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Temperature-Dependent Anharmonic Phonons in Quantum
Paraelectric KTaO3 by First Principles and Machine-Learned
Force Fields

Luigi Ranalli, Carla Verdi, Lorenzo Monacelli, Georg Kresse, Matteo Calandra,
and Cesare Franchini*

Understanding collective phenomena in quantum materials from first
principles is a promising route toward engineering materials properties and
designing new functionalities. This work examines the quantum paraelectric
state, an elusive state of matter characterized by the smooth saturation of the
ferroelectric instability at low temperature due to quantum fluctuations
associated with anharmonic phonon effects. The temperature-dependent
evolution of the soft ferroelectric phonon mode in the quantum paraelectric
KTaO3 in the range 0–300 K is modeled by combining density functional
theory (DFT) calculations with the stochastic self-consistent harmonic
approximation assisted by an on-the-fly machine-learned force field. The
calculated data show that including anharmonic terms is essential to stabilize
the spurious imaginary ferroelectric phonon predicted by DFT in the harmonic
approximation, in agreement with experiments. Augmenting the DFT
workflow with machine-learned force fields allows for efficient stochastic
sampling of the configuration space using large supercells in a wide
temperature range, inaccessible to conventional ab initio protocols. This work
proposes a robust computational workflow capable of accounting for
collective behaviors involving different degrees of freedom and occurring at
large time/length scales, paving the way for precise modeling and control of
quantum effects in materials.

1. Introduction

The quantum paraelectric phase is an eminent example of a
quantum state of matter. It is manifested by the suppression
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of the ferroelectric transition at low temper-
atures due to quantum fluctuations, as ob-
served in strontium titanate (SrTiO3, STO)
and potassium tantalate (KTaO3, KTO).

[1] In
these materials, the frequency of the polar
transverse optical (TO) soft phonon mode
does not turn unstable with decreasing tem-
perature, as it occurs in regular ferroelectric
materials such as BaTiO3, but rather satu-
rates and never reaches the zero frequency
limit.[2,3] This behavior is associated with
an unusual temperature dependence of the
inverse dielectric constant at low tempera-
ture, at odds with the classical Curie–Weiss
law[4–6] (see Figure 1a). Quantum paraelec-
tric STO and KTO, lying on the border of
the ferroelectric phase in the vicinity of the
so-called quantum critical point (QCP),[6,7]

can be driven toward the ferroelectric re-
gion by applying minuscule external per-
turbations such as strain,[8] hydrostatic
pressure,[9,10] or isotopic substitution[11]

(see Figure 1b). For this reason, STO
and KTO are also named incipient ferro-
electrics. How the transition occurs (i.e.,
how the long-wavelength q=0 ferroelectric

TO phonon mode 𝜔FE becomes stable) is a complex matter
challenging to decipher.[12] However, there is a certain consen-
sus on the importance of the anharmonic coupling between
𝜔FE and the low-T quantum lattice oscillations in determining
the stabilization of 𝜔FE at helium temperatures in quantum
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Figure 1. a) Schematic trend of the inverse dielectric constant as a function of temperature in the ferroelectric (FE) and quantum paraelectric (QPE)
phase. In the FE phase, 1/𝜖 follows the characteristic linear behavior (dashed blue line) leading to a divergence of 𝜖 at a critical temperature Tc where
the FE transition occurs. In a quantum paraelectric (orange solid line), in the proximity of Tc, the onset of quantum anharmonicity breaks down the
linear regime establishing the QPE state. b) Qualitative phase diagram of the crossover between the FE and QPE phases as a function of a quantum
tuning parameter 𝛿; above a certain critical temperature, marked by the thick lines, the system lies in the paraelectric region. At 0 K, variations of the
quantum tuning parameter (due, for example, to strain, hydrostatic pressure, or isotopic substitution) drive the FE-to-QPE transition across the so-called
quantum critical point (QCP). c) Quantum free energy as a function of a collective atomic displacement in ferroelectric (left) and quantum paraelectric
(right) systems. On the left, the quantum free energy as a function of the collective displacement amplitude induced by the unstable optical FE mode
is here shown for a perovskite ABO6 crystal. The soft FE phonon induces a FE displacement of the BO6 octahedron (insets) which lowers the quantum
free energy forming the typical double-well profile. In a QPE regime (right), the FE transition is inhibited due to quantum fluctuations and phonon
anharmonicity. The inclusion of the anharmonic self-energy contributions at 0 K in the SSCHA calculations flatten the free energy removing the FE
minima and establishing the QPE state.

paraelectrics.[13–15] Within the Landau model of displacive phase
transitions, the quantum paraelectric (QPE) state can be viewed
as the crossover between the ferroelectric (FE) state, character-
ized by the typical double-well energy surface, and the stan-
dard parabolic paraelectric (PE) behavior, resulting in quartic
contributions[16] that flatten the free energy curve (Figure 1c). In
QPE materials, quantum fluctuations and anharmonic effects at
low temperature stabilize theQPE solution that becomes the gen-
uine (and highly perturbable) ground state of the system.
Abundant experimental data on the temperature decrease of

the long-wavelength FE phonon and dielectric response in STO
and KTO are available in literature.[6,17] The measurements have
been rationalized by various phenomenological models either
based on extensions of the classic description of Slater,[18] such
as the Barrett[13] and Vendik[19] models,[5] or inspired by the
Ginzburg–Landau–Wilson model such as the 𝜙4-quantum field
model.[20,21] From a computational modeling perspective, path-
integral Monte Carlo calculations using model Hamiltonians
have provided essential insights into the role of quantum fluc-
tuations and non-linear response function on the suppression
of the ferroelectric transition.[22–24] Obtaining a microscopic de-
scription of the FE soft mode and the associated low-temperature
non-linear behavior of the dielectric susceptibility is challenging.
Recently, valuable efforts to address this complex issue from first
principles have been reported.[25]

In this work, we design an efficient protocol to compute the
temperature-dependent frequency 𝜔FE(T) of the characteristic
soft phonon mode and associated dielectric response from first
principles with full quantum and anharmonic effects. We se-
lect KTO as case material since it retains the ideal cubic per-
ovskite structure over a wide temperature range down to the
paraelectric phase and is not subjected to possible complica-

tions associated with structural phase transitions (as is the case
in STO). To include ionic quantum and thermal fluctuations,
we adopt the stochastic self-consistent harmonic approximation
(SSCHA),[26,27] integrated with an on-the-fly machine learned
force field (MLFF) scheme[28] for an efficient and accelerated ex-
ploration of the stochastic space.
Unlike alternative approaches such as extracting effective

force constants from ab initio molecular dynamics (MD)
trajectories,[29] the SSCHA method is based on a rigorous vari-
ational method involving the quantum free energy functional
that directly yields the anharmonic free energy from a suitably
parametrized harmonicHamiltonian.[27,30–33] To evaluate the nec-
essary partial derivatives of the free energy of the auxiliary har-
monic system, the SSCHA method adopts a stochastic Monte
Carlo (MC) procedure on a set of random ionic configurations
generated in a chosen supercell following a Gaussian probabil-
ity distribution. After the free energy functional minimization,
the renormalized phonon frequencies are obtained along with
other quantities such as the anharmonic phonon spectral func-
tions and the anharmonic frequency linewidths.
The stochastic MC sampling is the most time-consuming part

of the SSCHA workflow, as it requires the ground-state energy
and interatomic forces for numerous supercell structures (of the
order of a few thousands) obtained by randomly displacing the
ions of the ideal crystal. To alleviate this huge computational cost,
a reweighting technique is introduced (importance sampling)
that allows for the simultaneous execution of several minimiza-
tion steps with the same ensemble, with the price of a statisti-
cal degradation. Despite this speed-up, the computational cost
of reaching well-converged results easily becomes prohibitive
for systems requiring large supercells, posing a limit for large-
scale samplings.
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Figure 2. Calculated ferroelectric instability. a) Electronic ground state energy as a function of the O displacement from the equilibrium position along
the TO1 unstable soft mode. The saddle point in the DFT calculation corresponds to the ideal cubic structure and represents the reference zero. The
MLFF prediction is in very good agreement with the ab initio results. b) MLFF prediction of the 2D energy landscape as a function of the displacements
involved in both the TO1 and TO2 degenerate modes. Calculations performed on a 3×3×3 supercell.

Machine learning algorithms have proved to be capable of ef-
ficiently accelerating computer simulations and represent an at-
tractive way to cope with this technical limitation, enabling effi-
cient speed-up and preserving accuracy.[36–38] Here, we acceler-
ate the evaluation of SSCHA stochastic averages using a MLFF.
The force field potential is trained on the fly during MD runs at
different temperatures and is then employed to feed the inputs
required by the MC integrals, thus reducing the computational
cost of anharmonic phonon calculations by orders of magnitude.

2. Results

2.1. Harmonic Solution

We begin by assessing the quality of our MLFF by inspecting the
ground-state energy as a function of the FE displacement as com-
pared to direct DFT calculations (details about theMLFF training
are reported in Section 3). The results are shown in Figure 2a. As
expected, in the harmonic approximation, DFT predicts the cubic
structure to be a saddle point that is meta-stable against opposite
polar displacements of the O and Ta ions within the TaO2 plane,
as depicted in the inset of Figure 1c. This result is due to the
neglect of anharmonic effects associated with the O-Ta-O polar
vibration, as discussed in the next section. More precisely, this
instability is controlled by two degenerate modes at Γ, TO1 and
TO2: The TO1 soft mode represents a motion along the crystallo-
graphic x-axis, and it is symmetry equivalent to the displacement
along the z-axis described by TO2.
The double well energy profile in Figure 2a shows that the dis-

placive nature of the spurious ferroelectric phase transition in
KTaO3 is very well captured byMLFF both qualitatively and quan-
titatively. The DFT energy barrier amounts to −0.306 meV/atom
at an O displacement of 0.059 Å in the TO1 direction, whereas
the MLFF predicts −0.293 meV/atom at 0.068 Å.
Since the TO1 and TO2 modes are degenerate, each linear com-

bination of their associated eigenvectors is a legitimate solution
of the problem for the non-ferroelectric phase. This is shown in
Figure 2b, which reports the 2D map of the ground-state energy

due to the combined action of both FE modes as obtained from
the MLFF. This 2D map indicates a fourfold degenerate mini-
mum at −0.493 meV/atom with respect to the saddle point lo-
cated at (0,0).

2.2. Anharmonicity

Having tested the accuracy of the MLFF in accounting for the
energy versus displacement profile, we now address its accuracy
in obtaining the free energy Hessian with respect to the atomic
positions, from which one can extract the anharmonic contribu-
tions to the phonon frequencies. The occurrence of a ferroelectric
transition as a function of temperature can be detected by tracing
the eigenvalues of the free energy Hessian divided by the square
root of the mass matrix (the so called positional free energy Hes-
sian; see Equation (51) in ref. [27]). An imaginary eigenvalue of
the positional free energy diagnoses a ferroelectric transition.
In Figure 3a, we show the anharmonic phonon dispersions ob-

tained from the eigenvalues of the positional free energy Hessian
within the SSCHA at T = 0 K by using DFT on a 2×2×2 super-
cell and by including the self-energy correction in the free energy
Hessian.[27] The phonon self energy is treated using the Bubble
approximation that accounts for the most relevant three-phonon
scattering processes. The result is compared with the DFT har-
monic phonon dispersion. Not surprisingly, and in agreement
with Figure 2a, the lowest energy optical phonon mode (the de-
generate ferroelectric modes, labeled TO1 and TO2) at Γ is unsta-
ble in a large portion of the Brillouin zone, in disagreement with
experimental data.[17] When quantum anharmonicity is switched
on in the SSCHA method, the 0 K FE instability is removed. Re-
markably, all other phonon modes are practically unaffected by
the anharmonic correction. The calculated eigenvalue of the po-
sitional free energy for the TO1 mode at Γ is 38.11 cm−1. The
contribution of the bubble term to the converged self-consistent
dynamical matrix is −40.26 cm−1.
We now proceed to integrate on-the-fly MLFF with SSCHA in

order to accelerate the calculation of the phonon renormalization
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Figure 3. Calculated 0 K harmonic and anharmonic phonon dispersion. a) In DFT (blue lines), the harmonic phonon dispersion exhibits unstable
FE TO1 and TO2 degenerate phonon modes at Γ. Within DFT+SSCHA (solid orange lines), the inclusion of the bubble term (anharmonic effects)
renormalizes the unstable modes, while keeping the other branches unaffected. b) Comparison between DFT+SSCHA andMLFF+SSCHA (green dotted
lines) anharmonic phonon spectra. Calculations performed on a 2×2×2 supercell.

and improve the stochastic sampling of the configuration space.
The structure and technical details of the proposed protocol are
described in Section 3. The results are shown in Figure 3b, which
displays the comparison between the calculated DFT+SSCHA
phonon dispersion along with theMLFF+SSCHA data. Note that
for this specific comparison, here we employ anMLFF trained on
a small 2×2×2 supercell, that is, the same supercell size adopted
for the DFT+SSCHA calculations. For finite-temperature prop-
erties, we have employed a larger 3×3×3 supercell and a MLFF
trained on large supercells as detailed in Section 3. The agree-
ment is excellent in all regions of the phonon spectrum, includ-
ing the TO1 Γ-point frequency of 46.57 cm−1 and the−37.15 cm−1

bubble correction, very close to the corresponding DFT+SSCHA
estimate. The neutron data at 20 K deliver a quite low frequency
at Γ of 24.92 cm−1,[17] in line with our static dispersion data.
As the next level of complexity, we turn on finite temperature

effects, which represent a key aspect to describe temperature-
driven phase transitions and a huge obstacle for first principles
approaches. Investigating the soft mode temperature behavior
using ab initio calculations in SSCHA is computationally pro-
hibitive, due to the large number of supercells required to achieve
well-converged results for many temperatures. To obtain accu-
rate results, we adopt a 3×3×3 supercell, with the correspond-
ing MLFF trained to sample the configuration space up to 700 K.
This yields a higher frequency of 59.63 cm−1 for the bubble-term
corrected soft mode compared to the 46.57 cm−1 for the 2×2×2
case. Furthermore, the antagonistic bubble self-energy brings a
lower correction of −11.24 cm−1 to the SSCHA virtual phonons.
We note that the bubble term correction on top of the converged
dynamical matrix returns a negative shift of the soft mode of
15.49 cm−1 at 300 K; hence, its contribution is almost temper-
ature independent.
The soft mode temperature behavior predicted using the

MLFF is plotted in Figure 4a, aligned with the low-T experimen-
tal data taken from ref. [39]. TheMLFF predictions reproduce the
measured trend quite well and show how the efficient integra-
tion of electronic structure methods, stochastic approaches, and
machine learning provides a powerful computational framework
that gives us the tools to explore regimes that were previously
difficult to access.

In particular, our data correctly predict the plateau below 30
K, in line with the expected theoretical trend collected in Fig-
ure 1a, proving the ability to capture the crucial role played by
anharmonic effects in setting up the the quantum paraelectric
state. By assuming the Lydanne–Sachs–Teller (LST) relation[40]
𝜔2
LO

𝜔2
TO

= 𝜖0

𝜖∞
connecting the optical phonon frequencies to the static

and high frequency (above the phonon frequencies, but below
any electronic energy scale) dielectric constants, and considering
only the temperature dependence of the dielectric constant due
to the TO dependence, we plot in Figure 4b the inverse of the di-
electric constant 1∕𝜖0 as a function of temperature, together with
the one extracted from the experimental data. The computed val-
ues of 4.635 and 212.68 cm−1 were adopted, respectively, for 𝜖∞
and the longitudinal optical mode 𝜔LO. A square-root fit of the
frequency data, or equivalently a linear fit of the temperature-
dependent inverse dielectric constant, clearly shows how the clas-
sic regime breaks down below 30 K, where the quantum nuclear
motion coupled with anharmonicity becomes relevant.
We conclude by computing the phonon spectral function,

which accounts for dynamical effects not included in the phonon
spectra shown in Figure 3 and whose peaks give the phonon
quasi-particles measured in inelastic neutron scattering. In Fig-
ure 5a,b, the phonon spectral function at 0 K and 300 K for a
3×3×3 supercell is plotted along the high-symmetry k-path and
compared with available experimental data[17] and correspond-
ing static dispersions. We note that the maxima of the spectral
function coincide with the static dispersions (relative to the same
3×3×3 supercell) at both selected temperatures. In this case,
the dynamical Bubble correction does not offer any substantial
change on the static one, such as the appearance of satellite exci-
tations. The agreement with themeasured data is very good, even
though the soft TO mode is overestimated by a few tens of cm−1

as pointed out above.

3. Computational Methods

The calculations were performed integrating the Vienna Ab ini-
tio Simulation Package (VASP)[41,42] with the stochastic self-
consistent harmonic approximation (SSCHA) method[26,27] and
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Figure 4. Temperature evolution of the TO1 Γ-point frequency (a) and of the inverse of the dielectric constant (b). In (a), inelastic neutron scattering
measurements[39] (black empty triangles) and MLFF+SSCHA calculations with the inclusion of the bubble term are shown. The computed frequencies
are shifted down by 34.71 cm−1 in order to match the experimental low-temperature soft mode frequency, to better appreciate the character of the
frequency plateaus. A square-root fit (blue line) shows the breakdown of the paraelectric regime below 30 K and the onset of the quantum effects
coupled with lattice anharmonicity, leading to a frequency plateau near 0 K. Analogously, the blue line in (b) shows the expected classical Curie–Weiss
behaviour (see text) of the dielectric constant, calculated from the shifted frequencies of (a). Calculations performed on a 3×3×3 supercell.

Figure 5. Color plot of the normalized phonon spectral function along the high symmetry path at a) 0 K and b) 300 K. In both cases, the maxima of the
spectral function in darker red coincide with the static dispersion (full lines). The results are compared with the experimental data at 20 and 296 K[17]

(diamonds). Calculations performed on a 3×3×3 supercell.

the phonon package Phonopy.[43] All DFT calculations were ex-
ecuted at the meta-GGA level using the Strongly Constrained
and Appropriately Normed (SCAN) functional[44] and projector
augmented wave (PAW) potentials,[45] using a plane-wave cutoff
of 800eV. For this purpose, a computational workflow was con-
structed, including a VASP-to-SSCHA interface and the use of a
MLFF in computing energies and forces associated with the gen-
erated ensembles within the SSCHA framework. The workflow
is schematically depicted in Figure 6 and consists of the following
parts:

1. Construction of the trial harmonic dynamical matrix built on
a cubic unit cell of KTaO3 at the experimental lattice constant
of 3.9842 Å.[15]

2. Ensembles generation and self-consistent SSCHA loop. The
free energy minimization was executed through a force con-

stant gradient descent, keeping the atomic positions and vol-
ume fixed. Around 15 000 ensembles were needed in the self-
consistency loop at 0 K (the last 5000 ensembles were also em-
ployed at the end of it for computing the bubble correction).

3. Speed-up of the stochastic MC sampling by means of the
MLFF. This is the core part of the methodology. The MLFF
is trained on the fly through MD calculations following the
procedure outlined in ref. [28]. TwoMLFF datasets were built:
i) A light one on a 2×2×2 supercell with a 3×3×3 Γ-centered
k-point mesh, and ii) a second one on a 3×3×3 supercell with
a 2×2×2 Monkhorst-Pack k-point mesh. The MD runs were
executed at increasing temperatures, sampling 50 000 steps
at each temperature with a time step of 2 fs, and using the fi-
nal structure at each temperature as the starting configuration
for the higher ones. A Langevin thermostat was employed,[46]

with a friction coefficient of 10 ps−1 for each atomic species.
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Figure 6. Sketch of the MLFF+SSCHA workflow. A first guess of the harmonic dynamical matrix is calculated at the DFT level or using the MLFF
and employed by SSCHA in the generation of the first population (ensembles generation). The energies and forces for the displaced ensemble are
computed employing the MLFF, and the gradient of the free energy is minimized in SSCHA (SSCHA matrix). The obtained SSCHA dynamical matrices
are subsequently employed for the generation of the second population and the loop continues until convergence (arrow). After reaching convergence,
the bubble correction at both static and dynamical level can be calculated.

For the descriptors representing the local atomic environ-
ments in the MLFF,[47] the cut-off radius for the two- and
three-body atomic density distributions was set to 6 Å, and the
Gaussian broadening to 0.3 Å. The same weight was assigned
to both descriptors.
The 2×2×2 supercell dataset was used to train an MLFF

to assess the accuracy of MLFF+SSCHA against direct
DFT+SSCHA results obtained at 0 K on the same supercell
size (Figure 3b). For this training, 225 structures were au-
tomatically extracted executing 3 MD simulations at 1, 100
and 200 K. The resulting root mean square errors (RMSE)
for energies and forces for 100 random ensembles generated
at 0 K using quantum statistics are 0.16 meV atom−1 and
0.020 eV Å−1, respectively.
To achieve converged and accurate results at higher tem-

peratures, we trained the second MLFF by sampling con-
figurations up to 700 K in a larger 3×3×3 supercell. This
is required in order to precisely compute the energies and
forces related to the Gaussian distributed SSCHA ensembles
up to room temperature. This dataset contains 680 reference
configurations sampled by MD runs between 1 and 700 K,
with steps of 100 K. A direct validation of MLFF+SSCHA
was in this case not possible, since performing DFT+SSCHA
on a 3×3×3 supercell turned out to be computationally pro-
hibitive. To validate this MLFF, we computed the 1D and 2D
energy landscape displayed in Figure 2a,b, showing excellent
agreement with the DFT data. With this model, we obtained
RMSEs very close to the ones obtained for the first (2×2×2)
MLFF, 0.16 meV atom−1 and 0.027 eV Å−1, for energies and
forces, respectively, indicating a similar accuracy of bothmod-
els. To guarantee a good performance of the MLFF up to
300 K, 100 ensembles were also generated at this tempera-
ture, and the associated RMSEs are 0.28 meV atom−1 and
0.056 eV Å−1, slightly larger than those associated with 0 K
ensembles.

4. Bubble correction and spectral function. The converged SS-
CHAmatrix is finally corrected by the bubble self-energy term
involving a three-phonon vertex, within the framework of a
static Green’s function approach where the free propagator is
the one associated with the SSCHA Hamiltonian. The quar-
tic SSCHA correction required to recover the full free en-
ergy curvature beyond the bubble term brought a negligible
contribution to the soft mode at 0 and 300 K for both the
2×2×2 and 3×3×3 supercells. Therefore, one can conclude
that the bubble term alone encodes virtually all relevant an-
harmonic effects taking place in KTO up to 300 K. To conduct
amore robust comparison withmeasured phonon properties,
we have computed the spectral function within a dynamical
treatment that removes the conservation of energy and mo-

mentum in the multi-phonon processes.[27] An interpolation
on a 13×13×13 k-mesh was employed in order to converge the
peak positions.

4. Conclusions

In this work, we have illustrated that the inclusion of machine-
learned force fields in the stochastic self-consistent harmonic ap-
proximation allows us to account for phonon properties of quan-
tumparaelectricmaterials at finite-temperature, a property that is
very difficult to access using standard first-principles approaches.
For the incipient ferroelectric KTaO3, this approach provides ex-
cellent predictions of higher-order anharmonic effects as a func-
tion of temperature, a key ingredient to characterize the unusual
low-temperature behavior of this material. In particular, the pe-
culiar temperature-dependent frequency plateau near 0 K is cor-
rectly reproduced capturing the essential features of the quantum
paraelectric nature of KTaO3.
The proposed ML-assisted method is capable to reproduce the

Γ-point TO soft mode renormalization at 0 K with only 225 ab
initio calculations, a small fraction of the thousands of calcula-
tions required in the standard SSCHAmethod. Adopting a larger
MLFF training dataset of 680 structures sampled up to 700 K, the
finite-temperature phonon properties were computed between 0
and 300 K. For each temperature point, several thousand con-
ventional ab initio calculations would be required, an enormous
computational effort compared to the few hundred required to
produce an accurate MLFF.
Although MLFF+SSCHA provides a convincing qualitative

trend for the phonons at finite-temperature, a quantitative ac-
count of the strongly temperature-dependent soft mode is still
unattainable, including the recently reported minuscule upturn
of the dielectric constant just above the absolute zero.[6] This
would probably require the adaption of a more sophisticated
exchange-correlation functional (beyond meta-GGA) and a care-
ful treatment of (finite-temperature) volume effects: Both aspects
will be the focus of future research.
Overall, the SSCHA+MLFF approach offers a convenient and

flexible methodology for accessing complex anharmonicities as a
function of temperature in real materials. The method enables to
predict and interpret finite-temperature quantum effects extend-
ing the predictive power of computer modeling and providing
essential support to experiment.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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