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Abstract: Ribosome-inactivating proteins (RIPs) are a family of plant toxins that 

permanently damage ribosomes and possibly other cellular substrates, thus causing cell 

death. RIPs are mostly divided in two types: Type 1 RIPs that are single-chain enzymatic 

proteins, and type 2 RIPs that consist of an active A chain (similar to a type 1 RIP) linked 

to a B chain with lectin properties. RIP-containing conjugates have been used in many 

experimental strategies against cancer cells, often showing great efficacy in clinical trials. 

Saporin-S6, a type 1 RIP extracted from Saponaria officinalis L. seeds, has been 

extensively utilized to construct anti-cancer conjugates because of its high enzymatic 

activity, stability and resistance to conjugation procedures, resulting in the efficient killing 

of target cells. This review summarizes saporin-S6-containing conjugates and their 

application in cancer therapy, considering in-vitro and in-vivo studies both in animal 

models and in clinical trials. The review is structured on the basis of the targeting of 

hematological versus solid tumors and on the antigen recognized on the cell surface. 

Keywords: saporin-S6; plant toxins; immunotoxins; immunoconjugates; immunotherapy; 

anti-cancer therapy 
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1. Introduction  

Ribosome-inactivating proteins (RIPs) are plant enzymes that damage ribosomes, and possibly other 

substrates, in an irreversible manner. RIPs are mainly divided into type 1, which consist of a single-chain 

protein, and type 2, which are composed of an enzymatic A-chain linked to a B-chain possessing lectin 

properties [1]. The interest in RIPs derives mostly from potential applications after being linked to 

appropriate carriers, such as monoclonal antibodies (mAbs) or other molecules, to obtain conjugates that 

are specifically toxic to target cells [2]. These conjugates have been included in experimental therapies 

against various malignancies, often achieving promising results. Among type 1 RIPs, Saporin-S6 (SAP; 

from seeds of Saponaria officinalis L. [3]) has been widely used to construct anti-cancer conjugates 

because of its high enzymatic activity [4] that has been related to the negative electrostatic surface 

potential of the active site pocket [5]. Further positive aspects of SAP are the maintenance of its 

enzymatic activity after conjugation procedures [6] and its resistance to proteolytic degradation, thus 

producing very efficient conjugates for the killing of target cells [7]. 

This review summarizes the applications of SAP-containing conjugates in experimental therapies 

against hematological and solid tumors, considering in-vitro and in-vivo studies both in animal models 

and in clinical trials. Conjugates containing antibodies or their fragments are referred to as immunotoxins 

(ITs), whereas conjugates having other carriers are denoted as “conjugates”. Unless otherwise specified, 

the conjugates and the ITs listed in this review have been obtained by chemical conjugation. 

2. ITs Targeting Hematological Cells  

Hematological cells have been extensively studied and targeted with ITs because (i) they have  

well-known and well-characterized surface molecules against which a panel of mAbs is available;  

(ii) many surface antigens modulate and are effectively internalized after binding with specific Abs; 

(iii) fresh cells may be easily tested for IT activity; and (iv) hematological neoplastic cells are easier to 

access and target in vivo compared to solid tumor cells. The main results obtained in vitro and in 

animal models are summarized in Table 1. Clinical trials are reported in Table 2. 

Table 1. In vitro and in vivo studies with Saporin-S6 (SAP) containing immunotoxins (ITs) 

targeting hematological tumors. 

 Antitumor Activity  

Antibody 
Target 

Antigen 
Tumor In vitro IC50 (M) 

In vivo 
Ref. 

Schedule Effects 

Various CD2 T-CLL 10
−13

~10
−11

 n.d. n.d. [8] 

OKT11 

7A10C9 
CD2 T-CLL <5 × 10

−13
 n.d. n.d. [9] 

OKT1 CD5 
T-lymphocytes 

B-CLL 

3.2 × 10
−10

; 

4~6.8 × 10
−9

 
n.d. n.d. [10,11] 

UCHT1 CD3 lymphocytes 2.1 × 10
−10

 n.d. n.d. [6,12] 

HB2 × DB7-18 CD7 T-ALL 2.3 × 10
−10

 n.d. n.d. [13,14] 

HB2 CD7 T-ALL 4.5 × 10
−12

 
SCID-HSB2 mice; 

1 × 0.5 mg/kg 

50% survival  

at 150 days 
[15,16] 
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Table 1. Cont. 

 Antitumor Activity  

Antibody 
Target 

Antigen 
Tumor In vitro IC50 (M) 

In vivo 
Ref. 

Schedule Effects 

BU12 CD19 

B-LL  
SCID-NALM-6 mice;  

3 × 10 μg 

40% survival  

at 110 days 
[17] 

BL  

SCID-Ramos mice;  

1 × 10 μg IT + 10 μg 

Rituximab 

100% survival  

at 120 days 
[18,19] 

Rituximab CD20 NHL 1~3 × 10
−10

 n.d. n.d. [20] 

F(ab’)2 BsAbs CD22 BL 1.5~6 × 10
−10

 n.d. n.d. [21] 

OM124 CD22 
B lymphoblastoid, 

BL 

<5 × 10
−15

~2.0 × 

10
−11

 

SCID-Daudi mice 

3 × 0.5 mg/kg 

2 × 0.5 mg/Kg IT + 60 

mg/Kg 

cyclophosphamide 

33% tumor free 

66% tumor free 
[22] 

Ber-H2 CD30 

HD 5 × 10
−12

~5 × 10
−14

 n.d. n.d. [23] 

ALCL  
SCID-JB6 mice 

3 × 11.3 μg 

CR 80% 

CR 30% 
[24] 

ALCL  
SCID-D430B mice 

1 × 0.1 mg/kg 

CR 66% 

PR 33% 
[25] 

IB4 CD38 NHL 2~13 × 10
−12

 n.d. n.d. [26] 

B7-24 CD80 BL, HD <10
−11

 n.d. n.d. [27] 

M24 + IG10 
CD80/ 

CD86 
BL, HD 0.3~5.8 × 10

−12
 n.d. n.d. [28] 

83 
CD3/ 

CD28 

lymphocytes 
8 × 10

−11
 

AC50 2 × 10
−12

 
n.d. n.d. [29] 

ALL AC50 10
−11

 n.d. n.d. [30] 

ATG various 
lymphoma and 

leukemia cells 
5 × 10

−11
~10

−10
 n.d. n.d. [31] 

ALCL: anaplastic large-cell lymphoma; ALL: acute lymphoblastic leukemia; B-CLL; B-chronic lymphocytic 

leukemia; BL: Burkitt’s lymphoma; B-LL: B-cell lymphoblastic leukemia; CR: complete remission;  

HD: Hodgkin’s disease; NHL: non-Hodgkin’s lymphoma; PR: partial remission; n.d.: not determined;  

T-ALL: T-cell acute lymphoblastic leukemia; T-CLL: T-cell chronic lymphocytic lymphoma. 

Table 2. Clinical trials in patients with SAP containing ITs. 

Antibody Antigen Disease Total Dose PR SD/MR No. patients Ref. 

F(ab’)2 BsAb CD22 NHL 5 mg - 1 1 [32] 

4KB128 + HD6 CD22 
B-cell 

lymphoma 
5–20 mg - 4 4 [33] 

F(ab’)2 BsAb CD22 NHL 5–20 mg - 5 5 [34] 

Ber-H2 CD30 HD 0.8 mg/kg 3 (75%) 1 (25%) 4 [35] 

Ber-H2 CD30 HD 0.2–0.8 mg/kg 5 (40%) 3 (25%) 12 [36] 

HD: Hodgkin’s disease; NHL: non-Hodgkin’s lymphoma; PR: partial remission; SD/MR: stable 

disease/minor response. 
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2.1. ITs Targeting CD2, CD3 and CD5 

SAP was used to prepare several ITs with mAbs against CD2, CD3 and CD5. CD2 is a 50 kDa 

glycoprotein expressed on the surface of T cells, natural killer (NK) cells, granulocytes and on subsets 

of monocytes and B cells. Anti-CD2 ITs have been studied as therapies for CD2
+
 lymphomas and 

leukemias. Various anti-CD2 mAbs (GT2, OKT11, 8E5B3, 8G5B12, 7A10C9) were used by  

Tazzari et al. [8] to produce SAP-containing ITs. These conjugates were found to inhibit protein 

synthesis in a neoplastic CD2
+
 cell line (SKW-3) and in an IL-2-dependent CD2

+
 lymphoid cell 

culture (T lymphoblasts) with concentrations causing 50% of protein synthesis inhibition (IC50s) 

ranging from 10
−13

 to 10
−11

 M. The most effective ITs, OKT11- and 7A10C9-SAP, were further 

investigated in D430B cells (anaplastic large-cell lymphoma), with IC50s lower than 5 × 10
−13

 M. Bone 

marrow purging of contaminating lymphoma cells by means of CD34
+
 cell purification and subsequent 

OKT11-SAP treatment resulted in >5 logs of lymphoma cell killing without any significant reduction 

in stem cell clonogenic properties [9]. 

CD5 (gp67) is a developmental marker of T lymphocytes that is also present on the surface of  

B cell subsets. Anti-CD5 ITs have been devised as a tool for the therapy of T-cell lymphomas and 

leukemias and CD5
+
 B-chronic lymphocytic leukemia (B-CLL). The OKT1-SAP IT showed very fast 

kinetics. Indeed, T-lymphocyte killing was achieved with only 5 min of exposure to the IT. The 

concentration causing 50% of inhibition of T-lymphocyte DNA synthesis was 3.2 × 10
−10

 M. This IT 

was given as a single intravenous (i.v.) injection at non-toxic dosages (0.16–1.3 mg/kg) in cynomolgus 

monkeys. An initial rapid decline in plasma concentration (t1/2α = 1.0–4.1 h) was followed by a  

long-lasting slower decrease (t1/2β = 11.6–20.6 h) [10]. This IT was also tested on fresh B-CLL cells 

from 31 patients. In 90% of cases, OKT1-SAP specifically suppressed B-CLL cell proliferation in a  

dose-related manner, with IC50s 4.0–6.8 × 10
−9

 M [11]. 

In a comparative study, different CD antigens were targeted by specific mAbs [OKT11 (anti-CD2), 

SOT3 (anti-CD3) and SOT1a (anti-CD5)] linked to SAP. The anti-CD2 IT OKT11-SAP was 10-fold less 

effective than the other two ITs. However, OKT11-SAP, similarly to SOT3- and SOT1a-containing ITs, 

was able to accomplish T lymphocyte killing after less than 10 min of exposure in the absence of 

adjuvant molecules [37]. 

An IT containing the anti-CD3 mAb UCHT1 linked to SAP showed cytotoxic effects on stimulated 

human peripheral lymphocytes. The IT showed an IC50 of 2.1 × 10
−10

 M with a 2 log increase in SAP 

toxicity [6,12]. 

2.2. ITs Targeting CD7 

CD7 is a 40 kDa determinant expressed by most T-cell acute lymphoblastic leukemias (T-ALLs) 

and the majority of normal mature peripheral T cells. HB2 has been one of the most used mAbs to 

produce anti-CD7 ITs. SAP was effectively delivered to the T-ALL cell line HSB-2 by a F(ab’γ)2 

bispecific antibody (BsAb) specific for SAP and CD7 antigen. The IT showed an IC50 of 2.3 × 10
−10

 M 

and a rate of protein synthesis inactivation very similar to that described for conventional ITs (time 

taken for a one log inhibition of protein synthesis compared with controls (t10) of 46 h at 10
−9

 M and 

226 h at 10
−10

 M) [13]. The cytotoxic performance of an HB2-derived BsAb, also reacting with SAP 

(HB2 × DB7-18), was investigated in vitro. With HSB-2 cells the HB2 × DB7-18 BsAb had an IC50 of 
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2.3 × 10
−10

 M with a 435-fold increase in SAP toxicity [14]. Comparative experiments showed that the 

HB2-SAP IT was six times more effective than HB2 × DB7-18 and 98 times more effective than the 

corresponding quadroma BsAb Q1.1 [38]. An HB2-SAP IT was found to specifically inhibit HSB-2 

cell line protein synthesis with an IC50 of 4.5 × 10
−12

 M and it significantly prolonged the survival of 

several combined immunodeficient (SCID) mice injected with HSB-2 cells. This therapeutic effect 

was seen with a single injection of 10 µg (0.5 mg/kg) of IT given at day +7 [15], and it was even more 

evident when the IT was administered as three daily injections of 10 µg on days +7, +8 and +9 [16]. 

Further experiments revealed that host-mediated antibody dependent cell cytotoxicity (ADCC) 

contributes to the in vivo therapeutic efficacy of HB2-SAP IT, as demonstrated by both the reduced 

activity of an IT constructed with the HB2 F(ab’)2 fragment, which is incapable of recruiting NK  

cells
 
[39], and the reduced activity of HB2-SAP in NOD/SCID mice, which have reduced cytolytic NK 

activity
 
[40]. In vivo assessments of the same IT constructed with either a hindered (HB2-SMPT-SAP) 

or non-hindered (HB2-SPDP-SAP) disulphide bond
 
[41], and containing one or two SAP moieties

 
[42], 

failed to reveal significant differences in pharmacokinetic [41] or therapeutic effects [41,42]. 

2.3. ITs Targeting CD19 

CD19 is a 95 kDa glycoprotein that functions as a response regulator that modulates B-cell 

differentiation. It is expressed on the B lymphocyte lineage from the beginning of B-cell commitment 

to plasma cell differentiation, and it is also present on B-cell lymphomas and leukemias. HD37 mAb 

conjugated to SAP is an IT found to kill more than 2 logs of clonogenic B-CLL cells from patients 

after a 2 h incubation at a concentration not toxic to non-target cells
 
[43]. 

The BU12-SAP IT was constructed by covalent coupling of SAP to the BU12 mAb. This IT is 

selectively cytotoxic in vitro in a dose-dependent manner for the CD19
+
 B-cell acute lymphoblastic 

leukemia cell line NALM-6, but it exhibits no toxicity for the CD19
−
 T-ALL cell line HSB-2. The 

survival of SCID mice challenged with NALM-6 cells was significantly prolonged compared with 

sham-treated control animals by a course of therapy with 3 × 10 μg doses of BU12-SAP but not with 

an irrelevant anti-CD7 IT
 
[17]. Similar results were obtained with SCID mice challenged with the 

CD19
+ 

human Burkitt’s lymphoma cell line Ramos treated with 3 doses of BU12-SAP IT starting at 

day + 7 from tumor cell injection
 
[18]. Flavell et al. explored the augmentative effect of Rituximab on 

BU12-SAP in a model of human lymphoma. A combination of 10 μg Rituximab + 10 μg BU12-SAP 

completely abolished Ramos cell proliferation in vitro and induced a significantly greater degree of 

apoptosis. In SCID-Ramos mice, treatment with a mixture of 10 μg Rituximab + 10 μg BU12-SAP 

starting at day +7 from i.v. injection of tumor cells had a better therapeutic effect than the individual 

agents. Indeed, the IT used individually significantly prolonged survival (maximal survival time from 

35 to 75 days), but all animals succumbed by day 75. When the IT and Rituximab were used in 

combination, all animals survived and were disease free at day +120. The therapeutic efficacy was 

reduced in SCID-Ramos mice depleted of serum complement, whereas NK cell depletion failed to 

show any convincing role for ADCC [19]. 
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2.4. ITs Targeting CD20 

The CD20 antigen, a 33–37 kDa membrane protein of unknown function, is an excellent 

immunotherapeutic target as it is expressed only on mature B cells and not on B-cell precursors. The 

chimaeric mAb Rituximab has emerged as an effective single agent for the treatment of patients with 

CD20
+
 non-Hodgkin’s lymphoma (NHL) or chronic lymphocytic leukemia (CLL). In 1997, Rituximab 

was approved by the US FDA for the treatment of recurrent/refractory follicular NHL and of untreated 

aggressive NHL in combination with the cyclophosphamide-hydroxydaunorubicin-oncovin-prednisone 

(CHOP) regimen. Rituximab treatment showed a response rate of about 50% in relapsed low-grade  

NHL [44]. A Rituximab-SAP IT was constructed and tested in vitro for its anticancer properties. Upon 

conjugation, the toxicity of SAP for target cells increased by about 3 logs, with IC50 values of  

1–3 × 10
−10

 M. The percentage of AnnexinV
+
 cells was over 95% in cell lines treated with 10

−8
 M IT. 

The complete elimination of Raji clones was achieved with 10
−8

 M IT, whereas a mixture of free RIP 

and mAb gave about 90% clonogenic growth. Rituximab-SAP was also found to induce apoptosis in 

80% of lymphoma cells from NHL patients. Moreover, Raji sensitivity to the IT was augmented when 

cells were coincubated with Fludarabine, one of the most widely used chemotherapy drugs. The 

synergistic toxic effect of these two drugs led to the total elimination of the neoplastic population [20]. 

2.5. ITs Targeting CD22 

CD22 is a 135 kDa B-cell restricted sialoglycoprotein that has a role as a component of the B-cell 

activation complex and as an adhesion molecule. CD22 is expressed on the surface of B-cells only at 

mature stages of differentiation, and it is also expressed by the majority of B-cell malignancies. SAP 

was found to be effectively delivered to malignant B-cells by four different anti-CD22/anti-SAP 

F(ab’)2 BsAbs. Each α-CD22 BsAb increased SAP toxicity up to 1000-fold, reaching IC50 values of 

1.5–6.0 × 10
−10

 M for both Daudi and Raji target cells. Pairs of anti-CD22 BsAbs that recognize 

different non-blocking epitopes on the SAP molecule are able to bind SAP more tightly to the target 

cell and, as a consequence, increase SAP cytotoxicity and lower the IC50 to 2 × 10
−11

 M [21]. 

In a clinical trial, F(ab’)2 BsAb was used to deliver SAP in the treatment of one patient with  

end-stage NHL. Giving 5 mg of SAP complexed with a pair (50 mg) of anti-CD22 BsAbs over 15 days 

provided a marked clinical response, including complete clearance of tumor from the blood, clearance 

of ascites and shrinkage of tumor masses. The patient developed a strong anti-mouse Fab response  

28 days after the start of treatment. No anti-SAP response was detected [32]. Four patients were treated 

with two BsAbs directed to different epitopes of CD22 (4KB128 and HD6) and SAP as therapy for 

low grade end-stage B-cell lymphoma. The patients received between 3 and 6 doses of IT at weekly 

intervals with infusions containing escalating doses of the complexes (ranging between  

1 and 4 mg) given every hour. Toxic effects were minimal (grade I), with mild fever, weakness and 

myalgia for 1–2 days after the treatment. One patient had an antibody response to mouse Fab’ and 

SAP. All patients showed rapid and beneficial responses to the treatment. In the week after their last 

treatment, all showed at least a 50% reduction in measurable disease, although no response persisted 

for the 28 days defined as being necessary for a partial response. Circulating tumor cells were cleared 

in the three patients with blood involvement. Ascitic fluid and pleural effusions disappeared. Lymph 

nodes showed reductions in size of at least 50% in three patients. One patient had complete resolution 
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of severe neutropenia and one lost his transfusion requirement [33]. French et al. treated five low grade 

NHL patients with a cocktail of two BsAbs, which bind cooperatively to SAP, and CD22 on B cells. 

Patients were treated with weekly doses of the IT (3 or 6 infusions between 2 and 4 mg) for a period of 

up to 6 weeks. All weekly treatments were well tolerated and all five patients showed marked clinical 

responses, with removal of the bulk of their disease following treatment. The tumor was removed from 

circulation (4/5), ascitic fluid and pleural effusions were eradicated (2/2), splenomegaly (1/1) and 

enlarged lymph nodes (5/5) were shrunk, and marrow was partially cleaned, resulting in significant 

improvements in function in some patients. Most of these beneficial effects were achieved rapidly, 

after just three treatments, but in all cases, the duration of the response was short (2–4 weeks) [34]. 

SAP has also been linked to the α-CD22 mAb OM124. This IT is probably the most effective at 

inhibiting protein synthesis in various CD22
+
 target cell lines (Daudi, EHM, BJAB, Raji and BM21), 

with IC50s ranging from <5 × 10
−15

 (on EHM cells) to 2 × 10
−11

, and IC90s ranging from 5 × 10
−14

 to 

10
−10

 M. Treatment with the IT (0.5 mg/kg at days +1, +4 and +7 after tumor challenge) was found to 

significantly extend the survival time of SCID mice bearing transplanted Daudi cells, with 33% of all 

animals tumor-free after 220 days. The combination of cyclophosphamide (60 mg/kg at days  

+1 and +2) and OM124-SAP (as above) augmented the efficacy so that 66% of the animals remained 

tumor-free after 220 days [22]. The humanized anti-CD22 mAb Epratuzumab conjugated to SAP is 

specifically cytotoxic to CD22
+
 lymphoma cell lines, being able to completely eliminate target cells 

while sparing non-target cells. Its cytotoxic effect was demonstrated in vitro by the complete loss of 

viability, and this was found to be related to the complete inhibition of protein synthesis and strong 

induction of apoptosis. This IT completely abolished the clonogenic growth of both BJAB and  

Raji cells [45]. 

2.6. ITs Targeting CD30 

CD30 is a member of the TNF receptor family. It was originally described as a marker of Hodgkin 

and Reed-Sternberg cells in Hodgkin’s lymphoma. CD30 expression is mostly restricted to  

virus-infected lymphocytes, neoplasms of lymphoid origin and a subset of activated T cells that 

produce Th2-type cytokines. The mAb Ber-H2 was conjugated with SAP giving an IT that specifically 

inhibits protein synthesis in Hodgkin-derived cell lines with IC50s ranging from 5 × 10
−12 

to  

5 × 10
−14

 M [46]. Because of transient hepatotoxicity observed in patients treated with Ber-H2-SAP, 

its accumulation in rat liver cells was studied. Adherent cultured non-parenchymal cells, mostly 

Kupffer cells, were found to accumulate this IT approximately 10 times more than parenchymal cells 

and to be 100-fold more sensitive to it [23]. In a SCID mouse model of human xenografted CD30
+
 

anaplastic large-cell lymphoma (ALCL) (the JB6 cell line), a 3-day treatment with non-toxic doses of 

Ber-H2-SAP (50% of LD50) induced complete remission in 80% of mice when treatment started 24 h 

after tumor transplantation. In contrast, injection of the IT at later stages of tumor growth (mice 

bearing subcutaneous tumors of 40- to 60-mm
3
 volume) significantly delayed tumor growth rate but 

induced complete remission in only 30% of mice. Thus, the efficacy of treatment with this IT appears 

to be related to tumor size [24]. Strong anti-tumor activity for Ber-H2-SAP was also observed in 

another SCID mouse model of ALCL (the D430B cell line). A dose of 0.1 mg/kg IT given 48 h after 

tumor transplantation caused complete remission in 4/6 mice and partial remission in 2/6 mice [25].  

Ber-H2-SAP was studied in a phase I/II clinical trial in four patients with advanced, refractory 
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Hodgkin’s disease. Injection of this IT at a dose of 0.8 mg/kg (administered as two injections of 0.4 or 

as a single injection of 0.8) had an anti-tumor effect with only mild and transient hepatotoxicity. In all 

patients there was a rapid (7 days after the treatment) reduction in tumor mass, and 3/4 patients 

achieved partial remission. Two patients displayed complete relief of systemic symptoms. The 

responses lasted 6–10 weeks; there was no growth at new sites, but regrowth occurred at all the 

original sites except for the skin of one patient [35]. This study was extended to 12 patients with 

advanced Hodgkin’s disease (HD). A single i.v. injection of Ber-H2-SAP at doses 0.2–0.8 mg/kg 

induced a rapid reduction in tumor mass in about 60% of patients with partial remission in  

5/12 patients and MR in 2/12. This study is the first example of immunotherapy for HD and is the first 

case of cancer therapy with a type 1 RIP-containing IT leading to remission [36]. 

2.7. ITs Targeting CD38 

CD38 is strongly expressed by myeloma, lymphoma and leukemia cells. A limitation to the 

potential in vivo use of an anti-CD38 IT is the rather wide expression of CD38 antigen by several cell 

types. In a model of Ramos cells growing aggressively in SCID mice, an anti-CD38 IT (OKT10-SAP) 

was found to significantly prolong survival as compared with controls; but all the treated animals 

eventually succumbed to the disease [47]. 

The anti-CD38 IT IB4-SAP was studied in vitro in CD38
+
 human cell lines (Raji, HBL6, L540 and 

CEM) and in CD38
+
 neoplastic cells from a NHL patient. HBL6, L540 and Raji cells were highly 

sensitive to the IT with IC50 values ranging from 2 to 13 × 10
−12

 M and concentration causing 100% of 

protein synthesis inhibition (IC100) at 10
−10

 M. CD38
+
 neoplastic cells obtained from a NHL patient 

were completely eliminated with 10
−8

 M IT. Colony-forming unit cell (CFU-c) rescue by bone marrow 

precursors was maintained after exposure to the IT [26]. 

2.8. ITs Targeting Costimulatory Antigens 

The most important regulatory signal for T-cell activation is the interaction between the antigen 

presenting cell (APC) surface molecules CD80 (B7-1) and CD86 (B7-2) and the T-cell molecules 

CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4). These molecules are also present on the 

surface of many tumor cells and their expression at high levels often correlates with a poor prognosis. 

2.8.1. ITs Targeting CD80/CD86 

Strong expression of the CD80 antigen has been described on most Hodgkin and Reed-Sternberg 

cells independently of their histological subtype, whereas the CD86 antigen is particularly expressed 

by the histological subtypes showing mixed cellularity or nodular sclerosis. An anti-CD80 IT,  

B7-24-SAP, exhibits strong cytotoxicity against the CD80
+
 B-cell line Raji and the Reed-Sternberg 

cell lines HDLM2 and KM/H2 (IC50s < 10
−11

 M). In clonogenic assays with Raji cells or KM/H2 cells, 

3 or 4 logs of killing, respectively, was observed. No cytotoxicity was found against B7-1
−
 epithelial 

or endothelial cell lines or against haematopoietic progenitor cells [27]. 

The mAbs, M24 (anti-CD80) and 1G10 (anti-CD86), after conjugation to SAP, showed specific 

cytotoxicity for the CD80/CD86-expressing cell lines Raji and L428. These ITs inhibited protein 

synthesis by target cells with IC50s ranging from 0.3 to 5.8 × 10
−12

 M. The anti-CD80 IT appeared to 
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be 1 log more toxic to target cells than the anti-CD86 IT. These ITs at concentrations  10
−9

 M showed 

some toxicity to CFU-c. However, the long term colture initiating cells (LTC-IC) assay did not detect 

any toxicity of these ITs even at the highest concentration tested (10
−7

 M) [28]. 

2.8.2. ITs Targeting CD156 (CTLA-4) 

The CTLA-4 (CD152) co-stimulatory molecule, a homologue of CD28, plays an inhibitory role in 

regulating T cell responses by interacting with CD80/CD86 on APCs. CTLA-4 expression is induced 

on T cells upon activation, which is followed by its rapid internalization, and its membrane expression 

is restricted to activated T cells. ITs containing recombinant human-derived anti-CTLA-4 single-chain 

Fv fragments (scFv) (namely scFv-83 and -40) linked to SAP induce apoptosis in activated  

T lymphocytes. These ITs were able to specifically inhibit the mixed lymphocyte reaction between  

T-lymphocytes and dendritic cells, and that between T lymphocytes and an Epstein-Barr virus (EBV) 

positive lymphoblastoid B cell line. The most effective IT (83-SAP) tested on CD3/CD28-stimulated 

lymphocytes showed an IC50 of 8 × 10
−11 

M and a concentration causing apoptosis in 50% of cells 

(AC50) of 2 × 10
−12 

M
 
[29,48]. No toxicity for hematopoietic precursors was reported. 83-SAP was 

tested in a model of tumor rejection consisting of C57BL/6 mice bearing a murine H.end endothelioma 

cell line derived from DBA/2 mice. The IT was injected at days 0, 1 and 2 at the dose of 4 μg. 

Lymphoid infiltration due to the presence of the tumor was markedly reduced, demonstrating that the 

IT was actually available and active in vivo [29]. Furthermore, 83-SAP at 10
−8

 M causes apoptosis in 

more than 90% of neoplastic cells from an acute myeloid leukemia and its AC50 is in the 10
−11

 M range 

[30]. 

2.9. ITs Containing Polyclonal Antibodies 

Despite their high selectivity, mAbs are frequently unable to mediate the killing of all the malignant 

cells. Indeed, differential surface marker expression and variable cell surface phenotypes can be 

observed in patients with the same type of hematological neoplasia. Polyclonal antibodies, which bind 

several antigens on a wide range of cells, offer the great advantage of preventing the escape of 

neoplastic clones during immunotherapy. Anti-thymocyte globulins (ATG) consist of a mixture of 

polyclonal antibodies that are specific for cell surface proteins, which include CD2, CD3, CD4, CD5, 

CD7, CD8, CD11a, CD19, CD20, CD25, CD28 and many others. ATG-SAP IT has a strong effect on 

lymphoma- and leukaemia-derived cell lines, reducing protein synthesis by 2–3 logs (IC50 from  

5.3 × 10
−11

 to 1.3 × 10
−10

 M) with respect to unconjugated SAP (IC50 from 5.9 × 10
−9

 to 3.2 × 10
−8

 M). 

This IT causes cell killing without the need for complement dependent cytotoxicity or ADCC [31].  

2.10. Cocktails of Various Anti-Lymphocyte ITs 

Anti-CD7 and anti-CD38 F(ab’γ)2 BsAbs were used, alone or in combination, to deliver SAP to 

the cell surface of two human T-ALL cell lines (HSB-2 and HPB-ALL). Used alone against HSB-2 

cells, the anti-CD7 BsAb HB2 × DB7-18 increased SAP toxicity 435-fold and the anti-CD38 BsAb 

OKT10 × RabSap increased it 286-fold. When combined, the two BsAbs were 10-fold more 

effective than the best single BsAb. On HPB-ALL cells, the CD7 BsAb HB2 × DB7-18 increased 

SAP toxicity only eight-fold, whereas the CD38 BsAb OKT10 × RabSap was highly effective, 



Toxins 2011, 3                    
 

 

706 

increasing SAP toxicity 80,000-fold. Interestingly, when both the anti-CD7BsAb HB2 × DB7-18 and 

anti-CD38 BsAb OKT10 × RabSap were used in combination, they were somewhat less effective 

than OKT10 × RabSap used alone. Indeed, the combination gave only a 50,000-fold increase in SAP 

toxicity compared with the 80,000-fold increase obtained with OKT10 × RabSap alone [14]. 

Treatment of SCID/CEM mice with a single IT containing the parental murine IgG1 anti-CD7 or 

anti-CD38 led to a delay in the development of leukemia, but 90% of animals treated with either IT 

developed disseminated leukemia cell growth. The combination of HB2-SAP (anti-CD7) plus  

OKT10-SAP (anti-CD38) administered in 3 × 10 µg i.v. doses significantly increased survival time 

and the number of leukemia-free animals (60%) [49].  

SCID mice challenged with the CD19
+ 

CD38
+
 human Burkitt’s lymphoma cell line Ramos treated 

with three daily injections of anti-CD19 BU12-SAP IT or of anti-CD38 OKT10-SAP IT starting at  

day +7 showed significantly prolonged survival. When both ITs were used in combination at 

equivalent doses, the therapeutic outcome was significantly improved over that obtained with single IT 

therapy, with 20% of animals surviving disease-free at 300 days [18]. Similar or even better results 

were achieved in the same Ramos/SCID mouse model
 
with a mixture of three SAP ITs, anti-CD19,  

anti-CD22 and anti-CD38 [50]. 

3. ITs Targeting Solid Tumor Antigens 

Toxin-based conjugates have proven effective against lymphomas and leukemia, but the clinical 

results for solid tumor treatment have been quite disappointing. The principal reason is that ITs and 

other conjugates enter into solid tumors poorly and unevenly. Tight junctions between tumor cells, 

high interstitial pressure and heterogeneous blood supply are the main hurdles to conjugate penetration 

into the tumor mass. Thus, many strategies involving the use of recombinant antibody fragments, 

adjuvants (e.g., saponin) and photochemical internalization (PCI) have been investigated to improve 

the anti-tumor efficacy of conjugates [51]. The main results obtained in vitro and in animal models are 

summarized in Table 3. 

Table 3. SAP containing ITs or conjugates targeting solid tumors. 

 Antitumor Activity  

Carrier 
Target 

Antigen 
Tumor In vitro IC50 (M) 

In vivo 
Ref. 

Schedule Effects 

EGF EGFR 

Sarcoma 

2.4 × 10
−9 

w/o 

saponin 

6.7 × 10
−13 

with 

saponin 

n.d. n.d. [52] 

Adenocarcinoma  

BALB/c-TSA mice 

4 × 280 μg/kg 

71% TGR  

at 20 days 
[53] 

6 × 5.6 μg/kg + 1670 μg/kg 

saponin 

94% TGR 

at 25 days 
[54] 

Cervical cancer  

SCID-cervical  

cancer mice 

6 × 15 μg 

50–60% TGR  

at 30 days 
[55] 
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Table 3. Cont. 

 Antitumor Activity 

Carrier 
Target 

Antigen 
Tumor In vitro IC50 (M) 

In vivo 
Ref. 

Schedule Effects 

FGF FGFR 

Melanoma,  

teratocarcinoma and 

neuroblastoma 

10
−9

~10
−11

 

BALB/c-neuroblastoma 

mice 

4 × 0.5 μg/kg 

CR 20% [56] 

FGF-2 FGFR Bladder cancer 
1.4 × 10

−8
~ 

1.3 × 10
−10

 
n.d. n.d. [57] 

bFGF FGFR Prostatic carcinoma  

Athymic nude  

mice-DU145 

4 × 5 μg/kg 

95% TGR 

at 38 days 
[58] 

ch25A11 CDCP1 Prostate carcinoma  
SCID CB17 mice 

3 × 0.4 mg/kg 

66% TGR  

at 23 days 
[59] 

hj591 PSMA Prostate carcinoma 
2 × 10

−9
~ 

1.4 × 10
−10

 

Athymic nude  

mice-LNCaP 

4 × 32 μg 

83–90% TGR 

at 49 days 
[60] 

Ep2 HMW-MAA Melanoma 10
−10

 n.d. n.d. [61] 

ML30 HSP65 
Leukaemic monocyte 

lymphoma 
10

−9
 n.d. n.d. 

[62] 

  Pancreatic carcinoma  
SCID-HPC-4 mice 

6 × 10
−7

 M 

TR 15.9 IT 

TR 48.7 PBS 

48–127 gp54 Bladder tumor 10
−9

 n.d. n.d. [63] 

I/F8 scFv 
ALCAM/ 

CD166 
Various 2.4~5 × 10

−9
 n.d. n.d. [64] 

7E4B11 RPTPβ Astrocytic tumor  

Athymic nude mice-

glioblastoma 

4 × 30 μg 

73% TGD [65] 

CR: complete remission; n.d.: not determined; TGR: tumor growth reduction; TGD: tumor growth delay;  

TR: tumor ratio (tumor volume day 6/tumor volume day 0). 

3.1. Conjugates Targeting Growth Factor Receptors 

It is well known that growth factors play an important role in normal cell proliferation by 

stimulating growth factor receptors located on the cell surface. Tumor cells express high levels of 

growth factor receptors that theoretically can serve as therapeutic targets in cancer treatment. 

3.1.1. Conjugates Targeting EGFR 

The epidermal growth factor receptor (EGFR) is overexpressed in many different types of solid 

tumors and is associated with metastasis and poor prognosis. 

Two of the main problems associated with administering EGFR-targeted toxins in tumor therapy 

are severe systemic side effects and low transfer of the toxins into the cytosol after binding to the 

tumor cell surface. 

Members of the HER/erbB receptor family seem to be involved in several human cancers. 

Overexpression of these receptors has been found in many types of epithelial, mesenchymal and neural 
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cancer, and it correlates with tumor progression and with reduced patient survival [66]. 

Rhabdomyosarcoma cells (RD/18) were treated with an indirect IT consisting of a murine mAb 

recognizing EGF-R (clone 528) followed by a secondary F(ab’)2 antimouse immunoglobulin linked to 

SAP. This IT induced apoptosis and significantly inhibited cell growth and protein synthesis  

(IC50 9.5 × 10
−10 

M) [67]. 

Recombinant SAP [68] has been linked to EGF both directly (SE) and via an adapter (SA2E). The 

adapter is designed to improve cytosolic uptake and to retain the toxin inside the cytosol. Heisler et al. 

evaluated the toxicity of SA2E on an EGFR
+
 cell line (HER14 cells derived from mouse embryo  

NIH-3T3 cells transfected with human EGFR). Pre-incubation with an adjuvant (saponin) enhanced 

the cytotoxicity of SA2E more than 3 logs (from an IC50 of 2.4 × 10
−9

 to 6.7 × 10
−13

 M) [52]. The 

efficacy with which SE and SAE2 inhibit tumor growth was evaluated in BALB/c mice bearing 

adenocarcinoma TSA-EGFR
+
 cells. The lethal dose for mice was three times lower for SA2E than for 

SE. Mice were injected with 1.25 × 10
5
 cells and 5 μg (280 μg/kg) of conjugate was injected s.c. 4 h 

later in the immediate vicinity (day 0). Further doses were applied on days 3, 6 and 11. The average 

tumor volume exceeded 5 mm
3 

on days 10, 11, 14 and
 
18 for SAP-treated, untreated, SE-treated and 

SA2E-treated mice, respectively. After 20 days of treatment, SE only reduced the average weight of 

induced tumors by 33%, whereas SA2E-treated mice exhibited 71% tumor reduction. Additionally, 

severe side effects like hyperalgesia, alopecia and death were drastically reduced in SA2E-treated 

animals [53]. Furthermore, 6 s.c. injections of 30 μg saponin and 0.1 μg SA2E (equivalent to  

5.6 μg/kg) reduced the mean tumor volume after 25 days, by a remarkable 94% compared to controls. 

Although saponin alone had no effect on tumor growth, SA2E alone reduced the mean tumor volume 

slightly by 42% compared to the controls. Surprisingly, in the i.p. injection saponin/SA2E and SA2E 

alone did not inhibit tumor growth [54]. In SCID beige mice bearing freshly isolated cervical cancer 

cells, treatment with 6 s.c. injections of 5 and 10 μg of SA2E decelerated tumor growth by about  

20–30%, whereas treatment with 15 μg reduced tumor growth by 50–60% compared to the control 

group. However, the antitumor effect of SA2E was restricted to the treatment period, and after the 

SA2E applications were discontinued the tumors showed rapid outgrowth [55]. 

Weyergang et al. demonstrated that a conjugate based on EGF linked to SAP is efficiently 

endocytosed in two EGFR
+
 cell lines (NuTu-19 from an epithelial ovarian tumor and A-431 from a 

skin carcinoma). Moreover, the photochemical internalization (PCI) of EGF-SAP improved both the 

efficacy and specificity of the conjugate. Indeed, PCI enhanced the efficacy of EGF-SAP by about 

1000 times in NuTu-19 cells. At a dose where the photochemical treatment reduced viability by 

approximately 50%, the dose causing death in 95% of population (LD95) for PCI of SAP was about 

10
−9

 M, whereas the LD95 for PCI of the conjugate was about 10
−12

 M. PCI of EGF-SAP was several 

hundred-fold less efficient at enhancing cytotoxicity in non-target cells than in target cells [69]. PCI 

has been used to deliver an IT consisting of the anti-EGFR mAb cetuximab linked to SAP into various 

types of EGFR
+
 carcinoma cell lines (colorectal, prostate, epidermoid). The PCI treatment enhanced 

the cytotoxicity of the IT in a synergistic manner. Indeed, PCI improved the IT toxicity approximately 

10–20 times [70]. 
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3.1.2. Conjugates Targeting FGFR 

Fibroblast growth factor receptors (FGFRs) are a family of at least 12 different proteins. Many solid 

tumors express receptors binding basic FGF (also named FGF-2 or bFGF). A conjugate containing 

basic FGF linked to SAP was found to be toxic to FGFR
+
 cell lines (human melanoma, 

teratocarcinoma and neuroblastoma). The conjugate showed IC50s ranging from 10
−11

 to 10
−9

 M, 

whereas unconjugated SAP had IC50 values >10
−7 

M. BALB/c mice bearing human melanoma, 

teratocarcinoma or neuroblastoma cells were treated with 4 i.v. injections of 0.5 µg/kg conjugate 

beginning on day +5. Significant tumor inhibition was seen on day 35 for each of the tumor types 

examined and complete tumor regression was observed in 20% of the neuroblastoma xenografts. No 

cumulative toxicity was observed [56]. The same conjugate was also evaluated in C75BL/6 mice 

bearing B16-F10 cells (murine melanoma). The conjugate increased survival time, inhibited tumor 

growth and decreased metastasis [71]. 

The chemical and the recombinant FGF-2-SAP conjugates have potent cytotoxicity in malignant 

bladder cell lines with IC50s ranging from 1.3 × 10
−10

 to 1.4 × 10
−8

 M, whereas cells derived from 

normal fetal bladder were found to be less sensitive to FGF-2-SAP (IC50 > 10
−7

 M) [57]. 

The antitumor activity of recombinant bFGF-SAP was examined in athymic nude mice bearing a 

prostatic carcinoma cell line (DU145). The conjugate (4 × 5 µg/kg) was administrated by i.v. injection, 

intraperitoneal injection, or local or distal s.c. injection beginning 5 days after s.c. tumor implantation. 

No significant difference was observed between the groups receiving the conjugate via i.v. injection 

versus intraperitoneal injection out to day 38. However, tumors receiving local s.c. injections were 

significantly smaller. Moreover, the conjugate induced dramatic reduction of large (450 mm
3
) 

established tumors out to 20 days after treatment in 2 animals who received 50 µg/kg bFGF-SAP on 

day +75 and +85 after tumor injection [58].  

3.2. Conjugates Targeting the Transferrin Receptor 

The transferrin receptor (TfR) is expressed on all normal tissue cells, but it is chosen as an 

immunotherapy target for gliomas and other tumor cells because of the high iron requirement of 

rapidly proliferating neoplasms. ITs targeting the TfR were hypothesized to possess sufficient 

specificity to eliminate neoplastic cells in the central nervous system or in other compartments where 

the delivery of ITs to a tumor does not require transvascular transport. Two different conceptual 

approaches have been designed to target TfR on cancer cells. Conjugates have been made using the 

plasma protein transferrin as a carrier, and alternatively, anti-TfR mAbs have been used. Both types of 

proteins can be used to deliver the RIP to target cells; however, Tf-based conjugates have two major 

disadvantages with respect to mAb-based conjugates as they are strongly influenced by both the 

presence of free transferrin and the saturation state of iron [72]. 

A transferrin-SAP conjugate was found to be internalized via binding with TfR. The conjugate 

inhibited K562 (human erythroleukaemia) cell proliferation and, in a clonogenic assay, markedly 

inhibited K562 colony formation (close to 100% at 10
−9

 M) [73]. Conjugation of IgG3-avidin specific 

for the human-transferrin receptor (anti-hTfR IgG3-Av) with biotinylated SAP was found to enhance 

the cytotoxic effects of SAP in TfR bearing IM-9 (EBV-transformed lymphoblastoid cell line) and 
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U266 (a lymphoblast cell line) cells. Indeed, protein synthesis was strongly reduced after 48 h  

of 10
−9

 M IT treatment in both cell lines [74]. 

Recently, a transferrin-SAP conjugate has been assayed on two glioblastoma multiforme cell lines, 

GL15 and U87. The conjugate resulted active on both cell lines but after 72 h of incubation with  

10
−9

 M transferrin-SAP less than 50% of tumor cells was killed [75]. 

3.3. ITs Targeting Prostatic Antigens 

Prostate cancer is a good target for antibody-based therapy because the non-vital function of the 

prostate allows extending the spectrum of target molecules to tissue-specific markers, not restricted to 

tumor cells. Moreover, the usually small size metastases can be easily reached and destroyed by ITs. 

Ku70/80 protein is expressed in the nucleus of all cells, but its plasma membrane localization is 

restricted to tumor cell lines of various lineages. Carcinoma cell lines, with varying surface expression 

of Ku70/80, were pre-treated with 1 × 10
−8

 M of INCA-X IgG, an anti-Ku70/80 antibody, and then 

incubated with a SAP-anti-human IgG antibody (Hum-ZAP). The inhibition of proliferation induced 

by INCA-X/Hum-ZAP ranged from very strong (92% on the prostate carcinoma PC-3) to low (30% on 

the colorectal carcinoma LS174 T), whereas no effect was seen on the Ku70/80-negative breast 

carcinoma cell line SK-BR-3 [76]. 

Tomoregulin is a type 1 transmembrane protein with a short cytoplasmic tail. This protein is 

selectively expressed in the prostate and brain but it is not expressed in other normal tissues. 2H8, an 

anti-Tomoregulin murine mAb, was coupled to SAP through a mAb-ZAP secondary antibody (goat 

antimouse IgG antibody linked to SAP) in indirect IT assays. The SAP-based 2H8 IT was found to 

specifically bind to Tomoregulin-positive cells and induce a 50% reduction of viability at the 

concentration of 1.6 × 10
−10

 M after 72 h, whereas Tomoregulin-negative cells remained unaffected [77]. 

CUB domain-containing protein 1 (CDCP1) is widely expressed in tumors, including prostate 

cancer, and it is recognized by the chimaeric mAb 25A11 (ch25A11). An IT containing SAP coupled 

to ch25A11 was evaluated in vivo in SCID CB17 mice bearing prostate carcinoma cells. The IT  

(3 × 0.4 mg/kg) administered i.v. inhibited tumor growth by approximately 66% at day 18, 67% at day 

22 and 63% at day 23, whereas no inhibition was observed with s.c. injection of the IT at the same 

dose. However, both i.v. and s.c. IT administration were found to inhibit tumor metastasis, suggesting 

that although s.c. IT may not have sufficient bioavailability to inhibit primary tumor growth, the 

inhibition of metastasis may be a direct result of tumor cell killing in the circulation [59]. 

PSMA is a prostate-specific cell surface marker of prostate cancer. The antitumor activity of the 

anti-PMSA humanized biotinylated mAb hJ591 linked to streptavidin SAP (SAZAP) was evaluated in 

prostate derived cell lines: LNCaP, CWR22Rv1 (both PMSA
+
) and PC-3 (PMSA

−
). The IC50 of this IT 

was 1.4 × 10
−10

 M, 2 × 10
−9

 M and more than 10
−7

 M in LNCaP, CWR22Rv1 and PC-3 cells, 

respectively. After 72 h of treatment with this IT, the percentage of apoptotic cells was 60% and 40% 

in LNCaP and CWR22Rv1 cells, respectively, compared to about 5% in PC-3 cells. The conjugate also 

had anticancer activity in an LNCaP xenograft model in athymic nude mice. The administration of 

hJ591-SAZAP (4 × 32 μg doses weekly) was found to inhibit tumor growth in IT-treated mice 

compared to control groups. Indeed, after 7 weeks of treatment, the tumor volume in untreated mice 

was 5- to 6-fold greater than in IT-treated mice. In addition, serum PSA (prostate-specific antigen) 

values were 0.39 ± 1.04 ng/mL and 71 ± 52.85 ng/mL for treated and untreated groups, respectively [60]. 
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3.4. ITs Targeting Other Antigens on Solid Cancers 

Selective elimination of multidrug resistance (MDR)-positive cells (also called LoVo/Dx colon 

carcinoma cells) was obtained using the mAb MRK16, which recognizes P-glycoprotein 170, and a 

sheep anti-mouse immunoglobulin conjugated to SAP. When the IT was used at concentrations of  

10
−8

 and 10
−7 

M, the inhibition of protein synthesis was 73% and 87%, respectively. MRK16 followed 

by the indirect IT was found to eliminate 99% of MDR cells from a bone marrow suspension [78]. 

High-molecular-weight melanoma-associated antigen (HMW-MAA) is expressed on a large 

majority of melanomas but not on most normal or other neoplastic tissues. The mAb Ep2, recognizing 

an epitope of HMW-MAA, was conjugated to SAP. Ep2-SAP IT efficiently killed antigen expressing 

cells with an IC50 of approximately 10
−10

 M [61]. 

Heat Shock Proteins (HSP) represents a family of highly conserved molecules that under stress 

conditions play an important physiological role in folding and unfolding of proteins. Moreover HSPs 

have been described as tumor-associated antigens; they are constitutively overexpressed in the 

intracellular compartment and sometimes on the surface of tumor cells. The cytotoxic effect of an  

anti-HSP65 mAb (ML30) on untreated and heat-treated H9 cells (CD4
+
 lymphoma cell line) was 

evaluated with an indirect IT (ML30 + anti-mouse IgG antibody linked to SAP). The IT showed 

marked cytotoxicity against heat-stressed H9 cells at 10
−11

 and 10
−13

 M, whereas normal H9 cells were  

spared [79]. Proliferation of the U937 cell line (a monocytic cell line that constitutively expresses high 

levels of membrane HSP65) was evaluated using indirect IT or ML30-SAP direct IT. The inhibition of 

cell proliferation for both ITs was 100% at 10
−7

 M with an IC50 of 10
−9

 M. After 6 treatments with  

10
−7 

M IT in SCID mice bearing HPC-4 cells (human pancreatic carcinoma), the treatment ratio (tumor 

volume on day 6/tumor volume on day 0) was significantly lower in the IT-treated group than in the 

control group (15.9 for the IT group; 48.7, 44.8, 43.2 for the PBS, SAP and ML30 groups, 

respectively) [62]. 

The 48-127 mAb recognizes a glycoprotein (gp54) expressed on all human bladder tumors and on 

normal urothelium but not on the luminal surface of normal urothelial umbrella cells. The antigen gp54 

is expressed also in non proliferating tumor cells. Thus, ITs specific for this antigen will ensure the 

killing of resting cells, which are usually spared by conventional chemotherapy. A 48-127-SAP IT was 

toxic to the T24 target cell line derived from bladder carcinoma, with IC50s at nM concentrations after 

2 h of incubation followed by 72 h in serum-free RPMI. The inhibition of protein synthesis in T24 

cells required 2 h of contact with the IT to ensure optimal binding and endocytosis [63]. 

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a 

glycosylphosphatidylinositol-linked cell surface protein that is overexpressed in a variety of human 

cancers, including the majority of pancreatic adenocarcinomas. Exposure of pancreatic ductal 

adenocarcinoma cells (BxPC3) to anti-CEACAM6 antibody (By114) followed by secondary  

SAP-conjugated immunoglobulin was found to induce marked cytotoxicity. In athymic nude mice 

bearing BxPC3 cells, the administration of By114 followed by IgG-SAP by two tail vein injections 

separated by two weeks caused a marked reduction in mean tumor volume after 6 weeks and in some 

cases tumor regression occurred [80]. 

Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a member of the immunoglobulin 

gene superfamily. It is expressed on a number of carcinoma cells and cell lines and in the invasive 
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cells of melanocytic skin lesions where its expression correlates with tumor progression. The toxicity 

of an IT containing I/F8 scFv linked to SAP was assayed on both human and murine ALCAM/CD166
+
 

cell lines, in which it was at least 100-fold higher than that of free SAP with IC50s ranging from 2.41 to 

5.06 × 10
−9

 M [64]. 

Receptor protein tyrosine phosphatase β (RPTPβ) is overexpressed primarily in astrocytic tumors. It 

is known to facilitate tumor cell adhesion and migration through interactions with the extracellular 

matrix. RPTPβ-7E4B11 and RPTPβ-7A9B5 antibodies were conjugated to SAP and evaluated in vitro 

for their ability to kill glioma cells. These ITs effectively killed tumor cells, reducing their viability by 

about 50% compared to vehicle-treated cells. The in vivo efficacy of 7E4B11 IT was assayed in 

athymic nude mice bearing glioblastoma cells. At 15 and 30 μg/dose (twice a week for two weeks), the 

IT produced 25% and 73% tumor growth delays, respectively. All tumors reached the end-point 

volume by day 44. The median time to end point of PBS-treated mice was 18.6 days, whereas the IT 

(30 μg/dose) treated mice had a time to end-point of 32.1 days [65].  

Overexpression of the enzyme human aspartyl (asparaginyl) β-hydroxylase (HAAH) has been 

detected in a variety of cancers including lung, liver, colon, pancreas, prostate, ovary, bile duct and 

breast cancer. It has been proposed that upon cellular transformation, HAAH is overexpressed and 

translocated to the cell surface. The anti HAAH scFv 6–22 was used to deliver goat-anti-human  

IgG-SAP conjugates (H-Z) into FOCUS cells (a liver tumor cell line) (1 × 10
−8

 M of 6–22 and  

2.2 × 10
−8

 M of H-Z). The viability of the 6–22/H-Z treated cells was lower by about 30% after 3 days 

of incubation [81]. 

Endosialin/CD248/tumor endothelial marker 1 is expressed in stromal cells, endothelial cells and 

pericytes in various tumors. The endosialin-positive Ewing’s sarcoma cell line A-673 was exposed to 

anti-endosialin mAb followed by anti-human IgG conjugated to SAP. The cells were sensitive to the 

endosialin toxin conjugate with an IC50 of approximately 10
−12

 M [82]. 

The cell cycle-associated overexpression of transcobalamin receptor (CD320) in many cancer cells 

provides a suitable target for delivering chemotherapeutic drugs and cytotoxic molecules. Various  

anti-CD320 mAbs were used to deliver IgG-SAP into human colon adenocarcinoma and epidermoid 

carcinoma cell lines. The IC50 was in the 0.625 to 2.5 × 10
−9

 M range for the primary mAb 

concentration [83]. 

TEM8 is an integrin-like cell surface protein that is upregulated on tumor blood vessels and it is a 

potential vascular target for cancer therapy. 293/FlagT8 cells (kidney epithelial cells transformed with 

adenovirus) are recognized by the anti-TEM8 mAb AF334. Cell viability after treatment with AF334 

mAb along with 5 × 10
−9

 M or 1 × 10
−8

 M of SAP-conjugated anti-mouse antibody was almost 40% 

and 30%, respectively [84]. 

4. Conclusions 

The type 1 RIP saporin has been utilized to construct conjugates and ITs against numerous targets 

with interesting results in many pre-clinical studies (Tables 1 and 3). Great efficacy has been reported 

frequently in many models of hematological tumors. In several experiments conducted on mice, 

treatment with SAP-containing ITs resulted in the elimination of transplanted tumors. 

The results achieved in experiments on solid tumors have been less remarkable than those obtained 

in hematological malignancies, but they have often been better than those reported for other 
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experimental cancer drugs. 

Clinical trials with SAP-containing immunotoxins, whose results are summarized in Table 2, show 

the efficacy of these molecules and their potential for application in lymphoma therapy. Taken 

together, the studies summarized in this review indicate that saporin-based immunotoxins are almost 

always extremely powerful in vitro and maintain good anti-tumor efficacy in vivo. This, at least in part, 

is due to the intrinsic characteristics of saporin, which is a very stable enzyme. Indeed this protein is 

very resistant to chemical modifications and conjugation and to blood and endosomal proteases. 

Moreover, saporin appears to have a wide range of possible intracellular substrates, thus triggering 

multiple cell death pathways [85]. This multifaceted cytotoxic mechanism renders the selection of 

RIP-resistant mutants impossible. 

Clinical results have demonstrated the efficacy of immunotoxins in cancer patients that are 

refractory to traditional modalities of treatment: surgery, radiation therapy, and chemotherapy. 

However so far, the use of immunotoxins in cancer therapy has not completely fulfilled the hopes. 

Indeed, immunotoxins have multiple problems, mainly: formation of antibodies against the carrier and 

the RIP, capillary leak syndrome and hepatotoxicity. Modern technologies should permit to circumvent 

or reduce some of these problems. The use of humanized antibodies can abolish the immune response 

against the carrier; on the other hand the consequences of the response against the RIP could be easily 

overcome with cycles of therapy based on the rotation of immunologically different RIPs. Moreover 

the use of antibody fragments leads to smaller immunotoxins with better penetration in solid tumour 

tissues than immunotoxins constructed with whole antibodies. Recently many clinical trials have been 

conducted, and several are ongoing, with immunotoxins, prevalently constructed with deglycosylated 

A chain of ricin, truncated diphtheria toxin or Pseudomonas exotoxin A, but not with saporin. 

Nevertheless, saporin would have many advantages with respect to these toxins, in terms of stability 

and efficacy, as described above and thanks to the lacking of the natural immunization often present 

against bacterial toxins. 

Ehrlich’s idea of a “magic bullet” postulated one century ago has not been completely realized to 

date. Nevertheless, over the last two decades, advances in genetic engineering and in receptor biology 

have led to many improvements in carriers, creating potential for saporin- and other RIP-containing 

conjugates to be widely used in cancer therapy. 
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