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Creation of a UX index to design human tasks and workstations
Fabio Grandia, Margherita Peruzzini �a, Sara Cavallaroa, Elisa Pratia and Marcello Pellicciari �b

aDepartment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy; bDepartment of Sciences and Methods for
Engineering, University of Modena and Reggio Emilia, Modena, Italy

ABSTRACT
Successful interaction with complex processes, like those in the modern factory, is based on the
system’s ability to satisfy the user needs during human tasks, mainly related to performances,
physical comfort, usability, accessibility, visibility, and mental workload. However, the ‘real’ user
perception is hidden and usually difficult to detect. User eXperience (UX) is a useful concept related
to subjective perceptions and responses that result from the interaction with a product, system or
process, including users’ emotions, beliefs, preferences, perceptions, physical and psychological
responses, behaviors and accomplishments that occur before, during and after use. The paper
proposes the creation of a User eXperience Index (UXI) to assess the quality of human-system
interaction during job tasks and, consequently, evaluate both process and workstation. �The
proposed approach has been applied to improve the design of assembly human tasks, using
a virtual simulated case study focusing on tractor assembly. Tests with users, with different levels of
expertise, allowed us to validate the proposed approach and to optimize the assembly task
sequence. Results showed how the proposed UXI can validly objectify the workers’ experience
and can be validly used to improve the design of human tasks.�
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1. Introduction
Design of complex systems has to take into account
numerous requirements, merging both technical and
social aspects, according to a typically transdisciplin-
ary approach (Wognum et al. 2018): from engineering
issues like functionality and performance, to user
requirements, business aspects, until government
regulations. Indeed, systems have to work properly,
but also satisfy the users’ needs during the task execu-
tion. The introduction of human factors (HF) in engi-
neering purposely aims at considering both technical
and social issues in the development of complex
systems, including the human perspective into engi-
neering design (Peruzzini and Pellicciari 2017).
Indeed, HF engineering (HFE) is a multidisciplinary
science that involves different disciplines (e.g. psy-
chology, anthropometry, biomechanics, anatomy,
physiology, psychophysics) all related to the study of
the interaction between humans and the surrounding
environment. HFE suggests starting from the study of
the characteristics, capabilities and limits of the users,
and applies them to the design of a human-centered
system as well as to the evaluation of the human-
machine interaction. Human-centered approaches

have been firstly defined and adopted for product
and interface design, but it is fundamental also in

working systems’ design in order to guarantee the
best possible work conditions, and consequently,
the best performance.

This approach is valid also in the modern factories;
despite automation and robots growing, human work
still represents the most valuable asset of every com-
pany. Indeed, in most cases, only human manual tasks
can guarantee high levels of flexibility, scalability and
cognitive load that are fundamental in modern man-
ufacturing processes, as well as in high-quality and
personalized production. To promote humans’ roles,
it is then important to understand the workers’ experi-
ence and to make the factory adapt their organisation
and production systems consequently (Peruzzini,
Grandi, and Pellicciari 2020).

An important aspect of any type of collaboration is
interaction. Interaction strongly depends on the com-
munication flow between the user and the system,
and the generated experience. As a consequence, the
design of proper interfaces and workplaces is crucial
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for high-quality interaction processes. A successful
human-system interaction can be guaranteed by ana-
lyzing the features of machines, equipment and work-
ers in order to combine human skills with system
features to carry out the tasks in the most efficient
and effective way. On one hand, the operator can
inform the system about its status and can provide
some inputs; on the other hand, supporting systems
and interfaces must provide clear feedback, generat-
ing an immediate comprehension and data interpre-
tation, helping workers in their job. This new
perspective brings to rethink workplaces and working
tasks, which require new approaches and dedicated
methods.

Moreover, radical changes are affecting modern
manufacturing processes. First of all, digitization is
changing the manner in which goods are designed
and produced. Secondly, the conditions where the
operators work are suffering from time pressure and
high complexity. These trends are a challenge but also
present an opportunity for organizations to develop
smart, human-centred workspaces able to improve
the working conditions as well as the workers’ well-
being. In this direction, transdisciplinary engineering
(TE) methods can be successfully applied to solve
complex problems linked to digital manufacturing
(Rauch et al. 2018). This issue incorporates examples
and applications of transdisciplinary approaches
including digital knowledge management, digital
prototyping, virtual simulation, collaborative prac-
tices and methods to include HF within the factory
process design. According to TE, different methodol-
ogies are required to bridge the gaps between tech-
nical and social sciences. They will bring the needed
intelligence into the shop floor required to provide
factories with flexible and adaptive behaviours. UX
design is one of the methods that can be used to
move attention from systems to people inside the
factory and to include people from factories into
design processes. Next to different methodologies,
technologies like digital manufacturing and virtual
simulation can help engineers and technicians to
anticipate critical conditions and to envisage possible
solutions.

One of the most human-intensive processes in
manufacturing is assembly. Indeed, the final assembly
of complex products like vehicles is still done manu-
ally or in a semi-automated way particularly for low
volume productions or high-volume productions with

customized variants (Weidner, Kong, and Wulfsberg
2013). In both scenarios, workers have to deal with an
increased effort, both physical and cognitive. During
the design of assembly workplaces, engineers have to
apply a transversal, transdisciplinary knowledge com-
bining different topics in order to avoid design errors,
with a special consideration of work safety: from
mechanical design, to physics, materials technology,
process management, to ergonomics. Innovative
approaches like UX design and virtual prototyping
could effectively help designing modern manufactur-
ing workplaces, solving problems related to their
complexity. In particular, Virtual Reality (VR) has
been proved to have a real potential in improving
workstation design for different purposes, including
assembly process design and validation (Grajewski
et al. 2013). Indeed, VR can include users in the valida-
tion of human-centered workplaces before their reali-
zation, considering both the quality of working
conditions and user performance. As a result, the
digital transformation does not only imply a mere
technological advancement, but also a renewed
attention to the people. However, only in a few
cases was there a clear understanding of human-
system interaction and a real planning of human
activities, based on the analysis of the generated UX.
It is due also to the lack of structured methods to
measure and objectify UX during virtual simulations.

This paper presents a transdisciplinary approach to
improve workplace design, based on the collection of
postural, physiological, performance and subjective
data during VR simulations for the analysis of the
human-system interaction quality. Postural data con-
sists of analysis of main anthropometric human para-
meters; physiological data is based on heart rate
parameters and eye pupil dilation; performance data
is based on time to accomplish the tasks; and finally
subjective data is based on the perceived workload
assessment. Such an approach has been specifically
defined for industrial assembly processes, but it is
pretty general and applicable also to different contexts.

The research focuses on the design of the assembly
process of an after-treatment system for tractors. It is
a complex activity, carried out manually due to high
product customization and the high precision
required. The assembly procedure has been analyzed
and replicated by VR simulations involving real users.
During simulation, the proposed protocol analysis has
been applied to define the UXI and to validate the
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best design solutions. The experimental data confirms
how the proposed method is able to objectify UX and
graphically represent the generated UX to support
engineers to design the workplace and the assembly
tasks.

The paper is structured as follows: section 2 refers
to the research background and deepens the role of
VR simulation and design as well as the importance of
adopting UX-based design methods; section 3 pre-
sents the research approach and how to define the
UXI; section 4 describes the experimental testing on
the industrial case; finally, section 5 contains the con-
clusions and future works.

2. Research background

HFE aims at ensuring human comfort and safety, and
consequently improving global work performance.
Indeed, there are many factors, both physical and
cognitive, that affect the users’ performance and the
quality of manufacturing processes: from physical
workload, due to uncomfortable postures, to task
complexity, overload of information, or time pres-
sure (Peruzzini et al. 2018�; Biondi et al. 2020; Young
et al. 2015). Cognitive workload analysis is more
frequently used in complex human-interaction sys-
tems in which human errors have a crucial impor-
tance, such as railways and aerospace fields (Krehl
and Balfe 2014; Alaimo et al. 2020). Workload can be
defined in terms of experienced load; it is not only
task-specific, but also person-specific (Rouse,
Edwards, and Hammer 1993). It means that the
response to the same stimuli is not equal among
different users, since every user will reply according
to his/her own capabilities. Therefore, workload
depends upon the individual, depending on the
interaction between the user or operator and the
task structure. Task complexity increases with the
increase in the number of processing stages that
are required to perform a task and influences the
amount of effort that is required by the individual for
task performance. The perceived experience is
dependent upon user state and context, as well as
user capacity and allocation strategy of resource,
that differ from experts and novices (Wickens et al.
2015). In this direction, analysis of the UX allows
taking into account the users’ variability, focusing
on the user’s personal perceptions and responses
that include emotions, beliefs, preferences,

perceptions, physical and psychological responses,
behaviours and accomplishments. UX is not only
subjective, but also strongly depending on the work-
space features, and dynamic as it can change along
the lifecycle, depending on what occurs before, dur-
ing and after use (International Organization for
Standardization 2019).

The concept of UX has been defined in product
design, firstly considering the overall experience of
a person using a product such as a website or
computer application, especially in terms of how
easy or pleasing it is to use (Hassenzahl and
Tractinsky 2006). However, UX is a strange phenom-
enon: from product interaction it readily moved to
technology assessment, from traditional usability to
beauty, hedonic, affective or experiential aspects of
technology use. In this context, it has been largely
applied to human-computer interaction (HCI) and,
more generally, to human-system interaction. More
recently, it has been also applied to define specific
evaluation models for manufacturing processes and
tasks (Peruzzini and Pellicciari 2018): they consid-
ered both behavioural and cognitive aspects in
executing manufacturing tasks to estimate the UX
impact on sustainability for a certain product and its
related processes. More generally, during manufac-
turing tasks it can be stated that UX could be ana-
lysed by a set of objective parameters. For instance,
the analysis of the postures assumed during the
interaction can express the level of postural com-
fort. In addition, interaction data such as time to
accomplish the tasks, errors, requests of assistance,
number of actions or clicks on an interface, are
important to understand the users’ actions and
reactions and to complete the UX analysis including
the interaction with controls and equipment.
Moreover, measuring the user’s physiological
response during task execution allows creating
knowledge about how he/she is interacting with
an industrial machine, interface or equipment,
thanks to objective data (Peruzzini, Grandi, and
Pellicciari 2018). Such knowledge could be used to
design human-centered, ergonomic, and more
usable systems.

As far as the postural comfort is concerned, there
are several well-known methods in literature that can
be applied also in a wider UX perspective, focusing on
different types of human actions. Such methods are
mainly based on user observation and analysis of
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anthropometric data and joint angles. For instance,
the National Institute of Occupational Safety and
Health (NIOSH) allows measuring the user parameters
relating to the level of musculoskeletal comfort con-
sidering also the intensity, frequency, and duration of
the particular task (Dempsey 2002). There are also
specific methods, to be used according to the specific
context of use and type of tasks: Ovako Working
posture Analysis System (OWAS) (Karhu et al. 1981),
Rapid Upper Limb Assessment (RULA) (McAtamney
and Nigel Corlett 1993), Rapid Entire Body
Assessment (REBA) (McAtamney and Hignett 2004),
or the most recent Workplace Ergonomic Risk
Assessment (WERA) (Rahman, Rani, and Rohani
2011). More generally, single joint angles of the
diverse body parts can be analysed and compared
with a set of predefined comfort angles, according
to the Dreyfuss 3D study (Tilley 2001). Such comfort
values have been defined from a variety of sources,
from academic and NASA studies, to evaluate the
range of comfortable bending of every joint for spe-
cific tasks (e.g. driving a machine in a determined
position, working with upper arms on a table, seating
in front of a computer). About ergonomic analysis,
traditional practice is based on user observation and
paper-based or excel-based checklists. In the last ten
years, ergonomic methods have been gradually intro-
duced also in process modelling systems and digital
manufacturing platforms (e.g. Siemens Jack, 3DS
Delmia) to fasten physical ergonomic analysis. Such
tools can validly support the creation of human-
centred virtual simulations to improve ergonomics
of the workstation and more generally the social sus-
tainability of human tasks by enhancing system
design and improving its serviceability, thanks to vir-
tual mock-ups (Peruzzini et al. 2017).

As far as interaction analysis, a useful investigation
technique is Video Interaction Analysis (VIA) (Jordan
and Henderson 1995): it is an interdisciplinary method
for empirical investigation of the interaction of
human beings with each other and with objects in
their environment, based on recording sessions of
task execution and expert evaluation of what hap-
pened, facilitating data collection. It is low-cost, easy
to perform, and validly supports ergonomic analysis
of human postures, choosing the most proper ergo-
nomic methods. VIA can be used in a variety of con-
texts, analysing interaction with interfaces, systems,
as well as workstations. It has been proved to be

a valid method to collect data about human interac-
tion also at the shop floor, as well as to include
ergonomic aspects and work performance in the ana-
lysis and understanding of human-system interaction
during manual assembly work (Engström and Medbo
1997). VIA is also useful to collect performance mea-
sures by observing the user ability to perform the task
at an acceptable and safe manner: these measures
can focus on both primary and secondary tasks (e.g.
driving and controlling some machine features; hand-
ling parts and taking to someone else) and monitor-
ing time, errors, number of actions required.
Moreover, it may also consider how performance on
the primary task is affected by the introduction of
a secondary task, and the related impact on the per-
formance. The basic idea underlying the use of per-
formance measures is that an increase in workload
may be accompanied by a decrease in performance
efficiency. Today, VIA is generally recognized as
a transdisciplinary technique to study human interac-
tion in different fields, from medicine, to sociology,
psychology, until manufacturing processes and
human-robot interaction (Kissmann 2009).

About physiological analysis, it is based on monitor-
ing biomedical signals, such as cerebral, muscular,
cardiovascular and eye activity indicative of the activa-
tion of the nervous system. The basic assumption of
physiological measures is that as workload varies
(increases or decreases), operators invest a different
(more or less) effort to keep performance at an accep-
table level (Kramer and Weber 2000). Such change can
be detected by biomedical signals’ variation. However,
for every specific context, it is necessary to define
those human parameters that are relevant to detect
stressful conditions or risky activities. The scientific
literature review revealed the most reliable techniques
to be used to measure workload, and consequently
UX: electrocardiography (ECG), electroencephalogra-
phy (EEG), and electro- oculography (EOG). ECG-
based techniques record the heart’s electrical activity
and provide two main indicators which have been
shown to be sensitive to mental workload: Heart Rate
(HR) and Heart Rate Variability (HRV). HR is defined as
the number of heart beats per minute, while HRV is
defined as the temporal variation between sequences
of consecutive heart beats. Results of recent studies
seem to suggest that these parameters may be used to
detect changes in workload during several activity
executions, such as driving (Peruzzini, Tonietti, and
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Iani 2019a), assembly (Nardolillo, Baghdadi, and
Cavuoto 2017) and precision tasks (Tsao et al. 2020)
in modern manufacturing context (Argyle et al. 2021).
Nowadays, ECG-based data measuring is quite simple
and cheap thanks to low-intrusive and low-cost wear-
able sensors, like wristbands or chest bands, with the
aim to detect non-normal conditions during task
execution. Previous research showed the correlation
between HR and HRV with the physical and mental
workload (Mulder et al. 2004). EEG-based techniques
record frequency bands and even-related brain poten-
tials. They are time-locked responses to specific events,
and their latency and polarity have been shown to
reflect specific perceptual, motor and cognitive pro-
cesses under different conditions (Brookhuis and de
Waard 2010). However, EEG-based data recording pro-
cedures are complex, and the methodology is quite
intrusive, and can hardly be used on the field to moni-
tor users during real task execution. EOG-based data
are based on recording the electrical potential differ-
ence between the cornea and the retina of a human
eye, which can be used to monitor users’ alertness
level (Hu and Zheng 2009). Generally, variation in
pupil dilatation (PD) can detect changes in the indivi-
dual subject to stress, so that an increase in pupil size
is caused by fatigue conditions (Wenhui Liao et al.
2006). In addition, the increase of the eye blink fre-
quency and latency, that can be deduced together
with PD analysis using an eye-tracker, can highlight
an increase in the human workload (Marquart, Cabrall,
and De Winter 2015). Based on eye activity recording
and analysis, PD can be defined during task execution
to provide information on the individual’s attention
source and stress (Martin, Cegarra, and Averty 2011;
Sharma and Gedeon 2012). It has been found that PD
changes under stress situations and can be measured
by the dilation mean value. Today, pupillometry and
electrooculography are well diffused, due to the
increased performance of eye-trackers, the improved
ergonomics of devices (e.g. glasses) and the gradual
cost reduction.

As UX is strongly individual, a complete evaluation
of the perceived UX needs to also include the sub-
jective impression. For this purpose, self-reported
questionnaires are frequently used before and after
task execution with two different purposes. Pre-
questionnaires aim at providing an ex-ante evaluation
of the users’ data, habits as well process knowledge
and level of expertise, in order to create a baseline to

properly interpret the analysis of objective data col-
lected during task execution. Post-questionnaires aim
at self-reporting the perceived level of comfort and
stress after task accomplishment, in order to rate the
perceived workload and properly assess the given
performance. There are different types of workload
assessments, using unidimensional or multidimen-
sional scales. Regarding the unidimensional scales,
the Modified Cooper-Harper Scale (MCH) and Overall
Workload Scale (OW) are useful as a screening tool to
identify potential workload issues (Hill et al. 1992).
Among self-reported multidimensional scales existing
in literature, NASA Task Load Index (NASA-TLX) and
Subjective Workload Assessment Technique (SWAT)
are widely used to provide a subjective, multidimen-
sional assessment of the perceived workload. In parti-
cular, NASA-TLX (Hart and Staveland 1988) evaluates
six aspects, namely: mental demands, physical
demands, temporal demands, performance, effort,
and frustration. It is applied to a variety of domains,
including aviation, railway sector, healthcare and
other complex socio-technical domains. It is charac-
terized by low-cost, high validity and, most impor-
tantly, lack of interference with on-going task
performance, as it is filled in at the end. As all sub-
jective measures, it presents some limitations, mostly
linked to the difficulty that individuals may encounter
when trying to quantify the mental effort invested in
a task.

The above-mentioned measures are usually col-
lected before, during and after task execution in real,
operative environments. In this way, they provide
a corrective UX analysis. Different protocols for
both physical and workload assessment have been
recently developed to comprehend how they can
affect user performance in different contexts: from
driving (Izquierdo-Reyes et al. 2018) and rail tasks
(Fowler et al. n.d.), until assembly and manufacturing
(Gregori et al. 2018). However, they aren’t able to
provide a unique, consolidated index to drive work-
space or workstation improvement. Moreover, such
approaches are not fully suitable for design purposes
since they provide a late, corrective UX assessment.
In order to support designers and engineers in
designing optimized human tasks and workstations,
such approaches should be anticipated during the
design phase. Recent examples of research works
which combine multiple aspects and methods in
the assessment of human comfort and wellbeing
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can be found in literature (Papetti et al. 2021;
Peruzzini, Tonietti, and Iani 2019a; Czerniak et al.
2021). They mainly combined physical, physiological
and subjective data to have an overall assessment of
the human conditions. However, they do not pro-
pose a consolidated index able to quantify the glo-
bal UX considering both cognitive and physical
issues.

In this direction, virtual simulation is an effec-
tive method to early detect design problems dur-
ing product development (Bordegoni and Ferrise
2013). More specifically, VR is nowadays being
regularly used in numerous industries to support
many different industrial processes and promote
human-centered design practices, from product
design (Makris et al. 2012), to industrial systems
design (Stark, Kind, and Neumeyer 2017), process
design (Peruzzini et al. 2020�), until training
(Pedram et al. 2020). In all cases, VR-based simula-
tions are useful to improve the design of human
tasks optimizing user comfort, task efficiency, and
related workload. The main advantage of VR is the
early virtual prototyping of the workspace and the
involvement of real users in testing the workspace
features, simulating interactions with the different
parts of the system. Different examples can be
found in literature demonstrating the utility of VR-
based simulation to support design practices, and
in particular user-centered design, from automo-
tive (Gong et al. 2020) to medicine (Javaid and
Haleem 2020), until product-service system design
(Bu et al. 2021). In addition, various studies have
recently demonstrated the benefits of VR simula-
tions to design ergonomic workstations (Caputo
et al. 2018; Peruzzini, Pellicciari, and Gadaleta
2019; Dimitrokalli et al. 2020). Only a few studies
have also implemented human monitoring
devices during VR-based simulations to deepen
the UX (Alam et al. 2017; Grandi et al. 2019).
However, also in this case, UX is not quantified
by a clear index.

3. The UX-based approach

3.1 The multidimensional UX analysis

The research approach is based on a multidimensional
UX analysis that integrates four classes of data to
objectify the UX and the perceived workload: postural,
physiological, performance and subjective. Postural
analysis focuses on the physical workload, physiologi-
cal data focuses on the assessment of mental work-
load, performance data gives a measure of the
efficiency and effectiveness of the interaction consid-
ering the execution time, and finally subjective data
provides an individual measure of the perceived work-
load, using the NASA-TLX questionnaire. In particular,
subjective data is used to weight the other values
collected by physical, physiological and performance
analysis, as defined by the following equations.

Postural analysis is based on the REBA method.
REBA provides a synthetic indicator to rapidly evalu-
ate the risk of work-related musculoskeletal disorders
(WRMSD) associated with the execution of certain job
tasks. It is particularly useful and indicated for indus-
trial tasks since it considers the entire body and uses
a systematic process to evaluate both upper and
lower body parts for biomechanical and risk analysis.
REBA analysis is carried out by video analysis (VIA).
Postural data can be extracted and analysed manually
by experts or automatically, using a motion analysis
system (e.g. (Altieri et al. 2020)). Moreover, users are
asked to fill in pre-questionnaires focusing on users’
demographic data (i.e. age, gender, height, weight)
and level of expertise in executing assembly tasks
(low experience, medium experience, high experi-
ence). For each user, gender, height and weight data
are used to define the specific user’s percentile
according to ANSUR database (Gordon et al. 2014).
This parameter is useful to guarantee that all repre-
sentative percentiles of a certain population are cov-
ered by the sample of users. In addition, experience
information will be used to compare final results
among users and to have average values among
users with the same level of expertise. From the pos-
tural data analysis, the REBA score parameter is calcu-
lated, for each user, considering the mean value of the
REBA score during the task simulation (REBA user),
while the minimum value (REBA min) is considered
as baseline. In order to normalize this parameter, the
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REBA range is extracted from the maximum value
during the assembly simulation for each user, to cal-
culate the Postural Comfort (PC) parameter as follows:

PC ¼
REBAuser � REBAmin
REBAmax � REBAmin

(1)

Physiological analysis is carried out by merging differ-
ent parameters, from ECG activity such as HR and HRV,
and from eye activity analysis, such as pupil diameter
(PD). ECG data can be easily collected by wearable
low-cost fitness belts or multi-parameters smart-
watches and are useful to detect postural and mental
stress conditions. Similarly, eye data can be collected
by eye tracking systems such as glasses, or embedded
into a HMD for VR/AR. Both data are collected during
task execution and post-processed after testing.
Before data monitoring, a rest phase of approximately
5 minutes is required in order to calculate the baseline
values of the physiological parameters. During this
phase, users are asked to watch a relaxing video,
standing in a comfort position. Baseline values are
then useful to calculate specific parameters. From
physiological data analysis, two parameters are
defined as Heart Activity (HA) and Pupil Activity (PA).
HA is calculated as follows:

HA ¼
HRuser � HRbaseline
HRmax � HRbaseline

(2)

where HR user is the mean value of the specific user’s
HR as recorded during the task simulation, HR baseline
is the mean HR value as recorded during the user’s
baseline phase, and HR max is the maximum HR value
as recorded for each user during the entire test.

Similarly, PA is calculated as follows:

PA ¼
PDuser � PDbaseline
PDmax � PDbaseline

(3)

where PD user is defined as the mean value of the
specific user’s PD as recorded during the task simula-
tion, PD baseline is the mean PD value as recorded
during the user’s baseline phase, and PD max is the
maximum PD value as recorded for each user during
the entire test.

Performance analysis is mainly based on recording
the time to accomplish the task, evaluating the opera-
tor performance. Time is collected from both video
analysis and VR simulation recording. About perfor-
mance analysis, the User Time (UT) parameter is cal-
culated considering the user time performance. The
time to accomplish the task is clocked for each user

(T user) and compared with the expert time (T expert)
accomplished by a senior assembly operator and the
longer time performed by the less experienced user
who performed the test (T max), as shown in the
following equation:

UT ¼
Tuser � Texpert
Tmax � Texpert

(4)

Finally, subjective data is collected by a post-
questionnaire based on NASA-TLX, providing
a subjective assessment of the perceived workload
according to six questions, for each user, on a 21-
graduations scale. For this study we considered the
Physical Demand judgment to weight the PC para-
meter, the Mental Demand judgment to weight the
PD parameter, the Frustration Level judgment to
weight the HA parameter, and finally the Overall
Performance judgment to weight the UT parameter.
Each judgment is then normalised to a 5-point scale
(e.g. judgements from 0 to 4,2 fall to 1, judgements
from 4,3 to 8,4 fall to 2, judgements from 8,5 to 12,6
fall to 3, judgements from 12,6 to 16,8 fall to 4, and
judgements from 16,8 to 21 fall to 5). According to
this, a set of weights ranging from 1 to 5 (where 1
means very positive score, 5 means very bad) can be
defined to take into account the user’s subjective
experience. The sum of the above-mentioned para-
meters, properly weighted as described, generates
the Weighted WorkLoad (WWL) summing both phy-
sical and cognitive aspects, as shown in equation (5):

WWL ¼ ω1 � HAþ ω2 � PAþ ω3 � PC þ ω4 � UT (5)

where, for each individual, ω1is the weight related to
HA as normalized judgment for the Frustration Level
of NASA-TLX questionnaire, ω2is the weight related to
PA as normalized judgment for the Mental Demand of
NASA-TLX questionnaire, ω3is the weight related to
PC as normalized judgment for the Physical Demand
of NASA-TLX questionnaire, and ω4is the weight
related to UT as normalized judgment for the Overall
Performance of NASA-TLX questionnaire.

The overall UXI score is calculated in percentage as
follows:

UXI ¼ 100% � WWL=20ð Þ � 100 (6)

A scale of UXI target values is defined as reference
targets to judge if the measured parameters can guar-
antee a positive UX. The research considered a set of
40 different design projects, developed in the last
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5 years by the University research group in collabora-
tion with companies, to define the acceptable level of
such an index to guarantee a good UX level.
Experience based on such studies made us define
the following ranges:

● Green mark (UXI up to 80%) = the UXI target is
guaranteed, good design!

● Yellow mark (UXI from 40% to 80%) = the UXI
target is close; design could be improved to
achieve the comfort level until the green mark;

● Red mark (UXI down to 40%) = the overall com-
fort is compromised, with risk of excessive phy-
sical and cognitive workload. Design could be
urgently improved.

Table 1 synthesizes the multidimensional analysis
proposed, presenting the classes of analysis consid-
ered, the related parameters and data collection strat-
egy, the adopted monitoring tools and the
parameters related to the UXI calculation. Such an
approach can guarantee to take into account the
main aspects characterizing the UX during job task
execution, merging both objective and subjective
data as well as physical and mental workload analysis.
The proposed approach is generic and could be
adopted to analyse UX both in physical and virtual
environments. In the specific work, it has been
applied using virtual simulation testing sessions, as
described in the following paragraph.

3.2 The VR set-up for UX analysis during virtual
simulations

In order to perform the proposed UX analysis dur-
ing virtual simulation, a VR set-up has been
defined to create an immersive, interactive

environment where users can manually execute
tasks, and contemporary can be monitored to col-
lect the necessary data as presented in Table 1. In
the specific research, the VR set-up combines sev-
eral technologies, integrating a HMD with a hand
tracking device to replicate a realistic interaction
experience within a consistent factory layout.
Moreover, human monitoring devices are inte-
grated in the simulations in order to extrapolate
objective data about the real user experience.
Finally, video analysis is used to retrieve human
postural data and carry out an expert-based pos-
tural assessment. More specifically, the VR set-up
consists of the following hardware and software
technologies:

● HTC Vive Pro Eye: HMD with dual-OLED displays
with a combined resolution of 2880 × 1600 pix-
els, equipped with 32 infrared sensors for 360-
degree tracking, a gyroscope, an accelerometer,
and a laser position sensor to track its position
with 6 DOF. The integrated eye tracking system is
used for eye data collection. In this study, four
base stations are used for a 360-degree tracking
into a 4 × 4 meters area, in which the user can
move freely;

● Leap Motion: controller with three infrared cam-
eras that allows the user’s hand gesture recogni-
tion in order to interact with objects in the virtual
scene with bare hands and create realistic virtual
hand gestures such as grasping or pinching. In
this study, the Leap Motion sensor is placed on
the centre of HTC Vive with a 3D-printed support;

● Zephyr Bioharness 3: physiological telemetry
device intended for human monitoring, defined
for fitness and medical purposes. The device

Table 1. Multidimensional analysis and data considered in the proposed UX-based approach.

Analysis Collected data Data collection strategy Monitoring tools
UXI related
parameters

Postural REBA (Rapid Entire Body
Assessment)
User percentile

VIA (Video Interaction Analysis)
Matching with posture ANSUR database

RGB cameras (e.g. GoPro)
Pre-questionnaires

PC (Postural
Comfort) eq.3

Physiological HR (Heart Rate) and
HRV (Heart Rate
Variability)
PD (Pupil Diameter)

Continuous monitoring during task execution using
wearable sensors

Biosensor (e.g. Zephyr BH3)
Eye tracking (e.g.
Tobii Glasses or embedded into
a VR HMD)

HA (Heart Activity)
eq.1
PA (Pupil
Activity) eq.2

Performance Time VIA (Video Interaction Analysis) RGB cameras (e.g. GoPro) and VR
simulation

UT (User Time) eq.4

Subjective Perceived workload NASA-TLX Post-questionnaires -
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consists of a chest strap and an electronic mod-
ule attached to the strap, able to collect different
data about heart activity, breathing, and posture;

● GoPro Hero+: RBG camera for user recording and
video analysis, useful for postural assessment
and time analysis;

● Unity 3D: cross-platform game engine developed
by Unity Technologies used to create VR envir-
onments and the interaction with objects in the
scene;

● Steam VR: software toolkit that manages the use
of HMD and other controllers and their tracking
into the virtual scene. During the simulation,
Steam VR streams the user position in Unity 3D
in order to perform the job tasks to be analysed;

● Leap Motion SDK: Unity plug-in that controls the
user hands and coordinates they with the HMD;

● Specific packages for HMD ET control: Unity
plug-ins to manage eye tracking and measure
pupil diameters (i.e. TobiiPro.SDK and
TobiiXRSDK);

● OmniSense Analysis: software for human moni-
toring data post-processing, such as heart rate,
heart rate variability and postural flexion.

Thanks to this equipment, the user can simulate an
assembly task acting with bare hands into a realistic,
immersive environment, moving freely into the virtual
workplace, grasping virtual objects and releasing
parts. The sense of touch is not implemented into
the proposed set-up, but it has been replaced by

visual feedback (e.g. grasped objects change colour,
interference is shown with arrows). This solution
makes the simulation environment cost-effective,
easy scalable to different cases, and easier to pro-
gram. During the simulation, the user wears the
HMD and the above-mentioned parameters (i.e. pos-
tural, physiological, performance and subjective) are
collected as defined by the adopted tools. The pro-
posed general framework for the UX assessment
within virtual simulations is presented in Figure 1.

Finally, in order to execute the proposed multidi-
mensional analysis as presented in 3.1 during virtual
testing with users, a 6-phase protocol analysis has
been defined to carry out tests with users, as shown
in Figure 2. It consists of the following steps:

● Phase 1: at the beginning, the user is asked to fill
in an anamnestic pre-questionnaire to collect
data about age, gender, height, weight and level
of expertise in executing assembly tasks. Gender,
height and weight data are used to define the
specific user’s percentile (according to ANSUR
database), while age and expertise information
allows to define the knowledge about the process
under investigation and find out any significant
deviation due to the user’s skills;

● Phase 2: the user is asked to wear the monitoring
tools and to stay relaxed for 5 minutes watching
a video, standing with arms along the body.
During this phase, physiological data are col-
lected in order to create a baseline for HR, HRV

Figure 1. UXI (User eXperience Index) framework for human-machine interaction analysis.
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and PD (heart rate and pupil diameter) to be
compared with recorded data collected during
the testing phase for data post-processing;

● Phase 3: users are asked to perform a specific
assembly task in a VR scenario. Simultaneously,
heart activity is registered by BH3 band while
pupil diameter is collected by the eye-tracking
system integrated in the HMD. Besides, GoPro is
used to record the user’s body postures and Leap
Motion records the time performance by elabor-
ating the user interaction with the objects in the
scene;

● Phase 4: after the simulation, users have to com-
pile a NASA-TLX questionnaire in order to under-
stand the effort and the perceived faithfulness of
the VR environment for UX purposes. These data
are used for the definition of the specific weights,
for each user, to be applied in the calculation of
the User eXperience index. NASA-TLX has been
integrated with a further question about the
user’s VR tools acceptance.

● Phase 5: data collected from pre-questionnaires
and adopted devices are post-processed in order
to obtain for each measured parameter a mean
value to compare with the baseline value
(phase 2).

● Phase 6: all the collected data are processed to
calculate UX evaluation indexes.

4. Experimental testing on an industrial case
study

4.1 The case study and user testing

The proposed approach has been applied to a real
industrial use case, focusing on a specific phase of the
assembly line of tractors. Tractor assembly is an inter-
esting process to study, since the complexity is similar
to automotive assembly, but it is usually characterized

by lower production quantities and higher personali-
zation and variants. As a result, the most part of the
tractor assembly line is executed manually by opera-
tors and only a few phases are generally supported by
automation and robots. In this context, workers’ ergo-
nomics is a relevant issue, also due to the hard tasks to
execute, both physically and mentally.

In particular, the research focuses on the hood
assembly of a medium-size agricultural machine (i.e.
the New Holland T5 Utility tractor commercialized by
CNH Industrial), which is currently a completely man-
ual procedure. This case provides a valuable example
of the adoption of the proposed approach and allows
showing how the UXI can be used to validate
a specific assembly sequence. The current task
sequence of the hood assembly, as considered in
this study, is detailed below and presented in 10
steps:

● Step 1: Pick up the hood from the conveyor with
a hoist;

● Step 2: Lower the hood with the hoist onto the
tractor body;

● Step 3: Climb the ladder and guide the hood with
hands in order to centre the four threaded pins in
the holes of the hood support bracket;

● Step 4: Go down the ladder and pick up n.2 bolts
from the box storage;

● Step 5: Climb the ladder and manually tacking
the bolts;

● Step 6: Go down the ladder and pick up n.2 nuts
from the box storage;

● Step 7: Climb the ladder and manually tacking
the nuts;

● Step 8: Go down the ladder and pick up electric
screwdriver from the trolley;

● Step 9: Climb the ladder and tighten the nuts
with the electric screwdriver;

Figure 2. Workflow of the proposed protocol analysis.
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● Step 10: Go down the ladder and place the elec-
tric screwdriver on the trolley.

Moreover, precise indications were submitted regard-
ing boundary conditions such as:

- Maximum hood’s opening angle of 50°;
- Hood collected from the right side of the tractor

body;
- N.1 operator per side to perform each operation.
The experimental study was developed at the

University Lab on the current task sequence with the
aim to validate the proposedmethod, in collaboration
with CNH Industrial. The final scope was to subse-
quently apply the proposed approach within the
company virtual Lab, to objectively measure the
human activity and have precise feedback to improve
the UX of the operators during assembly tasks, sup-
porting the definition of proper redesign actions.

Five users with different levels of expertise were
involved in the experimental tests. For each user,
physiological reference values were defined during
the baseline analysis. Data collected from all users
were analysed and synchronized. Each testing session
was structured as follows:

● Phase 1:
○ Pre-questionnaire (1 mins);

● Phase 2:
○ Monitoring tools wearing and tools set-up

(5 mins);
○ Tools calibration (5 mins);
○ Baseline in VR scenario standing relaxed

(5 mins);
● Phase 3:
○ Task execution according to the above-

mentioned 10 steps (5–7 mins, depending on
user performance);

● Phase 4:
○ Post-questionnaire (2 mins);

● Phase 5:
○ Data Post-processing

● Phase 6:
○ UXI calculation

About data post-processing, during the VR simula-
tion the eye tracker integrated in the HTC Vive gave a .
xml file as output that was converted into a .xlsx file
for the extraction of PD values. The PD baseline was

calculated averaging the initial 5 minutes values in
relax pose before starting the test. The OmniSense
Analysis software allowed the export of HR data dur-
ing the simulation in a .xlsx file format. Furthermore,
Excel was used for data post-processing and correla-
tion. Thanks to video analysis, it was possible to assess
the REBA average score during the virtual assembly
simulation, extracting the most critical postures.
Finally, to assess the user’s performance such as the
time to accomplish the overall process,
a chronometer in the virtual scene was implemented,
enabling the start button with the Leap Motion con-
troller. All these parameters were therefore consid-
ered as input of the UXI as the comfort final value,
calculated as indicated by equation (6). Moreover, the
use of post-questionnaires was found remarkably use-
ful, as they provide support to correct data interpreta-
tion. Indeed, the subjective impressions represented
a valid support to correctly judge the UX target value
taken during the simulation.

Figure 3 shows the virtual environment as imple-
mented in unity 3D to carry out the simulation.
Figure 4 presents how users are equipped with
human monitoring technologies, according to the
model presented in Figure 1. Finally, Figure 5 shows
test execution with users.

4.2 Experimental results and discussion

According to the proposed UX approach, both sub-
jective and objective data collected during tests with
users were elaborated, as Phase 5 and 6 of the testing
sessions. Parameter evaluation is shown in Table 2.
For each user, HA, PA, PC and UT parameters were
calculated according to the previous equations (from
1 to 4). In the same way, weights were extracted from
the post-questionnaires and normalized; in particular,
each weight was associated with one of the specific
calculated parameters, as shown in equations (5)
and (6).

On the basis of such data, a critical analysis can be
carried out. Generally, the analysis of physiological
parameters (HA and PA) and the relative weights
(ω1and ω2) showed a low physical demanding assem-
bly process. It means that the original process is not
particularly burdensome for the operators, promoting
visibility and reducing the physical stress. Indeed, all
PC parameters related to REBA scores showed a good
level of user comfort during the simulation, in
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Figure 3. Hood assembly virtual scenario created in Unity 3D.

Figure 4. User equipment for human monitoring during virtual simulation.
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particular for taller users (bigger percentiles). The
analysed procedure could be not highly comfortable
for shorter users (e.g. users no.1 and no. 5). About the
analysis of the UXI, user no.1 showed the lower result;
it was effectively pretty inexperienced with the
assembly process and unfamiliar with VR technolo-
gies, as demonstrated also by the performance
weight ðω4Þ and the performance parameter UT. On
the contrary, user no. 2 scored the higher UXI, as
demonstrated by data in Table 2. Finally, the last
row contains the overall UXI score (almost 68%), cal-
culated as the average value of UX on all users for the

assembly process analysed. Results obtained on the
investigated assembly process were analysed
together with the company design team to discuss
redesign actions thanks to design changes on both
the product and the workstation. In particular, the UXI
analysis revealed the operator’s difficulty to reach and
view the hood fixing points. The following redesigned
actions will focus on overcoming the main criticalities
identified by the design team thanks to the proposed
approach. This is a good way to define strategic rede-
sign actions to improve the overall UX.

Figure 5. VR-based testing with users: external view (A) and user view from the HMD (B).

Table 2. Parameters, weights and UXI for each user.
User 1 User 2 User 3 User 4 User 5

Recognized Percentile (ANSUR) 5 50 95 50 5
HA 0,376 0,265 0,198 0,535 0,368
PA 0,570 0,395 0,250 0,447 0,272
PC 0,667 0,556 0,444 0,556 0,667
UT 0,933 0,302 1,000 0,187 0,391
ω1 2,5 3,0 1,5 3,5 4,0
ω2 3,5 2,5 3,5 2,5 2,5
ω3 4,0 3,0 4,0 2,0 4,0
ω4 4,5 3,5 4,0 2,5 3,5
WWL 9,80 4,51 6,95 4,57 6,19
UXI 50,98 77,47 65,25 77,15 69,07
Average UXI on all users 67,98

Figure 6. UXI bar graph (A) and radar graph (B) for each user and comparison with average value.
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UXI results can be also analysed using a bar and
radar graphs, highlighting the UXI distribution on all
users. In particular, bar graphs (Figure 6A) are useful
to compare results and define how the average UXI is
positioned with respect to experimental data, where
the average UXI supports the understanding of the
global performance. In addition, the radar graph
(Figure 6B) can significantly reveal the precise situa-
tion of all users and each user contemporary, showing
how the average value originated. If scores are
located into the red area, it means that UX has to be
immediately improved and design changes are neces-
sary soon. If scores are located into the yellow area,
UX could be improved but the situation is not highly
critical. If scores are in the green area, UX is already
optimized. In the present study, the radar graph
showed that scores are situated in the yellow area: it
means that the design solution proposed is good but
further design changes could be adopted. Results
showed that, for all participants, the UXI is in the
yellow area; it means that the expert and non-expert
performance are comparable, but design changes
could improve the quality of work.

Although the good results achieved, the present
study has some limitations. Firstly, the proposed
method has been applied to a pretty simple and
short assembly procedure. It could be adopted to
more complex cases, also including a longer period
of time for human data collection. Secondly, the video
analysis to define the REBA postural parameter is
pretty simplified; it could be improved by introducing
specific techniques for human posture recognition
and ergonomic angles detection based on motion
capture (e.g. optical VICON tracking) to be used in
Lab, or RGB video analysis as proposed by [49] to be
used in the field. Thirdly, the number of users involved
in the preliminary testing is enough to detect usability
problems (Nielsen 1994) but not statistically relevant.
Future works will cover these issues.

5. Conclusion and future works

This paper presented a transdisciplinary approach
to support the design of assembly human tasks
based on a multidimensional UX analysis, combin-
ing different parameters and calculating a unique
index to express the quality of the interaction.
Such an approach has been defined as transdisci-
plinary as it includes both technical and social

aspects in the UX evaluation and involves people
from practice. Technical science concerns the
design of machines, interfaces and information sys-
tems. Social science assists in identifying the user
needs in order to design comfortable and safe
workplaces, combining several technologies and
integrating them as integral parts of a personnel
safety system to improve safety, maintain availabil-
ity, reduce errors and decrease the time needed for
scheduled or ad hoc interventions. About the soci-
etal impact, the presented methodology could
enhance the quality of the assembly procedures,
helping engineers and designers in detecting pos-
sible issues in advance and including human fac-
tors along the design process, and finally improve
the human wellbeing within the factories. The pro-
posed approach allows a holistic assessment of the
interaction quality and to find out specific correla-
tions between the collected parameters, thanks to
wearable and environmental sensors. Human mon-
itoring devices like an eye tracker and a biometric
wristband are used to collect physiological data,
such as Heart Rate (HR) and pupil diameter (PD);
external RGB cameras are used to support interac-
tion analysis and define a REBA score to assess the
quality of the postural comfort as well as collect
performance indicators, such as the time to accom-
plish the task; finally subjective assessment is col-
lected by proper post-test questionnaires to
measure the perceived workload, based on NASA-
TLX. This approach combines different branches of
knowledge in order to provide a unique index to
measure the global UX (namely UXI), according to
a transdisciplinary approach. The combination of
human monitoring and ergonomics methods
allowed the evaluation of the users’ physical com-
fort and mental workload. Such a method has been
applied to an industrial case, focusing on the
design of assembly human tasks and using VR-
based simulation testing sessions. Results showed
that UXI is able to validly objectify the UX and
quickly identify design optimization in terms of
reachability, visibility and performance. The com-
bined evaluation of mental and physical workload
could enhance the quality of the assembly process,
revealing possible issues before the physical imple-
mentation. Therefore, the UXI could be a useful
tool that provides rapid feedback during the
design stage. UXI is ready to be applied to various
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industrial cases: integrating more precise postural
analysis could be performed using motion capture
technologies, it could be used to improve the over-
all user assembly experience. Despite the first satis-
factory results, the UXI index has some limitations,
such as a considerable amount of time for data
post-processing and a perfectible postural analysis.

Future works will focus on including further physio-
logical parameters in the UXI definition, in order to
strengthen the UX analysis, such as the breathing rate
or the galvanic skin response, offered by low-cost, low-
intrusive devices. Furthermore, the monitoring set-up
could be improved, introducing less intrusive wearable
technologies to better match with industrial cases: for
instance, the biometric chest band could be replaced
by a smartwatch and a smartphone, with a low level of
intrusiveness. Moreover, postural analysis could be
improved by directly detecting the interested postural
angles and automatically defining the REBA score,
using a motion capture system in Lab or video analysis
based on 3 RGB cameras. Finally, the proposed
method could be further validated on more complex
and longer assembly tasks, involving a bigger sample
of users. The proposed approach could be also applied
to other contexts, with the aim to assess the final UX
(e.g. virtual training, on field manual tasks).
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