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Abstract The polarisation of prompt ψ(2S) mesons is
measured by performing an angular analysis of ψ(2S) →
μ+μ− decays using proton-proton collision data, corre-
sponding to an integrated luminosity of 1.0 fb−1, collected by
the LHCb detector at a centre-of-mass energy of 7 TeV. The
polarisation is measured in bins of transverse momentum pT

and rapidity y in the kinematic region 3.5 < pT < 15 GeV/c
and 2.0 < y < 4.5, and is compared to theoretical models.
No significant polarisation is observed.

1 Introduction

Measurements of the heavy quarkonium production in
hadron collisions can be used to test predictions of quan-
tum chromodynamics (QCD) in the perturbative and non-
perturbative regimes. Several theoretical models have been
developed within the framework of QCD to describe the
quarkonium production cross-section and polarisation as
functions of the quarkonium transverse momentum, pT, but
none can simultaneously describe both of them [1]. Heavy
quarkonia can be produced in three ways in pp collisions:
directly in the hard scattering, through feed-down from
higher-mass quarkonia states, or via the decay of b hadrons,
with the first two of these being referred to as prompt pro-
duction. In the case of ψ(2S) mesons, the contribution from
feed-down is negligible, allowing a straightforward compar-
ison between measurements of prompt production and pre-
dictions for direct contributions.

Theψ(2S)meson has spin, parity and charge-parity quan-
tum numbers, J PC = 1−− and its polarisation can be deter-
mined by studying the angular distribution of muons in the
ψ(2S)→ μ+μ− decays [2,3]. The distribution is described
by

d2 N

d cos θ dφ
(λθ , λθφ, λφ) ∝ 1 + λθ cos2θ

+λθφ sin 2θ cosφ + λφ sin2θ cos 2φ, (1)
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where θ and φ are the polar and azimuthal angles of the
μ+ direction in the rest frame of the ψ(2S) meson, respec-
tively, and λθ , λθφ and λφ are the polarisation parameters to
be determined from the data. The case of (λθ , λθφ, λφ) =
(1, 0, 0) or (−1 , 0, 0) corresponds to full transverse or lon-
gitudinal polarisation, respectively, while (λθ , λθφ, λφ) =
(0, 0, 0) corresponds to the unpolarised state.1 In this study
of the ψ(2S) polarisation, two choices of polarisation frame
are used. These have a common definition of the Y -axis, taken
to be the normal to the production plane, which is formed by
the momentum of the ψ(2S) meson and the beam axis in
the rest frame of the colliding LHC protons. The helicity
frame [4] uses the ψ(2S) momentum as the Z -axis. In the
Collins-Soper frame [5] the Z -axis is chosen to be the bisec-
tor of the angle between the two incoming proton beams in
the rest frame of theψ(2S)meson. In both frames, the X -axis
is defined to complete a right-handed Cartesian coordinate
system. The commonly used frame-invariant variable λinv

(see [6,7]) is defined as

λinv = λθ + 3λφ
1 − λφ

. (2)

Two classes of theoretical models are compared with
the measurements in this paper: the colour-singlet model
(CSM) [8] and non-relativistic QCD (NRQCD) [9–14], at
next-to-leading order (NLO). In the high-pT region, where
the quarkonium transverse momentum is much larger than
its mass (in natural units), the CSM underestimates signif-
icantly the measured prompt J/ψ and ψ(2S) production
cross-sections [15–17], while the NRQCD model provides a
good description of the pT-dependent J/ψ andψ(2S) cross-
sections measured by LHCb [16,17] and CMS [18]. The
CSM predicts large longitudinal polarisation for J/ψ and
ψ(2S) mesons. On the other hand, in the NRQCD model,
where quarkonium production is dominated by the gluon
fragmentation process in the high-pT region, the gluon is

1 For a ψ(2S) meson in a pure spin state the three polarisation param-
eters cannot vanish simultaneously.
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almost on-shell, leading to predictions of large transverse
polarisations [11]. Precise measurements of the J/ψ polari-
sation at both the Tevatron [19] and the LHC [20–22], which
show no significant longitudinal or transverse polarisations,
do not support either the CSM or NRQCD predictions.

The promptψ(2S) polarisation has been measured by the
CDF experiment [19] in p p collisions at

√
s = 1.96 TeV, and

by the CMS experiment [21] in pp collisions at
√

s = 7 TeV,
using theψ(2S)→ μ+μ− decay. The CDF (CMS) measure-
ment used ψ(2S) mesons in the kinematic range 5 < pT <

30 GeV/c (14 < pT < 50 GeV/c) and rapidity |y| < 0.6
(|y| < 1.5). The CDF result for pT > 10 GeV/c is in strong
disagreement with the NRQCD prediction of large transverse
polarisation. At CMS, no evidence of large transverse or lon-
gitudinal ψ(2S) polarisation has been observed.

This paper presents the measurement of the promptψ(2S)
polarisation in pp collisions at

√
s = 7 TeV, using data

corresponding to an integrated luminosity of 1 fb−1, from
ψ(2S)→ μ+μ− decays. The ψ(2S) polarisation parame-
ters are determined using unbinned maximum likelihood fits
to the two-dimensional angular distribution of the μ+ in the
helicity and Collins-Soper frames. The measurement is per-
formed in the ψ(2S) kinematic range 3.5 < pT < 15 GeV/c
and 2.0 < y < 4.5.

2 LHCb detector and data sample

The LHCb detector [23] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed
for the study of particles containing b or c quarks. The detec-
tor includes a high-precision tracking system consisting of a
silicon-strip vertex detector surrounding the pp interaction
region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift
tubes placed downstream. The combined tracking system
provides a momentum measurement with relative uncertainty
that varies from 0.4 % at 5 GeV/c to 0.6 % at 100 GeV/c, and
impact parameter resolution of 20 µm for tracks with large
transverse momentum. Different types of charged hadrons
are distinguished by information from two ring-imaging
Cherenkov detectors [24]. Photon, electron and hadron can-
didates are identified by a calorimeter system consisting of
scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter. Muons are iden-
tified by a system composed of alternating layers of iron and
multiwire proportional chambers [25].

The trigger [26] consists of a hardware stage, based on
information from the calorimeter and muon systems, fol-
lowed by a software stage, which applies full event recon-
struction. The hardware trigger requires the pT of one muon
candidate to be larger than 1.48 GeV/c, or the product of the

transverse momenta of two muon candidates to be larger than
1.68 (GeV/c)2. In a first stage of the software trigger, two
oppositely charged muon candidates with pT > 0.5 GeV/c
and momentum p > 6 GeV/c are selected and their invariant
mass is required to be greater than 2.7 GeV/c2. In a second
stage of the software trigger, two muon candidates consistent
with originating from a ψ(2S) decay are chosen and addi-
tional criteria are applied to refine the sample of the ψ(2S)
candidates as follows. The invariant mass of the candidate is
required to be consistent with the known ψ(2S) mass [27]
and, for 0.7 fb−1 of data, the pT of the candidate is required
to be greater than 3.5 GeV/c.

In the simulation, pp collisions are generated using
Pythia [28] with a specific LHCb configuration [29]. Decays
of hadronic particles are described by EvtGen [30], in which
final state radiation is generated using Photos [31]. The
interaction of the generated particles with the detector and its
response are implemented using the Geant4 toolkit [32,33]
as described in Ref. [34]. The prompt charmonium produc-
tion is simulated in Pythia according to the leading order
colour-singlet and colour-octet mechanisms [29,35], and the
charmonium is generated without polarisation.

3 Event selection

The ψ(2S) candidates are reconstructed from pairs of good
quality, oppositely charged particles that originate from a
common vertex. The χ2 probability of the vertex fit must be
larger than 0.5 %. The transverse momentum of each particle
is required to be greater than 1 GeV/c. Both tracks must also
be consistent with the muon hypothesis. As in the measure-
ment of J/ψ polarisation [22], the significance Sτ , which is
defined as the reconstructed pseudo-decay time τ divided by
its uncertainty, is used to distinguish between prompt ψ(2S)
mesons and those from b-hadron decays. The pseudo-decay
time τ is defined as [17]

τ ≡ (zψ(2S) − zPV) · Mψ(2S)

pz
, (3)

where zψ(2S) (zPV) is the position of the ψ(2S) decay vertex
(the associated primary vertex) in the z-direction, Mψ(2S) is
the knownψ(2S)mass, and pz is the measured z component
of the ψ(2S) momentum in the centre-of-mass frame of the
pp collision. The z-axis of the LHCb coordinate system is
defined as the beam direction in the LHCb detector region.
The ψ(2S)mesons from b-hadron decays tend to have large
values of Sτ . The requirement Sτ < 4 reduces the fraction
of the selected non-prompt ψ(2S) mesons from about 20 to
3 % [17,22].

The analysis is performed in five pT and five y bins of
the ψ(2S) meson. As an example, the invariant mass dis-
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Fig. 1 Invariant mass distribution ofψ(2S) candidates in the kinematic
region 5 < pT < 7 GeV/c and 2.5 < y < 3.0. The solid blue line is
the total fit function, the dot-dashed green line represents the linear
background function and the red dashed line is the combination of the
two CB functions

tribution of ψ(2S) candidates for 5 < pT < 7 GeV/c and
3.0 < y < 3.5 is shown in Fig. 1. In each kinematic bin, the
mass distribution is fitted with a combination of two Crystal
Ball (CB) functions [36] with a common peak position for
the signal and a linear function for the combinatorial back-
ground. The relative fractions of the narrower and broader CB
functions are fixed to 0.9 and 0.1, respectively, determined
from simulation.

Using the results of the fit to the mass distribution, the
sWeight wi for each candidate i to be signal is computed by
means of the sPlot technique [37]. The correlation between
the invariant mass of the ψ(2S) candidates and the muon
angular variables is found to be negligible, and the sWeights
are used to subtract the background from the angular distri-
bution.

4 Polarisation fit

The polarisation parameters are determined from a fit to the
(cos θ, φ) angular distribution of the ψ(2S)→ μ+μ− sig-
nal candidates in each kinematic bin of the ψ(2S) meson
independently. The angular distribution described by Eq. 1
is modified by the detection efficiency ε, which varies as
a function of the angular variables (cos θ, φ). In each kine-
matic bin, ε is obtained from a sample of simulated unpo-
larised ψ(2S)→ μ+μ− decays, where cos θ and φ are gen-
erated according to uniform distributions. As an example,
Fig. 2 shows the efficiency in the helicity frame for ψ(2S)
candidates in the kinematic bin 5 < pT < 7 GeV/c and
2.5 < y < 3.0. The typical absolute efficiency is about 10 %.
For smaller (larger) pT and y values, the coverage of the
reconstructed muon angular variables is narrower (broader).
In the regions | cos θ | ≈ 1, and |φ| ≈ 0 or π , the efficiency
is lower because one of the two muons is likely to escape the
LHCb detector acceptance.

cosθ
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Fig. 2 Detection efficiency in arbitrary units as a function of cos θ and
φ in the helicity frame forψ(2S)mesons in the range 5 < pT < 7 GeV/c
and 2.5 < y < 3.0

Combining the angular distribution given in Eq. 1 with the
efficiency, the logarithm of the likelihood function [38], in
each pT and y bin, is defined as

ln L

= α

Ntot∑

i=1

wi × ln

[
P(cos θi , φi |λθ , λθφ, λφ) ε(cos θi , φi )

N (λθ , λθφ, λφ)

]
,

(4)

where P(cos θi , φi |λθ , λθφ, λφ) ≡ 1 + λθ cos2 θi + λθφ
sin 2θi cosφi +λφ sin2 θi cos 2φi ,wi is the sWeight, and Ntot

is the number of ψ(2S) candidates in the data. The global
factorα ≡ ∑Ntot

i=1 wi/
∑Ntot

i=1 w
2
i is introduced to estimate cor-

rectly the statistical uncertainty for the weighted likelihood
function. The normalisation N (λθ , λθφ, λφ) is defined as

N (λθ , λθφ, λφ) =
∫

dP(cos θ, φ|λθ , λθφ, λφ)
×ε(cos θ, φ)

≈ C
Mtot∑

j=1

P(cos θ j , φ j |λθ , λθφ, λφ), (5)

where the sum extends over the Mtot candidates in the
simulated and reconstructed sample and C is a constant
factor. The last equality holds because the (cos θ, φ) two-
dimensional distribution for the fully simulated unpolarised
ψ(2S)mesons is the same as the efficiency ε(cos θ, φ) up to
a constant global factor.

The angular efficiency is validated in data by using muons
from B+ → J/ψ K + decays. Due to angular momentum
conservation, the J/ψ meson produced in this channel is
longitudinally polarised in the B+ meson rest frame. After
reweighting the kinematic properties of the simulated B+ and
J/ψ mesons to reproduce the data, the remaining differences
of the angular distributions between the reweighted simula-
tion sample and the data are attributed to imperfections in
the modelling of the detector response. Figure 3 compares
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Fig. 3 (Left) Distributions of cos θ in the helicity frame for J/ψ mesons from B+ → J/ψ K + decays in data (filled triangles) and in the simulated
sample (open circles) and (right) their ratio after the weighting based on the B+ and J/ψ kinematic properties

Table 1 Sources of systematic
uncertainties on the polarisation
parameter λθ in the helicity and
Collins-Soper frames. For each
type of uncertainty, the average
and the range over all ψ(2S)
kinematic bins are shown

Source Helicity frame Collins-Soper frame
Average (range) Average (range)

Efficiency correction 0.055 (0.034–0.126) 0.035 (0.019–0.078)

Simulation sample size 0.034 (0.015–0.103) 0.023 (0.010–0.094)

Fit to mass distribution 0.008 (0.001–0.134) 0.007 (0.001–0.188)

ψ(2S) kinematic modelling 0.018 (0.000–0.085) 0.016 (0.000–0.074)

b-hadron contamination 0.014 (0.002–0.035) 0.013 (0.002–0.063)

the cos θ distributions in data for B+ → J/ψ K + candidates
in the helicity frame with simulated data after reweighting.
The efficiency for simulated events is overestimated for J/ψ
candidates with | cos θ | > 0.5, therefore it is corrected fur-
ther as a function of pμ and yμ, the momentum and the
rapidity of the muon in the centre-of-mass frame of pp col-
lisions. A table of weights (corrections) in bins of pμ and yμ
are determined by studying the two-dimensional (pμ, yμ)
distribution of B+ → J/ψ K + candidates in data and simu-
lation. The normalisation of Eq. 5 is calculated by assigning
a weight to each candidate as the product of the weights for
μ+ and μ− depending on their pμ and yμ bins.

5 Systematic uncertainties

Sources of systematic uncertainty are considered for each of
the four observables λθ , λθφ , λφ and λinv in both the Collins-
Soper and helicity frames. In the Collins-Soper frame, the
overall systematic uncertainties are found to be comparable
for each of these observables in most kinematic bins, while
for the helicity frame the systematic uncertainties assigned
to λθφ and λφ are typically a factor of 2–3 smaller than those
estimated for λθ and λinv. For each of the main sources of
systematic uncertainty, Table 1 shows the range of values
assigned over all kinematic bins, and their average. The total

systematic uncertainties for each of the four observables can
be found in Tables 2 and 3.

The dominant systematic uncertainty is due to the size
of the B+ → J/ψ K + control sample. This leads to non-
negligible statistical uncertainties in the correction factors
that are applied to simulated events in bins of pμ and yμ.
The uncertainty on a given correction factor is estimated by
varying it by one standard deviation of its statistical uncer-
tainty, while keeping all other factors at their central values.
The polarisation parameters are recalculated and the change
relative to their default values is considered as the contri-
bution from this factor to the systematic uncertainty. This
procedure is repeated for all bins of pμ and yμ, and the sum
in quadrature of all these independent contributions is taken
as the total systematic uncertainty.

The limited size of the sample of simulated events intro-
duces an uncertainty on the normalisation N (λθ , λθφ, λφ),
and this uncertainty is propagated to the polarisation param-
eters.

The uncertainty of the sWeight of each candidate used for
the background subtraction is a source of uncertainty on the
polarisation parameters. The effect is studied by comparing
the default polarisation parameters with those obtained when
varying the definition of the models used to fit the mass dis-
tributions and re-evaluating the sWeight for each candidate.
Several alternative fitting models are studied, including an
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Fig. 4 Polarisation parameters for promptψ(2S)mesons as a function
of pT, in five rapidity intervals, (top left) λθ and (bottom) λinv, measured
in the helicity frame, and (top right) λθ in the Collins-Soper frame. The
uncertainties on data points are the sum in quadrature of statistical and

systematic uncertainties. The horizontal bars represent the width of the
pT bins for the ψ(2S)meson. The data points for each rapidity interval
are displaced horizontally to improve visibility

exponential function for the background mass distribution,
only one CB function for the signal mass distribution, or
shapes for signal and background mass distributions fixed
to those obtained from fits to the mass distributions in sub-
regions of the (cos θ, φ) distribution space. The largest vari-
ation with respect to the default result is assigned as the sys-
tematic uncertainty.

In each kinematic bin, discrepancies between data and
simulation in the ψ(2S) pT and y distributions introduce an
additional uncertainty. This is evaluated by comparing the
default polarisation results with those determined after the
ψ(2S) kinematic distribution in the simulation is weighted
to that in data. The difference between the two results is
quoted as a systematic uncertainty contribution.

The uncertainty due to the contamination ofψ(2S) candi-
dates from b-hadron decays (3 %) is determined by relaxing
the Sτ selection and studying the variations of the polarisa-
tion parameters.

With the exception of the effects due to the differences in
the ψ(2S) kinematic spectrum and the size of the sample of
simulated events, correlations are expected among ψ(2S)

kinematic bins. The correlation between these systematic
uncertainties in adjacent bins could be as large as 50 %, as
the final state muons may have similar momentum and rapid-
ity. For each kinematic bin, the total systematic uncertainty
is calculated as the quadratic sum of the various sources of
systematic uncertainties assuming no correlation within each
kinematic bin.

6 Results

The results for the polarisation parameters λθ , λθφ , λφ and
λinv, and their uncertainties, in each pT and y bin of the
prompt ψ(2S)meson sample, are reported in Tables 2 and 3
for the helicity and the Collins-Soper frames, respectively.
The systematic uncertainties are similar in size to the sta-
tistical uncertainties. The parameters λθ and λinv are also
shown in Fig. 4 as functions of the pT of the ψ(2S)mesons,
for different y bins.

The frame-invariant polarisation parameter λinv is con-
sistent with a negative polarisation with no strong depen-
dence on the pT and y of the ψ(2S) meson. The values and
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Fig. 5 Polarisation parameter λθ of the prompt ψ(2S) meson in the
helicity frame as a function of pT, in the rapidity range 2.5 < y < 4.
The predictions of NLO CSM [39] and three NLO NRQCD models
(1) [39], (2) [40] and (3) [41] are also shown. Uncertainties on data are
the sum in quadrature of the statistical and systematic uncertainties. The
horizontal bars represent the width of pT bins for the ψ(2S) meson

uncertainties of λinv that are measured in the helicity and the
Collins-Soper frames are in good agreement with each other,
with differences much smaller than the statistical uncertain-
ties. In the Collins-Soper frame, λθ takes small negative val-
ues especially in the low-pT region and increases with pT.
This trend is more significant for the extreme y bins. In the
helicity frame, the polarisation parameter λθ is consistent
with zero, with no significant dependence on pT or y of the
ψ(2S) meson. The polarisation parameters λθφ and λφ are
consistent with zero in both the helicity and Collins-Soper
frames, and their absolute values are below 0.1 for most of
the kinematic bins.

In Fig. 5, the measured values of λθ in the helicity frame
as a function of pT of the ψ(2S) meson, integrating over
the rapidity range 2.5 < y < 4.0, are compared with the
predictions of the CSM [39] and NRQCD [39–41] models at
NLO. Our results disfavour the CSM calculations, in which
the ψ(2S) meson is significantly longitudinally polarised.
The three NRQCD calculations in Refs. [39–41], which use
different selections of experimental data to determine the
non-perturbative matrix elements, provide a good description
of our measurements in the low-pT region. However, the
prediction of increasing polarisation with pT in these models
is not supported by the LHCb data.

7 Conclusion

The polarisation of prompt ψ(2S) mesons is measured as
a function of the ψ(2S) pT and y in the range 3.5 <

pT < 15 GeV/c and 2.0 < y < 4.5, in pp collisions at
√

s =
7 TeV. The analysis is performed using data corresponding to
an integrated luminosity of 1.0 fb−1, collected by the LHCb
experiment in 2011. The polarisation parameters λθ , λθφ ,
λφ and λinv are determined in the helicity and Collins-Soper
frames by studying the angular distribution of the two muons
produced in the ψ(2S)→ μ+μ− decay.

The frame-independent observable λinv is consistent with
a negative polarisation. The measured values of λθφ and λφ
are small over the accessible kinematic range. The λθ dis-
tribution in the helicity frame shows that the ψ(2S) meson
exhibits neither large transverse nor longitudinal polarisa-
tion. Although a direct comparison with previous measure-
ments by CMS and CDF is not possible due to the different
kinematic ranges, all results disfavour large polarisation in
the high-pT region. The promptψ(2S)polarisation measured
at LHCb disagrees with the CSM predictions both in the size
of the polarisation parameters and the pT dependence. While
the NRQCD models provide a good description of the LHCb
data in the low-pT region, the predicted transverse polarisa-
tion at high-pT is not observed.

Acknowledgments We wish to thank M. Butenschön, B. Gong, H.-S.
Shao and Y.-Q. Ma for providing us with the theoretical calculations
and helpful discussions. We express our gratitude to our colleagues in
the CERN accelerator departments for the excellent performance of
the LHC. We thank the technical and administrative staff at the LHCb
institutes. We acknowledge support from CERN and from the national
agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China);
CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and
MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The
Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom,
RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal
and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine
(Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge
the support received from EPLANET and the ERC under FP7. The Tier1
computing centres are supported by IN2P3 (France), KIT and BMBF
(Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC
(Spain), GridPP (United Kingdom). We are indebted to the communities
behind the multiple open source software packages on which we depend.
We are also thankful for the computing resources and the access to
software R&D tools provided by Yandex LLC (Russia).

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

Appendix

See Tables 2 and 3.
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Table 2 Measured prompt ψ(2S) polarisation parameters λθ , λθφ , λφ and λinv in bins of pT and y in the helicity frame. The first uncertainty is
statistical and the is second systematic

pT (GeV/c) λ 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 λθ −0.331±0.174±0.142 −0.055±0.052±0.056 0.028±0.040±0.046 0.008±0.040±0.050 −0.080±0.063±0.092

λθφ −0.233±0.076±0.086 −0.172±0.021±0.026 −0.039±0.020±0.023 0.007±0.021±0.028 −0.048±0.036±0.049

λφ −0.049±0.036±0.037 −0.039±0.017±0.024 −0.074±0.018±0.022 −0.081±0.022±0.027 −0.110±0.043±0.047

λinv −0.456±0.195±0.160 −0.165±0.063±0.078 −0.180±0.054±0.063 −0.217±0.057±0.073 −0.371±0.089±0.114

4–5 λθ −0.194±0.113±0.113 0.007±0.038±0.052 −0.003±0.028±0.052 −0.026±0.029±0.052 0.007±0.050±0.095

λθφ −0.238±0.049±0.053 −0.086±0.016±0.023 −0.026±0.015±0.021 0.003±0.017±0.025 0.023±0.027±0.043

λφ −0.043±0.023±0.024 −0.082±0.012±0.014 −0.048±0.012±0.023 −0.087±0.016±0.025 −0.088±0.033±0.035

λinv −0.309±0.126±0.120 −0.222±0.045±0.060 −0.140±0.042±0.057 −0.265±0.044±0.070 −0.237±0.072±0.102

5–7 λθ −0.198±0.074±0.091 0.083±0.030±0.051 0.003±0.024±0.039 −0.088±0.024±0.046 −0.189±0.039±0.092

λθφ −0.164±0.031±0.039 −0.072±0.013±0.018 −0.026±0.013±0.020 0.002±0.015±0.026 0.044±0.025±0.051

λφ −0.058±0.014±0.021 −0.046±0.009±0.013 −0.058±0.009±0.018 −0.038±0.012±0.019 −0.039±0.025±0.028

λinv −0.352±0.080±0.094 −0.054±0.039±0.060 −0.162±0.035±0.054 −0.195±0.040±0.067 −0.294±0.065±0.105

7–10 λθ −0.142±0.066±0.079 −0.064±0.034±0.053 −0.001±0.032±0.051 −0.196±0.033±0.071 −0.159±0.058±0.118

λθφ 0.044±0.028±0.034 0.002±0.014±0.021 0.008±0.016±0.023 0.003±0.019±0.031 0.124±0.037±0.058

λφ −0.036±0.014±0.017 −0.075±0.010±0.012 −0.088±0.011±0.012 −0.036±0.014±0.018 0.007±0.030±0.031

λinv −0.241±0.079±0.095 −0.269±0.043±0.064 −0.245±0.043±0.062 −0.292±0.052±0.100 −0.140±0.101±0.138

10–15 λθ −0.137±0.080±0.123 −0.235±0.047±0.075 −0.258±0.048±0.073 −0.371±0.059±0.135 −0.706±0.081±0.161

λθφ 0.157±0.034±0.050 0.045±0.020±0.026 0.094±0.023±0.032 0.052±0.031±0.054 0.104±0.059±0.079

λφ −0.014±0.021±0.022 −0.059±0.017±0.011 −0.074±0.020±0.014 −0.047±0.027±0.020 0.044±0.053±0.048

λinv −0.176±0.103±0.164 −0.390±0.062±0.086 −0.446±0.067±0.096 −0.489±0.089±0.150 −0.601±0.162±0.136

Table 3 Measured prompt ψ(2S) polarisation parameters λθ , λθφ , λφ and λinv in bins of pT and y in the Collins-Soper frame. The first uncertainty
is statistical and the second is systematic

pT (GeV/c) λ 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 λθ −0.457±0.142±0.144 −0.282±0.026±0.036 −0.105±0.023±0.031 −0.047±0.028±0.041 −0.168±0.058±0.076

λθφ 0.141±0.088±0.065 0.018±0.027±0.031 −0.043±0.022±0.027 −0.038±0.024±0.032 −0.010±0.044±0.059

λφ −0.003±0.039±0.028 0.040±0.020±0.023 −0.027±0.021±0.024 −0.061±0.023±0.028 −0.076±0.031±0.045

λinv −0.465±0.194±0.179 −0.169±0.062±0.068 −0.180±0.054±0.062 −0.218±0.057±0.076 −0.368±0.089±0.118

4–5 λθ −0.374±0.077±0.086 −0.192±0.019±0.032 −0.080±0.017±0.030 −0.075±0.020±0.035 −0.035±0.042±0.056

λθφ 0.103±0.059±0.062 −0.020±0.019±0.028 −0.010±0.015±0.035 −0.027±0.017±0.032 −0.047±0.034±0.057

λφ 0.032±0.029±0.027 −0.011±0.017±0.025 −0.021±0.017±0.024 −0.069±0.019±0.028 −0.073±0.027±0.041

λinv −0.288±0.125±0.123 −0.221±0.045±0.061 −0.141±0.042±0.058 −0.264±0.044±0.071 −0.237±0.072±0.096

5–7 λθ −0.265±0.040±0.062 −0.147±0.014±0.024 −0.095±0.015±0.023 −0.029±0.019±0.030 0.038±0.037±0.067

λθφ 0.123±0.041±0.051 −0.022±0.013±0.026 −0.013±0.011±0.025 0.026±0.013±0.028 0.050±0.029±0.053

λφ −0.024±0.026±0.032 0.033±0.014±0.024 −0.024±0.015±0.024 −0.060±0.018±0.030 −0.125±0.029±0.051

λinv −0.330±0.080±0.098 −0.049±0.040±0.059 −0.163±0.035±0.056 −0.198±0.040±0.067 −0.299±0.066±0.106

7–10 λθ 0.035±0.039±0.044 −0.078±0.019±0.028 −0.098±0.020±0.031 0.008±0.028±0.044 0.225±0.061±0.082

λθφ 0.006±0.038±0.046 −0.002±0.014±0.023 −0.034±0.013±0.021 0.065±0.017±0.031 −0.017±0.040±0.058

λφ −0.096±0.032±0.037 −0.070±0.019±0.031 −0.053±0.019±0.031 −0.111±0.025±0.040 −0.131±0.045±0.065

λinv −0.230±0.079±0.093 −0.269±0.043±0.066 −0.244±0.043±0.062 −0.293±0.052±0.081 −0.149±0.101±0.137

10–15 λθ 0.163±0.055±0.055 0.042±0.037±0.042 0.087±0.045±0.052 0.138±0.063±0.089 0.675±0.175±0.222

λθφ −0.103±0.043±0.065 0.015±0.022±0.026 −0.024±0.024±0.023 0.062±0.034±0.046 0.221±0.090±0.075

λφ −0.117±0.044±0.068 −0.163±0.032±0.045 −0.211±0.036±0.045 −0.251±0.050±0.080 −0.539±0.117±0.133

λinv −0.168±0.103±0.162 −0.385±0.063±0.088 −0.450±0.067±0.086 −0.492±0.089±0.149 −0.613±0.161±0.130
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