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Myobolica: a stochastic approach to estimate 
physiological muscle control variability 
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Abstract— The inherent redundancy of the 
musculoskeletal systems is traditionally solved by 
optimizing a cost function. This approach may not be correct 
to model non-adult or pathological populations likely to 
adopt a “non-optimal” motor control strategy. Over the 
years, various methods have been developed to address this 
limitation, such as the stochastic approach. A well-known 
implementation of this approach, Metabolica, samples a wide 
number of plausible solutions instead of searching for a 
single one, leveraging Bayesian statistics and Markov Chain 
Monte Carlo algorithm, yet allowing muscles to abruptly 
change their activation levels. To overcome this and other 
limitations, we developed a new implementation of the 
stochastic approach (Myobolica), adding constraints and 
parameters to ensure the identification of physiological 
solutions. The aim of this study was to evaluate Myobolica, 
and quantify the differences in terms of width of the solution 
band (muscle control variability) compared to Metabolica. To 
this end, both muscle forces and knee joint force solutions 
bands estimated by the two approaches were compared to 
one another, and against (i) the solution identified by static 
optimization and (ii) experimentally measured knee joint 
forces. The use of Myobolica led to a marked narrowing of 
the solution band compared to Metabolica. Furthermore, the 
Myobolica solutions well correlated with the experimental 
data (R2 = 0.92, RMSE = 0.3 BW), but not as much with the 
optimal solution (R2 = 0.82, RMSE = 0.63 BW). Additional 
analyses are required to confirm the findings and further 
improve this implementation.   
 

Index Terms— Suboptimal control, Muscle recruitment, 
Stochastic approach, Markov Chain Monte Carlo, OpenSim.  

I. INTRODUCTION 

EDUCTIONISM in biomechanics favors the separation 

between biomechanics and neurology of human 

movement. The number of muscles that the central 

nervous system may choose to produce the same 

movement is considerably higher than the number of degrees of 

freedom of a human body (defined by the body’s allowed 

movement); this discrepancy results in a redundancy situation 
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for the muscular system [1], where the muscle activation 

patterns that may be selected to reach the same goal are 

essentially endless. Traditionally, the biomechanics community 

tended to reduce the complexity of neuromuscular control with 

the assumption that among all possible control strategies that 

satisfy the physical and physiological constraints, the central 

nervous system will choose one minimizing some cost 

functions representative of a physiological criterion 

(reductionist approach) [2]. With this assumption, 

musculoskeletal dynamics models can predict the muscle 

activation patterns given measured kinematics plus ground 

reactions using inverse dynamics and static optimization [3]. 

Several studies have confirmed that this is an acceptable 

approximation for healthy adults who perform sub-maximal 

stereotypical tasks such as level walking [4], [5]. Unfortunately, 

much biomechanics research focuses on pathological subjects 

whose neuromuscular control deviates more or less 

significantly from this assumption (sub-optimal control). 

Several approaches have been proposed to overcome this 

limitation [6] such as electromyography(EMG)-based [7]–[10] 

and feedback-based approaches [11]. A different approach was 

proposed in [12], where the problem of constrained control was 

formulated in terms of Bayesian statistics, and a Markov Chain 

Monte Carlo (MCMC) algorithm was used to sample the 

solution space of all muscle activation patterns that satisfy the 

dynamic equilibrium and the tetanic limits. Instead of searching 

for an optimal solution, we sampled all possible solutions using 

a software implementation called Metabolica, originally 

developed for analyzing metabolic networks [13]. The 

advantage of this approach is that it does not rely on the EMG 

information and makes no assumption of synergies, thus 

considering also the least optimal muscle activation patterns. 
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The Metabolica approach was successfully used in studies 

where the question was how sub-optimal control could increase 

joint loading [14]–[17].  

However, Metabolica assumes that each instant of the 

locomotion cycle is independent of the others; the solution 

space is built assuming instantaneous equilibrium without 

concern about whether a muscle was already activated or not in 

the previous instant. However, this is not physiologically 

correct: a muscle cannot abruptly change its activation level 

(and therefore its force).  

The aim of this study was to evaluate whether the 

neuromuscular control variability predicted assuming as 

constraints only the equilibrium of forces and moments and the 

tetanic limit for each muscle (i.e., Metabolica approach [13]) 

changed (and to which extent) when the muscle force 

generation velocity was accounted for. We named this new 

approach Myobolica and hypothesized that it would narrow the 

solution band (compared to Metabolica), including only the 

more physiologically plausible estimates.  

The reader is referred to [18] for a mathematical dissertation on 

the Myobolica approach. 

 

II. MATERIAL AND METHODS 

A. Experimental data 

The experimental data used in this study, which include motion 

capture, ground reaction forces, and in vivo knee contact forces 

measured with an instrumented implant on an 83-year-old male 

subject, are part of the sixth Grand Challenge Competition 

dataset [19] In particular, the first available overground gait 

trial (DM_ngait_og3) was selected for our case study and 

processed to ensure that a full gait cycle was included, i.e. that 

the first and last frames corresponded to two consecutive right 

heel strikes on the force plate.  

 

B. Musculoskeletal model 

A personalized single-leg musculoskeletal model was 

employed to perform the simulations. The model, built off the 

available post-operative medical imaging data of the subject 

under study, was inherited from previous work [20] and 

included 5 bodies (pelvis, femur, patella, tibia, and foot), 11 

degrees of freedom (3 for the hip, 1 for the knee and the ankle, 

6 connecting the model to the ground) and 43 muscle-tendon 

actuators. 

 

C. OpenSim workflow – optimal solution 

The open-source software OpenSim (v4.1) [21] was used to 

estimate joint kinematics and kinetics, as well as the 

musculoskeletal parameters such as the muscle lever arms. The 

OpenSim’s static optimization tool was then employed to 

predict the ‘optimal’ and reference solution, i.e. set of muscle 

forces and activation patterns, that minimized the sum of 

squared muscle activations [22], henceforth referred to as 

optimal solution, and the resulting total knee joint contact 

forces (JCF).  

 

D. Stochastic approach 

Stochastic simulations were performed with Metabolica and 

Myobolica through MATLAB (v2021b), setting the number of 

solutions to be identified to 8×105. This number was deemed 

sufficient considering that in previous studies where Metabolica 

was employed such value was set to 1×105 and 2×105, 

respectively [12], [17]. 

Once the solutions had been generated, the knee JCFs were 

predicted by leveraging on the OpenSim API for MATLAB 

(similarly to what was done to compute the JCFs corresponding 

to the optimal solution).  

Of note, in Metabolica no manifold was applied, i.e., the 

solution space was not restricted, and the sampler could explore 

the entire space of solutions. 

The mathematical concepts behind Myobolica and the rationale 

and procedure to select the key parameters defining how it 

works (Table I) are summarized in the following sections. For 

a complete description of the mathematics behind Myobolica, 

we refer the reader to [18]. 

 

E. Myobolica – Equilibrium condition 

The Myobolica tool considers muscle forces as random 

variables based on observations on joint torques and muscle 

moment arms (1) and a priori information to constrain muscle 

forces (2): 

 

M = B × Fmus + ε (1) 

Fmin  ≤ Fmus ≤ Ftetanic (2) 

 

Where B is the matrix of muscle lever arms, M is the joint 

torques vector, Fmus is the unknown muscle forces vector 

bounded between its minimum value (Fmin) and maximum value 

(Ftetanic). The parameter ε models noise and uncertainties as 

Gaussian white noise: 

 

ε ~ N(0,  σ2In) (3) 

 

By adopting a Bayesian statistics methodology, Myobolica 

describes the unknown muscle forces vector as a posterior 

Probability Distribution Function (PDF): 

 

π(Fmus|M) ∝ πpr(Fmus)π(M|Fmus) (4) 

 

TABLE I 

MYOBOLICA PARAMETERS DEFINED FOR THIS CASE STUDY 
Parameter Value Description 

Samples 800000 Number of solutions to be identified 

Step analyzed 2nd Reduce the dependence on the optimal solution 
Sigma 0.12 Modeling of uncertainties in equilibrium equation 

Gamma 0.0022 Modeling muscle force development velocity control 
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Where π(Fmus|M) is the posterior PDF of the muscle forces, 

πpr(Fmus) is the prior PDF and π(M|Fmus) is the likelihood. 

Sigma (σ) is the parameter modeling noise and uncertainties in 

the equilibrium condition equation, and it represents the 

standard deviation of the Gaussian PDF in (3). To define a 

plausible range for the σ parameter we estimated the error ε (1) 

by propagating the experimental error of the instrumented knee 

prosthesis adopted in our example dataset [19]. 

 

F. Myobolica – Muscle force development velocity 
control 

The classical formulation for the Bayesian statistic (adopted in 

Metabolica) would assume that PDFs at different timeframes 

are mutually independent. This lacks physiological accuracy – 

due to the natural limits of the muscle activation velocity (and, 

as a result, of the muscle force development velocity); in other 

words, different timeframes cannot be mutually independent. 

To overcome this, in Myobolica, we modeled the concept of 

“yank”, which is the time derivative of a muscle force [23]. In 

particular, we defined the yank as a PDF: 

 

Fmus,t - Fmus,t-1 = ηt (5) 

ηt = N(0,  γ2) (6) 

 

Modeling the yank binding through this prior PDF – discussed 

in detail in [18] – allows us to compute a solution that keeps 

track of each simulation timeframe information. Notably, the 

sampling of longitudinal paths rather than single solutions 

(required to obtain solutions which respect the new yank 

constraint) is achieved through the Feynman-Kac model [24]. 

Briefly, the Feynman-Kac path formalism (developed for 

diffusion-type parabolic equations) introduces a probability 

distribution in the space of path over time and represents 

solutions as expectation of integrals over paths similarly to how 

in our modelling problem the muscle force posterior PDF is 

defined by the yank prior PDF [18]. 

Gamma (γ) represents the standard deviation of the gaussian 

PDF describing the yank variance (6). In particular, γ (which 

controls the yank) relates to an experimental parameter 

frequently measured or estimated in experimental muscle 

characterization studies: the rate of force development (RFD), 

at times reported as the rate of moment/torques development 

(RMD). The RFD describes the capacity of a muscle to rapidly 

generate force [25] and is measured in Newton per second [N/s] 

(or Nm/s, when derived from torques). The RFD is calculated 

during maximal voluntary isometric contraction tests (MVIC 

tests) of sports gestures for athlete’s performance evaluation or 

constrained to an instrumented chair in the clinical 

environment. Commonly, the parameter is estimated during the 

first 300-400 ms of the executed task [25] and clustered into 

shorter intervals. 

 

G. Myobolica – Consecutive steps analysis 

To run, Myobolica requires a first tentative solution (i) to 

compute an early value of the muscle force development 

velocity control and (ii) to define the initial conditions at the 

first timeframe of the simulation (the initial set of muscle 

forces).  

To limit the dependency of the Myobolica solutions on the 

tentative solution, which corresponds to the optimal solution 

from static optimization, we simulated two consecutive steps. 

More specifically, assuming that the kinematics variability 

between steps is little to negligible [26], the median muscle 

force patterns among the Myobolica solutions estimated after 

the first run were provided as tentative solutions for the 

simulation of the second step. In addition, the pool of plausible 

initial conditions to guide the initial sampling for the second 

step was set to the values of the Myobolica solutions at the last 

timeframe of the first step. 

Henceforth, with the term Myobolica solutions we refer to the 

solutions of the second step. 

 

H. Data Analysis 

A schematic summary of the work done in this paper is reported 

in Fig. 1. For both Myobolica and Metabolica, the resulting 

solution space (i.e. set of muscle forces) was initially sorted in 

ascending order to facilitate the identification of the minimum 

and maximum solutions, along with the 10th, 25th, 75th, and 90th 

percentiles as well as the median solution. Similarly, the 

estimated knee JCF profiles were first normalized to the 

subject’s body weight and then sorted in ascending order. 

The comparison between the results from Metabolica and 

Myobolica is performed employing descriptive statistics and 

similarity metrics (i.e., R2 and root mean square error - RMSE) 

as well as through the quantification of the range of variation 

(min to max solution), further complemented by a qualitative 

analysis.  

In addition, the Myobolica solution space was compared to the 

optimal solution and to the experimental knee JCFs (i) 

measuring the overlap (as percentage, throughout time), (ii) 

computing the R2 and RMSE, and (iii) comparing the ranges of 

variation.  

Fig. 1. Summary of the workflow done. Firstly, biomechanical 
parameters are extracted from the musculoskeletal model. Then, an 
implementation of the stochastic approach is executed (Myobolica or 
Metabolica). In the end, both implementations provide as output a 
band of plausible muscle forces, in turn used to compute a band of 
plausible knee JCF profiles. In Myobolica, σ and γ are parameters 
related to uncertainties modeling and the new “yank” constraint and 
the mutual independency among frames is reached through the 
Feynman-Kac model path sampling. 
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III. RESULTS 

For clarity and to keep the Results section concise, we hereby 

only report the results for a subset of muscles, i.e., triceps surae, 

vastii, and hamstrings (see Fig. 2). Additional comparisons and 

results may be found in the Appendix. 

Overall, the inclusion of an additional constraint (yank 

parameter) to control the force-generating capability of a 

muscle when exploring the solution space through a stochastic 

approach (i.e., Myobolica implementation) led to a significantly 

narrower solution band compared to the output from 

Metabolica (previous implementation of the stochastic 

approach where no manifold was applied and the solutions at 

consecutive frames were independent of one another, thus 

allowing for abrupt changes in muscle force). 

On average, the bandwidth (spectrum of solutions) across all 

modeled muscles was 659.4 N for Metabolica and 205.5 N for 

Myobolica (see Fig. 3). More specifically, for the soleus 

muscle, the force range estimated by Metabolica was 2385.7 N, 

compared to 415.3 N from Myobolica; for the vastus medialis 

1207.7 N compared to 180.2 N; for the medial gastrocnemius, 

1454.1 N compared to 371.7 N. 

Similarly, the spectrum of the knee JCFs – computed from the 

identified set of muscle forces – ranged from 0.45 BW to 2.9 

BW in Myobolica (see Fig. 4) and from 0.14 BW to 13.2 BW 

in Metabolica, with an average solution variability of 0.6 BW 

for Myobolica and 9.7 BW for Metabolica.  

From a qualitative assessment, for both approaches, the peak 

force was observed at around 55% of the gait cycle (in 

correspondence of the typical second characteristic peak of 

knee JCF force in a walking trial). The profiles of the solution 

spaces between Myobolica and Metabolica were similar in 

shape (R2 = 0.87, RMSE = 4.5 BW, between the medians of the 

two solution bands). In S.Fig.1 a comparison between muscle 

activation solution bands estimated by Myobolica and the 

experimental EMG signals is provided. 

Compared to the true value, i.e., data from the instrumented 

knee implant, the Myobolica solution band showed a high 

correlation level (R2 = 0.92 and RMSE = 0.3 BW, between 

Myobolica median solution and experimental JCF profile). 

Furthermore, the implant data were almost completely enclosed 

in the solution space identified by Myobolica (for 

approximately 72.8% of the gait cycle; see Fig. 5). 

By contrast, the knee JCF resulting from the optimal solution 

identified via the classical static optimization approach (Fig. 5, 

green line), thus hypothesizing optimal muscle control, was 

characterized by a first characteristic peak larger than the 

second characteristic peak (i.e., overall maximum identified 

around initial heel contact, at ~8% of the gait cycle, compared 

to ~55% in both the experimental data and the Myobolica 

solutions). Shape-wise, the optimal solution was not as similar 

to the Myobolica band of solutions as the implant data (i.e., R2 

= 0.82, RMSE = 0.63 BW, between the medians of Myobolica 

solutions band and the optimal solution), and fell mostly outside 

of it (i.e., 15.9% overlap across the gait cycle).  

 

IV. DISCUSSION 

The aim of this paper was twofold: to present the results of 

Myobolica, a tool to implement a stochastic approach to predict 

physiologically plausible muscle forces and activation patterns 

accounting for neuromuscular control variability while 

constraining the ability of muscles to rapidly generate force, 

and to compare the obtained variability to the variability 

predicted assuming as constraints only the equilibrium of forces 

and moments and the tetanic limit for each muscle (i.e., 

Metabolica). 

As hypothesized, introducing a term to discourage abrupt 

changes in muscle force led to a marked narrowing in the 

solution band (in terms of knee joint contact forces, from 13 

BW to 2.4 BW, Fig. 3 and Fig. 4), compared to results from 

Metabolica [12], [13]. While part of the solution space obtained 

with Metabolica may be considered physically plausible as the 

identified solutions satisfy both the dynamics of the system 

(equilibrium) and the tetanic limits of the muscles (i.e., 

maximal isometric force values), those same solutions may not 

be physiologically plausible. In fact, when the γ parameter (to 

control the yank) was introduced, a large portion of the 

Metabolica solution space was no longer explored (Fig. 4). This 

may suggest that even in a subject adopting a suboptimal 

control (such as the subject under study), some variability in 

neuromuscular control is physiological, but it may be less than 

previously hypothesized.  

In addition, the knee joint contact force profiles calculated from 

the solution space identified by Myobolica more closely 

approximated the experimental data from the instrumented 

Fig. 2. Muscle force solutions bands comparison between Myobolica 
(blue) and Metabolica (grey). The optimal solution is plotted in green. 
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implant. This may be reconducted to the higher muscle-co-

contraction resulted by Myobolica. The introduction of the γ 

and σ parameters to control the yank and the uncertainties in the 

equilibrium condition, respectively, had thus a twofold 

(positive) effect: to reduce the band of solutions and to enable 

more accurate predictions. Interestingly, the optimal solution 

(generated hypothesizing optimal muscle control – i.e., 

minimization of sum squared muscle activations) is close to but 

not comprised within the range of Myobolica solutions. This 

circumstance calls for further investigation. 

The authors are aware of the limitations of this work. For 

instance, the computational cost is non-negligible. While a 

single Myobolica solution (i.e., set of muscle forces and 

activations plus the resulting knee joint contact force) can be 

generated in as little as 0.3 seconds, the overall time required to 

compute the whole band of solutions (e.g., 8×105 solutions) is 

in the order of hours due to a lack of parallelization in the 

current implementation. Moreover, the γ parameter – related to 

the yank control – may vary between populations, with 

significant differences between trained and untrained subjects. 

Additional tests should be performed to study the effect of such 

parameters on different subjects. The authors point out that this 

paper was conducted on one subject with an explorative 

purpose, and the set γ parameter was comparable to values 

found in the literature.  

The analysis of more subjects is planned in the near future to 

confirm the conclusions the authors drew in this document, 

along with a sensitivity analysis to quantify the effect of the 

values assigned to γ and σ (hereby carefully selected, but likely 

different depending on the characteristics of the population) and 

a convergence analysis to identify the minimum number of 

solutions to be sampled and consecutive steps to be performed 

to minimize the computational cost. 

If future analysis will confirm results emerged in this study, 

new application scenarios may be hypothesized where the 

stochastic approach could be used to enhance “what if” kind of 

study and provide an extended band of what the subject is able 

to do (in terms of muscle forces) given the kinematics and the 

subject specific muscle condition. 

 

APPENDIX  

Appendix I – Toolbox parameters 

The study for the definition of physiological ranges for 

Myobolica governing parameters was accomplished for two we 

defined “gamma” (γ) and “sigma” (σ).  

To define a physiological range for the γ parameter we 

estimated the rate of moment development (RMD) from data 

collected in our laboratory on 31 people (both young and old 

individuals. ClinicalTrials ID: NCT05795348, NCT05854316 

[27]) who performed maximal voluntary isometric contraction 

(MVIC) tests of the lower limbs on a Biodex System 4 Pro 

isokinetic dynanometer (Biodex Medical System, New York, 

NY, USA).  

The experimental results (i.e., computed RMDs) were clustered 

into 3 intervals based on the selected analysis window: 0-50 ms, 

0-100 ms, 0-200 ms. No specific cluster was chosen, and the 

results were pooled together, as the peak performance reached 

in a MVIC test (experimental task) is unlikely to be reached 

during an overground walk (simulated task). The values thus 

extracted were in line with the literature [25], [28]–[32]. 

The computed RMDs were later scaled to the timescale of the 

employed simulation data (in our case, 0.008334 seconds): 

 

RMDscaled =RMD × ∆tspecific (A1) 

 

As in Myobolica the yank is described as a gaussian PDF with 

average value and standard deviation respectively equal to 0 

and γ, to ensure all yank values are described by the gaussian 

distribution (the authors remind the reader that 99.7% of the 

values lie within 3 times the standard deviation) we modelled 

the γ parameter starting from the average RMD value typical of 

elderly subjects, as in (A2): 

Fig. 4. Comparison of muscle range of forces estimated by Myobolica (blue) and Metabolica (grey). 

Fig. 3. Comparison of knee JCF solution bands estimated by 
Myobolica (blue) and Metabolica (grey). 
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3 × γ > RMDexperimental (A2) 

 

Where RMDexperimental was the RMD normalized to the measured 

peak torques and scaled to the simulation timescale. The overall 

largest value (across clusters) was selected. The purpose of 

normalization is to enable comparison of results across studies 

where different motor tasks are studied. 

To define a plausible range for the σ parameter we estimated 

the error ε (1) by propagating the experimental error of the 

instrumented implant worn by the subject under study [19]: 

 

εForce, knee  =  ∑ ki(𝑡) ∙ εForce,i(𝑡)Nmuscles
i=1  (A3) 

ki(t) = 
Fmus,i(t)

Fknee, resultant(t)
 (A4) 

Where εForce,knee is the maximum absolute error measured during 

the calibration of the instrumented prosthesis [33] – i.e., about 

1% of the maximum value measured during trial acquisition.  

Assuming that the contribution of each muscle to the knee joint 

force (and so to the error of that measure) is proportional to the 

force generated by the same muscle, we defined εForce,knee as a 

linear combination of muscle force errors (εForce,i) weighted by 

their contribution to the knee resultant force (A3). The 

contribution ki was set to 0 for muscles not insisting on the knee 

joint.  

The joint torque error ε was estimated propagating the muscle 

force error εForce,i in (1): 

 

M + ε = B × [Fmus+ εForce,mus] (A5) 

 

This way, an ε value for each simulation time frame was 

estimated, and the biggest one, around the second peak of the 

gait cycle ε reached the value of 0.36 Nm, was chosen as 

reference value.  

To ensure noise and uncertainties in (1) to be described by a 

gaussian distribution with average value 0 and standard 

deviation σ, we modelled the σ parameter starting from the 

previously described ε:  

 

3 × σ > ε (A6) 

 

Appendix II – Step selection 

The analysis of a second consecutive step is mainly motivated 

by the need to obtain a solution independent from the initial 

optimal solution, but it led to the estimation of a significantly 

different solution space. To explore how the periodization of 

the gait cycle could affect the outcome, a third consecutive step 

was simulated searching for differences in the resulting solution 

spaces between the second and the third steps. The median 

muscle activation pattern estimated in the second cycle is 

assigned as required tentative solution in the third one and the 

last timeframe’s solution of the second gait cycle is carried out 

as the pool of plausible initial conditions for the third gait cycle. 

The comparison between the Myobolica solution for the first 

and second steps is shown in A.Fig. 1. The average muscle force 

range across muscles is 226.7 N in the first step and 205.5 N in 

the second step. The largest difference was found for the soleus 

muscle (from 855.5 N in the first to 415.3 N in the second step. 

A.Fig. 2(a)).  

While the knee joint force solution spaces resemble (R2 = 0.97 

and RMSE = 0.28 BW between medians of the two solution 

bands) with force estimated in the first step generally lower than 

the one estimated in the second one (A.Fig. 3); in the first step, 

the estimated spectrum ranged from 0.14 BW to 2.4 BW while 

in the second step from 0.45 BW to 2.9 BW. 

Further tests have been performed to determine whether 

simulating a third step would lead to much different estimates 

(A.Fig. 4). No significant differences emerged when comparing 

individual muscle bands (the largest difference emerged for the 

tibialis posterior bandwidth: from 429.9 N in the second to 

434.8 N in the third step. A.Fig. 2(b)). Similarly, the knee joint 

force solution spaces were very much alike (R2 = 0.99 and 

RMSE = 0.04 BW between medians of the two solution bands. 

A.Fig. 5). 

Considering the computational time to complete a simulation, 

the authors deemed the difference between the results from the 

Fig. 5. Comparison of knee JCF estimated by Myobolica (blue shade bands), optimal solution (green) and experimentally measured data (black). 
Right: min-to-max range of the solutions estimated by the two methods and the experimentally measured value. 
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second and the third step not to be significant enough to require 

a third step to be performed. 

  

A.Fig. 1. Muscle force solutions bands estimated by Myobolica. 
Comparison of the first (red) and the second (blue) simulated step. 
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A.Fig. 3. Comparison of the knee JCFs estimated by Myobolica in 
the first (red) and in the second (blue) simulated step. 

A.Fig. 2. Comparison of muscle range of forces estimated by Myobolica. In (a), comparison between the first (red) and second (blue) simulated 
step; in (b), comparison between the second (blue) and third (orange) simulated step. 
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