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AN ULTRAWEAK SPACE-TIME VARIATIONAL FORMULATION FOR THE
WAVE EQUATION: ANALYSIS AND EFFICIENT NUMERICAL SOLUTION

Julian Henning1, Davide Palitta2, Valeria Simoncini2 and Karsten Urban1,*

Abstract. We introduce an ultraweak space-time variational formulation for the wave equation, prove
its well-posedness (even in the case of minimal regularity) and optimal inf-sup stability. Then, we in-
troduce a tensor product-style space-time Petrov–Galerkin discretization with optimal discrete inf-sup
stability, obtained by a non-standard definition of the trial space. As a consequence, the numerical ap-
proximation error is equal to the residual, which is particularly useful for a posteriori error estimation.
For the arising discrete linear systems in space and time, we introduce efficient numerical solvers that
appropriately exploit the equation structure, either at the preconditioning level or in the approximation
phase by using a tailored Galerkin projection. This Galerkin method shows competitive behavior con-
cerning wall-clock time, accuracy and memory as compared with a standard time-stepping method in
particular in low regularity cases. Numerical experiments with a 3D (in space) wave equation illustrate
our findings.
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1. Introduction

The wave equation has extensively been studied in theory and numerical approximations. The aim of this
paper is to introduce a (non-standard) variational Hilbert space setting for the wave equation and a corre-
sponding Petrov–Galerkin discretization that is well-posed and optimally stable in the sense that the inf-sup
constant is unity. A major source of motivation for this view point is model reduction of parameterized partial
differential equations by the reduced basis method [18,20,29]. In that framework, the numerical approximation
error is equal to the residual, which is particularly useful for a posteriori error estimation and model reduction.

Space-time variational methods have been introduced, e.g., for parabolic problems [1, 33, 34], transport-
dominated problems [9,11,15], the wave equation [5,6,16,32,36] and the Schrödinger equation [13], also partly
with the focus of optimal inf-sup stability. The potential for efficient numerical solvers has been shown in [19,27].

We follow the path of [9,11] and introduce an ultraweak variational formulation in space and time by applying
all derivatives onto the test functions using integration by parts. This means that the trial space is 𝐿2(𝐼 × Ω),
where 𝐼 = (0, 𝑇 ) is the time interval and Ω ⊂ R𝑑 the domain in space. This is the “correct” space of minimal
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regularity for initial data 𝑢0 ∈ 𝐿2(Ω). Following [11], we employ specifically chosen test spaces so as to derive a
well-posed variational problem. A Petrov–Galerkin method is then used for the discretization: inspired by [9],
we first choose an appropriate test space and then define the (non-standard) trial space to preserve optimal
inf-sup stability. After completion of this work, we learned that this approach is very closely related to the
DPG* method [13,21].

The aforementioned discretization results into a linear system of equations BBB𝛿𝑢𝛿 = 𝑔𝛿, whose (stiffness)
matrix BBB𝛿 is a sum of tensor products and has large condition number, making the system solution particularly
challenging. Memory and computational complexity are also an issue, as space-time discretizations in general
lead to larger systems as compared to conventional time-stepping schemes, where a sequence of linear systems
has to be solved, whose dimension corresponds to the spatial discretization only.

Building upon [19], we introduce matrix-based solvers that are competitive with respect to time-stepping
schemes. In particular, we show that in case of minimal regularity the space-time method using fast matrix-
based solvers outperforms a Crank–Nicolson time-stepping scheme.

The remainder of this paper is organized as follows: In Section 2, we review known facts concerning varia-
tional formulations in general and for the wave equation in particular. We derive an optimally inf-sup stable
ultraweak variational form. Section 3 is devoted to the Petrov–Galerkin discretization, again allowing for an
inf-sup constant equal to 1. The arising linear system of equations is derived in Section 4 and its efficient and
stable numerical solution is discussed in Section 5. We show some results of numerical experiments for the 3D
wave equation in Section 6. For proving the well-posedness of the proposed variational form we need a result
concerning a semi-variational formulation of the wave equation, whose proof is given in Appendix A.

2. Variational formulations of the wave equation

We are interested in a general linear equation of wave type. To this end, consider a Gelfand triple of Hilbert
spaces 𝑉 →˓ 𝐻 →˓ 𝑉 ′ and a positive, symmetric operator 𝐴 ∈ ℒ(𝐷(𝐴), 𝐻), where 𝐷(𝐴) is the domain of 𝐴 to
be detailed in (2.5) below1. Setting 𝐼 := (0, 𝑇 ), 𝑇 > 0 and given 𝑔 ∈ 𝐿2(𝐼;𝑉 ′)2, 𝑢0 ∈ 𝐻, 𝑢1 ∈ 𝑉 ′, we look for
𝑢(𝑡) ∈ 𝑉 , 𝑡 ∈ 𝐼 a.e., such that

𝑢̈(𝑡) +𝐴𝑢(𝑡) = 𝑓(𝑡) in𝑉 ′, 𝑡 ∈ 𝐼 a.e., 𝑢(0) = 𝑢0 ∈ 𝐻, 𝑢̇(0) = 𝑢1 ∈ 𝑉 ′. (2.1)

Note that the initial state is only in 𝐻 (e.g., 𝐿2(Ω)) and the initial velocity only in 𝑉 ′ (e.g., 𝐻−1(Ω)), which
means very low regularity. Thus, without additional regularity, we cannot expect to get a smooth solution of
(2.1). Such non-smooth data are in fact a physically relevant situation. We restrict ourselves to linear time-
invariant (LTI) systems even though most of our results can be extended to the more general situation of a
time-dependent operator 𝐴(𝑡).

2.1. Inf-sup-theory

We are interested in finding a well-posed weak (or variational) formulation of (2.1), i.e., Hilbert spaces U, V
of functions and a bilinear form 𝑏 : U× V → R such that

𝑏(𝑢, 𝑣) = 𝑔(𝑣) ∀𝑣 ∈ V, (2.2)

has a unique solution 𝑢 ∈ U for all given functionals 𝑔 ∈ V′ and that 𝑢 solves (2.1) in some appropriate weak
sense. The well-posedness of (2.2) is fully described by the following well-known fundamental statement.

Theorem 2.1 (Nečas theorem, e.g., [26], Thm. 2). Let U, V be Hilbert spaces and 𝑏 : U× V → R be a bilinear
form, which is bounded, i.e.,

∃ 𝛾 <∞ : 𝑏(𝑢, 𝑣) ≤ 𝛾‖𝑢‖U ‖𝑣‖V, for all 𝑢 ∈ U, 𝑣 ∈ V (boundedness). (C.1)

1We shall always denote by 𝑉 ′ the dual space of 𝑉 w.r.t. the pivot space 𝐻.
2For a definition of Bochner spaces, see Section 2.4 below.
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Then, for all 𝑔 ∈ V′, the variational problem (2.2) admits a unique solution 𝑢* ∈ U, which depends continu-
ously on the data 𝑔 ∈ V′ if and only if

𝛽 := inf
𝑢∈U

sup
𝑣∈V

𝑏(𝑢, 𝑣)
‖𝑢‖U ‖𝑣‖V

> 0 (inf-sup-condition); (C.2)

∀ 0 ̸= 𝑣 ∈ V ∃𝑢 ∈ U : 𝑏(𝑢, 𝑣) ̸= 0 (surjectivity). (C.3)

The inf-sup constant 𝛽 (or some lower bound) also plays a crucial role for the numerical approximation
of the solution 𝑢 ∈ U since it enters the relation between the approximation error and the residual (by the
Xu–Zikatanov lemma [35], see also below). This motivates our interest in the size of 𝛽: the larger3, the better.

A standard tool (at least) for (i) proving the inf-sup-stability in (C.2); (ii) stabilizing finite-dimensional
discretizations; and (iii) getting sharp bounds for the inf-sup constant; is to determine the so-called supremizer.
To define it, let 𝑏 : U×V → R be a generic bounded bilinear form and 0 ̸= 𝑢 ∈ U be given. Then, the supremizer
𝑠𝑢 ∈ V is defined as the unique solution of

(𝑠𝑢, 𝑣)V = 𝑏(𝑢, 𝑣) ∀𝑣 ∈ V. (2.3)

It is easily seen that

sup
𝑣∈V

𝑏(𝑢, 𝑣)
‖𝑣‖V

= sup
𝑣∈V

(𝑠𝑢, 𝑣)V

‖𝑣‖V
= ‖𝑠𝑢‖V, (2.4)

which justifies the name supremizer.

2.2. The semi-variational framework

We start presenting some facts from the analysis of semi-variational formulations of the wave equation, where
we follow and slightly extend ([3], Chap. 8). The term semi-variational originates from the use of classical
differentiation w.r.t. time and a variational formulation in the space variable. As above, we suppose that two
real Hilbert spaces 𝑉 and 𝐻 are given, such that 𝑉 is compactly imbedded in 𝐻. Let 𝑎 : 𝑉 × 𝑉 → R be a
continuous, coercive and symmetric bilinear form4. Next, let 𝐴 be the operator on 𝐻 associated with 𝑎(·, ·) in
the following sense: We define the domain of 𝐴 by

𝐷(𝐴) := {𝑢 ∈ 𝑉 : ∃𝑓 ∈ 𝐻 such that 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)𝐻 ∀𝑣 ∈ 𝑉 }, (2.5)

and recall that for any 𝑢 ∈ 𝐷(𝐴) there is a unique 𝑓 ∈ 𝐻 such that 𝑎(𝑢, 𝑣) = (𝑓, 𝑣)𝐻 for all 𝑣 ∈ 𝑉 . Then, we
define 𝐴 : 𝐷(𝐴) → 𝐻 by 𝑢 ↦→ 𝑓=:𝐴𝑢. By the spectral theorem there exists an orthonormal basis {𝑒𝑛 : 𝑛 ∈ N}
of 𝐻 (the eigenvectors of 𝐴) and numbers 𝜆𝑛 ∈ R with 0 < 𝜆1 ≤ 𝜆2 ≤ · · · , lim𝑛→∞ 𝜆𝑛 = ∞, such that

𝑉 =

{︃
𝑣 ∈ 𝐻 :

∞∑︁
𝑛=1

𝜆𝑛|(𝑣, 𝑒𝑛)𝐻 |2 <∞

}︃
, (2.6a)

𝐷(𝐴) = {𝑣 ∈ 𝐻 : 𝐴𝑣 ∈ 𝐻}=

{︃
𝑣 ∈ 𝐻 : ‖𝑣‖2𝐷(𝐴) :=

∞∑︁
𝑛=1

𝜆2
𝑛|(𝑣, 𝑒𝑛)𝐻 |2 <∞

}︃
, (2.6b)

𝑎(𝑢, 𝑣) =
∞∑︁

𝑛=1

𝜆𝑛(𝑢, 𝑒𝑛)𝐻 (𝑒𝑛, 𝑣)𝐻 , 𝑢, 𝑣 ∈ 𝑉, (2.6c)

𝐴𝑣 =
∞∑︁

𝑛=1

𝜆𝑛(𝑣, 𝑒𝑛)𝐻 𝑒𝑛, 𝑣 ∈ 𝐷(𝐴). (2.6d)

3I.e., the closer to unity, resp. to 𝛾.
4Note that most of what is said can be also extended to 𝐻-elliptic forms (G̊arding inequality).
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Table 1. Regularity statements for the wave equation – classical in time, variational in space.

𝑠 𝑢0 𝑢1 𝑓 𝑤 𝑤̇ 𝑤̈
= ∈ ∈ 𝐶([0, 𝑇 ]; ·) ∈ 𝐶([0, 𝑇 ]; ·)

0 𝐻 𝑉 ′ 𝑉 ′ 𝐻 𝑉 ′ 𝐷(𝐴)′

1 𝑉 𝐻 𝐻 𝑉 𝐻 𝑉 ′

2 𝐷(𝐴) 𝑉 𝑉 𝐷(𝐴) 𝑉 𝐻

Note that 𝐷(𝐴) is dense in 𝐻, 𝑒𝑛 ∈ 𝐷(𝐴) and 𝐴𝑒𝑛 = 𝜆𝑛𝑒𝑛 for all 𝑛 ∈ N. For 𝑠 ∈ R, we define

𝐻𝑠 :=

{︃
𝑣 =

∞∑︁
𝑛=1

𝑣𝑛 𝑒𝑛 : ‖𝑣‖2𝑠 :=
∞∑︁

𝑛=1

𝜆𝑠
𝑛 𝑣

2
𝑛 <∞

}︃
(2.7)

and note that 𝐻0 = 𝐻, 𝐻1 = 𝑉 and 𝐻2 = 𝐷(𝐴). Moreover, (𝐻𝑠)′ ∼= 𝐻−𝑠, see Proposition A.1. We consider
the non-homogeneous wave equation

𝑤̈(𝑡) +𝐴𝑤(𝑡) = 𝑓(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑤(0) = 𝑢0, 𝑤̇(0) = 𝑢1. (2.8)

Then the following result on the existence and uniqueness holds. Its proof is given in Appendix A.

Theorem 2.2. Let 𝑠 ∈ R≥0, 𝑢0 ∈ 𝐻𝑠, 𝑢1 ∈ 𝐻𝑠−1 and 𝑓 ∈ 𝐶
(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
. Then (2.8) admits a unique

solution

𝑤 ∈ 𝒞𝑠 := 𝐶2
(︀
[0, 𝑇 ];𝐻𝑠−2

)︀
∩ 𝐶1

(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
∩ 𝐶([0, 𝑇 ], 𝐻𝑠). (2.9)

We note a simple consequence for the backward wave equation.

Corollary 2.3. Let 𝑠 ∈ R≥0, 𝑢0 ∈ 𝐻𝑠, 𝑢1 ∈ 𝐻𝑠−1 and 𝑔 ∈ 𝐶
(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
. Then

𝑤̈(𝑡) +𝐴𝑤(𝑡) = 𝑔(𝑡), 𝑡 ∈ (0, 𝑇 ), 𝑤(𝑇 ) = 𝑢0, 𝑤̇(𝑇 ) = 𝑢1. (2.10)

Admits a unique solution 𝑤 ∈ 𝒞𝑠, see (2.9).

Proof. By the mapping 𝑡 ↦→ 𝑇 − 𝑡 we can transform (2.10) into (2.8) and deduce the well-posedness from
Theorem 2.2. �

Theorem 2.2 ensures that 𝐵 := d2

d𝑡2 + 𝐴 is an isomorphism of 𝒞𝑠
0 := {𝑣 ∈ 𝒞𝑠 : 𝑣(0) = 𝑣̇(0) = 0} onto

𝐶
(︀
[0, 𝑇 ];𝐻𝑠−2

)︀
for any 𝑠 ≥ 0. We detail the involved spaces in Table 1, which also shows that we have to

expect at most 𝑤(𝑡) ∈ 𝐻, 𝑡 ∈ 𝐼, in the semi-variational setting given the low regularity of the initial conditions
in (2.1). Hence, in a variational space-time setting, we can only hope for 𝑤(𝑡) ∈ 𝐻 for almost all 𝑡 ∈ 𝐼.

2.3. Biharmonic problem and mixed form

For later reference, let us consider the bilinear form 𝑞 : 𝐷(𝐴)×𝐷(𝐴) → R defined by 𝑞(𝑢, 𝑣) := (𝐴𝑢,𝐴𝑣)𝐻 ,
𝑢, 𝑣 ∈ 𝐷(𝐴), which is of biharmonic type. In order to detail the associated operator 𝑄, recall that we have a
Gelfand quintuple 𝐷(𝐴) →˓ 𝑉 →˓ 𝐻 →˓ 𝑉 ′ →˓ 𝐷(𝐴)′. The duality pairing of 𝐷(𝐴) and 𝐷(𝐴)′ is denoted by
⟨·, ·⟩𝐷(𝐴)′×𝐷(𝐴). Then, 𝑄 : 𝐷(𝐴) → 𝐷(𝐴)′ defined as ⟨𝑄𝑢, 𝑣⟩𝐷(𝐴)′×𝐷(𝐴) = 𝑞(𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝐷(𝐴).

The adjoint operator 𝐴′ : 𝐻 → 𝐷(𝐴)′ is given by ⟨𝐴′ℎ,𝑤⟩𝐷(𝐴)′×𝐷(𝐴) = (ℎ,𝐴𝑤)𝐻 for 𝑤 ∈ 𝐷(𝐴) and ℎ ∈ 𝐻.
Then, 𝐴′𝐴 : 𝐷(𝐴) → 𝐷(𝐴)′ and we get for 𝑢, 𝑣 ∈ 𝐷(𝐴) that ⟨𝐴′𝐴𝑢, 𝑣⟩𝐷(𝐴)′×𝐷(𝐴) = (𝐴𝑢,𝐴𝑣)𝐻 = 𝑞(𝑢, 𝑣) =
⟨𝑄𝑢, 𝑣⟩𝐷(𝐴)′×𝐷(𝐴), hence 𝑄 = 𝐴′𝐴. Next, we consider the following operator problem:

Given 𝑔 ∈ 𝐷(𝐴)′, determine 𝑧 ∈ 𝐷(𝐴) such that 𝑄𝑧 = 𝑔. (2.11)
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Introducing the auxiliary variable 𝑢 := −𝐴𝑧 ∈ 𝐻, we can rewrite this problem as(︂
𝐼 𝐴
𝐴′ 0

)︂(︂
𝑢
𝑧

)︂
=
(︂

0
−𝑔

)︂
, (2.12)

which is easily seen to be equivalent to (2.11).

2.4. Towards space-time variational formulations

The semi-variational formulation described above cannot be written as a variational formulation in the form
of (2.2), since 𝐶𝑘([0, 𝑇 ];𝑋) is not a Hilbert space, even if 𝑋 is a Hilbert space of functions 𝜑 : Ω → R in space,
e.g., 𝐿2(Ω) or 𝐻1

0 (Ω). We need Lebesgue-type spaces for the temporal and spatial variables yielding the notion
of Bochner spaces, denoted by 𝒳 := 𝐿2(𝐼;𝑋)5 and defined as

𝒳 := 𝐿2(𝐼;𝑋) :=

{︃
𝑣 : 𝐼 → 𝑋 : ‖𝑣‖2𝐿2(𝐼;𝑋) :=

∫︁ 𝑇

0

‖𝑣(𝑡)‖2𝑋 d𝑡 <∞

}︃
,

which are Hilbert spaces with the inner product (𝑤, 𝑣)𝒳 :=
∫︀ 𝑇

0
(𝑤(𝑡), 𝑣(𝑡))𝑋 d𝑡, where (·, ·)𝑋 denotes the respec-

tive inner product in 𝑋. We will often use the specific cases (·, ·)𝒱 and (·, ·)ℋ for 𝒱 := 𝐿2(𝐼;𝑉 ) as well as
ℋ := 𝐿2(𝐼;𝐻). Sobolev–Bochner spaces, e.g., 𝐻1(𝐼;𝑋), 𝐻2(𝐼;𝑋) can be defined accordingly using weak deriva-
tives w.r.t. the time variable ([23], III.4.3).

We will derive a space-time variational formulation in Bochner spaces, i.e., we multiply the partial differential
equation in (2.1) with test functions in space and time and also integrate w.r.t. both variables. Now, the question
remains how to apply integration by parts. One could think of performing integration by parts once w.r.t. all
variables. This would yield a variational form in the Bochner space 𝐻1(𝐼;𝑉 ). However, we were not able to
prove well-posedness in that setting. Hence, we suggest an ultraweak variational form, where all derivatives are
put onto the test space by means of integration by parts. We thus define the trial space as

U := ℋ = 𝐿2(𝐼;𝐻) (2.13)

and search for an appropriate test space V to guarantee the well-posedness of (2.2). Assuming that 𝑣(𝑇 ) =
𝑣̇(𝑇 ) = 0 for any 𝑣 ∈ V and performing integration by parts twice for both time and space variables, we obtain

𝑏(𝑢, 𝑣) := (𝑢, 𝑣 +𝐴𝑣)ℋ, 𝑔(𝑣) := (𝑓, 𝑣)ℋ + ⟨𝑢1, 𝑣(0)⟩ − (𝑢0, 𝑣̇(0))𝐻 , (2.14)

for 𝑣 ∈ V, where the space V still needs to be defined in such a way that all the assumptions of Theorem 2.1
are satisfied. It turns out that this is not a straightforward task. The duality pairing ⟨·, ·⟩ is defined in (A.1) in
the appendix.

The Lions-Magenes theory

Variational space-time problems for the wave equation within the setting (2.14) have already been investigated
in the book [23] by Lions and Magenes. We are going to review some facts from Chapter III, Section 9, pp.
283–299 of [23]. The point of departure is the following adjoint-type problem.

For a given 𝜙 ∈ 𝐿2(𝐼;𝐻) = U, find 𝑣 : 𝐼 × Ω → R such that

𝑣 +𝐴𝑣 = 𝜙, 𝑣(𝑇 ) = 𝑣̇(𝑇 ) = 0. (2.15)

It has been shown that the following space6

W := space described by the solution 𝑣 of (2.15) as 𝜙 describes 𝐿2(𝐼;𝐻) (2.16)

plays an important role for the analysis. It is known that W ⊂ 𝐶([0, 𝑇 ];𝑉 )∩𝐶1([0, 𝑇 ];𝐻)∩𝐻2(𝐼;𝑉 ′) and that
d2

d𝑡2 +𝐴 is an isomorphism of W onto U.

5Spaces of space-time functions are denoted by calligraphic letters, spaces of functions in space only by plain letters.
6The definition (2.16) is literally cited from [23].
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Theorem 2.4 ([23], Chap. 3, Thms. 8.1, 9.1). Let 𝑎 : 𝑉 × 𝑉 → R satisfy a G̊arding inequality and let 𝑓 ∈
𝐿2(𝐼;𝐻), 𝑢0 ∈ 𝑉 , 𝑢1 ∈ 𝐻 be given. Then,

(a) there is a unique 𝑢* ∈ 𝐻1(𝐼;𝐻) ∩ 𝐿2(𝐼;𝑉 ) such that 𝑢̈* + 𝐴𝑢* = 𝑓 , 𝑢*(0) = 𝑢1, 𝑢̇*(0) = 𝑢1. In addition
𝑢* ∈ 𝐻2(𝐼;𝑉 ′);

(b) for any ℓ ∈ W′ there is a unique 𝑢* ∈ U such that 𝑏(𝑢*, 𝑣) = ℓ(𝑣) for all 𝑣 ∈ W. �

Notice that the first statement is proven by deriving energy-type estimates for the uniqueness and a Faedo-
Galerkin approximation for the existence. Let us comment on the previous theorem. First, we note that 𝑢0 ∈ 𝑉 ,
𝑢1 ∈ 𝐻 are “too smooth” initial conditions, we aim at (only) 𝑢0 ∈ 𝐻, 𝑢1 ∈ 𝑉 ′, see (2.14). As a consequence:

(1) Statement (a) in Thm. 2.4 results in a “too smooth” solution. In fact, we are interested in an ultraweak
solution 𝑢 ∈ 𝐿2(𝐼;𝐻), (a) is “too” much.

(2) Even though the stated solution in (b) has the “right” regularity, it is not clear how to associate the
functional 𝑔 in (2.14) to the dual space W′, i.e., how to interpret the three terms of 𝑔 in (2.14) in the space
W′.

These issues are partly fixed by the following statement.

Theorem 2.5 ([23], Chap. III, Thms. 9.3, 9.4). Let the bilinear form 𝑎(·, ·) be coercive, 𝑓 ∈ 𝐿2(𝐼;𝑉 ′), 𝑢0 ∈ 𝐻,
𝑢1 ∈ 𝑉 ′. Then, there exists a unique 𝑢* ∈ 𝐿∞(𝐼;𝐻) with 𝑢̇* ∈ 𝐿∞(𝐼;𝑉 ′) such that 𝑏(𝑢*, 𝑣) = 𝑔(𝑣) for all
𝑣 ∈ W0 := W ∩ 𝐿2(𝐼;𝑊 ) with 𝑏(·, ·) and 𝑔 defined as in (2.14). Moreover, 𝑢* ∈ 𝐶0(𝐼;𝐻) ∩ 𝐶1(𝐼;𝑉 ′). �

Even though the latter result uses the “right” smoothness of the data and also includes existence and unique-
ness, we are not fully satisfied with regard to our goal of a well-posed variational formulation of the wave
equation in Hilbert spaces. In fact, the “trial space” 𝐿∞(𝐼;𝐻) ∩𝑊 1

∞(𝐼;𝑉 ′) is not a Hilbert space and it is at
least not straightforward to see how we can base a Petrov–Galerkin approximation on such a trial space. Hence,
we follow a different path.

2.5. An optimally inf-sup stable ultraweak variational form

We are going to derive a well-posed ultraweak variational formulation (2.2) of (2.1), where U = 𝐿2(𝐼;𝐻) and
𝑏(·, ·), 𝑔(·) are defined by (2.14). To this end, we will follow the framework presented in [11]. This approach is
also called the method of transposition and already goes back to [23], see also e.g., [2,8,24] for the corresponding
finite element error analysis. For the presentation we will need the semi-variational formulation described above.

Let us restrict ourselves to 𝐴 = −∆ acting on a convex domain Ω ⊂ R𝑑 and supplemented by homogeneous
Dirichlet boundary conditions. This means that 𝐻 = 𝐿2(Ω), 𝑉 = 𝐻1

0 (Ω) and 𝐷(𝐴) = 𝐻2(Ω)∩𝐻1
0 (Ω). However,

we stress the fact that most of what is said here can be also extended to other elliptic operators. Then, the
starting point is the operator equation in the classical form, i.e.,

𝐵∘𝑢 = 𝑔, where 𝐵∘ =
d2

d𝑡2
+𝐴∘, Ω𝑇 := (0, 𝑇 )× Ω,

i.e., 𝐴∘ = −∆ is also to be understood in the classical sense. Next, denote the classical domain
of 𝐵∘ by 𝒟(𝐵∘), where initial and boundary conditions are also imposed in 𝒟(𝐵∘), i.e., 𝒟(𝐵∘) :={︀
𝑣 ∈ 𝐶

(︀
Ω̄𝑇

)︀
: 𝐵∘𝑣 ∈ 𝐶(Ω𝑇 ), 𝑣(0) = 0, 𝑣(𝑡, ·)|𝜕Ω = 0 ∀𝑡 ∈ [0, 𝑇 ]

}︀
. Hence,

𝒟(𝐵∘) = 𝐶2(Ω𝑇 ) ∩ 𝐶1
{0}
(︀
[0, 𝑇 ];𝐶0

(︀
Ω
)︀)︀

=
[︁
𝐶2(𝐼) ∩ 𝐶1

{0}([0, 1])
]︁
⊗
[︀
𝐶2(Ω) ∩ 𝐶0

(︀
Ω
)︀]︀
,

where 𝐶0

(︀
Ω
)︀

:=
{︀
𝜑 ∈ 𝐶

(︀
Ω
)︀

: 𝜑|𝜕Ω = 0
}︀

models the homogeneous Dirichlet conditions, and for 𝑡 ∈ [0, 𝑇 ] and
any function space 𝑋 we define

𝐶1
{𝑡}([0, 𝑇 ];𝑋) :=

{︀
𝑢 ∈ 𝐶1([0, 𝑇 ];𝑋) : 𝑢(𝑡) = 𝑢̇(𝑡) = 0 in 𝑋

}︀
.
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The range ℛ(𝐵∘) in the classical sense then reads ℛ(𝐵∘) = 𝐶
(︀
Ω𝑇

)︀
. As a next step, we determine the formal

adjoint 𝐵*∘ of 𝐵∘. Since

(𝐵∘𝑢, 𝑣)ℋ = (𝑢,𝐵∘𝑣)ℋ for all 𝑢, 𝑣 ∈ 𝐶∞0 (Ω𝑇 ),

the operator 𝐵*∘ coincides with 𝐵∘ while acting on the space of functions with homogeneous terminal conditions
𝑢(𝑇 ) = 𝑢̇(𝑇 ) = 0 instead of initial conditions. This means that ℛ(𝐵*∘) = 𝐶

(︀
Ω𝑇

)︀
and

𝒟(𝐵*∘) = 𝐶2(Ω𝑇 ) ∩ 𝐶1
{𝑇}
(︀
[0, 𝑇 ];𝐶0

(︀
Ω
)︀)︀

=
[︁
𝐶2(𝐼) ∩ 𝐶1

{𝑇}([0, 1])
]︁
⊗
[︀
𝐶2(Ω) ∩ 𝐶0

(︀
Ω
)︀]︀
.

Following [11], we need to verify the following conditions

(𝐵*1) 𝐵*∘ is injective on the dense subspace 𝒟(𝐵*∘) ⊂ 𝐿2(𝐼;𝐻) and
(𝐵*2) ℛ(𝐵*∘) →˓ 𝐿2(𝐼;𝐻) is densely imbedded.

Since 𝐶
(︀
Ω𝑇

)︀ ∼= 𝐶
(︀
[0, 𝑇 ];𝐶

(︀
Ω
)︀)︀
→˓ 𝐿2(𝐼;𝐻) is dense, (𝐵*2) is immediate. In order to prove (𝐵*1), first note

that

𝒟(𝐵*∘) ⊂ 𝒞2
𝑇 := 𝒞2 ∩ 𝐶1

{𝑇}([0, 𝑇 ];𝑉 ). (2.17)

Let us denote the continuous extension of 𝐵*∘ from 𝒟(𝐵*∘) to 𝒞2
𝑇 also by 𝐵*∘ . Corollary 2.3 implies that this

continuous extension 𝐵*∘ is an isomorphism from 𝒞2
𝑇 onto 𝐶([0, 𝑇 ];𝑉 ) (here we need the semi-variational theory).

This implies that 𝐵*∘ is injective on 𝒟(𝐵*∘), i.e., (𝐵*1). Now, the properties (𝐵*1) and (𝐵*2) ensure that

‖𝑣‖V := ‖𝐵*∘𝑣‖ℋ (2.18)

is a norm on 𝐷(𝐵*∘) = 𝒞2
𝑇 . Then, we set

V := clos‖·‖V(𝒞2
𝑇 ) ⊂ 𝐿2(𝐼;𝐻), (𝑣, 𝑤)V := (𝐵*𝑣,𝐵*𝑤)ℋ, 𝑣, 𝑤 ∈ V, (2.19)

which is a Hilbert space, where 𝐵* is to be understood as the continuous extension of 𝐵*∘ from 𝒞2
𝑇 to V7. Now,

we are ready to prove our first main result.

Theorem 2.6. Let 𝑓 ∈ 𝐿2(𝐼;𝑉 ′), 𝑢0 ∈ 𝐻 and 𝑢1 ∈ 𝑉 ′. Moreover, let V, 𝑏(·, ·), and 𝑔(·) be defined as in (2.19)
and (2.14), respectively. Then, the variational problem

𝑏(𝑢, 𝑣) = 𝑔(𝑣) for all 𝑣 ∈ V, (2.20)

admits a unique solution 𝑢* ∈ U. In particular,

𝛽 := inf
𝑢∈U

sup
𝑣∈V

𝑏(𝑢, 𝑣)
‖𝑢‖U ‖𝑣‖V

= sup
𝑢∈U

sup
𝑣∈V

𝑏(𝑢, 𝑣)
‖𝑢‖U ‖𝑣‖V

= 1. (2.21)

Proof. We are going to show the conditions (C.1)–(C.3) of Theorem 2.1 above.

(C.1) Boundedness: let 𝑢 ∈ U, 𝑣 ∈ V, then by Cauchy–Schwarz’ inequality

𝑏(𝑢, 𝑣) = (𝑢, 𝑣 +𝐴𝑣)ℋ ≤ ‖𝑢‖ℋ ‖𝑣 +𝐴𝑣‖ℋ = ‖𝑢‖U ‖𝑣‖V,

i.e., the continuity constant is unity.

7For an approach alternative to the completion in (2.19), we refer to [13].
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(C.2) Inf-sup: let 0 ̸= 𝑢 ∈ U be given. We consider the supremizer 𝑠𝑢 ∈ V defined as (𝑠𝑢, 𝑣)V = 𝑏(𝑢, 𝑣) =
(𝑢, 𝑣+𝐴𝑣)ℋ for all 𝑣 ∈ V. Since by definition of the inner product (𝑠𝑢, 𝑣)V = (𝑠𝑢 +𝐴𝑠𝑢, 𝑣 +𝐴𝑣)ℋ for all
𝑣 ∈ V we get 𝑠𝑢 +𝐴𝑠𝑢 = 𝑢 in ℋ. Then, by (2.4),

sup
𝑣∈V

𝑏(𝑢, 𝑣)
‖𝑣‖V

= sup
𝑣∈V

(𝑠𝑢, 𝑣)V

‖𝑣‖V
= ‖𝑠𝑢‖V = ‖𝑠𝑢 +𝐴𝑠𝑢‖ℋ = ‖𝑢‖ℋ,

i.e., 𝛽 = 1 for the inf-sup constant.
(C.3) Surjectivity : let 0 ̸= 𝑣 ∈ V be given. Then, there is a sequence (𝑣𝑛)𝑛∈N ⊂ 𝒞2

𝑇 with 𝑣𝑛 ̸= 0, converging
towards 𝑣 in V. Since 𝐵*∘ is an isometric isomorphism of 𝒞2

𝑇 onto 𝐶([0, 𝑇 ];𝑉 ), there is a unique 𝑢𝑛 :=
𝐵*∘𝑣𝑛 = 𝑣𝑛 + 𝐴𝑣𝑛 ∈ 𝐶([0, 𝑇 ];𝑉 ). Hence 0 ̸= ‖𝑣𝑛‖𝒞2 = ‖𝑢𝑛‖𝐶([0,𝑇 ];𝑉 ). By possibly taking a subsequence,
(𝑢𝑛)𝑛∈N converges to a unique limit 𝑢𝑣 ∈ 𝐿2(𝐼;𝐻). We take the limit as 𝑛 → ∞ on both sides of
𝑢𝑛 = 𝑣𝑛 + 𝐴𝑣𝑛 and obtain 0 ̸= 𝑢𝑣 = 𝐵*𝑣 = 𝑣 + 𝐴𝑣 ∈ 𝐿2(𝐼;𝐻) = U. Finally, 𝑏(𝑢𝑣, 𝑣) = (𝑢𝑣, 𝐵

*𝑣)ℋ =
(𝑢𝑣, 𝑢𝑣)ℋ = ‖𝑢𝑣‖2U > 0, which proves surjectivity and concludes the proof.

�

Remark 2.7. The essence of the above proof is the fact that U and V are related as U = 𝐵*(V) and noting that
𝐵* coincides with 𝐵, while 𝐵 acts on functions with homogeneous initial conditions whereas 𝐵* on functions
with homogeneous terminal conditions.

3. Petrov–Galerkin discretization

We determine a numerical approximation to the solution of a variational problem of the general form (2.2).
To this end, one chooses finite-dimensional trial and test spaces, U𝛿 ⊂ U, V𝛿 ⊂ V, respectively, where 𝛿 is a
discretization parameter to be explained later. For convenience, we assume that their dimension is equal, i.e.,
𝒩𝛿 := dim U𝛿 = dim V𝛿. The Petrov–Galerkin method then reads

find 𝑢𝛿 ∈ U𝛿 : 𝑏(𝑢𝛿, 𝑣𝛿) = 𝑔(𝑣𝛿) for all 𝑣𝛿 ∈ V𝛿. (3.1)

As opposed to the coercive case, the well-posedness of (3.1) is not inherited from that of (2.20). In fact, in order
to ensure uniform stability (i.e., stability independent of the discretization parameter 𝛿), the spaces U𝛿 and V𝛿

need to be appropriately chosen in the sense that the discrete inf-sup (or LBB – Ladyshenskaja–Babuška–Brezzi)
condition holds, i.e., there exists a 𝛽∘ > 0 such that

𝛽𝛿 := inf
𝑢𝛿∈U𝛿

sup
𝑣𝛿∈V𝛿

𝑏(𝑢𝛿, 𝑣𝛿)
‖𝑢𝛿‖U ‖𝑣𝛿‖V

≥ 𝛽∘ > 0, (3.2)

where the crucial point is that 𝛽∘ is independent of 𝛿. The size of 𝛽∘ is also relevant for the error analysis, since
the Xu–Zikatanov lemma [35] yields a best approximation result

‖𝑢* − 𝑢*𝛿‖U ≤
1
𝛽∘

inf
𝑤𝛿∈U𝛿

‖𝑢* − 𝑤𝛿‖U (3.3)

for the “exact” solution 𝑢* of (2.20) and the “discrete” solution 𝑢*𝛿 of (3.1). This is also the key for an optimal
error/residual relation, which is important for a posteriori error analysis (also within the reduced basis method).

The key idea, as already stated earlier, is to first choose sufficiently smooth test functions, namely 𝐻2 in
space and time. This can be done, e.g., by choosing at least quadratic splines. Then, the trial functions are the
image of the test functions under the adjoint wave operator.



SPACE-TIME FORM OF THE WAVE EQUATION 1181

3.1. A stable Petrov–Galerkin space-time discretization

In order to use a straightforward finite element discretization, we use tensor product subspaces U𝛿 ⊂ U and
V𝛿 ⊂ V with a possibly large inf-sup lower bound 𝛽∘ in (3.2). Constructing such a stable pair of trial and
test spaces is again a nontrivial task, not only for the wave equation. It is a common approach to choose some
trial approximation space U𝛿 (e.g., by splines) and then (try to) construct an appropriate according test space
V𝛿 in such a way that (3.2) is satisfied. This can be done, e.g., by computing the supremizers for all basis
functions in U𝛿 and then define V𝛿 as the linear span of these supremizers. However, this would amount to solve
the original problem 𝒩𝛿 times, which is way too costly. We mention that this approach indeed works within
the discontinuous Galerkin (dG) method, see, e.g., [10, 12, 16]. We will follow a different path, also used in [9]
for transport problems. We first construct a test space V𝛿 by a standard approach and then define a stable
trial space U𝛿 in a second step. This implies that the trial functions are no longer “simple” splines but they
arise from the application of the adjoint operator 𝐵* (which is here the same as the primal one 𝐵 except for
initial/terminal conditions) to the test basis functions.

Finite elements in time.

We start with the temporal discretization. We choose some integer 𝑁𝑡 > 1 and set ∆𝑡 := 𝑇/𝑁𝑡. This results
in a temporal “triangulation”

𝒯 time
Δ𝑡 :=

{︀
𝑡𝑘−1:=(𝑘 − 1)∆𝑡 < 𝑡 ≤ 𝑘∆𝑡=:𝑡𝑘, 1 ≤ 𝑘 ≤ 𝑁𝑡

}︀
in time. Then, we set

𝑅Δ𝑡 := span
{︀
𝜚1, . . . , 𝜚𝑁𝑡

}︀
⊂ 𝐻2

{𝑇}(𝐼), (3.4)

e.g., piecewise quadratic splines on 𝒯 time
Δ𝑡 with standard modification in terms of multiple knots at the right end

point of 𝐼 = [0, 𝑇 ].

Example 3.1. Denote by 𝑆𝑘 the quadratic B-spline corresponding to the nodes 𝑡𝑘−2, 𝑡𝑘−1, 𝑡𝑘 and 𝑡𝑘+1, where
we extend the node sequence outside 𝐼 in an obvious manner. Then, 𝜚𝑘 := 𝑆𝑘−1, 𝑘 = 3, . . . , 𝑁𝑡 are 𝐻2

0 (𝐼)-
functions which are fully supported in 𝐼. The remaining two basis functions on the left end point of the interval
𝐼, i.e., 𝜚1, 𝜚2, can be formed by using 𝑡0 = 0 as double and triple node, respectively. Thus, we get a discretization
in 𝐻2

{𝑇}(𝐼) of dimension 𝑁𝑡. We show an example for 𝑇 = 1 and ∆𝑡 = 1
4 (i.e., 𝑁𝑡 = 4) in Figure 1, the test

functions in the center, optimal trial functions on the right.

Discretization in space

For the space discretization, we choose any conformal finite element space

𝑍ℎ := span{𝜑1, . . . , 𝜑𝑁ℎ
} ⊂ 𝐻1

0 (Ω) ∩𝐻2(Ω), (3.5)

e.g., piecewise quadratic finite elements with homogeneous Dirichlet boundary conditions.

Example 3.2. As an example for the space discretization, let us detail the univariate (1D) case Ω = (0, 1).
Define 𝑥𝑗 := 𝑗 ℎ, 𝑗 = 0, . . . , 𝑁ℎ := 1

ℎ , and denote by 𝑆𝑗 the quadratic B-spline corresponding to the nodes
𝑥𝑗−2, 𝑥𝑗−1, 𝑥𝑗 , and 𝑥𝑗+1. The B-splines 𝜑𝑗 := 𝑆𝑗+1, 𝑗 = 2, . . . , 𝑁ℎ − 1, are supported in Ω. We define the two
boundary functions 𝜑1 and 𝜑𝑁ℎ

as the quadratic B-spline w.r.t. the nodes (0, 0, 𝑥1, 𝑥2) and (𝑥𝑁ℎ−2, 𝑥𝑁ℎ−1, 1, 1)
(i.e., with double nodes), respectively, such that the homogeneous boundary conditions are satisfied. We obtain
a discretization of dimension 𝑁ℎ. We show an example for Ω = (0, 1) and ℎ = 1

4 (i.e., 𝑁ℎ = 4) in Figure 1, the
test functions on the left. The arising trial functions are depicted on the right and turn out to be identical to
the time discretization trial functions in Example 3.1.
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Figure 1. Discretization with quadratic test functions in time and 1D-space for ℎ = ∆𝑡 = 1
4

with the corresponding trial functions in the second to fifth row. First row: functions on the left
span VIVP

Δ𝑡 in (3.9b), the second column corresponds to VBVP
ℎ in (3.9a). Rows 2–5: functions in

UIVP
Δ𝑡 (left) and UBVP

ℎ (right), see Section 3.2.

Test and trial space in space and time

Then, we define the test space as

V𝛿 := 𝑅Δ𝑡 ⊗ 𝑍ℎ = span
{︀
𝜙𝜈 := 𝜚𝑘 ⊗ 𝜑𝑖 : 𝑘 = 1, . . . , 𝑁𝑡, 𝑖 = 1, . . . , 𝑁ℎ, 𝜈 = (𝑘, 𝑖)

}︀
, (3.6)

which is a tensor product space of dimension 𝒩𝛿 = 𝑁𝑡𝑁ℎ, 𝛿 = (∆𝑡, ℎ), satisfying V𝛿 ⊂ V.

The trial space U𝛿 is constructed by applying the adjoint operator 𝐵* to each test basis function, i.e., for
𝜇 = (ℓ, 𝑗) and 𝐴 = −∆

𝜓𝜇 := 𝐵*(𝜙𝜇) = 𝐵*
(︀
𝜚ℓ ⊗ 𝜑𝑗

)︀
= (𝜕𝑡𝑡 +𝐴)

(︀
𝜚ℓ ⊗ 𝜑𝑗

)︀
= 𝜚ℓ ⊗ 𝜑𝑗 + 𝜚ℓ ⊗𝐴𝜑𝑗 ,

i.e.,
U𝛿 := 𝐵*(V𝛿) = span{𝜓𝜇 : 𝜇 = 1, . . . ,𝒩𝛿}.

Since 𝐵* is an isomorphism of V onto 𝐿2(𝐼;𝐻), the functions 𝜓𝜇 are in fact linearly independent. An example
of a single trial function is shown in Figure 2.

Proposition 3.3. For the space V𝛿 defined in (3.6) and U𝛿 := 𝐵*(V𝛿), we have

𝛽𝛿 := inf
𝑢𝛿∈U𝛿

sup
𝑣𝛿∈V𝛿

𝑏(𝑢𝛿, 𝑣𝛿)
‖𝑢𝛿‖U ‖𝑣𝛿‖V

= 1.
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Figure 2. Sample trial function for 𝐼 = Ω = (0, 1), ∆𝑡 = ℎ = 1
8 .

Proof. Let 0 ̸= 𝑢𝛿 ∈ U𝛿 ⊂ 𝐿2(𝐼;𝐻). Then, since U𝛿 = 𝐵*(V𝛿) there exists a unique 𝑧𝛿 ∈ V𝛿 such that 𝐵*𝑧𝛿 = 𝑢𝛿.
Hence

sup
𝑣𝛿∈V𝛿

𝑏(𝑢𝛿, 𝑣𝛿)
‖𝑢𝛿‖U ‖𝑣𝛿‖V

≥ 𝑏(𝑢𝛿, 𝑧𝛿)
‖𝑢𝛿‖U ‖𝑧𝛿‖V

=
(𝑢𝛿, 𝐵

*𝑧𝛿)ℋ
‖𝑢𝛿‖U ‖𝑧𝛿‖V

=
(𝑢𝛿, 𝑢𝛿)ℋ

‖𝑢𝛿‖ℋ ‖𝐵*𝑧𝛿‖ℋ
‖𝑢𝛿‖2ℋ

‖𝑢𝛿‖ℋ ‖𝑢𝛿‖ℋ
= 1.

On the other hand, by the Cauchy–Schwarz inequality, we have

sup
𝑣𝛿∈V𝛿

𝑏(𝑢𝛿, 𝑣𝛿)
‖𝑢𝛿‖U ‖𝑣𝛿‖V

= sup
𝑣𝛿∈V𝛿

(𝑢𝛿, 𝐵
*𝑣𝛿)ℋ

‖𝑢𝛿‖U ‖𝑣𝛿‖V
≤ sup

𝑣𝛿∈V𝛿

‖𝑢𝛿‖ℋ ‖𝐵*𝑣𝛿‖ℋ
‖𝑢𝛿‖ℋ ‖𝐵*𝑣𝛿‖ℋ

= 1,

which proves the claim. �

3.2. Optimal ultraweak discretization of ordinary differential equations

For the understanding of our subsequent numerical investigations, it is worth considering the univariate case,
i.e., ordinary differential equations (ODEs) of the form

−𝑢′′(𝑥) = 𝑓(𝑥), 𝑥 ∈ (0, 1), (3.7)

with either boundary or second order initial conditions, namely

𝑢(0) = 𝑢(1) = 0 for a space-like problem, or (3.8a)
𝑢(0) = 0, 𝑢′(0) = 0 for a time-like problem. (3.8b)

Using the framework above, we obtain 𝑏(𝑢, 𝑣) := −(𝑢, 𝑣′′)𝐿2(0,1) and U := 𝐿2(0, 1) in both cases. Moreover, in
this univariate setting, we can identify the test space V given in (2.19) as follows

VBVP := 𝐻1
0 (0, 1) ∩𝐻2(0, 1), for (3.8a), (3.9a)

VIVP := 𝐻2
{𝑇}(0, 1) for (3.8b), (3.9b)
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Figure 3. Initial value problem (3.8b). B-spline discretization of order 𝑟ansatz/𝑟test, where *

means that 𝑈Δ𝑡 = 𝐵*(𝑉Δ𝑡).

where 𝐻2
{𝑇}(0, 1) :=

{︁
𝜗 ∈ 𝐻2(𝐼) : 𝜗(𝑇 ) = 𝜗̇(𝑇 ) = 0

}︁
, which makes the discretization particularly straightfor-

ward. In fact, we use B-spline bases of different orders 𝑟 ≥ 1 (i.e., polynomial degree 𝑟−1) to obtain discrete test
spaces VBVP

ℎ := {𝜑𝑖 : 𝑖 = 1, . . . , 𝑁ℎ} and VIVP
Δ𝑡 =

{︀
𝜚𝑘 : 𝑘 = 1, . . . , 𝑁𝑡

}︀
, respectively. The boundary conditions

for (3.8) can be realized by multiple knots and then omitting those B-splines at the boundaries which do not
satisfy the particular boundary condition, see again Figure 1. The trial spaces are then formed by the second
derivatives of the test functions, i.e., UBVP

ℎ := {𝜑′′𝑖 : 𝑖 = 1, . . . , 𝑁ℎ} and UIVP
Δ𝑡 =

{︀
𝜚𝑘 : 𝑘 = 1, . . . , 𝑁𝑡

}︀
. Those

functions are also depicted in Figure 1.

We did experiments for a whole variety of problems admitting solutions of different smoothness both for the
boundary value ((3.7), (3.8a)) and the initial value problem ((3.7), (3.8b)). The differences were negligible, so
that we only report the results for the initial value problem (3.8b). We investigate the 𝐿2-error and the condition
number of the stiffness matrix over the degrees of freedom (d.o.f.) for different type of discretizations, namely

– 1*/3: quadratic spline test functions and inf-sup-optimal trial functions as image of the test functions under
the adjoint operator;

– 𝑟ansatz/𝑟test: splines of order 𝑟ansatz for the trial and of order 𝑟test for the test functions (here 1/3 and 2/4).
We obtain “standard” spline spaces for the trial space, not related to the test space through the image of
the adjoint operator – and thus not necessarily inf-sup optimal.

The results are shown in Figure 3. The errors for 1*/3 and 1/3 are the same, so that the blue line is not
visible (in fact, the spanned spaces coincide with different bases). We obtain linear convergence for these cases
and quadratic order for 2/4. Concerning the condition numbers, we see that the inf-sup optimal case in fact
gives rise to significantly larger condition numbers than the “standard” ones.

It is worth mentioning that we got 𝛽𝛿 ≡ 1 in all cases. This means in particular that the ansatz spaces
generated by the inf-sup-optimal setting 1*/3 are identical with those for the 1/3 case. After observing this
numerically, we have also proven this observation. However, we stress the fact that this is a pure univariate fact,
i.e., for the ODE. It is no longer true in the PDE case as we shall also see below.
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4. Derivation and properties of the algebraic linear system

4.1. The linear system

To derive the stiffness matrix, we first use arbitrary spaces induced by
{︀
𝜓𝜇 := 𝜎ℓ ⊗ 𝜉𝑗 : 𝜇 = 1, . . . ,𝒩𝛿

}︀
for

the trial and
{︀
𝜙𝜈 = 𝜚𝑘 ⊗ 𝜑𝑖 : 𝜈 = 1, . . . ,𝒩𝛿

}︀
for the test space an call this the “general” case. Using [BBB𝛿]𝜇,𝜈 =

[BBB𝛿](ℓ,𝑗),(𝑘,𝑖) we get

[BBB𝛿](ℓ,𝑗),(𝑘,𝑖) = 𝑏(𝜓𝜇, 𝜙𝜈) = (𝜓𝜇, 𝐵
*𝜙𝜈)ℋ =

(︀
𝜎ℓ ⊗ 𝜉𝑗 , 𝜚

𝑘 ⊗ 𝜑𝑖 + 𝜚𝑘 ⊗𝐴𝜑𝑖

)︀
ℋ

=
(︀
𝜎ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝜉𝑗 , 𝜑𝑖)𝐿2(Ω) +
(︀
𝜎ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝜉𝑗 , 𝐴𝜑𝑖)𝐿2(Ω),

so that

BBB𝛿 = 𝑁̃Δ𝑡 ⊗ 𝑀̃ℎ + 𝑀̃Δ𝑡 ⊗ 𝑁̃ℎin this “general” case, (4.1)

where
[︁
𝑀̃Δ𝑡

]︁
ℓ,𝑘

:=
(︀
𝜎ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

,
[︁
𝑀̃ℎ

]︁
𝑗,𝑖

:= (𝜉𝑗 , 𝜑𝑖)𝐿2(Ω),
[︁
𝑁̃Δ𝑡

]︁
ℓ,𝑘

:=
(︀
𝜎ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

and
[︁
𝑁̃ℎ

]︁
𝑗,𝑖

:=

(𝜉𝑗 , 𝐴𝜑𝑖)𝐿2(Ω).
On the other hand, in the specific inf-sup optimal case 𝜓𝜇 = 𝐵*(𝜙𝜇), we get the representation

[BBB𝛿](ℓ,𝑗),(𝑘,𝑖) = 𝑏(𝜓𝜇, 𝜙𝜈) = (𝜓𝜇, 𝐵
*𝜙𝜈)ℋ = (𝐵*𝜙𝜇, 𝐵

*𝜙𝜈)ℋ
=
(︀
𝜚ℓ ⊗ 𝜑𝑗 + 𝜚ℓ ⊗𝐴𝜑𝑗 , 𝜚

𝑘 ⊗ 𝜑𝑖 + 𝜚𝑘 ⊗𝐴𝜑𝑖

)︀
ℋ

=
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝜑𝑗 , 𝜑𝑖)𝐿2(Ω) +
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝐴𝜑𝑗 , 𝐴𝜑𝑖)𝐿2(Ω)

+
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝜑𝑗 , 𝐴𝜑𝑖)𝐿2(Ω) +
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

(𝐴𝜑𝑗 , 𝜑𝑖)𝐿2(Ω)

so that

BBB𝛿 = 𝑄Δ𝑡 ⊗𝑀ℎ +𝑁Δ𝑡 ⊗𝑁⊤
ℎ +𝑁⊤

Δ𝑡 ⊗𝑁ℎ +𝑀Δ𝑡 ⊗𝑄ℎ, for 𝜓𝜇 = 𝐵*(𝜙𝜇), (4.2)

where

[𝑄Δ𝑡]ℓ,𝑘 :=
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

, [𝑀Δ𝑡]ℓ,𝑘 :=
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

, [𝑁Δ𝑡]ℓ,𝑘 :=
(︀
𝜚ℓ, 𝜚𝑘

)︀
𝐿2(𝐼)

,

[𝑄ℎ]𝑗,𝑖 := (𝐴𝜑𝑗 , 𝐴𝜑𝑖)𝐿2(Ω), [𝑀ℎ]𝑗,𝑖 := (𝜑𝑗 , 𝜑𝑖)𝐿2(Ω), [𝑁ℎ]𝑗,𝑖 := (𝐴𝜑𝑗 , 𝜑𝑖)𝐿2(Ω).

We stress that BBB𝛿 is symmetric and positive definite for 𝐴 = −∆. Finally, let us now detail the right-hand side.
Recall from (2.14), that 𝑔(𝑣) = (𝑓, 𝑣)ℋ + ⟨𝑢1, 𝑣(0)⟩ − (𝑢0, 𝑣̇(0))𝐻 . Hence,

[𝑔𝛿]𝜈 = [𝑔𝛿](𝑘,𝑖) = (𝑓, 𝜙𝜈)ℋ + ⟨𝑢1, 𝜙𝜈(0)⟩𝑉 ′×𝑉 − (𝑢0, 𝜙𝜈(0))𝐻

=
(︀
𝑓, 𝜚𝑘 ⊗ 𝜑𝑖

)︀
ℋ + ⟨𝑢1, 𝜙𝜈(0)⟩𝑉 ′×𝑉 − (𝑢0, 𝜙𝜈(0))𝐻

=
∫︁ 𝑇

0

∫︁
Ω

𝑓(𝑡, 𝑥) 𝜚𝑘(𝑡)𝜑𝑖(𝑥) d𝑥 d𝑡+
∫︁

Ω

[︀
𝑢1(𝑥) 𝜚𝑘(0)− 𝑢0(𝑥) 𝜚̇𝑘(0)

]︀
𝜑𝑖(𝑥) d𝑥.

Using appropriate quadrature formulae results in a numerical approximation, which we will again denote by
𝑔𝛿. Then, solving the linear system BBB𝛿𝑢𝛿 = 𝑔𝛿 yields the expansion coefficients of the desired approximation
𝑢𝛿 ∈ U𝛿 as follows: Let 𝑢𝛿 = (𝑢𝜇)𝜇=1,...,𝒩𝛿

, 𝜇 = (𝑘, 𝑖), then

𝑢𝛿(𝑡, 𝑥) =
𝒩𝛿∑︁
𝜇=1

𝑢𝜇 𝜓𝜇(𝑡, 𝑥) =
𝑁𝑡∑︁

𝑘=1

𝑁ℎ∑︁
𝑖=1

𝑢𝑘,𝑖 𝜎
𝑘(𝑥) 𝜉𝑖(𝑥),

in the general case, and for the special one, i.e., 𝜓𝜇 = 𝐵*(𝜙𝜇),

𝑢𝛿(𝑡, 𝑥) =
𝒩𝛿∑︁
𝜇=1

𝑢𝜇 𝜓𝜇(𝑡, 𝑥) =
𝑁𝑡∑︁

𝑘=1

𝑁ℎ∑︁
𝑖=1

𝑢𝑘,𝑖

(︀
𝜚𝑘(𝑡)𝜑𝑖(𝑥) + 𝜚𝑘(𝑡)𝐴𝜑𝑖(𝑥)

)︀
.
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Figure 4. Condition numbers of involved matrices, for the inf-sup-optimal case (4.2) (left) and
the general case (4.1) (right).

4.2. Stability vs. conditioning

The (discrete) inf-sup constant refers to the stability of the discrete system, being included in the
error/residual relation

‖𝑢* − 𝑢*𝛿‖U ≤
1
𝛽

sup
𝑣∈V

𝑔(𝑣)− 𝑏(𝑢*𝛿 , 𝑣)
‖𝑣‖V

=
1
𝛽
‖𝑟𝛿‖V′ ,

where the residual 𝑟𝛿 ∈ V′ is defined as usual by 𝑟𝛿(𝑣) := 𝑔(𝑣) − 𝑏(𝑢*𝛿 , 𝑣), 𝑣 ∈ V. Hence, 𝛽 is a measure for
the stability; its value is the minimal generalized eigenvalue of a generalized eigenvalue problem. This has no
effect on the condition number 𝜅(BBB𝛿), which instead governs the accuracy of direct solvers and convergence of
iterative methods in the symmetric case.

Conditioning of the matrices

We report on the condition numbers of the matrices involved in (4.1) and (4.2). In Figure 4, we see the asymp-
totic behavior of the different matrices. Most matrices show a “normal” scaling w.r.t. the order of the differential
operator. However, there are two components, namely M̃Δ𝑡 in the general case and NΔ𝑡 in the inf-sup-optimal
case, which show a very poor scaling as the mesh size tends to zero (here indicated by ℎmax but used for both
∆𝑡 and ℎ). This effect comes from the initial condition, namely the first column of the matrices. On the other
hand, 𝜅(BBB𝛿) scales like a stiffness matrix of a 4th order problem. Since BBB𝛿 is a sum of tensor products involving
some ill-conditioned components, we need a structure-aware preconditioning.

Preconditioning

Let MMM𝛿 := 𝑀Δ𝑡 ⊗𝑀ℎ and KKK𝛿 := 𝑁Δ𝑡 ⊗𝑀ℎ + 𝑀Δ𝑡 ⊗𝑁ℎ. Then

KKK⊤𝛿 MMM−1
𝛿 KKK𝛿 =

(︀
𝑁⊤

Δ𝑡𝑀
−1
Δ𝑡 𝑁Δ𝑡

)︀
⊗𝑀ℎ + 𝑁Δ𝑡 ⊗𝑁⊤

ℎ + 𝑁⊤
Δ𝑡 ⊗𝑁ℎ + 𝑀Δ𝑡 ⊗

(︀
𝑁⊤

ℎ 𝑀−1
ℎ 𝑁ℎ

)︀
,

so that KKK⊤𝛿 MMM−1
𝛿 KKK𝛿 = BBB𝛿 if and only if 𝑄Δ𝑡 = 𝑁⊤

Δ𝑡𝑀
−1
Δ𝑡 𝑁Δ𝑡 and 𝑄ℎ = 𝑁⊤

ℎ 𝑀−1
ℎ 𝑁ℎ.

Even if we cannot hope that those relations hold exactly in general, we are going to describe situations in
which at least spectral equivalence holds. To this end, we will closely follow [4, 30] in a slightly generalized
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setting. We recall the biharmonic-type problem (2.11) along with its equivalent mixed form (2.12). Let us
abbreviate 𝑍 := 𝐷(𝐴) and let 𝑍ℎ := span{𝜑1, . . . , 𝜑𝑁ℎ

} ⊂ 𝑍 be some discretization as in (3.5). Moreover, let
𝐻ℎ := span{𝜉1, . . . , 𝜉𝑛ℎ

} ⊂ 𝐻 be some finite-dimensional approximation space for the auxiliary variable. Then,
setting

𝑀ℎ :=
[︀
(𝜉𝑖, 𝜉𝑗)𝐻

]︀
𝑖,𝑗=1,...,𝑛ℎ

, 𝐴ℎ :=
[︀
(𝐴𝜑𝑘, 𝜉𝑗)𝐻

]︀
𝑘=1,...,𝑁ℎ,𝑗=1,...,𝑛ℎ

,

the discrete form of (2.12) aims to determine 𝑢ℎ ∈ R𝑛ℎ and 𝑧ℎ ∈ R𝑁ℎ such that(︃
𝑀ℎ 𝐴ℎ

𝐴⊤
ℎ 0

)︃(︂
𝑢ℎ

𝑧ℎ

)︂
=
(︂

0

−𝑔ℎ

)︂
, (4.3)

where 𝑔ℎ = [⟨𝑔, 𝜑𝑘⟩𝑍′×𝑍 ]𝑘=1,...,𝑁ℎ
. Note that 𝑀ℎ is symmetric and positive definite. The corresponding discrete

operators are defined as follows

𝐴ℎ : 𝑍ℎ → 𝐻ℎ : (𝐴ℎ𝑧ℎ, 𝑢ℎ)𝐻 := (𝐴𝑧ℎ, 𝑢ℎ)𝐻 , 𝑢ℎ ∈ 𝐻ℎ, 𝑧ℎ ∈ 𝑍ℎ,

𝑀ℎ : 𝐻ℎ → 𝐻ℎ : (𝑀ℎ𝑢ℎ, 𝑣ℎ)𝐻 := (𝑢ℎ, 𝑣ℎ)𝐻 , 𝑢ℎ, 𝑣ℎ ∈𝑀ℎ.

The stiffness matrix for the biharmonic-type problems reads as follows: 𝑄ℎ := [(𝐴𝜑𝑘, 𝐴𝜑ℓ)𝐻 ]𝑘,ℓ=1,...,𝑁ℎ
. Finally,

we define discrete norms on 𝑍ℎ by ‖𝑧ℎ‖2𝑍ℎ
:= 𝑧⊤ℎ 𝑄ℎ𝑧ℎ for 𝑧ℎ =

∑︀𝑁ℎ

𝑘=1(𝑧ℎ)𝑘 𝜑𝑘 ∈ 𝑍ℎ, 𝑧ℎ ∈ R𝑁ℎ and ‖𝑢ℎ‖2𝑀ℎ
=

𝑢⊤ℎ 𝑀ℎ𝑢ℎ for 𝑢ℎ =
∑︀𝑛ℎ

𝑖=1(𝑢ℎ)𝑖 𝜉𝑖 ∈𝑀ℎ, 𝑢ℎ ∈ R𝑛ℎ .

Proposition 4.1. Let 𝐴ℎ be bounded, i.e., there exists a constant 0 < Γ < ∞ such that (𝐴ℎ𝑧ℎ, 𝑢ℎ)𝐻 ≤
Γ‖𝑧ℎ‖𝑍ℎ

‖𝑢ℎ‖𝑀ℎ
for all 𝑢ℎ ∈ 𝐻ℎ and 𝑧ℎ ∈ 𝑍ℎ, and uniformly inf-sup stable, i.e.,

inf
𝑧ℎ∈𝑍ℎ

sup
𝑢ℎ∈𝐻ℎ

(𝐴ℎ𝑧ℎ, 𝑢ℎ)𝐻

‖𝑧ℎ‖𝑍ℎ
‖𝑢ℎ‖𝑀ℎ

≥ 𝛾 > 0. (4.4)

Then, 𝑄ℎ and 𝐴ℎ𝑀−1
ℎ 𝐴⊤

ℎ are spectrally equivalent, i.e.,

𝛾2 𝑧⊤ℎ 𝑄ℎ𝑧ℎ ≤ 𝑧⊤ℎ 𝐴ℎ𝑀−1
ℎ 𝐴⊤

ℎ 𝑧ℎ ≤ Γ2 𝑧⊤ℎ 𝑄ℎ𝑧ℎ for all 𝑧ℎ ∈ R𝑁ℎ .

Proof. The proof follows the lines in 1.9–1.12 from [30]. Let 𝑍ℎ ∋ 𝑧ℎ =
∑︀𝑁ℎ

𝑘=1(𝑧ℎ)𝑘 𝜑𝑘 and 𝑀ℎ ∋ 𝑢ℎ =∑︀𝑛ℎ

𝑖=1(𝑢ℎ)𝑖 𝜉𝑖. Then, by (4.4)

𝛾
(︀
𝑧⊤ℎ 𝑄ℎ𝑧ℎ

)︀1/2
= 𝛾‖𝑧ℎ‖𝑍ℎ

≤ sup
𝑢ℎ∈𝐻ℎ

(𝐴ℎ𝑧ℎ, 𝑢ℎ)𝐻

‖𝑢ℎ‖𝑀ℎ

= max
𝑢ℎ∈R𝑛ℎ

𝑧⊤ℎ 𝐴ℎ𝑢ℎ(︀
𝑢⊤ℎ 𝑀ℎ𝑢ℎ

)︀1/2

= max
𝑣ℎ=𝑀

1/2
ℎ 𝑢ℎ∈R𝑛ℎ

𝑧⊤ℎ 𝐴ℎ𝑀
−1/2
ℎ 𝑣ℎ(︀

𝑣⊤ℎ 𝑣ℎ

)︀1/2
=
(︀
𝑧⊤ℎ 𝐴ℎ𝑀−1

ℎ 𝐴⊤
ℎ 𝑧ℎ

)︀1/2
,

since it is easily seen that the maximum is attained for 𝑣ℎ = 𝑀
−1/2
ℎ 𝐴⊤

ℎ 𝑧ℎ. This proves the first inequality.

Using the boundedness of 𝐴ℎ yields Γ
(︀
𝑧⊤ℎ 𝑄ℎ𝑧ℎ

)︀1/2 = Γ‖𝑧ℎ‖𝑍ℎ
≥ sup𝑢ℎ∈𝐻ℎ

(𝐴ℎ𝑧ℎ,𝑢ℎ)𝐻

‖𝑢ℎ‖𝑀ℎ
, so that the second

inequality follows the lines above. �

Remark 4.2. In Section 4 of [4], the assumptions above have been shown within the so-called Ciarlet–Raviart
method, where 𝐴 = −∆ with homogeneous Dirichlet boundary conditions on a bounded convex polygon Ω ⊂ R2.
Then, 𝐷(𝐴) = 𝐻2(Ω) ∩𝐻1

0 (Ω) and 𝐻 = 𝐿2(Ω) – exactly our setting for the wave equation.
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Let {𝒯ℎ}0<ℎ<1 be a family of shape regular and quasi uniform triangulations of Ω consisting of triangles of
diameter less or equal to ℎ. The next piece consists of mesh dependent norms and spaces defined as 𝐻2

ℎ :={︀
𝑢 ∈ 𝐻1(Ω) : 𝑢|𝑇 ∈ 𝐻2(𝑇 ), 𝑇 ∈ 𝒯ℎ

}︀
, Γℎ :=

⋃︀
𝑇∈𝒯ℎ

𝜕𝑇 and ‖𝑢‖22,ℎ :=
∑︀

𝑇∈𝒯ℎ
‖𝑢‖22,𝑇 + ℎ−1

∫︀
Γℎ

⃒⃒
𝐽 𝜕𝑢

𝜕𝜈

⃒⃒2
d𝑠, where

𝐽
𝜕𝑢

𝜕𝜈

⃒⃒⃒⃒
𝑇 ′

:=

{︃
𝜕𝑢|𝑇1
𝜕𝜈1 + 𝜕𝑢|𝑇2

𝜕𝜈2 , if 𝑇 ′ = 𝜕𝑇 1 ∩ 𝜕𝑇 2 is an interior edge of 𝒯ℎ,

𝜕𝑢
𝜕𝜈 , if 𝑇 ′ is a boundary edge of 𝒯ℎ,

and 𝜈𝑗 denotes the unit outward normal of 𝑇 𝑗 . Next, let

‖𝑢‖20,ℎ := ‖𝑢‖2𝐿2(Ω) + ℎ

∫︁
Γℎ

|𝑢(𝑠)|2 d𝑠, 𝑢 ∈ 𝐻1(Ω)

and define 𝐻0
ℎ as the completion of 𝐻1(Ω) w.r.t. ‖ · ‖0,ℎ. Then 𝐻0

ℎ
∼= 𝐿2(Ω) ⊕ 𝐿2(Γℎ). For 𝑆ℎ :={︀

𝑣 ∈ 𝐶0(Ω̄) : 𝑣|𝑇 ∈ 𝒫𝑘, 𝑇 ∈ 𝒯ℎ

}︀
, 𝑘 ≥ 1 and 𝒫𝑘 denoting the space of polynomials of degree 𝑘 or less, we

have that 𝑆ℎ ⊂ 𝐻0
ℎ ∩𝐻2

ℎ. For 𝑘 = 3, we get that 𝑆ℎ = 𝑍ℎ with 𝑍ℎ defined in (3.5). The discrete operator 𝐴ℎ is
induced by the bilinear form 𝑎ℎ : 𝐻0

ℎ ×𝐻2
ℎ ∩𝐻1

0 (Ω) → R defined by

𝑎ℎ(𝑢ℎ, 𝑤ℎ) :=
∑︁

𝑇∈𝒯ℎ

∫︁
𝑇

𝑢ℎ(𝑥) ∆𝑤ℎ(𝑥) d𝑥−
∫︁

Γℎ

𝑢ℎ

(︂
𝐽
𝜕𝑤ℎ

𝜕𝜈

)︂
d𝑠

and 𝑀ℎ is induced by 𝑚ℎ(𝑢, 𝑣) := (𝑢, 𝑣)𝐿2(Ω). The discrete spaces arise there from a shape regular and quasi
uniform triangulation of Ω as well as mesh-dependent inner products and norms. The boundedness of 𝐴ℎ is
immediate. The inf-sup-stability (4.4) was proven in Theorem 3 from [4].

Noting that 𝑎ℎ(𝑢ℎ, 𝑤ℎ) = −(∇𝑢ℎ,∇𝑤ℎ)𝐿2(Ω) for 𝑢 ∈ 𝐻1(Ω) and 𝑤ℎ ∈ 𝐻2
ℎ, we obtain that the matrices 𝑄ℎ

and 𝑁⊤
ℎ 𝑀−1

ℎ 𝑁ℎ defined in Section 4.1 are in fact spectrally equivalent.

We observed the spectral equivalence for the spatial matrices also in our numerical experiments. However, we
saw that this is not true for the temporal matrices in the sense that 𝑄Δ𝑡 and 𝑁⊤

Δ𝑡𝑀
−1
Δ𝑡 𝑁Δ𝑡 are not spectrally

equivalent.

5. Solution of the algebraic linear system

To derive preconditioning strategies and the new projection method, we rewrite the linear system BBB𝛿𝑢𝛿 = 𝑔𝛿

as a linear matrix equation, so as to exploit the structure of the Kronecker problem. Let 𝑥 = vec(𝑋) be the
operator stacking the columns of 𝑋 one after the other, then it holds that (𝐵 ⊗𝐴)𝑥 = vec(𝐴𝑋𝐵⊤) for given
matrices 𝐴,𝑋, and 𝐵 of conforming dimensions. Hence, the vector system is written as

𝒜(𝑈) = 𝐺 with 𝒜(𝑈) = 𝑀ℎ𝑈𝑄⊤
Δ𝑡 + 𝑁⊤

ℎ 𝑈𝑁⊤
Δ𝑡 + 𝑁ℎ𝑈𝑁Δ𝑡 + 𝑄ℎ𝑈𝑀Δ𝑡, (5.1)

where 𝑔 = vec(𝐺) and the symmetry of some of the matrices has been exploited.
In the following we describe two distinct approaches: First, we recall the matrix-oriented conjugate gradient

method, preconditioned by two different operator-aware strategies. Then we discuss a procedure that directly
deals with (5.1).

5.1. Preconditioned conjugate gradients

Since BBB𝛿 is symmetric and positive definite, the preconditioned conjugate gradient (PCG) method can be
applied directly to (5.1), yielding a matrix-oriented implementation of PCG, see Algorithm 1. Here tr(𝑋) denotes
the trace of the square matrix 𝑋. In exact precision arithmetic, this formulation, gives the same iterates as the
standard vector form, while exploiting matrix-matrix computations [22]. This can easily be seen by exploiting
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Algorithm 1. Matrix-oriented PCG.
Input: 𝑈0

1: set 𝑅0 = 𝐺−𝒜(𝑈0), 𝑍0 = 𝒫−1(𝑅0), 𝑃0 = 𝑍0, 𝛾0 = tr
(︀
𝑅⊤0 𝑍0

)︀

2: for 𝑘 = 0, 1, . . . do
3: 𝛿 = tr

(︀
𝑃⊤𝑘 𝒜(𝑃𝑘)

)︀
, 𝛼 = 𝛾𝑘/𝛿

4: 𝑋𝑘+1 =𝑋𝑘 + 𝛼𝑃𝑘

5: 𝑅𝑘+1 = 𝐺−𝒜(𝑋𝑘+1)
6: 𝑍𝑘+1 = 𝒫−1(𝑅𝑘+1)
7: 𝛾𝑘+1 = tr

(︀
𝑅⊤𝑘+1𝑍𝑘+1

)︀
, 𝛽 = 𝛾𝑘+1/𝛾𝑘

8: 𝑃𝑘+1 = 𝑍𝑘+1 + 𝛽𝑃𝑘

9: end for

the properties of the Kronecker product and the matrix inner product, namely vec(𝐴𝑋𝐵) = (𝐵𝑇 ⊗ 𝐴)vec(𝑋)
and vec(𝐴)𝑇 vec(𝐵) = tr(𝐴𝑇𝐵) for conforming 𝐴,𝐵 and 𝑋; see, e.g., Section 1.3.7 of [17]8.

5.1.1. Sylvester operator preconditioning.

A natural preconditioning strategy consists of taking the leading part of the coefficient matrix, in terms of
order of the differential operators. Hence, setting P = 𝑄Δ𝑡 ⊗𝑀ℎ + 𝑀Δ𝑡 ⊗𝑄ℎ, we have (see also [19])

𝑧𝑘+1 = P−1𝑟𝑘+1 ⇔ 𝑍𝑘+1 = 𝒫−1(𝑅𝑘+1),

with 𝑟𝑘+1 = vec(𝑅𝑘+1) and 𝑧𝑘+1 = vec(𝑍𝑘+1). Applying 𝒫−1 corresponds to solving the generalized Sylvester
equation 𝑀ℎ𝑍𝑄⊤

Δ𝑡 + 𝑄ℎ𝑍𝑀Δ𝑡 = 𝑅𝑘+1. For small size problems in space, this can be carried out by means of
the Bartels-Stewart method [7], which entails the computation of two Schur decompositions, performed before
the PCG iteration is started. For fine discretizations in space, iterative procedures need to be used. For these
purposes, we use a Galerkin approach based on the rational Krylov subspace [14], only performed on the spatial
matrices; see [31] for a general discussion. A key issue is that this class of iterative methods requires the right-
hand side to be low rank; we deliberately set the rank to be at most twenty. Hence, the Sylvester solver is
applied after a rank truncation of 𝑅𝑘+1, which thus becomes part of the preconditioning application.

5.1.2. KKK⊤𝛿 MMM−1
𝛿 KKK𝛿-preconditioning.

To derive a preconditioner that takes full account of the coefficient matrix we employ the operator KKK⊤𝛿 MMM−1
𝛿 KKK𝛿

in Section 4.2. Thanks to the spectral equivalence in Proposition 4.1, PCG applied to the resulting preconditioned
operator appears to be optimal, in the sense that the number of iterations to reach the required accuracy is
independent of the spatial mesh size; see Table 2.

In vector form this preconditioner is applied as 𝑧𝑘+1 =
(︀
KKK⊤𝛿 MMM−1

𝛿 KKK𝛿

)︀−1
𝑟𝑘+1. However, this operation can be

performed without explicitly using the Kronecker form of the involved matrices, with significant computational
and memory savings. We observe that

KKK𝛿 = 𝑁Δ𝑡 ⊗𝑀ℎ + 𝑀Δ𝑡 ⊗𝑁ℎ =
(︀
𝑁Δ𝑡𝑀

−1
Δ𝑡 ⊗ 𝐼 + 𝐼 ⊗𝑁ℎ𝑀−1

ℎ

)︀
(𝑀Δ𝑡 ⊗𝑀ℎ) =: ̂︀KKK𝛿MMM𝛿.

Moreover, due to the transposition properties of the Kronecker product, KKK⊤𝛿 = ̂︀KKK⊤𝛿 MMM𝛿. Hence, KKK⊤𝛿 MMM−1
𝛿 KKK𝛿 =̂︀KKK⊤𝛿 ̂︀KKK𝛿MMM𝛿. Therefore,

𝑍𝑘+1 = 𝒫−1(𝑅𝑘+1) ⇔ 𝑧𝑘+1 = MMM−1
𝛿
̂︀KKK−1

𝛿

(︁̂︀KKK⊤𝛿 )︁−1

𝑟𝑘+1,

We next observe that the equation ̂︀KKK⊤𝛿 𝑤 = 𝑟𝑘+1 can be written as the following Sylvester matrix equation

𝑊𝑀−1
Δ𝑡 𝑁Δ𝑡 + 𝑁⊤

ℎ 𝑀−1
ℎ 𝑊 = 𝑅𝑘+1 (5.2)

8The matrix-oriented version of PCG is also used to exploit low rank representations of the iterates, in case the starting residual
is low rank and the final solution can be well approximated by a low rank matrix; see, e.g., [22]. We will not exploit this setting
here.
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and analogously for ̂︀KKK𝛿 ̂︀𝑤 = 𝑤, that is ̂︁𝑊𝑀−1
Δ𝑡 𝑁⊤

Δ𝑡 + 𝑁ℎ𝑀−1
ℎ
̂︁𝑊 = 𝑊 . (5.3)

Finally, the preconditioned matrix is obtained as 𝑍𝑘+1 = 𝑀−1
ℎ
̂︁𝑊𝑀−1

Δ𝑡 .
Summarizing, the application of the preconditioning operator amounts to the solution of the two Sylvester

matrix equations (5.2), (5.3), and the product 𝑍𝑘+1 = 𝑀−1
ℎ
̂︁𝑊𝑀−1

Δ𝑡 . The overall computational cost of this
operation depends on the cost of solving the two matrix equations. For small dimensions in space, once again a
Schur-decomposition based method can be used [7]; we recall here that thanks to the discretization employed,
we do not expect to have large dimensions in time, as matrices of size at most 𝒪(100) arise. Also in this case, for
fine discretizations in space we use an iterative method (Galerkin) based on the rational Krylov subspace [14],
only performed on the spatial matrices, with the truncation of the corresponding right-hand side, 𝑅𝑘+1 and 𝑊 ,
respectively, so as to have at most rank equal to twenty. Allowing a larger rank did not seem to improve the
effectiveness of the preconditioner. Several implementation enhancements can be developed to make the action
of the preconditioner more efficient, since most operations are repeated at each PCG iteration with the same
matrices.

5.2. Galerkin projection

An alternative to PCG consists of attacking the original multi-term matrix equation directly. Thanks to the
symmetry of 𝑁ℎ we rewrite the matrix equation (5.1) as

𝑀ℎ𝑈𝑄⊤
Δ𝑡 + 𝑁⊤

ℎ 𝑈
(︀
𝑁⊤

Δ𝑡 + 𝑁Δ𝑡

)︀
+ 𝑄ℎ𝑈𝑀Δ𝑡 = 𝐺, (5.4)

with 𝐺 of low rank, that is 𝐺 = 𝐺1𝐺
⊤
2 . Note that this is an assumption on the data. In particular, we assume

that the right-hand side 𝑔(𝑣) in (2.14) can be discretized in a way such that the matrix form 𝐺 of 𝑔𝛿 has low
rank. This happens for instance when 𝑔 is a separable function of 𝑥 and 𝑡, or it can be well approximated by a
separable function; other scenarios can also lead to a low-rank 𝐺.

Consider two appropriately selected vector spaces 𝒱𝑘, 𝒲𝑘 of dimensions much lower than 𝑁ℎ, 𝑁𝑡, respectively,
and let 𝑉𝑘, 𝑊𝑘 be the matrices whose orthonormal columns span the two corresponding spaces. We look for
a low rank approximation of 𝑈 as 𝑈𝑘 = 𝑉𝑘𝑌𝑘𝑊⊤

𝑘 . To determine 𝑌𝑘 we impose an orthogonality (Galerkin)
condition on the residual

𝑅𝑘 := 𝐺1𝐺
⊤
2 −𝑀ℎ𝑈𝑘𝑄⊤

Δ𝑡 −𝑁⊤
ℎ 𝑈𝑘

(︀
𝑁⊤

Δ𝑡 + 𝑁Δ𝑡

)︀
−𝑄ℎ𝑈𝑘𝑀Δ𝑡. (5.5)

with respect to the generated space pair (𝑉𝑘,𝑊𝑘). Using the matrix Euclidean inner product, this corresponds
to imposing that 𝑉 ⊤

𝑘 𝑅𝑘𝑊𝑘 = 0. Substituting 𝑅𝑘 and 𝑈𝑘 into this matrix equation, we obtain the following
reduced matrix equation, of the same type as (5.4) but of much smaller size,(︀

𝑉 ⊤
𝑘 𝑀ℎ𝑉𝑘

)︀
𝑌𝑘

(︀
𝑄⊤

Δ𝑡𝑊𝑘

)︀
+
(︀
𝑉 ⊤

𝑘 𝑁⊤
ℎ 𝑉𝑘

)︀
𝑌𝑘

(︀
𝑊⊤

𝑘

(︀
𝑁⊤

Δ𝑡 + 𝑁Δ𝑡

)︀
𝑊𝑘

)︀
+
(︀
𝑉 ⊤

𝑘 𝑄ℎ𝑉𝑘

)︀
𝑌𝑘

(︀
𝑊⊤

𝑘 𝑀Δ𝑡𝑊𝑘

)︀
=
(︀
𝑉 ⊤

𝑘 𝐺1

)︀(︀
𝐺⊤

2 𝑊𝑘

)︀
.

The small dimensional matrix 𝑌𝑘 is thus obtained by solving the Kronecker form of this equation9. The described
Galerkin reduction strategy has been thorough exploited and analyzed for Sylvester equations, and more recently
successfully applied to multi-term equations, see, e.g., [28]. The key problem-dependent ingredient is the choice
of the spaces 𝒱𝑘, 𝒲𝑘, so that they well represent spectral information of the “left-hand” and “right-hand”
matrices in (5.4). A well established choice is (a combination of) rational Krylov subspaces [31]. More precisely,
for the spatial approximation we generate the growing space range (𝑉𝑘) as

̂︀𝑉𝑘+1 =
[︁
𝑉𝑘, (𝑄ℎ + 𝑠𝑘𝑀ℎ)−1

𝑣𝑘, (𝑁ℎ +
√
𝑠𝑘𝑀ℎ)−1

𝑣𝑘

]︁
, 𝑉1 = 𝐺1,

9To this end, Algorithm 1 with a preconditioning strategy similar to the ones described in Sections 5.1.1 and 5.1.2 can be
employed as well.
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where 𝑣𝑘 is the 𝑘th column of 𝑉𝑘, so that 𝑉𝑘+1 is obtained by orthogonalizing the new columns inserted in̂︀𝑉𝑘+1. The matrix ̂︀𝑉𝑘+1 grows at most by two vectors at a time. For each 𝑘, the parameter 𝑠𝑘 can be chosen
either a priori or dynamically, with the same sign as the spectrum of 𝑄ℎ (𝑁ℎ). Here 𝑠𝑘 is cheaply determined
using the adaptive strategy in [14]. Since 𝑁ℎ represents an operator of the second order, the value

√
𝑠𝑘 resulted

to be appropriate; a specific computation of the parameter associated with 𝑁ℎ can also be included, at low
cost. Analogously,

̂︁𝑊𝑘+1 =
[︂
𝑊𝑘, (𝑄Δ𝑡 + ℓ𝑘𝑀Δ𝑡)

−1
𝑤𝑘,

(︁(︀
𝑁Δ𝑡 + 𝑁⊤

Δ𝑡

)︀
+
√︀
ℓ𝑘𝑀Δ𝑡

)︁−1

𝑤𝑘

]︂
, 𝑊1 = 𝐺2,

where 𝑤𝑘 is the 𝑘th column of 𝑊𝑘, and 𝑊𝑘+1 is obtained by orthogonalizing the new columns inserted in̂︁𝑊𝑘+1. The choice of ℓ𝑘 > 0 is made as for 𝑠𝑘.

Remark 5.1. This approach yields the vector approximation 𝑢𝑘 = (𝑊𝑘 ⊗ 𝑉𝑘)𝑦𝑘, with 𝑦𝑘 = vec(𝑌𝑘) that
is, the approximation space range (𝑊𝑘 ⊗ 𝑉𝑘) is more structured than that generated by PCG applied to 𝒜.
Experimental evidence shows that this structure-aware space requires significantly smaller dimension to achieve
similar accuracy. This is theoretically clear in the Sylvester equation case [31], while it is an open problem for
the multi-term linear equation setting.

Remark 5.2. For fine space discretizations, the most expensive step of the Galerkin projection is the solution
of the linear systems with (𝑄ℎ + 𝑠𝑘𝑀ℎ) and

(︀
𝑁ℎ +

√
𝑠𝑘𝑀ℎ

)︀
. Depending on the size and sparsity, these systems

can be solved by either a sparse direct method or by an iterative procedure; see [31] and references therein.

6. Numerical experiments

We report some results of our extensive numerical experiments for the wave equation (2.1) with 𝐴 = −𝑐2∆,
𝐻 = 𝐿2(Ω), Ω = (0, 1)3, 𝑐 ̸= 0 being the wave speed, 𝑉 = 𝐻1

0 (Ω) and 𝐼 = (0, 1), i.e., 𝑇 = 1. We set 𝑢1 ≡ 𝑓 ≡ 0
and choose the initial value 𝑢0 in such a way that the respective solutions have different regularity (cases 1 and
2 below).

If 𝑈𝑘 denotes the current approximate solution computed at iteration 𝑘, Algorithm 1 and the Galerkin
method are stopped as soon as (i) ℰ𝑘 < 10−5, where the backward error ℰ𝑘 is defined as

ℰ𝑘 =
‖𝑅𝑘‖𝐹

‖𝐺‖𝐹 + ‖𝑈𝑘‖𝐹 (‖𝑀ℎ‖𝐹 ‖𝑄Δ𝑡‖𝐹 + ‖𝑄ℎ‖𝐹 ‖𝑀Δ𝑡‖𝐹 + 2‖𝑁ℎ‖𝐹 ‖𝑁Δ𝑡‖𝐹 )
,

and 𝑅𝑘 is the residual matrix defined in (5.5), and (ii) ‖𝑅𝑘‖𝐹 /‖𝐺‖𝐹 < 10−2 for the relative residual norm. For
the Galerkin approach the computation of ℰ𝑘 simplifies thanks to the low-rank format of the involved quantities
(for instance, 𝑅𝑘 does not need to be explicitly formed to compute its norm). Moreover, the linear systems in
the rational Krylov subspace basis construction are solved by the vector PCG method with a tolerance 𝜖 = 10−8;
see Remark 5.2.

We compared the space-time method with the classical Crank–Nicolson time stepping scheme, in terms of
approximation accuracy and CPU time. The 𝑁ℎ × 𝑁ℎ linear systems involved in the time marching scheme
are solved by means of the vector PCG method with tolerance 𝜖 = 10−6. The time stepping scheme is also
used to compute the reference solutions. To this end, we chose 1024 time steps and 64 unknowns in every space
dimension, resulting in 2.68 · 108 degrees of freedom. For the error calculation, we evaluated the solutions on a
grid of 64 points in every dimension and approximated the 𝐿2 error through the 1.67 · 107 query points.

The code10 is run in Matlab and the B-spline implementation is based on [25]11. To explore the potential of
the new ultraweak method on low-regularity solutions, we only concentrate on experiments with lower regularity

10The whole code can be found under https://github.com/j-henning/waveRB.
11Executed on the BwUniCluster 2.0 on instances with 32GB of RAM on two cores of an Intel Xeon Gold 6230.

https://github.com/j-henning/waveRB
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Table 2. Case 1: Continuous solution, 𝑐2 = 1.

Refinement 2 3 4 5

Unknowns
Time 4 8 16 32
Space 64 515 4096 32 768

Time stepping
Wall time [s] 1.87 · 10−2 2.00 · 10−2 6.82 · 10−1 8.85 · 100

𝐿2 error 4.27 · 10−1 7.10 · 10−2 2.85 · 10−2 1.20 · 10−2

Space-time 𝐿2 error 5.31 · 10−2 4.48 · 10−2 3.45 · 10−2 2.50 · 10−2

PCG
(︀
KKKT

𝛿MMM−1
𝛿 KKK𝛿

)︀ Wall time [s] 9.59 · 10−2 9.73 · 10−1 2.17 · 101 1.07 · 103

# Iterations 9 7 7 6

PCG (Sylvester)
Wall time [s] 3.01 · 10−3 3.85 · 10−2 1.55 · 100 8.57 · 101

# Iterations 9 9 13 17

Galerkin
Wall time [s] 2.24 · 10−1 6.21 · 10−1 1.20 · 100 1.61 · 101

# Iterations 2 6 15 24

solutions, in particular a solution which is continuous with discontinuous derivative (Case 1) and a discontinuous
solution (Case 2). This is realized through the choice of 𝑢0. On the other hand, for smooth solutions the time-
stepping method would be expected to be more accurate, due to its second-order convergence, compared to the
ultraweak method, as long as the latter uses piecewise constant trial functions.

We describe our results for the 3D setting, with Ω = (0, 1)3. The data are summarized as follows12

Case 1 Case 2

𝑢0(𝑟)
(︁

1− 5√
2
𝑟
)︁
· 1𝑟<

√
2/5 1𝑟<

√
2/5

𝑢 ∈ 𝐶
(︀
𝐼 × Ω̄

)︀
∖ 𝐶1(𝐼 × Ω) ̸∈ 𝐶

(︀
𝐼 × Ω̄

)︀
We use tensor product spaces for the spatial discretization for both approaches. In the space-time setting

we use B-splines in each direction for the test functions. For the time-stepping method, we use a Galerkin
approach in which the trial and test functions are given by B-splines. Hence, the radial symmetry cannot be
exploited by either methods, and the tensor product approach provides no limitation. All tables show the matrix
dimensions 𝑁𝑡 in the time space (“Time”) and 𝑁ℎ in the spatial space (“Space”). We display results for uniform
discretizations in space and time, where 𝑁ℎ = 𝑁3

𝑡 , but stress the fact that our space-time discretization is
unconditionally stable, i.e., for any combination of 𝑁𝑡 and 𝑁ℎ.

6.1. Case 1: Continuous, but not continuously differentiable solution

The 𝐿2-error, the number of iterations and the wall-clock time (using the Matlab tic-toc commands) for all
described methods are displayed in Table 2 for the case 𝑐2 = 1. We start by comparing the three iterative methods
for solving the ultraweak space-time discretization. Comparing the performance of the two preconditioners in
Sections 5.1.1 and 5.1.2, we note that they are applied inexactly as described above. In spite of this, we notice that
the optimal operator-preconditioner is able to maintain mesh independence, thus experimentally confirming our
theoretical results. Unfortunately, the high complexity of this preconditioner results in excessive computational
costs on the finer discretizations. The Sylvester preconditioner is the fastest method for small discretization sizes,
whereas the Galerkin method needs smaller wall times for larger systems. The data of Table 2 is also visualized in
the first column of Figure 5, where we see that the time-stepping method outperforms the ultraweak space-time
approach both w.r.t. accuracy and efficiency.

This changes somewhat for larger values of the wave speed 𝑐2, see the results in Figure 5. We see that the error
of the space-time method is basically independent of the wave speed, whereas the time-stepping method suffers

12We use polar coordinates, i.e., 𝑟 := ‖𝑥− 𝑐‖, 𝑥 ∈ Ω, with center 𝑐 = (𝑐𝑖)𝑖=1,...,𝑑, 𝑐𝑖 = 0.5.
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Figure 5. Case 1: Continuous solution. 𝐿2-error over refinement (top row) and wall time
(bottom row) for the cases 𝑐2 = 1, 4, 16 (left, center, right).

from the CFL-stability condition. On the other hand, the rate of convergence of the time-stepping method is
clearly better than the low-order space-time method using discontinuous ansatz functions. In order to get a
convergence order of the space-time method comparable to the rate of the Crank–Nicolson scheme, we would
at least need to use quartic test functions.

6.2. Case 2: Discontinuous solution

For the case of a discontinuous solution, our results are shown in Figure 6. The number of iterations for the
PCG and the Galerkin methods behave similar as in case 1, so that we do not monitor all numbers. Again,
we observe that the performance of the ultraweak space-time method is basically independent of the wave
speed. Moreover, due to the fact that the solution is discontinuous, the rate of convergence of the time stepping
scheme is no longer optimal. As a consequence, the ultraweak space-time method outperforms the time stepping
approach w.r.t. accuracy and efficiency. The benefit is even larger for increasing wave speed numbers.

7. Conclusions

Our theoretical results and numerical experience show that the proposed ultraweak variational space-time
method, when equipped with appropriate linear algebra solvers, is significantly more accurate and efficient than
the Crank–Nicolson scheme on problems with low regularity and high wave speed.
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Figure 6. Case 2: Discontinuous solution. 𝐿2-error over refinement (top row) and wall time
(bottom row) for the cases 𝑐2 = 1, 4, 16 (left, center, right).

Appendix A. Proof of Theorem 2.2

We collect the proof of the well-posedness for the semi-variational setting in Section 2.2. Even though the
proofs are based upon rather classical spectral theory, we could not find them in the desired form in the literature.

Proposition A.1. Let 𝑠 ∈ R+. The mapping 𝑤 ↦→ ⟨·, 𝑤⟩, 𝑤 ∈ 𝐻−𝑠, where

⟨·, ·⟩ : 𝐻𝑠 ×𝐻−𝑠 → R, ⟨𝑣, 𝑤⟩ :=
∞∑︁

𝑛=1

𝑣𝑛 𝑤𝑛 (A.1)

is an isometric isomorphism from 𝐻−𝑠 to (𝐻𝑠)′, i.e., (𝐻𝑠)′ ∼= 𝐻−𝑠.

Proof. First, note that 𝐻𝑠 is a Hilbert space with the inner product (𝑣, 𝑤)𝑠 :=
∑︀∞

𝑛=1 𝜆
𝑠
𝑛 𝑣𝑛 𝑤𝑛 and 𝐻𝑠 →˓ 𝐻 →˓

𝐻−𝑠 with continuous embeddings. Let 𝑣 ∈ 𝐻𝑠, 𝑤 ∈ 𝐻−𝑠, then by Hölder’s inequality

⟨𝑣, 𝑤⟩ =
∞∑︁

𝑛=1

𝜆𝑠/2
𝑛 𝑣𝑛 𝜆

−𝑠/2
𝑛 𝑤𝑛 ≤

(︃ ∞∑︁
𝑛=1

𝜆𝑠
𝑛 𝑣

2
𝑛

)︃1/2(︃ ∞∑︁
𝑛=1

𝜆−𝑠
𝑛 𝑤2

𝑛

)︃1/2

= ‖𝑣‖𝑠 ‖𝑤‖−𝑠 <∞.

Hence, ⟨·, 𝑤⟩ ∈ (𝐻𝑠)′ and ‖⟨·, 𝑤⟩‖(𝐻𝑠)′ = sup𝑣∈𝐻𝑠
⟨𝑣,𝑤⟩
‖𝑣‖𝑠

≤ ‖𝑤‖−𝑠. On the other hand, given 𝑤 ∈ 𝐻−𝑠, set
𝑣𝑛 := 𝜆−𝑠𝑤𝑛 and 𝑣 :=

∑︀∞
𝑛=1 𝑣𝑛𝑒𝑛. Then, ‖𝑣‖2𝑠 =

∑︀∞
𝑛=1 𝜆

𝑠
𝑛 (𝜆−𝑠

𝑛 𝑤𝑛)2 =
∑︀∞

𝑛=1 𝜆
−𝑠
𝑛 (𝑤𝑛)2 = ‖𝑤‖2−𝑠 < ∞, i.e.,

𝑣 ∈ 𝐻−𝑠. Moreover ⟨𝑣, 𝑤⟩ =
∑︀∞

𝑛=1 𝑣𝑛 𝑤𝑛 =
∑︀∞

𝑛=1 𝜆
−𝑠
𝑛 (𝑤𝑛)2 = ‖𝑤‖2−𝑠 = ‖𝑣‖𝑠 ‖𝑤‖−𝑠. If 𝑤 ̸= 0, we get that

‖⟨·, 𝑤⟩‖(𝐻𝑠)′ = sup𝑣∈𝐻𝑠
⟨𝑣,𝑤⟩
‖𝑣‖𝑠

≥ ⟨𝑣,𝑤⟩
‖𝑣‖𝑠

= ‖𝑤‖−𝑠 with equality for 𝑤 = 0. Hence, ‖⟨·, 𝑤⟩‖(𝐻𝑠)′ = ‖𝑤‖−𝑠 for all
𝑤 ∈ 𝐻−𝑠. �
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Now we start by considering the following homogeneous abstract second order initial value problem. Let
𝑢0 ∈ 𝐷(𝐴) and 𝑢1 ∈ 𝐻. The goal is to find a function 𝑤 ∈ 𝐶2([0, 𝑇 ], 𝐻) such that 𝑤(𝑡) ∈ 𝐷(𝐴) for 𝑡 ∈ [0, 𝑇 ]
and satisfying

𝑤̈(𝑡) +𝐴𝑤(𝑡) = 0, 𝑡 ∈ (0, 𝑇 ), 𝑤(0) = 𝑢0, 𝑤̇(0) = 𝑢1, (A.2)

where the spaces 𝑢0 and 𝑢1 reside in will be specified later. It is easily seen that (a) 𝑢0 = 𝑒𝑛, 𝑢1 = 0 yields
𝑤(𝑡) = cos

(︀√
𝜆𝑛𝑡
)︀
𝑒𝑛 and (b) 𝑢0 = 0 and 𝑢1 = 𝑒𝑛 gives rise to 𝑤(𝑡) = 𝜆

−1/2
𝑛 sin

(︀√
𝜆𝑛𝑡
)︀
𝑒𝑛.

We can now express the general solution of (A.2) as a series of solutions of these special types and prove the
following theorem.

Theorem A.2 (Homogeneous wave equation). Let 𝑠 ∈ R≥0, 𝑢0 ∈ 𝐻𝑠 and 𝑢1 ∈ 𝐻𝑠−1. Then (A.2) admits a
unique solution 𝑤 ∈ 𝒞𝑠, see (2.9).

Proof. Uniqueness: Let 𝑤 ∈ 𝒞𝑠 be a solution of (A.2), then 𝑤(𝑡) ∈ 𝐻 for all 𝑡 ∈ [0, 𝑇 ]. Set 𝑤𝑛(𝑡) := ⟨𝑤(𝑡), 𝑒𝑛⟩ =
(𝑤(𝑡), 𝑒𝑛)𝐻 for 𝑛 ∈ N and 𝑡 ∈ [0, 𝑇 ]. Since 𝑤 ∈ 𝒞𝑠, in particular 𝑤̈(𝑡) ∈ 𝐻𝑠−2, we get by 𝑒𝑛 ∈ 𝐷(𝐴) = 𝐻2 the
fact 𝑤𝑛 ∈ 𝐶2([0, 𝑇 ]) with derivative 𝑤̈𝑛(𝑡) = ⟨𝑤̈(𝑡), 𝑒𝑛⟩ = −⟨𝐴𝑤(𝑡), 𝑒𝑛⟩ = −

∑︀∞
𝑘=1 𝜆𝑘(𝑤(𝑡), 𝑒𝑘)𝐻⟨𝑒𝑘, 𝑒𝑛⟩ =

−𝜆𝑛(𝑤(𝑡), 𝑒𝑛)𝐻 = −𝜆𝑛𝑤𝑛(𝑡), 𝑡 ∈ (0, 𝑇 ), and initial values 𝑤𝑛(0) = (𝑤(0), 𝑒𝑛)𝐻 = (𝑢0, 𝑒𝑛)𝐻 , 𝑤̇𝑛(0) =
⟨𝑤̇(0), 𝑒𝑛⟩ = ⟨𝑢1, 𝑒𝑛⟩. This is an initial value problem of a second order linear ode with the unique solution

𝑤𝑛(𝑡) = cos
(︁√︀

𝜆𝑛𝑡
)︁

(𝑢0, 𝑒𝑛)𝐻 + 𝜆−1/2
𝑛 sin

(︁√︀
𝜆𝑛𝑡
)︁
⟨𝑢1, 𝑒𝑛⟩, (A.3)

which is easily verified. Since

𝑤(𝑡) =
∞∑︁

𝑛=1

𝑤𝑛(𝑡)𝑒𝑛 (A.4)

is the unique expansion of 𝑤(𝑡) in 𝐻 with respect to the orthonormal basis {𝑒𝑛 : 𝑛 ∈ N}, the uniqueness state-
ment has been proved.
Existence: we now define 𝑤𝑛(𝑡) by (A.3) and (A.4). Then, for all 𝑡 ∈ [0, 𝑇 ],

‖𝑤(𝑡)‖2𝑠 ≤ 2
∞∑︁

𝑛=1

𝜆𝑠
𝑛

⃒⃒⃒
cos
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛

⃒⃒⃒
sin
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|⟨𝑢1, 𝑒𝑛⟩|2

≤ 2
∞∑︁

𝑛=1

𝜆𝑠
𝑛 |(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 |⟨𝑢1, 𝑒𝑛⟩|2 = 2 ‖𝑢0‖2𝑠 + 2 ‖𝑢1‖2𝑠−1 <∞,

uniformly in 𝑡 ∈ [0, 𝑇 ], so that 𝑤 ∈ 𝐶([0, 𝑇 ];𝐻𝑠). Next

‖𝑤̇(𝑡)‖2𝑠−1 ≤ 2
∞∑︁

𝑛=1

𝜆𝑠−1
𝑛 𝜆𝑛

⃒⃒⃒
sin
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 𝜆−1

𝑛 𝜆𝑛

⃒⃒⃒
cos
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|⟨𝑢1, 𝑒𝑛⟩|2

≤ 2
∞∑︁

𝑛=1

𝜆𝑠
𝑛 |(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 |⟨𝑢1, 𝑒𝑛⟩|2 = 2 ‖𝑢0‖2𝑠 + 2 ‖𝑢1‖2𝑠−1 <∞,

so that 𝑤 ∈ 𝐶1
(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
and similarly

‖𝑤̈(𝑡)‖2𝑠−2 ≤ 2
∞∑︁

𝑛=1

𝜆𝑠−2
𝑛 𝜆2

𝑛

⃒⃒⃒
cos
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−2
𝑛 𝜆−1

𝑛 𝜆2
𝑛

⃒⃒⃒
sin
(︁
𝑡
√︀
𝜆𝑛

)︁⃒⃒⃒2
|⟨𝑢1, 𝑒𝑛⟩|2

≤ 2
∞∑︁

𝑛=1

𝜆𝑠
𝑛 |(𝑢0, 𝑒𝑛)𝐻 |2 + 2

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 |⟨𝑢1, 𝑒𝑛⟩|2 = 2 ‖𝑢0‖2𝑠 + 2 ‖𝑢1‖2𝑠−1 <∞,
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which shows that 𝑤 ∈ 𝐶2
(︀
[0, 𝑇 ];𝐻𝑠−2

)︀
. We conclude that 𝑤 ∈ 𝒞𝑠. Finally, we have 𝑤̈(𝑡) =

∑︀∞
𝑛=1 𝑤̈𝑛(𝑡)𝑒𝑛 =∑︀∞

𝑛=1 𝑤𝑛(𝑡)𝜆𝑛𝑒𝑛 = −𝐴𝑤(𝑡) by definition of 𝐴. In addition, 𝑤(0) =
∑︀∞

𝑛=1(𝑢0, 𝑒𝑛)𝐻𝑒𝑛 = 𝑢0 and 𝑤̇(0) =∑︀∞
𝑛=1⟨𝑢1, 𝑒𝑛⟩ 𝑒𝑛 = 𝑢1. This shows that 𝑤 solves (A.2), and we have proved existence of solutions. �

We are now in the position to prove Theorem 2.2 for the wave equation with inhomogeneous right-hand side.

Proof of Theorem 2.2. Since the difference of two solutions of (2.8) is a solution of the homogeneous problem
(A.2), uniqueness follows from Theorem A.2. Moreover, since the homogeneous problem has a solution, in order
to prove existence for (2.8), we may and will assume that 𝑢0 = 𝑢1 = 0.

Next, we set 𝑓𝑛(𝑡) := ⟨𝑓(𝑡), 𝑒𝑛⟩, which is well-defined since 𝑒𝑛 ∈ 𝐷(𝐴) = 𝐻2 and 𝑓(𝑡) ∈ 𝐻𝑠−1, 𝑠 ≥ 0. Then,
𝑓𝑛 ∈ 𝐶([0, 𝑇 ]). We set 𝑤𝑛(𝑡) = 𝜆

−1/2
𝑛

∫︀ 𝑡

0
sin
(︀√
𝜆𝑛(𝑡− 𝜏)

)︀
𝑓𝑛(𝜏) d𝜏 , and 𝑤(𝑡) :=

∑︀∞
𝑛=1 𝑤𝑛(𝑡) 𝑒𝑛. By Hölder’s

inequality, we have, for all 𝑡 ∈ [0, 𝑇 ]

𝜆𝑠
𝑛 𝑤𝑛(𝑡)2 ≤ 𝜆𝑠−1

𝑛

∫︁ 𝑇

0

sin
(︁√︀

𝜆𝑛(𝑡− 𝜏)
)︁2

d𝜏
∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏 ≤ 𝑇𝜆𝑠−1
𝑛

∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏,

so that

‖𝑤(𝑡)‖2𝑠 ≤ 𝑇

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛

∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏 = 𝑇

∫︁ 𝑇

0

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 𝑓𝑛(𝜏)2 d𝜏 = 𝑇

∫︁ 𝑇

0

‖𝑓(𝜏)‖2𝑠−1 d𝜏,

which is finite uniformly in 𝑡 ∈ [0, 𝑇 ] since 𝑓 ∈ 𝐶
(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
, so that 𝑤 ∈ 𝐶([0, 𝑇 ];𝐻𝑠). Next, we note that

𝑤̇𝑛(𝑡) =
∫︀ 𝑡

0
cos
(︀√
𝜆𝑛(𝑡− 𝑠)

)︀
𝑓𝑛(𝑠) d𝑠, so that similar as above

𝜆𝑠−1
𝑛 𝑤𝑛(𝑡)2 ≤ 𝜆𝑠−1

𝑛

∫︁ 𝑇

0

cos
(︁√︀

𝜆𝑛(𝑡− 𝜏)
)︁2

d𝜏
∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏 ≤ 𝑇𝜆𝑠−1
𝑛

∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏,

which yields

‖𝑤̇(𝑡)‖2𝑠−1≤ 𝑇

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛

∫︁ 𝑇

0

𝑓𝑛(𝜏)2 d𝜏 = 𝑇

∫︁ 𝑇

0

∞∑︁
𝑛=1

𝜆𝑠−1
𝑛 𝑓𝑛(𝜏)2 d𝜏 = 𝑇

∫︁ 𝑇

0

‖𝑓(𝜏)‖2𝑠−1 d𝜏,

which again is finite uniformly in 𝑡 ∈ [0, 𝑇 ], so that 𝑤 ∈ 𝐶1
(︀
[0, 𝑇 ];𝐻𝑠−1

)︀
. In order to prove 𝑤 ∈ 𝐶2

(︀
[0, 𝑇 ];𝐻𝑠−2

)︀
(and thus 𝑤 ∈ 𝒞𝑠), we note that 𝑤̈𝑛 + 𝜆𝑛 𝑤𝑛 = 𝑓𝑛, 𝑤𝑛(0) = 𝑤̇𝑛(0) = 0. Hence,

‖𝑤̈(𝑡)‖2𝑠−2 ≤ 2
∞∑︁

𝑛=1

𝜆𝑠−2
𝑛 𝜆2

𝑛𝑤𝑛(𝑡)2 + 2
∞∑︁

𝑛=1

𝜆𝑠−2
𝑛 𝑓𝑛(𝑡)2 = 2 ‖𝑤(𝑡)‖2𝑠 + 2 ‖𝑓(𝑡)‖2𝑠−2 <∞

uniformly in 𝑡 ∈ [0, 𝑇 ], so that 𝑤 ∈ 𝐶2
(︀
[0, 𝑇 ];𝐻𝑠−2

)︀
. Finally

𝑤̈(𝑡) =
∞∑︁

𝑛=1

⟨𝑤̈𝑛(𝑡), 𝑒𝑛⟩ 𝑒𝑛 = −
∞∑︁

𝑛=1

𝜆𝑛 ⟨𝑤𝑛(𝑡), 𝑒𝑛⟩ 𝑒𝑛 +
∞∑︁

𝑛=1

⟨𝑓𝑛(𝑡), 𝑒𝑛⟩ 𝑒𝑛 = −
∞∑︁

𝑛=1

𝜆𝑛 (𝑤𝑛(𝑡), 𝑒𝑛)𝐻 𝑒𝑛 + 𝑓(𝑡)

= −𝐴𝑤(𝑡) + 𝑓(𝑡)

for all 𝑡 ∈ (0, 𝑇 ). Since 𝑤𝑛(0) = 0 = 𝑤̇𝑛(0), we obtain 𝑤(0) = 𝑤̇(0) = 0, so that 𝑤 solves (2.8) for 𝑢0 = 𝑢1 = 0,
which concludes the proof. �
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