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Abstract
Measurements of the branching fractions of → ± ∓B K K*s

0 and π→ ± ∓B K*s
0

decays are performed using a data sample corresponding to −1.0 fb 1 of proton-
proton collision data collected with the LHCb detector at a centre-of-mass
energy of 7 TeV, where the ±K* mesons are reconstructed in the π±KS

0
final

state. The first observation of the → ± ∓B K K*s
0 decay and the first evidence for

the π→ − +B K*s
0 decay are reported with branching fractions
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s
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0 6
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where the first uncertainties are statistical and the second are systematic. In
addition, an upper limit of  → < ×± ∓ −( )B K K* 0.4 (0.5) 100 6 is set at
90% (95%) confidence level.
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1. Introduction

The Standard Model (SM) of particle physics predicts that all manifestations of CP violation,
i.e. violation of symmetry under the combined charge conjugation and parity operation, arise
due to the single complex phase that appears in the Cabibbo–Kobayashi–Maskawa (CKM)
quark mixing matrix [1, 2]. Since this source is not sufficient to account for the level of the

1 Authors are listed at the end of the paper.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI. Article funded by SCOAP3.

New Journal of Physics 16 (2014) 123001
1367-2630/14/123001+18$33.00 © 2014 CERN

http://dx.doi.org/10.1088/1367-2630/16/12/123001
http://creativecommons.org/licenses/by/3.0/


baryon asymmetry of the Universe [3], one of the key goals of contemporary particle physics is
to search for signatures of CP violation that are not consistent with the CKM paradigm.

Among the most important areas being explored in quark flavour physics is the study of B
meson decays to hadronic final states that do not contain charm quarks or antiquarks (hereafter
referred to as ‘charmless’). As shown in figure 1, such decays have, in general, amplitudes that
contain contributions from both ‘tree’ and ‘loop’ diagrams (see, e.g., [4]). The phase differences
between the two amplitudes can lead to CP violation and, since particles hypothesized in
extensions to the SM may affect the loop diagrams, deviations from the SM predictions may
occur. Large CP violation effects, i.e. asymmetries of  (10%) or more between the rates of B̄
and B meson decays to CP conjugate final states, have been seen in π→ + −B K0 [5–8],

π→ − +B Ks
0 [7, 8], and π π→+ + − +B K , + − +K K K , π π π+ − + and π+ − +K K decays [9–11].

However, it is hard to be certain whether these measurements are consistent with the SM
predictions due to the presence of parameters describing the hadronic interactions that are
difficult to determine either theoretically or from data.

An interesting approach to control the hadronic uncertainties is to exploit amplitude
analysis techniques. For example, by studying the distribution of kinematic configurations of

π π→ + −B KS
0 0 decays across the Dalitz plot [12], the relative phase between the π+ −K* and

ρKS
0 0 amplitudes can be determined. This information is not accessible in studies either of two-

body decays, or of the inclusive properties of three-body decays. Consequently, it may be
possible to make more sensitive tests of the SM by studying decays to final states having
contributions from intermediate states with one vector and one pseudoscalar meson (VP), rather
than in those with two pseudoscalars.

Several methods to test the SM with B meson decays to charmless VP ( πK* and ρK ) states
have been proposed [13–18]. The experimental inputs needed for these methods are the
magnitudes and relative phases of the decay amplitudes. Although the phases can only be obtained
from Dalitz plot analyses of B meson decays to final states containing one kaon and two pions, the
magnitudes can be obtained from simplified approaches. Dalitz plot analyses have been performed
for the decays π π→+ + + −B K [19, 20], π π→ + −B KS

0 0 [21, 22] and π π→ + −B K0 0 [23]. Decays

of B mesons to K K* final states can in principle be studied with similar methods, but the existing
experimental results are less precise [24–29]. No previous measurements of Bs

0 meson decays to
charmless VP final states exist. First results from the LHCb collaboration on inclusive three-body
charmless Bs

0 decays have recently become available [30], but no attempt has previously been
made to separate the different resonant and nonresonant contributions to their Dalitz plots.

In this paper, the first measurements of Bs
0 meson decays to π− +K* and ± ∓K K* final states

and of the → ± ∓B K K*0 rate are reported. Throughout the remainder of the paper the symbol

K* is used to denote the K*(892) resonance. Unique charge assignments of the final state

Figure 1. (a) Tree and (b) loop diagrams for the decay → + −B K K*s
0 .
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particles are specified in the expression π→ − +B K*s
0 because the amplitude for π→ + −B K*s

0

is expected to be negligibly small; however, the inclusion of charge-conjugate processes is
implied throughout the paper. The branching fractions are measured relative to that of the

π→ + −B K*0 decay, which is known from previous measurements,
 π→ = ± ×+ − −( )B K* (8.5 0.7) 100 6 [31]. Each of the relative branching fractions for

→ ± ∓B K h*s
0 , where h refers either to a pion or kaon, are determined as
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while that for → ± ∓B K K*0 is determined as
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where N are signal yields obtained from data, ϵ are efficiencies obtained from simulation and
corrected for known discrepancies between data and simulation, and the ratio of fragmentation
fractions = ±f f 0.259 0.015s d [32–34]. With this approach, several potentially large

systematic uncertainties cancel in the ratios. The ±K* mesons are reconstructed in their decays
to π±KS

0 with π π→ + −KS
0 and therefore the final states π± ∓K hS

0 , as well as the data sample, are
identical to those studied in [30].

Although the analysis shares several common features to that of the previous publication
[30], the selection is optimized independently based on the expected level of background within
the allowed π±KS

0 mass window. The data sample used is too small for a detailed Dalitz plot
analysis, and therefore only branching fractions are measured. The fit used to distinguish signal
from background is an unbinned maximum likelihood fit in the two dimensions of B candidate and
K* candidate invariant masses. This approach allows the resonant → ± ∓B K h* decay to be
separated from other B meson decays to the π± ∓K hS

0
final state. It does not, however, account for

interference effects between the ± ∓K h* component and other amplitudes contributing to the Dalitz
plot; possible biases due to interference are considered as a source of systematic uncertainty.

2. The LHCb detector

The analysis is based on a data sample corresponding to an integrated luminosity of −1.0fb 1 of
pp collisions at a centre-of-mass energy of 7 TeV recorded with the LHCb detector at CERN.
The LHCb detector [35] is a single-arm forward spectrometer covering the pseudorapidity range

η< <2 5, designed for the study of particles containing b or c quarks. The detector includes a
high-precision tracking system consisting of a silicon-strip vertex detector (VELO) [36]
surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a
dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors
and straw drift tubes [37] placed downstream. The tracking system provides a momentum
measurement with relative uncertainty that varies from 0.4% at low momentum to 0.6% at
100GeV/c. The minimum distance of a track to a primary vertex, the impact parameter, is
measured with resolution of μ20 m for tracks with large momentum transverse to the beamline
(pT). Different types of charged hadrons are distinguished using information from two ring-
imaging Cherenkov detectors [38]. Photon, electron and hadron candidates are identified by a
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calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic
calorimeter and a hadronic calorimeter. Muons are identified by a system composed of
alternating layers of iron and multiwire proportional chambers [39].

The trigger [40] consists of hardware and software stages. The hadron trigger at the
hardware stage requires that there is at least one particle with transverse energy >E 3.5GeVT .
Events containing candidate signal decays are required to have been triggered at the hardware
level in one of two ways. Events in the first category are triggered by particles from candidate
signal decays that have an associated calorimeter energy deposit above the threshold, while
those in the second category are triggered independently of the particles associated with the
signal decay. Events that do not fall into either of these categories are not used in the subsequent
analysis. The software trigger requires a two-, three- or four-track secondary vertex with a large
sum of the pT of the tracks and a significant displacement from the primary pp interaction
vertices (PVs). A multivariate algorithm [41] is used for the identification of secondary vertices
consistent with the decay of a b hadron.

Simulated events are used to study the detector response to signal decays and to investigate
potential sources of background. In the simulation, pp collisions are generated using PYTHIA
[42] with a specific LHCb configuration [43]. Decays of hadronic particles are described by
EVTGEN [44], in which final state radiation is generated using PHOTOS [45]. The interaction of
the generated particles with the detector and its response are implemented using the GEANT4
toolkit [46] as described in [47].

3. Selection requirements

The trigger and preselection requirements are identical to those in [30]. As in that analysis, and
those of other final states containing KS

0 mesons [48–52], candidate signal decays, i.e.
combinations of tracks that are consistent with the signal hypothesis, are separated into two
categories: ‘long’, where both tracks from the π π→ + −KS

0 decay contain hits in the VELO, and
‘downstream’, where neither does. Both categories have associated hits in the tracking detectors
downstream of the magnet. Since long candidates have better mass, momentum and vertex
resolution, different selection requirements are imposed for the two categories.

The two tracks originating from the B decay vertex, referred to hereafter as ‘bachelor’
tracks, are required not to have associated hits in the muon system. Backgrounds from decays
with charm or charmonia in the intermediate state are vetoed by removing candidates with two-
body invariant mass under the appropriate final state hypothesis within 30 MeV/c of the known
masses [53]. Vetoes are applied for ψ π π→ + −J or + −K K , χ π π→ + −

c0 or + −K K , π→ − +D K0 ,

π π+ − or + −K K , π→+ +D KS
0 or +K KS

0 , π→+ +D Ks S
0 or +K KS

0 and Λ →+ K pc S
0 decays.

The largest source of potential background is from random combinations of final state
particles, hereafter referred to as combinatorial background. Signal candidates are separated from
this source of background with the output of a neural network [54] that is trained and optimized
separately for long and downstream candidates. In the training, simulated → ± ∓B K K*s

0 decays
are used to represent signal, and data from the high mass sideband of π π+ −KS

0 candidates are
used as a background sample (the sideband is π π< − <+ −m K m40 ( ) 150 MeV/cS B

0
0 , where

mB0 is the known value of the B0 mass [53]). The variables used are: the values of the impact
parameter χ 2, defined as the difference in χ 2 of the associated PV with and without the
considered particle, for the bachelor tracks and the KS

0 and B candidates; the vertex fit χ 2 for the
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KS
0 and B candidates; the angle between the B candidate flight direction and the line between the

associated PV and the decay vertex; the separation between the PV and the decay vertex divided
by its uncertainty; and the B candidate pT. Some of these variables are transformed into their
logarithms or other forms that are more appropriate for numerical handling. The consistency of
the distributions of these variables between data and simulation is confirmed for π π→ + −B KS

0 0

decays using the sPlot technique [55] with the B candidate mass as discriminating variable.
The criteria on the outputs of the neural network are chosen to optimize the probability to

observe the → ± ∓B K K*s
0 decay with significance exceeding five standard deviations (σ) [56].

For the optimization, an additional requirement on the π±KS
0 invariant mass,

π − <± ±m K m( ) 100 MeV/cS K
0

* with ±mK* the known ±K* mass, calculated with the B and

KS
0 candidates constrained to their known masses, is imposed to select the ±K* dominated

region of the phase space. The requirements on the neural network output give signal
efficiencies exceeding 90% for candidates containing long KS

0 candidates and exceeding 80%
for candidates containing downstream KS

0 candidates, while approximately 95% and 92% of the
background is removed from the two categories, respectively.

Requirements are imposed on particle identification information, primarily from the ring-
imaging Cherenkov detectors [38], to separate ± ∓K K* and π± ∓K* decays. The criteria are
chosen based on optimization of a similar figure of merit to that used to obtain the requirement
on the neural network output, and retain about 70% of ± ∓K K* and about 75% of π± ∓K* decays.
Candidates with tracks that are likely to be protons are rejected. After all selection requirements
are applied, below 1% of events containing one candidate also contain a second candidate; all
such candidates are retained.

4. Determination of signal yields

Candidates with masses inside the fit windows of π< <± ∓m K h5000 ( ) 5500 MeV/cS
0 and

π< <±m K650 ( ) 1200 MeV/cS
0 are used to perform extended unbinned maximum likelihood

fits to determine the signal yields. In these fits, signal decays are separated from several
categories of background by exploiting their distributions in both π± ∓m K h( )S

0 and π±m K( )S
0 .

The mass of the π± ∓K hS
0 combination is calculated assigning either the kaon or pion mass to ∓h

according to the outcome of the particle identification requirement. A single simultaneous fit to
both long and downstream candidates is performed. Separate fits are performed for ± ∓K K* and

π± ∓K* candidates.
In addition to the signal components and combinatorial background, candidates can

originate from several other b hadron decays. Potential sources include: decays of B0 and Bs
0

mesons to π± ∓K hS
0

final states without an intermediate K* state (referred to as ‘nonresonant’);
misidentified → ± ∓B K h*s( )

0 (referred to as ‘cross-feed’) and Λ → −K p*b
0 decays; decays of B

mesons to charmless final states with an additional unreconstructed pion; and →+ +B D h¯ 0 ,
π π→ + −D K¯

S
0 0 decays where the additional pion is not reconstructed. Where branching fraction

measurements exist [31, 50, 53], the yields of the background sources, except that for
nonresonant π π→ + −B KS

0 0 decays, are expected to be less than 10% of those for → ± ∓B K K* .s
0

The branching fractions of the other nonresonant decays have not been previously determined.
The fit includes components for both B0 and Bs

0 signal and nonresonant components, and
the sources of background listed above. The signal components are parametrized by a Crystal
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Ball (CB) function [57] in B candidate mass and a relativistic Breit–Wigner (RBW) function in

K* candidate mass. The peak positions and widths of the functions for the dominant contribution
(Bs

0 for ± ∓K K* , B0 for π± ∓K* ) are allowed to vary freely in the fit. The relative positions of the
B0 and Bs

0 peaks in the B candidate mass distribution are fixed according to the known B0–Bs
0

mass difference [53]. The tail parameters of the CB function are fixed to the values found in fits to
simulated signal events, as are the relative widths of the B0 and Bs

0 shapes. Cross-feed
contributions are also described by the product of CB and RBW functions with parameters
determined from simulation. The misidentification causes a shift and a smearing of the B

candidate mass distribution and only small changes to the shape in the K* candidate mass.
The B candidate mass distributions for the nonresonant components are also parametrized

by a CB function, with peak positions and widths identical to those of the signal components,
but with different tail parameters that are fixed to values obtained from simulation. Within the

K* mass window considered in the fit, the nonresonant shape can be approximated with a linear
function. All linear functions used in the fit are parametrized by their yield and the abscissa
value at which they cross zero, and are set to zero beyond this threshold, m0. The relative yields
of nonresonant and signal components are constrained to have the same value in the samples
with long and downstream candidates, but this ratio is allowed to be different for B0 and Bs

0

decays.
Backgrounds from other b hadron decays are described nonparametrically by kernel

functions [58] in the B candidate mass and either RBW or linear functions in the K* candidate

mass, depending on whether or not the decay involves a K* resonance. All these background
shapes are determined from simulation. To reduce the number of free parameters in the fit to the

± ∓K K* sample, the yields of the backgrounds from charmless hadronic B meson decays with
missing particles are fixed relative to the yield for the π→ + −B K*0 cross-feed component
according to expectation. The yield of the →+ +B D h¯ 0 , π π→ + −D K¯

S
0 0 component is

determined from the fit to data. The yield for the Λ → −K p*b
0 contribution is also a free

parameter in the fit to ± ∓K K* candidates, but is fixed to zero in the fit to π± ∓K* candidates.

The combinatorial background is modelled with linear functions in both B and K*
candidate mass distributions, with parameters freely varied in the fit to data except for the m0

threshold in B candidate mass, which is fixed from fits to sideband data. For all components, the
factorization of the two-dimensional probability density functions into the product of one-
dimensional functions is verified to be a good approximation using simulation and sideband
data. In total there are 20 free parameters in the fit to the ± ∓K K* sample: yields for B0 and Bs

0

signals, cross-feed, Λ ,b
0 →B Dh and combinatorial backgrounds (all for both long and

downstream categories); ratios of yields for the B0 and Bs
0 nonresonant components; peak

position and width parameters for the signal in both B candidate and K* candidate mass
distributions; and parameters of the linear functions describing the combinatorial background in

K* candidate mass for both long and downstream categories. The fit to the π± ∓K* sample has
the same number of free parameters, with the Λb

0 background yields replaced by charmless
background yields. The stability of both fits is confirmed using simulated pseudoexperiments.

The results of the fits are shown in figures 2 and 3 for the ± ∓K K* and π± ∓K* final states,
respectively, and the signal yields are given in table 1. All other fit results are consistent with
expectations.
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5. Systematic uncertainties

Systematic uncertainties occur due to possible imperfections in the fit model used to determine
the signal yields, and due to imperfect knowledge of the efficiencies used to convert the yields
to branching fraction results. A summary of the systematic uncertainties is given in table 2.

The fixed parameters in the functions describing the signal and background components
are varied within their uncertainties, and the changes in the fitted yields are assigned as
systematic uncertainties. Studies with simulated pseudoexperiments cannot exclude biases on

Figure 2. Results of the fit to ± ∓K K* candidates projected onto (a), (b) B candidate
and (c), (d) K* candidate mass distributions, for (a), (c) long and (b), (d) downstream
candidates. The total fit result (solid black line) is shown together with the data
points. Components for the B0 (pink dash double-dotted line) and Bs

0 (red dash dotted
line) signals are shown together with the Bs

0 nonresonant component (dark red
falling-hatched area), charmless partially reconstructed and cross-feed background
(blue long-dashed line), and combinatorial background (green long-dash dotted line)
components. The →+ +B D h¯ 0 background component has a negative yield
(consistent with zero) and so is not directly visible but causes the total PDF to go
below the level of the combinatorial background on the left of the B candidate mass
spectrum.
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Figure 3. Results of the fit to π± ∓K* candidates projected onto (a), (b) B candidate and
(c), (d) K* candidate mass distributions, for (a), (c) long and (b), (d) downstream
candidates. The total fit result (black solid line) is shown together with the data points.
Components for the B0 (red dash dotted line) and Bs

0 (pink dash double-dotted line)
signals are shown together with B0 (dark red falling-hatched area) and Bs

0 (purple
rising-hatched area) nonresonant components, partially reconstructed and cross-feed
background (blue long-dashed line), and combinatorial background (green long-dash-
dotted line) components.

Table 1. Yields and relative yields obtained from the fits to ± ∓K K* and π± ∓K* can-
didates. The relative yields of nonresonant (NR) B s( )

0 decays are constrained to be
identical in long and downstream categories. Only statistical uncertainties are given.

Yield B0 Bs
0

Long Downstream Long Downstream
± ∓N K K( * ) 0 ± 4 4 ± 3 40 ± 8 62 ± 10
π± ∓N K( * ) 80 ± 10 165 ± 16 5 ± 4 23 ± 8

π± ∓ ± ∓N K K N K K( NR) ( * )S
0 0.0 ± 1.0 0.41 ± 0.16
π π π± ∓ ± ∓N K N K( NR) ( * )S

0 0.79 ± 0.14 0.6 ± 0.4
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the yields at the level of a few decays. An uncertainty corresponding to the size of the possible
bias is assigned. The linear approximation for the shape of the nonresonant component in the

K* candidate mass can only be valid over a restricted range. Therefore the mass window is
varied and the change in the fitted results taken as an estimate of the corresponding uncertainty.

The largest source of systematic uncertainty arises due to imperfect cancellation of

interference effects between the P-wave K* signal and the nonresonant component, in which the
π±KS

0 system is predominantly S-wave. Since the efficiency is not uniform as a function of the
cosine of the decay angle, θcos K*, defined as the angle between the B and KS

0 candidate

momenta in the rest frame of the π±KS
0 system, a residual interference effect may bias the

results. The size of this uncertainty is evaluated by fitting the distribution of θcos K* [59]. The
distribution is reconstructed from the signal sWeights [55] obtained from the default fit. Only
the region where θcos K* is positive is considered, since the efficiency variation is highly
nontrivial in the negative region. This ensures that the assigned uncertainty is conservative since
any cancellation of the interference effects between the two sides of the distribution is
neglected. In the absence of interference, the distribution will be parabolic and pass through the
origin. The bias on the signal yield due to interference can therefore be evaluated from the
constant and linear components resulting from a fit of the distribution to a second-order
polynomial. Such fits are shown for π→ + −B K*0 and → ± ∓B K K*s

0 signals in figure 4. The
measured yields of the π→ − +B K*s

0 and → ± ∓B K K*0 signals are too small to allow this
method to be used. Therefore the same relative uncertainties are assigned to these decays as in
the corresponding B0 or Bs

0 decay.
Systematic uncertainties on the ratio of efficiencies arise due to limited sizes of the

simulation samples used to determine the acceptance and selection efficiencies, and due to
possible mismodelling of the detector response. Two potential sources of mismodelling are the
trigger and particle identification efficiencies. These are determined from control samples and
systematic uncertainties assigned using the same procedures as described in [30]. The imperfect

Table 2. Systematic uncertainties on the relative branching fraction measurements. The
total uncertainty is obtained by combining all sources in quadrature.

Source


 π

→
→

± ∓

+ −

*

*

B K K

B K

( )

( )
s
0

0


 π
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+ −

*

*

B K K

B K

( )

( )

0

0




π
π

→
→

− +

+ −

*

*

B K

B K

( )

( )
s
0

0

Long Downstream Long Downstream Long Downstream

Fit 0.14 0.07 0.010 0.005 0.05 0.04
S-Wave
interference

0.32 0.14 0.001 0.002 0.04 0.05

Acceptance 0.01 0.01 <0.001 <0.001 <0.01 0.01
Selection 0.08 0.05 <0.001 0.001 0.01 0.02
Trigger 0.03 0.02 <0.001 0.001 <0.01 0.01
Particle identi-
fication

0.04 0.03 <0.001 0.001 0.01 0.01

f fs d 0.10 0.08 — — 0.01 0.03

Total 0.37 0.19 0.011 0.006 0.06 0.08
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knowledge of the ratio of fragmentation fractions, = ±f f 0.259 0.015s d [32–34], is another
source of uncertainty.

6. Results and conclusion

The significance of the signal strengths is determined from Δ−2 ln , where Δ ln is the
change in the log likelihood between the default fit result and that obtained when the relevant
component is fixed to zero. This calculation is performed both with only the statistical
uncertainty included, and after the likelihood function is convolved with a Gaussian function
with width corresponding to the systematic uncertainty on the fitted yield. Combining the
likelihoods from long and downstream categories, the statistical significances for → ± ∓B K K*s

0

and π→ − +B K*s
0 decays are σ12.5 and σ3.9 while the corresponding values for the total

significance are σ7.8 and σ3.4 , respectively. The significance of the → ± ∓B K K*0 signal is
below σ2 .

Figure 4. Background-subtracted distribution of θcos *K for (a), (b) π→ + −B K*0 and
(c), (d) → ± ∓B K K*s

0 signals from the samples with (a), (c) long and (b), (d)
downstream candidates. Results of fits with second-order polynomial functions are
shown as the solid lines.
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The ratios of branching fractions of equations (1) and (2) are obtained by correcting the
ratios of yields by the ratios of efficiencies and, where appropriate, by the ratio of the
fragmentation fractions. The particle identification efficiencies are determined from data, using
samples of kaons and pions from π π→ →+ + − +D D D K* ,0 0 decays reweighted according to
the kinematic distributions of the bachelor tracks in → ± ∓B K h*s( )

0 decays. The relative
efficiencies of the acceptance and all other selection requirements are determined from
simulation. The relative efficiencies are within 10% of unity.

Since the signal for → ± ∓B K K*0 decays is not significant, upper limits at 90% and 95%
confidence level (CL) are obtained by integrating the profile likelihood function in the region of
positive branching fraction. All results from the samples with long and downstream candidates
are consistent and the combined results are
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Multiplying the relative branching fractions by  π→ = ± ×+ − −( )B K* (8.5 0.7) 100 6 [31]
gives




 π

→ = ± ± ×

→ = ± ± ×

< ×

→ = ± ± ×

± ∓ −

± ∓ −

−

− + −

( )
( )

( )

B K K

B K K

B K

* (12.7 1.9 (stat) 1.9 (syst)) 10 ,

* (0.17 0.15 (stat) 0.05 (syst)) 10 ,

0.4 (0.5) 10 at 90% (95%) CL,

* (3.3 1.1 (stat) 0.5 (syst)) 10 .

s

s

0 6

0 6

6

0 6

In summary, → ± ∓B K h*s( )
0 decays have been studied using a data sample corresponding

to −1.0 fb 1 of pp collision data at a centre-of-mass energy of 7 TeV collected with the LHCb
detector. The first observation of the → ± ∓B K K*s

0 decay and the first evidence for the
π→ − +B K*s

0 decay are obtained, and their branching fractions measured. An upper limit is set
on the branching fraction of the → ± ∓B K K*0 decay. The results are consistent with several
independent theoretical predictions [60–62] and represent an important step towards searches
for physics beyond the Standard Model in decays of B mesons to charmless final states
containing one pseudoscalar and one vector meson. Dalitz plot analyses of larger samples will
allow the reduction of both statistical and systematic uncertainties on these results. The
additional sensitivity to relative phases provided by such analyses will also permit searches for
sources of CP violation beyond the Standard Model.
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