti–N-Myc,
anti-WDR5, anti-trimethyl H3K4 antibody (all fromMerck Milli-
pore) or anti-p53 antibody (Cell Signaling Technology) and PCR
with primers targeting negative control regions, the WDR5 or
MDM2 gene promoter regions with the protocol we described
(17–19). Fold enrichment of the WDR5 and MDM2 gene core
promoters was calculated by dividing PCRproducts from samples
immunoprecipitated by experimental antibodies by PCR pro-
ducts from samples immunoprecipitated by control antibody.

Luciferase assays
Modulation of MDM2 gene promoter activity by WDR5 was

analyzed by luciferase assays. pGL3 construct expressing wild-
type or E-Box mutantMDM2 gene promoter was obtained from
Dr. Jason Shohet (7), and pGL3 construct expressing theMDM2
gene P4 promoter, which contained the p53-binding sites
but not the Myc-responsive E-Box (20), was obtained from
Addgene. Luciferase reporter activity was measured using the
Dual Luciferase Assay System (Promega) as we described pre-
viously (17–19).

Protein coimmunoprecipitation assays
Nuclear protein extract from SK-N-BE cells was immunopreci-

pitated with control IgG, anti–N-Myc or anti-WDR5 antibody.
Alternatively, HEK293 cells were cotransfectedwith pShuttle Flag-
empty vector or pShuttle-Flag-N-Myc expression construct,
together with pCMV6-Myc-DDK-empty vector or pCMV6-Myc-

DDK-WDR5 expression construct (Origene) with Lipofectamine
2000. In separate experiments, cells were cotransfected with a
pCMV6-Myc-DDK-empty vector or pCMV6-Myc-DDK-WDR5
expression construct, together with a pcDNA3 Flag-empty vector
or pcDNA3-Flag-p53 expression construct (Addgene). Thirty-six
hours after transfections, cellular protein was extracted and incu-
bated with a control, anti–N-Myc, anti-WDR5 or anti-p53 anti-
body. Eluted protein was immunoblotted with an anti–N-Myc,
anti-WDR5 or anti-p53 antibody.

Animal experiments and immunohistochemistry
Animal experiments were approved by the Animal Care and

Ethics Committee of University of New South Wales Australia
(Sydney, Australia), and the animals' care was in accord with
institutional guidelines. Wild-type and TH-MYCN transgenic
129/SvJ mice were bred and euthanized at the age of 1, 7, 14,
and 28 days. After fixation in formalin and paraffin-embedding,
mouse tissue sections containing celiac and paravertebral ganglia
were subjected to immunohistochemistry analysis of WDR5
protein expression with a rabbit anti-WDR5 monoclonal anti-
body (1:600, Merck Millipore). Positively stained cells were
quantified using ImageJ software (NIH, Bethesda, MD).

Patient tumor sample analysis
Fifty-nine untreated primary neuroblastoma tumor specimens

were granted after patient consent and ethics approval from the
Cologne tumor bank and the `Universit€atsklinikum' Essen, Ger-
many. The International Neuroblastoma Staging System criteria
was used (21). Patient characteristics are outlined in Supplemen-
tary Table S1. Protein was extracted from the tumors with the
AllPrep DNA/RNA/protein Mini Kit (Qiagen), and subjected to
immunoblot analysis of WDR5 and N-Myc. In addition, WDR5
and N-Myc mRNA expression was analyzed in 88 (Versteeg
dataset; ref. 22) and 476 (Kocak dataset; refs. 23, 24) human
neuroblastoma samples in the publicly available gene expression
databases at the R2: Genomics Analysis and Visualization Plat-
form website (25).

Statistical analysis
Experiments were performed at least three times. Data were

analyzed with Graphpad Prism 6 program and expressed as mean
� SE. Differences were analyzed for significance with ANOVA
among groups or two-sided unpaired t test for two groups of
numerical variables, or analyzed by the c2 test for categorical
variables.

Correlation between N-Myc and WDR5 expression in human
neuroblastoma tissues was examined with Pearson's correlation.
Survival analyses were performed according to the method of
Kaplan andMeier and two-sided log-rank tests (26).Multivariable
Cox regression analyses were performed. Probabilities of survival
and HRs were provided with 95% confidence intervals (CI).
Proportionality was confirmed by visual inspection of the plots
of log(2log(S(time))) versus log(time), which were observed to
remain parallel (27). A probability value of 0.05 or less was
considered statistically significant. All statistical tests were two-
sided.

Supplementary information
Supplementary Information includes SupplementaryMaterials

and Methods, four figures, three tables, and five datasets.
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Results
N-Myc upregulates WDR5 expression by binding to the WDR5
gene promoter

N-Myc activates gene transcription by binding to E-Box motifs
at target gene promoters (28, 29). Our bioinformatics analysis
revealed noncanonical (CACGCG;�13 to�18 bp) and canonical
(CACGTG; þ85–þ90 bp) E-boxes at the WDR5 gene promoter.
We therefore examined whether N-Myc modulated WDR5
expression in theMYCN-amplified human BE(2)-C and CHP134
neuroblastoma cell lines. Transfection with N-Myc siRNA-1 or

siRNA-2 efficiently knocked down N-Myc mRNA and protein
expression, and reduced WDR5 mRNA and protein expression
(Fig. 1A and B). Consistently, ectopic overexpression of N-Myc
in RAT1 fibroblasts led to considerable WDR5 upregulation
(Fig. 1C).

We next performed chromatin immunoprecipitation assays in
BE(2)-C and CHP134 cells with a control or anti–N-Myc anti-
body. As shown in Fig. 1D, E, and F, the anti–N-Myc antibody
significantly immunoprecipitated the WDR5 gene promoter
regions containing the canonical and noncanonical E-Boxes, and

Contr
ol 

siR
NA

N-M
yc

 si
RNA-1

N-M
yc

 si
RNA-2

0.0
0.3
0.6
0.9
1.2

Fo
ld

 re
du

ct
io

n 
in

W
D

R
5 

ge
ne

 e
xp

re
ss

io
n

***
***

BE(2)-C

Contr
ol 

siR
NA

N-M
yc

 si
RNA-1

N-M
yc

 si
RNA-2

0.0
0.3
0.6
0.9
1.2

Fo
ld

 re
du

ct
io

n 
in

W
D

R
5 

ge
ne

 e
xp

re
ss

io
n

** *

CHP134A

B

0

WDR5 promoter

−100 +200

A B C

E-Box 
(CACGCG)

E-Box 
(CACGTG)

Amplicon TSS

Actin

N-Myc

WDR5

BE(2)-C

Cont N-Myc
siRNA-1

Cont N-Myc
siRNA siRNA-2siRNA

Actin

N-Myc

WDR5

CHP134

Cont N-Myc
siRNA-1

Cont N-Myc
siRNA siRNA-2siRNA

D

Contr
ol 

siR
NA

N-M
yc

 si
RNA-1

N-M
yc

 si
RNA-2

0.0
0.3
0.6
0.9
1.2

Fo
ld

 re
du

ct
io

n 
in

N
-M

yc
 g

en
e 

ex
pr

es
si

on

** **

BE(2)-C

Contr
ol 

siR
NA

N-M
yc

 si
RNA-1

N-M
yc

 si
RNA-2

0.0
0.3
0.6
0.9
1.2

Fo
ld

 re
du

ct
io

n 
in

N
-M

yc
 g

en
e 

ex
pr

es
si

on

***
***

CHP134

E

Ampli
co

n A

Ampli
co

n B

Ampli
co

n C
0
2
4
6
8

10

Fo
ld

 e
nr

ic
hm

en
t o

f
W

D
R

5 
ge

ne
 p

ro
m

ot
er

***

***

ChIP assays
[BE(2)-C cells]

(N-Myc Ab/control IgG)

Actin

N-Myc

WDR5

C

Con
tro

l s
iR

NA

N-M
yc

 si
RNA-1

Con
tro

l s
iR

NA

N-M
yc

 si
RNA-1

Con
tro

l s
iR

NA

N-M
yc

 si
RNA-1

0
2
4
6
8

10

Fo
ld

 e
nr

ic
hm

en
t o

f
W

D
R

5 
ge

ne
 p

ro
m

ot
er

ChIP assays (CHP134 cells)
(N-Myc Ab/control IgG)

Amplicon A Amplicon B Amplicon C

*** ****

**

F

RAT1-
N-Myc

RAT1-
EV

−3,500

Figure 1.
N-Myc upregulates WDR5 expression in neuroblastoma cells by binding to the WDR5 gene promoter. A and B, BE(2)-C and CHP134 cells were transfected
with control siRNA, N-Myc siRNA-1, or N-Myc siRNA-2 for 72 hours, followed by RT-PCR (A) and immunoblot (B) analyses of N-Myc and WDR5 expression.
C, protein was extracted from RAT1 fibroblasts stably transfected with an empty vector (RAT1-EV) or full-length N-Myc expression construct (RAT1-N-Myc),
and subjected to immunoblot analysis of WDR5 and N-Myc protein. D, schematic representation of the WDR5 gene promoter. TSS, transcription
start site. E and F, ChIP assays were performed with a control or anti–N-Myc antibody (Ab), followed by PCR with primers targeting the negative control
region (Amplicon A) or the WDR5 gene promoter containing the E-Boxes (Amplicons B and C) in BE(2)-C cells without siRNA transfection (E) or in CHP134
cells 24 hours after transfection with control siRNA or N-Myc siRNA-1 (F). Fold enrichment of the WDR5 gene promoter was calculated as the difference
in cycle thresholds obtained with the anti–N-Myc antibody and with the control antibody. Error bars represent SE. �� , P < 0.01; ��� , P < 0.001.
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Figure 2.
WDR5 forms a protein complex with N-Myc at N-Myc target gene promoters, leading to histone H3K4 trimethylation and transcriptional activation of N-Myc
target genes. A, BE(2)-C and CHP134 cells were transfected with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2. WDR5, CCNE1, and MDM2 mRNA and
protein expression was analyzed by RT-PCR and immunoblot. B, nuclear protein extracted from SK-N-BE(2) neuroblastoma cells was immunoprecipitated (IP)
overnight with 2 mg of control IgG, anti–N-Myc or anti-WDR5 antibody (Ab). (Continued on the following page.)
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N-Myc siRNA completely blocked the effect. The data indicate that
N-Myc upregulatesWDR5 gene expression by directly binding to
the WDR5 gene promoter.

WDR5 forms a protein complex with N-Myc at N-Myc target
gene promoters, leading to histone H3K4 trimethylation and
transcriptional activation of N-Myc target genes

As WDR5 exerts biologic function by modulating gene tran-
scription, we performed differential gene expression studies with
Affymetrix microarray in BE(2)-C cells 40 hours after transfection
with control or WDR5 siRNAs. The analyses showed that well-
known N-Myc target genes cyclin E1 (CCNE1) and MDM2
(7, 28, 30), were among the genes significantly downmodulated
by WDR5 siRNAs (Supplementary Dataset S1). Gene set enrich-
ment analysis (GSEA) showed that genes with E-Boxes at pro-
moters were highly enriched among those downregulated by
WDR5 siRNAs (Supplementary Table S2). Consistently, GSEA
analysis ofmicroarray data fromBE(2)-C cells after treatmentwith
vehicle control or the BET bromodomain inhibitor JQ1 (31) also
showed that genes with E-Boxes at promoters were highly
enriched among those downregulated by JQ1 (Supplementary
Table S3). RT-PCRand immunoblot validated themicroarray data
and confirmed that both WDR5 siRNAs and N-Myc siRNAs
decreased mRNA and protein expression of CCNE1 and MDM2
in neuroblastoma cell lines (Fig. 2A and Supplementary Fig. S1).

We next performed ChIP sequencing (ChIP-Seq) with a control
IgG or anti-trimethyl H3K4 (H3K4me3) antibody with DNA–
protein complex from BE(2)-C cells 24 hours after transfection
with control siRNA or WDR5 siRNA-1, and extracted anti–N-Myc
antibody versus control IgG ChIP-Seq data from embryonic stem
cells (32), as well as DNaseI hypersensitivity by Digital DNaseI
datasets from ENCODE/University of Washington from BE(2)-C
neuroblastoma cells for analyzing gene enhancers. Data analysis
showed that knocking down WDR5 reduced H3K4me3 at 93.2%
of N-Myc–binding promoters, but only at 53.5% of N-Myc
nonbinding promoters (c2: 1527.82, P < 0.001; Supplementary
Fig. S2A; Supplementary Datasets S2–S5), and that H3K4me3
signal was very low at enhancers, compared with N-Myc-binding
and N-Myc nonbinding gene promoters (Supplementary Fig.
S2B). The data indicate that WDR5 preferentially modulates
H3K4 trimethylation at N-Myc target gene promoters. We next
examined whether N-Myc and WDR5 formed a protein complex.
Protein coimmunoprecipitation assays showed that an anti–N-
Myc antibody efficiently coimmunoprecipitated WDR5 protein,
and conversely, an anti-WDR5 antibody efficiently coimmuno-
precipitatedN-Myc protein (Fig. 2B and Supplementary Fig. S3A).
Moreover, GST pull-down assaywith in vitro translatedWDR5 and

N-Myc proteins showed that WDR5 protein specifically pulled
down N-Myc protein (Fig. 2C), demonstrating that the two
proteins form a protein complex.

The small-molecule OICR9429 has recently been shown to
block the interaction of WDR5 with MLL and its protein–protein
interaction network (33). We performed protein coimmunopre-
cipitation assays and confirmed that treatment with OICR9429,
compared with its negative control compound OICR0547,
blocked the formation of WDR5–N-Myc protein complex (Sup-
plementary Fig. S3B). RT-PCR analysis showed that treatment
with OICR9429 reduced the expression of the WDR5 and N-Myc
target genes MDM2 and CCNE1 (Supplementary Fig. S4A), sug-
gesting that OICR9429 blocks WDR5 protein binding to N-Myc
protein and WDR5/N-Myc target gene expression.

We next sought to determine whether WDR5-N-Myc complex
bound to the MDM2 promoter in neuroblastoma. Dual cross-
linking ChIP assays were performed in BE(2)-C cells with control,
anti–N-Myc, and anti-WDR5 antibodies, followed by PCR with
primers targeting a negative control region or the MDM2 gene
promoter (Fig. 2D). Results showed that the anti–N-Myc and the
anti-WDR5 antibodies efficiently immunoprecipitated the
MDM2 gene promoter region containing the E-Box, compared
with the negative control region (Fig. 2E).

To understand whether WDR5 is essential for histone H3K4
trimethylation and N-Myc protein binding to the MDM2 gene
promoter, we transfected BE(2)-C cells with control or WDR5
siRNAs, followed by ChIP assays with a control, anti–N-Myc, or
anti-trimethylated H3K4 (H3K4me3) antibody. PCR analyses
showed that knocking down WDR5 expression significantly
reduced the presence of N-Myc and H3K4me3 at the MDM2
gene promoter in BE(2)-C cells (Fig. 2F and G), suggesting that
WDR5 is required for N-Myc protein binding to, and histone
H3K4 trimethylation at, the MDM2 promoter. To determine
whether WDR5 binding to the MDM2 E-box activates tran-
scription of the MDM2 gene, we next conducted luciferase
reporter assays. SHEP Tet-21/N neuroblastoma cells were trea-
ted with vehicle control or tetracycline to induce or not to
induce exogenous N-Myc expression, respectively (34). The
cells were then cotransfected with control or WDR5 siRNAs,
together with a pGL3 luciferase report construct expressing
wild-type or E-Box mutant MDM2 gene promoter (7). Results
showed that N-Myc induction resulted in a significant increase
in luciferase activity in cells transfected with the wild-type, but
not the E-Box mutant, MDM2 promoter construct. In addition,
WDR5 siRNAs considerably reduced N-Myc–mediated wild-
type MDM2 promoter activity (Fig. 2H). Taken together, the
data suggest that WDR5 forms a protein complex with N-Myc at

(Continued.) Immunoprecipitated protein was immunoblotted with anti-WDR5 or anti–N-Myc Ab. C, glutathione beads coated with GST and GST-WDR5 were
incubated with purified 6�His-N-Myc protein (imidazole elution) and pull-down complexes were eluted and resolved into gels, followed by immunoblot
analysis with antibodies against N-Myc, GST, and WDR5. Input samples for GST, GST-WDR5 and 6�His-N-Myc were loaded in the first three lanes, GST
and GST-WDR5 pull-down complexes in the last two lanes. D, schematic representation of the MDM2 gene promoter containing the N-Myc binding E-Box.
E, dual cross-linking ChIP assays were performed in BE(2)-C cells with control, anti–N-Myc, and anti-WDR5 antibodies, followed by PCR with primers
targeting the negative control region (Amplicon A) and the N-Myc binding site (Amplicon B) of the MDM2 gene promoter. F and G, BE(2)-C cells were
transfected with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2 for 48 hours, followed by ChIP assays with a control IgG, anti–N-Myc (F) or anti-trimethyl
H3K4 (H3K4me3) antibody (G), and PCR with primers targeting the negative control region or the E-Box of the MDM2 gene promoter. Fold enrichment of
theMDM2 promoter region was calculated as the difference in cycle thresholds obtained with the specific antibody and with the control IgG. H, SHEP Tet-21/N cells
were cultured with tetracycline to not induce, or without tetracycline to induce, N-Myc expression, respectively. The cells were cotransfected with a
luciferase reporter construct expressing wild-type or E-box mutant MDM2 gene promoter, together with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2.
Luciferase assays were performed, and relative luciferase activity of the wild-type and the mutant MDM2 promoter constructs under the N-Myc (þ) condition
was normalized by the luciferase activity of the same reporter construct under theN-Myc (�) condition. Error bars represent SE. � ,P <0.05; �� ,P<0.01; ��� ,P< 0.001.
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the N-Myc target gene promoter, leading to histone H3K4
trimethylation and N-Myc target gene transcription.

WDR5 reduces wild-type p53 protein expression by inducing
histone H3K4 trimethylation at the MDM2 gene promoter and
MDM2 gene transcription

N-Myc induces p53 gene transcription by direct binding to the
p53 gene promoter (6). As MDM2 induces p53 protein degrada-
tion (8–10), we examined whether WDR5 reduced p53 protein
expression through modulating MDM2 expression. Transfection
with WDR5 siRNAs dramatically upregulated total wild-type p53
protein and wild-type p53 protein phosphorylated at serine 20 or
15 inCHP134andKelly cells, but didnot significantly increase the
abundance of mutant p53 protein in BE(2)-C cells (Fig. 3A). In
comparison, WDR5 siRNAs did not show clear effect on p53
mRNAexpression (Supplementary Fig. S5).Wenext cotransfected
CHP134 cells with control siRNA orWDR5 siRNAs, together with
a construct expressing empty vector, wild-type MDM2, or RING-
finger-domainmutantMDM2 (C464A), which lacks the ability to
facilitate p53 protein ubiquitination and degradation (35, 36).
Immunoblot results showed that overexpression of wild-type
MDM2, but not mutant MDM2, blocked WDR5 siRNA-mediated
p53 protein upregulation (Fig. 3B). The data demonstrate that
WDR5 downregulates wild-type p53 protein expression by upre-
gulating MDM2.

Wild-type p53 protein directly inducesMDM2 gene transcrip-
tion through binding to two p53-binding sites at the MDM2
gene intron 1 (Fig. 3C; refs. 37, 38). Because WDR5 siRNAs
reduced MDM2 mRNA expression to similar extents in p53
wild-type and mutant neuroblastoma cells but considerably
upregulated wild-type p53 protein expression, we examined
whether WDR5 is essential for histone H3K4 trimethylation and
p53 protein binding at the two p53-binding sites at the MDM2
gene intron 1. ChIP assays with a control, anti-H3K4me3, or
anti-p53 antibody in CHP134 cells showed that transfection
with WDR5 siRNAs reduced the presence of H3K4me3 and p53
at the p53-binding sites (Fig. 3D and E). However, protein
coimmunoprecipitation assays with a control or anti-WDR5
antibody showed that the WDR5 antibody efficiently immu-
noprecipitated WDR5 protein, but not p53 protein (Fig. 3F).
Importantly, luciferase assays showed that transfection with the
pGL3 construct expressing the MDM2 gene P4 promoter, which
contained the p53-binding sites but not the N-Myc–binding site
(20), resulted in considerable increase in luciferase activity, and
that WDR5 siRNA-1 and WDR5 siRNA-2 significantly reduced
the effect (Fig. 3G). Taken together, the data indicate that WDR5
enhances p53-mediated MDM2 gene expression by inducing
H3K4 trimethylation and p53 protein binding to the MDM2
gene promoter without forming a protein complex with p53,
and thus playing an important role in maintaining the p53-
MDM2 negative feedback loop.

WDR5 induces neuroblastoma cell proliferation and survival
through p53-dependent and -independent mechanisms

We next examined whether WDR5 induces neuroblastoma cell
proliferation and survival. Alamar blue assays showed that deplet-
ing WDR5 expression with siRNAs moderately decreased the
number of p53-mutant BE(2)-C cells, and severely deceased the
number of p53 wild-type CHP134 cells (Fig. 4A). In agreement,
WDR5 siRNAs increased the percentage of CHP134 cells posi-
tively stained by Annexin V, and cotransfection with p53 siRNA

significantly blocked this effect (Fig. 4B). In addition, treatment
with the WDR5 antagonist OICR9429 reduced the numbers of
viable BE(2)-C andmore significantly CHP134 cells (Supplemen-
tary Fig. S4B), and combination therapy with OICR9429 and the
BET bromodomain inhibitor JQ1 synergistically reduced the
numbers of viable neuroblastoma cells (Supplementary Fig.
S4C). Taken together, the data demonstrate that WDR5 induces
neuroblastoma cell proliferation and survival through p53-inde-
pendent and -dependentmechanisms, andWDR5 antagonists are
potential novel anticancer agents.

WDR5 expression is upregulated in precancerous and
neuroblastoma tissues in MYCN transgenic mice

Tyrosine hydroxylase (TH)-MYCN transgenic mice develop
precancerous celiac and paravertebral ganglia hyperplasia at 2
weeks old, and this hyperplasia develops into neuroblastoma at
4 weeks old (39). Immunohistochemistry studies showed that
WDR5 protein was highly expressed in ganglia tissues from
both newborn homozygous TH-MYCN transgenic and wild-
type mice (Fig. 5A and B). The expression of WDR5 in ganglia
tissues was maintained at high levels in 2-week-old MYCN
transgenic mice, but decreased considerably in 2-week-old
wild-type mice, which do not develop tumors (Fig. 5A
and B). In addition, WDR5 protein expression remained at
high levels in resulting neuroblastoma tumors in 4-week-old
TH-MYCN transgenic mice (Fig. 5A and B). These results
suggest that WDR5 may play a role in neuroblastoma initiation
and progression.

High levels ofWDR5 gene expression in humanneuroblastoma
tissues independently predict poor patient prognosis

To assess the clinical relevance of WDR5 expression in
neuroblastoma, we performed immunoblot analysis of WDR5
and N-Myc protein expression in neuroblastoma tissues from
59 patients (Fig. 6A). Two-sided Pearson correlation study
showed that WDR5 protein expression correlated with N-Myc
protein expression in human neuroblastomas (Fig. 6B). Using
the upper quartile of WDR5 expression as the cutoff point,
Kaplan–Meier analysis showed that high levels of WDR5 pro-
tein expression in tumor tissues was associated with reduced
overall survival (Fig. 6C). Consistently, analyses of the publicly
available R2: Genomics Analysis and Visualization Platform
(25) Versteeg (22), and Kocak (23, 24) microarray gene expres-
sion datasets revealed that high levels of WDR5 mRNA expres-
sion in neuroblastoma tissues correlated with N-Myc mRNA
expression (Fig. 6D) and poor overall survival rates (Fig. 6E). In
addition, high levels of WDR5 expression in the 72 MYCN-
amplified and 404 MYCN–nonamplified neuroblastoma tis-
sues were positively associated with poor patient overall sur-
vival in the large Kocak dataset (Fig. 6F and G). Importantly,
multivariable Cox regression analysis showed that high levels
of WDR5 expression in neuroblastoma tissues was strongly
associated with reduced overall survival, independent of dis-
ease stage, age at diagnosis, andMYCN amplification status, the
current most important prognostic markers for neuroblastoma
patients (Table 1; ref. 1).

Discussion
N-Myc exerts oncogenic effects in part by binding to Myc-

responsive element E-boxes at target gene promoters, leading
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WDR5 reduces wild-type p53 protein expression by inducing histone H3K4 trimethylation at the MDM2 gene promoter and MDM2 gene transcription. A, p53
mutant BE(2)-C and p53 wild-type CHP134 and Kelly cells were transfected with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2, followed by immunoblot
analyses of WDR5, MDM2, total p53, p53 phosphorylated at serine 20 or serine 15 proteins. B, CHP134 cells were cotransfected with control siRNA, WDR5
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analyses of WDR5, MDM2, and p53 protein expression. C, schematic representation of theMDM2 gene promoter containing the p53-binding sites. TSS represented
transcription start site. D and E, CHP134 cells were transfected with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2 for 48 hours. ChIP assays were performed
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analyzed by immunoblot with an anti-p53 or anti-WDR5 antibody. G, CHP134 cells were cotransfected with a luciferase reporter construct expressing the
MDM2 gene P4 promoter or empty vector (EV), together with control siRNA, WDR5 siRNA-1, or WDR5 siRNA-2. Luciferase assays were performed, and
relative luciferase activity of the MDM2 gene P4 promoter construct was normalized by the luciferase activity of the empty vector construct. Error bars represent
SE. �� , P < 0.01; ��� , P < 0.001.
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to transcriptional activation (40–42). In this study, we have
identified both canonical and noncanonical E-Boxes at theWDR5
gene core promoter, and confirmed that N-Myc directly binds to
theWDR5 gene core promoter and upregulatesWDR5mRNA and
protein expression in neuroblastoma cells.

WDR5 regulates gene transcription via binding to transcrip-
tion factors and inducing histone H3K4 trimethylation at
target gene promoters (13–16, 43, 44). Guccione and collea-
gues have revealed that histone H3K4 trimethylation at target
gene promoters is a strict prerequisite for Myc-induced tran-
scriptional activation (11). However, the mechanism through
which histone H3K4 is trimethylated during Myc-induced
transcriptional activation is unknown. Our genome-wide dif-
ferential gene expression study with Affymetrix microarray
shows that WDR5 siRNAs reduce the expression of N-Myc
target genes, GSEA analysis shows that WDR5 siRNAs prefer-

entially downregulate the expression of genes with N-Myc/c-
Myc responsive element E-Boxes at promoters, and ChIP-Seq
data reveal that knocking down WDR5 preferentially reduces
H3K4me3 at Myc-binding gene promoters. Protein coimmu-
noprecipitation and GST pull-down assays demonstrate that N-
Myc protein directly binds to WDR5 protein. Importantly,
ChIP and luciferase assays show that WDR5 and N-Myc bind
to the same site of the N-Myc target MDM2 gene promoter,
and that knocking down WDR5 expression reduces histone
H3K4 trimethylation, reduces N-Myc protein binding to the
MDM2 gene promoter, and reduces the activity of the wild
type, but not the E-Box mutant, MDM2 gene promoter. Taken
together, our data indicate that WDR5 and N-Myc form a
protein complex at N-Myc target gene promoters, resulting in
H3K4 trimethylation and transcriptional activation of N-Myc
target genes, including MDM2.
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N-Myc directly upregulates p53 gene transcription (6). On the
other hand, wild-type p53 and MDM2 form a negative feedback
loop (37, 38). Wild-type, but not mutant, p53 binds to the p53-

binding sites at theMDM2 gene promoter, leading toMDM2 gene
transcriptional activation. Conversely, MDM2 protein targets
wild-type, and to a lesser extent, mutant p53 protein for
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ubiquitination and degradation (8–10, 37). However, the p53
tumor suppressor gene is mutated in only 2.5% of primary
human neuroblastoma tissues (45), and the mechanism through
which p53 protein is kept at low levels in human neuroblastoma
tissues is unknown. In this study, we have found that knocking
down WDR5 significantly reduces MDM2 mRNA and protein
expression in p53 wild-type and mutant neuroblastoma cells,
shows little effects on p53 mRNA expression, and considerably
upregulates wild-type but not mutant p53 protein expression.
Notably, while WDR5 protein does not form a complex with p53
protein, suppression of WDR5 reduces histone H3K4 trimethyla-
tion at, and p53 protein binding to, the p53-binding sites of the
MDM2 gene promoter, and reduces promoter activity of the p53-
binding sites. Our data suggest that WDR5 reduces wild-type p53
protein expression by inducing histone H3K4 trimethylation and
active chromatin status at thep53-binding sites of theMDM2 gene
promoter, leading to MDM2 overexpression and p53 protein
degradation, and that WDR5 is important for maintaining the
p53-MDM2 negative feedback loop.

Inhibition of MDM2 or induction of p53 blocks neuroblasto-
ma tumorigenesis in MYCN transgenic mice (46, 47). In this
study, we have found thatWDR5 is highly expressed in pre-cancer
ganglia cells and neuroblastoma cells from MYCN transgenic
mice. A high level of WDR5 expression in primary human neu-
roblastoma tissues correlates with poor patient survival, indepen-
dent of disease stage, diagnosis age, and MYCN amplification
status, the current most important prognostic markers for neu-
roblastoma patients (1, 48). In addition, WDR5 siRNAs induce
growth inhibition in both p53 wild-type and mutant neuroblas-
toma cells, and cosilencing p53 blocks WDR5 siRNA-mediated
apoptosis in p53 wild-type neuroblastoma cells. Importantly,
treatment with a novel small-molecule WDR5 antagonist blocks
WDR5 protein binding to N-Myc protein, N-Myc target gene
expression, and neuroblastoma cell proliferation and survival.
Taken together, WDR5 induces neuroblastoma cell proliferation
and survival, and is likely to play a critical role in neuroblastoma
initiation and progression. As a high level of WDR5 expression in
human neuroblastoma tissues is an independent marker for poor
patient survival, suppression of WDR5 with small-molecule
antagonists represent a novel therapeutic strategy for neuroblas-
toma patients.
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Table 1. Multivariable Cox regression analysis of factors prognostic for outcome in 476 neuroblastoma patientsa

Event-free survival Overall survival
Factors HR (95%CI) P HR (95%CI) P

High WDR5 expression (median level as the cutoff) 2.64 (1.76–3.95) <0.0001 2.49 (1.39–4.47) 0.0022
MYCN amplification 1.82 (1.25–2.65) 0.0019 3.39 (2.16–5.33) <0.0001
Age > 18 months 1.18 (0.81–1.72) 0.3835 2.98 (1.53–5.78) 0.0013
Stages 3 and 4b 2.48 (1.65–3.74) <0.0001 3.87 (1.95–7.66) 0.0001
High WDR5 expression (lower quartile as the cutoff) 3.27 (1.82–5.89) <0.0001 3.01 (1.26–7.18) 0.013
MYCN amplification 1.98 (1.36–2.87) 0.0003 3.60 (2.31–5.61) <0.0001
Age > 18 months 1.25 (0.85–1.84) 0.2525 3.10 (1.58–6.08) <0.0001
Stages 3 and 4b 2.72 (1.81–4.10) <0.0001 4.02 (2.02–7.98) <0.0001
High WDR5 expression (upper quartile as the cutoff) 1.82 (1.26–2.6) 0.0013 1.66 (1.05–2.64) 0.0316
MYCN amplification 1.91 (1.29–2.84) 0.0013 3.54 (2.22–5.66) <0.0001
Age > 18 months 1.08 (0.74–1.57) 0.6881 2.73 (1.41–5.30) 0.003
Stages 3 and 4b 2.95 (1.97–4.40) <0.0001 4.55 (2.32–8.94) <0.0001
aThe level ofWDR5 expressionwas considered highor low in relation to themedian, lower quartile, or highquartile level of expression in all tumors analyzed.HRswere
calculated as the antilogs of the regression coefficients in the proportional hazards regression. Multivariable Cox regression analysis was performed following the
inclusion of the four above-listed factors into the Cox regression model, and P value was obtained from the two-sided log-rank test.
bTumor stage was categorized as favorable (International Neuroblastoma Staging System stages 1, 2, and 4S) or unfavorable (International Neuroblastoma Staging
System stages 3 and 4).
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