
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Process Discovery on Deviant Traces and Other Stranger Things / Chesani, Federico; Di Francescomarino,
Chiara; Ghidini, Chiara; Loreti, Daniela; Maggi, Fabrizio Maria; Mello, Paola; Montali, Marco; Tessaris,
Sergio. - In: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. - ISSN 1041-4347. - STAMPA.
- 35:11(2023), pp. 11784-11800. [10.1109/TKDE.2022.3232207]

Published Version:

Process Discovery on Deviant Traces and Other Stranger Things

Published:
DOI: http://doi.org/10.1109/TKDE.2022.3232207

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/913012 since: 2023-01-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TKDE.2022.3232207
https://hdl.handle.net/11585/913012

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

F. Chesani et al., "Process Discovery on Deviant Traces and Other Stranger Things,"
in IEEE Transactions on Knowledge and Data Engineering.

The final published version is available online at:
https://dx.doi.org/10.1109/TKDE.2022.3232207

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/TKDE.2022.3232207

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Process discovery on deviant traces
and other stranger things

Federico Chesani, Chiara Di Francescomarino, Chiara Ghidini, Daniela Loreti, Fabrizio Maria Maggi,
Paola Mello, Marco Montali, Sergio Tessaris

Abstract—As the need to understand and formalise business processes into a model has grown over the last years, the process
discovery research field has gained more and more importance, developing two different classes of approaches to model
representation: procedural and declarative. Orthogonally to this classification, the vast majority of works envisage the discovery task as
a one-class supervised learning process guided by the traces that are recorded into an input log.
In this work instead, we focus on declarative processes and embrace the less-popular view of process discovery as a binary
supervised learning task, where the input log reports both examples of the normal system execution, and traces representing a
“stranger” behaviour according to the domain semantics. We therefore deepen how the valuable information brought by both these two
sets can be extracted and formalised into a model that is “optimal” according to user-defined goals. Our approach, namely NegDis, is
evaluated w.r.t. other relevant works in this field, and shows promising results regarding both the performance and the quality of the
obtained solution.

Index Terms—Process discovery, declarative process models, binary classification task.

F

1 INTRODUCTION

THE modelling of business processes is an important
task to support decision-making in complex industrial

and corporate domains. Recent years have seen the birth
of the Business Process Management (BPM) research area,
focused on the analysis and control of process execution
quality, and in particular, the rise in popularity of process
mining [1], which encompasses a set of techniques to extract
valuable information from event logs. Process discovery is
one of the most investigated process mining techniques. It
deals with the automatic learning of a process model from a
given set of logged traces, each one representing the digital
footprint of the execution of a case. Process discovery algo-
rithms are usually classified into two categories according
to the language they employ to represent the output model:
procedural and declarative. Procedural techniques envisage
the process model as a synthetic description of all possible
sequences of actions that the process accepts from an initial
to an ending state. Declarative discovery algorithms—which
represent the context of this work—return the model as a
set of constraints equipped with a declarative, logic-based
semantics. Both approaches have their strengths and weak-
nesses depending on the characteristics of the considered
process. For example, procedural techniques often produce
intuitive models, but may sometimes lead to “spaghetti”-
like outputs [2], [3]: in these cases declarative-based ap-
proaches might be preferable.

Declarative techniques rely on shared metrics to estab-
lish the quality of the extracted model, for example in terms

• F. Chesani, D. Loreti, and P. Mello are with DISI - University of Bologna,
Italy. E-mail: daniela.loreti@unibo.it

• C. Di Francescomarino and C. Ghidini with Fondazione Bruno Kessler,
Italy.

• F. M. Maggi, M. Montali, and S. Tessaris are with Free University of
Bozen/Bolzano, Italy.

Manuscript received April 19, 2005; revised August 26, 2015.

of fitness, precision, generality, and simplicity [4], [5], [6]. In
particular, fitness and precision focus on the quality of the
model w.r.t. the log, i.e., its ability to accept desired traces
and reject unlikely ones, respectively; generality measures
the model’s capability to abstract from the input by repro-
ducing the desired behaviours, which are not assumed to
be part of the log in the first place; finally, simplicity is
connected to the clarity and understandability of the result
for the final user.

Besides the declarative-procedural classification, process
discovery approaches can be also divided into two cat-
egories according to their vision on the model-extraction
task. As also pointed out by Ponce-de-Leòn et al. [6], the
vast majority of works in the process discovery spectrum
(e.g. [7], [8], [9], [10]) can be seen as a one-class supervised
learning technique, while fewer works (e.g. [11], [12], [13],
[14]) intend model extraction as a two-class supervised
task—which is driven by the possibility of partitioning
the log traces into two sets according to some business
or domain-related criterion. In a sense, two-class process
discovery can be related to sequence classification, which
deals with the task of discriminating between classes of
sequences by deriving sequential patterns from a temporal
database. The main enhancement of process discovery is
that it focuses on extracting behavioural constraints, which
are in general much more informative (and concise), than
a set of sequences [15]. Another significant difference is in
the semantics of the classes, which for process discovery are
usually referred to as positive and negative examples [6], [14],
intending them as disjuncts sets of desirable and unwanted
behaviours, respectively. In sequence classification instead,
classes can have any meaning (and in general be more
than just two, not necessarily disjunct). This also entails the
slightly different goal of binary process discovery, that is to
learn a model characterising the positive set while taking

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

into account also the negative one.
A further consideration stems from the completeness of

the log. Generally, a log contains and represents only a
subset of the possible process executions. Other executions
might be accepted or rejected from the viewpoint of the
process, but this can be known only when a process model
is learned or made available. This territory of unknown traces
will be “shaped” by the learned model, and more precisely
by the choice of the discovery technique, and possibly
by its configuration parameters. Approaches that consider
positive examples only provide a number of heuristics, thus
allowing the user to decide to which extent the yet-to-be-
seen traces will be accepted or rejected by the discovered
model—ranging from the extremity of accepting them all,
to the opposite of rejecting them all. The use of a second
class of examples, identified on the basis of some domain-
related criterion, allows to introduce some business-related
criterion besides the heuristics.

In this work, we focus on declarative process models
expressed in the Declare language [16], and embrace the
view of process discovery as a binary supervised learning
task. Hence, our starting point is a classification of busi-
ness traces into two sets, which can be driven by various
motivations. For example, in order to avoid underfitting
and overfitting [10], many authors, as well as the majority
of tools, suggest to ignore less-frequent traces (sometimes
referred to as deviances from the usual behaviour [17]),
thus implicitly splitting the log according to a frequency
criterion. Another motivation for log partitioning could be
related to the domain-specific need to identify “stranger”
execution traces, e.g., traces asking for more (or less) time
than expected to terminate, or undesirable traces that the
user might want to avoid in future executions.

Independently of the chosen criterion for splitting the
log, we adopt the terms negative and positive example
sets to identify the resulting partitioning, keeping in mind
that the “negative” adjective is not only connected to un-
wanted traces, but also to a sort of “upside-down world”
of “stranger” behaviours. The information carried by this
world diverges from that of the positive examples but—
coupled with it—can be used to understand the reasons
why differences occur, ultimately providing a more accurate
insight of the business process. For this reason, we hereby
focus on learning a model that is able to reconstruct which
traces belong to which set (by accepting all the positive
and rejecting, if possible, all the negative), while reflecting
the user expectations on the quality of the extracted model
according to predefined metrics. In particular our approach,
namely NegDis, aims to discover a minimal set of con-
straints that allows to distinguish between the two classes
of examples: in this sense, it can enrich existing approaches
that provide descriptions of the positive example set only.
Indeed, our exploitation of the “upside-down world” is
useful not only to better clarify what should be deemed
compliant with the model and what should not, but also
to better control the degree of generalisation of the resulting
model, as well as to improve its simplicity.

1.1 Contributions
In the framework described so far, our work advances the
state of the art by proposing the following contributions.

• A novel discovery approach, NegDis, based on the
underlying logic semantics of Declare, which makes
use of the information brought by the positive and
negative example sets to produce declarative models.
The resulting technique can be used to either mine De-
clare process models from scratch, or refine an existing
model with additional knowledge.

• The adoption of a satisfiability-based technique to iden-
tify the models.

• A heuristic to select the models according to the user
preferences of generalisation or simplicity, where the
language bias and the subsumption rules between De-
clare templates are not hard-coded in the discovery
algorithm, but provided as an input for a finer-grain
configurability.

• An evaluation of the performance of NegDis w.r.t.
other relevant works in the same field, highlighting
strengths and weaknesses of our technique.

To explain our approach, we start by providing an overview
of the background and relevant concepts in Section 2, then
we describe the approach in detail in Section 3, and we
evaluate it in Section 4. Related work and conclusion follow.

2 BACKGROUND

Our technique relies on the key concept of event log, intend-
ing it as a set of observed process executions, logged into
a file in terms of all the occurred events. In this work, we
adopt the eXtensible Event Stream (XES) storing standard
[18] for the input log. According to this standard, each event
is related to a specific process instance, and describes the
occurrence of a well-defined step in the process, namely an
activity, at a specific timestamp. The logged set of events
composing a process instance is addressed as trace or case.
From the analysis of the event log, we want to extract a
Declare [16], [19] model of the process. Declare is one of
the most used languages for declarative process modeling.
Thanks to its declarative nature, it does not represent the
process as a sequence of activities from a start to an end,
but through a set of constraints, which can be mapped
into Linear Temporal Logic (LTL) formulae over finite traces
(LTLf) [20], [21]. These constraints must all hold true when
a trace completes. Declare specifies a set of templates that
can be used to model the process. A constraint is a concrete
instantiation of a template involving one ore more process
activities. For example, the constraint EXISTENCE(a) is an
instantiation of the template EXISTENCE(X), and is used
to specify that activity a must occur in every trace; INIT(a)
specifies that all traces must start with a. RESPONSE(a, b)
imposes that if the activity a occurs, then b must follow,
possibly with other activities in between. For a description
of the most common Declare templates see [16].

We assume that the log contains both positive traces—
i.e., satisfying all the constraints in the business model—and
negative traces—i.e., diverging from the expected behaviour
by violating at least one constraint in the (intended) model.
Language bias. Given a set of Declare templates D and a set
of activities A, we identify with D[A] the set of all possible
grounding of templates in D w.r.t. A, i.e. all the constraints
that can be built using the given activities.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Traces and Logs. We assume that a Trace t is a finite word
over the set of activities (i.e., t ∈ A∗, where A∗ is the
set of all the words that can be build on the alphabet
defined by A). Usually a log is defined as a multi-set of
traces, thus allowing multiple occurrences of the same trace:
the frequency of a certain trace is then considered as an
indicator, for example, of the importance of that trace within
the process. Since our goal is to learn a (possibly minimal)
set of constraints able to discriminate between two example
classes, we rather opt to consider a log as a finite set of traces.
As a consequence, multiple occurrences of the same trace
will not affect our discovery process.

Declare constraints satisfaction and violation. Recalling the
LTLf semantics [20], [21], and referring to the standard
Declare semantics as in [16], we say that a constraint c accepts
a trace t, or equivalently that t satisfies c, if t |= c. Similarly,
a constraint c rejects a trace t, or equivalently t violates c, if
t 6|= c. Given that a Declare model M is a conjunction of
constraints, it follows that M accepts a trace t (t satisfies M)
if ∀c ∈M, t |= c. Analogously, a model M rejects a trace t (t
violates M) if ∃c ∈ M, t 6|= c. In the following, we will write
t |= M meaning that M accepts t.

Positive and negative examples. Finally, we respectively denote
with L+ and L− the sets of positive and negative examples
(traces), reported in the input event log. We assume that:
(i) L+∩L− = ∅, and (ii) for each trace t ∈ L− there exists at
least one grounded Declare constraint c ∈ D[A] that accepts
all the positive traces and excludes t. In other words, we
assume that the problem is feasible1.

3 THE APPROACH

NegDis aims to extract a model which correctly classifies
the log traces by accepting all cases in L+ and rejecting those
in L−2. Besides that, it is required to perform an abstraction
step in order to be able to classify also unknown traces,
which are not in the input log.

3.1 Definitions
Before introducing our approach, we hereby provide some
preliminary definitions that are relevant for the following
explanation.

Model generality. The notion of a model accepting a trace,
often referred to as the compliance of a trace w.r.t. the
model, naturally introduces the relation of generality (or the
converse specificity) between models. Intuitively, a model M
is more general than another M ′ if M accepts a superset of
the traces accepted by M ′. That is, denoting with TM the set
of all traces compliant with a model M , M is more general
than another model M ′—and symmetrically M ′ is more
specific than M—if and only if TM ′ ⊆ TM . More precisely,
we say that

Definition 3.1. a model M ⊆ D[A] is more general than
M ′ ⊆ D[A] (written as M � M ′) when for any t ∈ A∗,
t |= M ′ ⇒ t |= M , and strictly more general (written as

1. Notice that sometimes real cases might not fulfill these assump-
tions. We will discuss this issue in section 3.3

2. The conditions on accepting all the positives and none of the
negatives can be relaxed by requiring only a percentage of them.

M � M ′) if M is more general than M ′ and there exists a
t′ ∈ A∗ s.t. t′ 6|= M ′ and t′ |= M .

Note that this definition is consistent with that of sub-
sumption between Declare templates provided in Di Ciccio
et al. [22]. Indeed, Declare templates can be organised into a
subsumption hierarchy according to the logical implications
that can be derived from their semantics.

Example 3.1. The model M ′ = {INIT(a)} accepts only traces
that start with a. Hence, a exists in each one of those accepted
traces. In other words, all those traces also satisfy the model M =
{EXISTENCE(a)}. However, the latter model also accepts traces
that contain a even if they do not start with a (i.e., M � M ′).
This relation is valid irrespectively of the involved activity. In a
sense, we could say that the template EXISTENCE(X) is more
general than INIT(X).

This idea is frequently expressed through the subsump-
tion operator w. Given two templates d, d′ ∈ D, we say that
d subsumes d′, i.e. d is more general than d′ (written d w d′),
if for any grounding of the involved parameters w.r.t. the
activities in A, whenever a trace t ∈ A∗ is compliant with
d′, it is also compliant with d [22] .

Remark 3.1. For any pair of models M,M ′ ⊆ D[A], M ⊆
M ′ implies that M is more general than M ′ (M �M ′). This
stems from the Declare semantics [16] on LTLf [21].

Unfortunately, the opposite implication does not hold,
i.e. if we have M,M ′ ⊆ D[A] such that M � M ′,
we cannot guarantee that M ⊆ M ′. A clear example is
M = {EXISTENCE(a)} and M ′ = {INIT(a)}.
Initial model. A wide body of research has been devoted to
techniques to mine declarative process models that charac-
terise a given event log (our positive traces). Our approach
can leverage these techniques and refine their results by
taking into account the negative examples as well. To this
end, we consider a—possibly empty—initial model P , i.e. a
set of Declare constraints that are known to characterise the
positive traces. For example, such set can be the expression
of domain knowledge or the result of a state-of-the-art
discovery algorithm previously run on L+. To apply our
technique we only require that the constraints in P are non-
conflicting and all the positive traces are compliant with all
the constraints in P 3.

Candidate solution. As the goal of our technique is to refine
the initial model P taking into account both positive and
negative traces, we can define which are the necessary con-
ditions for a set of constraints S to be a candidate solution
for our discovery task.

Definition 3.2. Given the initial model P , a candidate solution
for the discovery task is any S ⊆ D[A] s.t.

(i) P ⊆ S;
(ii) ∀t ∈ L+ we have t |= S;

(iii) ∀t ∈ L− we have t 6|= S.

3. We are aware that often state-of-the-art approaches do not emit a
model compliant with all the traces in the input log. In these cases, we
assume that the positive traces in L+ are a subset of the original input
including only the traces compliant with P .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Note that condition (ii) in the definition above ensures
that any candidate solution is consistent (i.e., there are no
conflicting constraints) when L+ is non-empty.

Optimality criterion. Clearly, there can be several sets satisfy-
ing (i), (ii), (iii). They differ from the way they classify the
unknown traces, which are not in L+, nor in L−. Therefore,
we need to introduce some way to compare the multiple
output models in order to identify the preferable ones. In
some context, generality can be a measure of the quality
of the solution, i.e. we want to identify the set that is less
committing in terms of restricting the admitted traces. In
some other context on the contrary, we might be interested
in the identification of a more specific model. So besides
allowing all traces in L+ and forbidding all traces in L−,
the choice between a general or specific model, obviously
affects the classification of the unknown traces. Alterna-
tively, simplicity is another criterion: one can be interested
in the most simple solution, i.e. the one that is presumed
to be easier to understand irrespectively from the degree of
generality/specificity it accomplishes.

Let us focus on generality for the moment. In this case,
we are interested in the candidate solution S (i.e., satisfying
the properties of Definition 3.2) such that there is no other
candidate solution S′ ⊆ D[A] strictly more general than S
(i.e., @ S′ s.t. S ≺ S′). Although testing for strict generality
between two set of constraints is a decidable problem, its
worst case complexity makes an exact algorithm unfeasi-
ble because, recalling definition 3.1, it would require to
asses the compliance of any trace t ∈ A∗ with the two
models which are going to be compared. For this reason,
we propose an alternative method based on comparing the
logical consequences that can be deducted from the models.
The method makes use of a set of deduction rules which
account for the subsumption between Declare templates. Our
work integrates the rules introduced in [22], into a function,
namely the deductive closure operator, which satisfies the
properties of extensivity, monotonicity, and idempotence.

Definition 3.3. Given a set R of subsumption rules, a deduc-
tive closure operator is a function clR : P(D[A]) → P(D[A])
that associates any set M ∈ D[A] with all the constraints
that can be logically derived from M by applying one or
more deduction rules in R.

Example 3.2. Let be:
• R = { EXISTENCE(X) w INIT(X) }
• M ′ = {INIT(a) }

If we apply the deductive closure operator clR to M ′, we get:

clR(M ′) = { INIT(a),EXISTENCE(a) }

Obviously, we are interested in setsR of correct subsumption
rules, that is for any M ⊆ D[A] and t ∈ A∗, t |= M
iff t |= clR(M). In the rest of the paper, for the ease of
understanding, we will omit the set R and we will simply
write cl(M). The complete set of employed rules is available
in [23].

As the closure of a model is again a subset of D[A],
Remark 3.1 is also applicable, i.e. for any M,M ′ ⊆ D[A],
cl(M) ⊆ cl(M ′) implies that M is more general than
M ′ (M � M ′). Thanks to this property, the deductive
closure operator can be used to compare Declare models

w.r.t. generality. To provide an intuition, let us consider the
following example:

Example 3.3. Consider:
• R = { EXISTENCE(X) w INIT(X) }
• M = { EXISTENCE(a) }
• M ′ = { INIT(a) }

We cannot express any subset relation between M and M ′, thus
making Remark 3.1 inapplicable. Nonetheless, if we take into
account their closure, we have:

cl(M) = {EXISTENCE(a)}
cl(M ′) = {INIT(a),EXISTENCE(a)}

As cl(M) ⊆ cl(M ′), we conclude that M �M ′.

In other words, the closure operator (being based on the
subsumption rules) captures the logical consequences de-
riving from the Declare semantics. Due to the nature of the
Declare language we cannot provide a complete calculus
for the language of conjunctions of Declare constraints.
For this reason, we cannot guarantee the strictness, nor
the opposite implication (i.e. M ′ � M does not implies
cl(M) ⊆ cl(M ′)). Anyway, the closure operator provide us
a powerful tool for confronting candidate solutions w.r.t.
the generality criterion. Table 1 summarises all the symbols
used in this paper.

Symbol Definition

D set of Declare templates (language bias)
A set of activities

D[A] set of all grounding of templates in D w.r.t. A
L+ set log traces labelled as positive. L+ ⊆ A∗

L− set log traces labelled as negative. L− ⊆ A∗

P initial model. P ⊆ {c ∈ D[A] | ∀t ∈ L+, t |= c}
P(D[A]) power set of D[A]

clR or simply cl closure operator equipped with a set R of sub-
sumption rules

compatibles set of constraints that accepts all traces in L+

sheriffs(t) constraints accepting all traces in L+ and reject-
ing t ∈ L−

C set of all constraints in D[A] accepting all traces
in L+ and rejecting at least one t ∈ L−

Z set of models accepting all traces in L+ and
rejecting all traces in L−

TABLE 1: Symbols

3.2 Two-step procedure

In this section we introduce the theoretical basis of our
NegDis approach. For the sake of modularity and easiness
of experimenting with different hypotheses and parameters,
we divide our approach into two clearly separate stages: the
first which identifies the candidate constraints, and a second
optimisation stage which selects the solutions. However,
these two steps are merged into a single monolithic search-
based approach.

Starting from the set of all constraints D[A], the first
stage aims at identifying all the constraints of D[A] that
accept all positive traces and reject at least a negative one. To
this end, it first computes the set of constraints that accepts
all traces in L+, namely the set compatibles.

compatibles(D[A], L+) = {c ∈ D[A] | ∀t ∈ L+, t |= c} (1)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

By construction, any subset of compatibles(D[A], L+) is
non-conflicting, because any trace in L+ is accepted by all its
constraints. This simplifies the optimisation step, since there
is no need to verify whether any of the selected models are
conflicting (see point (ii) of Definition 3.2).

For simplicity of the notation, since the set of constraints
D[A] and the log L+ are given, we will omit them in the
following. The compatibles set is then used to build a sheriffs
function that associates to any trace t in L− the constraints
of compatibles that rejects t. The result is therefore a function
with domain L− and co-domain P(compatibles) s.t.:

sheriffs(t) = {c ∈ compatibles | t 6|= c} (2)

The second stage aims at finding the optimal solution
according to some criterion. Therefore, it starts by comput-
ing two sets C and Z . Let C be the set of those constraints
in D[A] that accept all positive traces and reject at least
one negative trace. Such set can be derived from the sheriffs
function as: C =

⋃
t∈L− sheriffs(t). Let Z be all the subsets of

C excluding all negative traces4, i.e.,

Z = {M ∈ P(C) | ∀t ∈ L− t 6|= M} (3)

Example 3.4. Let L+ = {ab}, L− = {a, b, ba}, and
D = {EXISTENCE(X),RESPONSE(Y,Z)}. The set of ac-
tivities is A = { a, b }. The grounded set of con-
straints is then D[A] = {EXISTENCE(a), EXISTENCE(b),
RESPONSE(a, b), RESPONSE(b, a)}. The compatibles set
would be:

compatibles(D[A], L+) = { EXISTENCE(a),EXISTENCE(b),

RESPONSE(a, b) }

and the computation of the sheriffs function finds:

sheriffs(a) = {EXISTENCE(b), RESPONSE(a, b)}
sheriffs(b) = {EXISTENCE(a)}
sheriffs(ba) = {RESPONSE(a, b)}

In this case, there are two subsets of C excluding all traces in L−,
i.e., Z = {M1,M2}, where

M1 = {EXISTENCE(b), EXISTENCE(a), RESPONSE(a, b)}
M2 = { RESPONSE(a, b), EXISTENCE(a) }

Once C and Z are computed, the goal of the optimisation
step is to select the “best” model in Z which can be either
devoted to generality/specificity, or simplicity. When the most
general model is desired, the procedure selects as solution
the model S ∈ Z such that

there is no S′ ∈ Z s.t. cl(S′ ∪ P) ⊂ cl(S ∪ P) (6a)
there is no S′ ⊂ S s.t. cl(S′ ∪ P) = cl(S ∪ P) (6b)

The first condition, Eq. (6a), ensures generality by selecting
the model S for which the logical consequences of S ∪ P
are the less restricting. In this way, the initial model P
(containing a set of Declare constraints that are known to
characterise L+) is enriched taking into account the infor-
mation derived by L−. Furthermore, since from the point

4. As we will discuss in section 3.3, the implementation must take
into account that it might not be always possible to find models
fulfilling Eq.3

of view of generality we are not interested in the content of
the selected model, but rather in its logical consequences,
the closure operator cl ensures that no other model in Z
is more general than the chosen S. The second condition,
Eq. (6b), allows to exclude redundancy inside the selected
model S by ensuring that it does not contain constraints
that are logical consequence of others in S. Considering the
previous example, this optimisation step allows to chose
model M2 as solution because EXISTENCE(b) is a logical
consequence of EXISTENCE(a) ∧ RESPONSE(a, b).

If we were interested in the less general model, condition
(6a) would be

there is no S′ ∈ Z s.t. cl(S′ ∪ P) ⊃ cl(S ∪ P) (7)

whereas the redundancy constraint would be ensured
through the same Eq. (6b) because, even when we look
for the most specific model, redundancy compromises its
readability, without adding any value.

Generality/specificity is not the only desirable optimal-
ity criterion. If we are interested in the simplest model
instead, a solution composed of a limited number of con-
straints is certainly preferable. So, we also experimented
with an alternative optimisation formulation based on the
set cardinality. The procedure selects the S ∈ Z such that:

there is no S′ ∈ Z s.t. |cl(S′ ∪ P)| < |cl(S ∪ P)| (8a)
there is no S′ ∈ Z s.t. |cl(S′ ∪ P)| = |cl(S ∪ P)| and

|S′| < |S|
(8b)

where the first equation selects the set with the smaller
closure, whereas the second allows to choose the solution
with less constraints among those with closure of equal
cardinality.

Theorem 3.1. The models that are solutions according to
the simplicity criterion are also solutions for the generality
criterion.

Proof. Suppose ad absurdum that there is a model S ∈ Z
that is optimal according to the simplicity criterion of
Eq. (8a) and (8b) but it is not the most general, i.e. either
Eq. (6a) or Eq. (6b) are violated for S. If S violated Eq. (6a), it
would exist an S′ ∈ Z s.t. cl(S′∪P) ⊂ cl(S∪P). But clearly,
this implies that |cl(S′∪P)| < |cl(S∪P)|, which contradicts
Eq. (8a). On the other hand, if S violated Eq. (6b), it would
exist an S′ ⊂ S s.t. cl(S′ ∪ P) = cl(S ∪ P). Obviously we
would also have |S′| < |S| and |cl(S′ ∪ P)| = |cl(S ∪ P)|,
which contradict Eq. (8b).

Conversely, the opposite implication in Theorem 3.1
does not necessarily hold. Indeed, let assume that P is
empty and cl is the identity function5; consider two negative
traces t1, t2 and a sheriffs function producing three con-
straints {c1, c2, c3}. In particular, sheriffs(t1) = {c1, c2} and
sheriffs(t2) = {c1, c3}. The only simplicity-oriented solution
would be {c1}, whereas as with regard to the generality-
oriented solutions we would have both {c1}, {c2, c3}. We
must remark that the simplicity principle is based on the
intuition that “smaller” Declare models should be easier to
understand for humans. However, we might notice that,

5. This may also be the case when the constraints selected in the first
stage are logically independent.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

since the two models {c1} and {c2, c3} are not directly
comparable according to their semantics, deciding which is
the “best” might depend on the constraints themselves, as
well as the specific domain.

3.3 Implementation

The first stage is implemented via Algorithm 1, which
starts by collecting the set compatibles of the constraints
that accept all the positive traces (Line 2). Subsequently,
each negative trace is associated (by means of the function
sheriffs) with those constraints in compatibles that reject a
trace in L− (Line 4).

Algorithm 1 Identification of the constraints accepting all
traces in L+ and rejecting at least one trace in L−.

Input: D[A], L+, L−

Output: sheriffs : L− → P(D[A])
1: procedure SHERIFFSGENERATION(D[A], L+, L−)
2: compatibles={c ∈ D[A]|∀t ∈ L+, COMPLIANT(t, c) = True}
3: for t ∈ L− do
4: sheriffs(t)={c ∈ compatibles|COMPLIANT(t, c) = False}
5: end for
6: return sheriffs
7: end procedure

The implementation of the compliance verification COM-
PLIANT (i.e. t |= c) leverages the semantics of Declare
patterns defined by means of regular expressions [22] to
verify the compliance of the traces. It is implemented in
Go language employing a regexp implementation that is
guaranteed to run in time linear in the size of the input6.

The second optimisation stage has been imple-
mented using the Answer Set Programming (ASP) system
CLINGO [24]. The main reason for selecting an ASP sys-
tem for finite domain optimisation is that rules provide
an effective and intuitive framework to implement a large
class of closure operators. Indeed, all the deductive sys-
tems for Declare that we analysed in the literature (see
e.g. [22], [25]) are expressed in the form of logic rules
c1 ∧ . . . ∧ cn =⇒ cn+1, where ci are Declare constraints or
their negation; therefore they can be equivalently expressed
as Normal Logic Programs (NLPs) [26] by exploiting the
assumption that the set of activities is finite and known in
advance. The declarative semantics of NLPs ensures that the
(unique) deductive closure of the rules is taken into account
for the optimisation stage. For example the valid formula
INIT(a) ∧ b 6= a =⇒ PRECEDENCE(a, b) that holds for any
pair of activities a, b can be written as the rule

precedence (A, B) :− i n i t (A) , a c t i v i t y (B) , A!=B .

using a specific predicate (activity /1) representing the set
of all activities.7

The optimisation stage is described in Algorithm 2. The
required input parameters, properly encoded as an ASP
program, are the initial model P , the sheriffs function com-
puted by Algorithm 1 and a custom function is_better :

6. For more details, see the Go package regexp documentation at
https://golang.org/pkg/regexp/

7. By leveraging CLINGO function symbols, Declare constraints are
encoded as function terms; for example, the constraints derived are rep-
resented using the unary predicate holds/1: holds(precedence(a1,a2)).

P(D[A]) × P(D[A]) → {True, False}. The purpose of
the latter is to implement the chosen optimality criterion by
taking as input two constraint sets and providing as output
a boolean value representing whether the first set is better
than the second. If the two sets are not comparable accord-
ing to the criterion, is_better returns False. Indeed, such a
function is the expression of the global or partial ordering
that the optimality criterion induces on the solutions.

Algorithm 2 Selection of the best solutions according to a
custom criterion.
Input: P, sheriffs : L− → P(D[A]), is_better : P(D[A]) ×
P(D[A])→ {T,F}
Output: Z , i.e. the set of the best solutions

1: procedure SELECTION(sheriffs, P)
2: Z = ∅
3: L′− = {t ∈ L− | sheriffs(t) 6= ∅ ∧ t |= P}
4: C =

⋃
t∈L′− sheriffs(t)

5: for each S ⊆ C s.t. ∀t ∈ L′−, S ∩ sheriffs(t) 6= ∅ do
6: if (∀S′ ∈ Z !is_better(S′, S)) then
7: Z ← {S} ∪ {S′ ∈ Z | !is_better(S, S′) }
8: end if
9: return Z

10: end procedure

The algorithm starts by computing a set L′− of all those
negative traces that can be excluded by at least a constraint
(sheriffs(t) 6= ∅) and are still instead accepted by the initial
model P (t |= P). Indeed, albeit from the theoretical point
of view we assumed that for each trace t ∈ L− there
exists at least one Declare constraint in D[A] accepting all
positive traces and discarding t, real cases might not fulfil
this assumption because the chosen language might not be
expressive enough to find a constraint able to reject t while
admitting all traces of L+.

Example 3.5. Consider for example the case of a chosen lan-
guage bias D including EXISTENCE1(X), EXISTENCE2(X),
ABSENCE(X), ABSENCE2(X) and all binary Declare tem-
plates. Let L+ = {bbb}, L− = {bbbb}. In this case, there is
no way to distinguish the input sets because existence1/2 and
absence1/2 are not enough, and all binary constraints must be
used with two distinct activities.

When it is not possible to exclude a negative trace
t, Algorithm 1 returns sheriffs(t) = ∅, and Algorithm 2
overlooks this case by computing L′−. The set C is then built
(Line 4) by considering the constraints allowing all traces
in L+ and disallowing at least one trace in L′− (Line 4).
From that, the algorithm selects any subset S fulfilling the
condition ∀t ∈ L′− S ∩ sheriffs(t) 6= ∅ (Line 5), i.e., any S
accepting all positive traces and rejecting all the negatives
that can be actually excluded.

Any such S is then included in the solution set Z if the
latter does not contain another solution S′ that is better than
S according to the custom optimality criterion expressed
by the is_better operator (Line 6). Solutions S′ previously
founded are kept into Z only if the newly found solution S
is not better than them (Line 7). Notice that both Line 6 and
7 make use of the function is_better in a negated form: this
is due to the fact that, according to the chosen optimality

https://golang.org/pkg/regexp/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

criterion, sometimes it would not be possible to compare
two solutions.

If the chosen optimality criterion is generality, is_better
employs the criteria of Eq. (6a) (for generality) and (6b)
(to avoid redundancy). Conversely, if we are interested in
the most specific solution, is_better must implement Eq.
(7) and (6b). Finally, when the optimality criterion is sim-
plicity, Eq. (8a) and (8b) must be used. In our experiments
we implemented the optimisation criteria using ASP weak
constraints [27]. Describing the underlying technique and
precise formulation of the problem is outside the scope of
this article; so the reader is referred to our code, available
in [23], and [24] for details on the usage of weak rules in
CLINGO. For example, conditions of Equations (8a) and (8b)
are implemented using two predicates selected/1, holds/1;
representing, respectively, the selected constraints among
the candidates and their deduction, with the optimisation
statements:

#minimize {1@2 ,C: holds (C) } .
#minimize {1@1 ,C: s e l e c t e d (C) } .

The selection from the set of candidates is performed by the
common generate and test ASP paradigm:

{ s e l e c t e d (C) : choice (_ ,C) } .

where choice/2 is the input to the ASP program, encoding
the above sheriffs function. The test part of the paradigm
is encoded by constraints enforcing the fact that, for each
negative trace, at least one of the constraints in sheriffs
belongs to the deduction; i.e.

r e j e c t e d (T) :− choice (T ,C) , holds (C) .
:− choice (T , _) , not r e j e c t e d (T) .

In real cases, the returned set Z might contain several
solutions. If the number of solutions provided by the pro-
cedure is too high for human intelligibility, the optimality
condition could be further refined by inducing a preference
order in the returned solution. For example, among the most
general solutions one can be interested in being reported
first those models with the lower number of constraints,
or with certain Declare templates. The advantage of our
approach is precisely in the possibility to implement off-
the-shelves optimisation strategies, where—adapting the
is_better function or even the definition of the closure
operator—the developer can easily experiment with differ-
ent criteria.

Example 3.6. Consider the sets of positive and negative examples
composed by only one trace each: L+ = {bac} and L− = {ab}.
Suppose also that:
• P = ∅;
• D = {EXISTENCE(X), INIT(X)};
• the alphabet of activities is just A = {a, b, c}.

Then, the set of ground constraints can be easily elicited: D[A] =
{EXISTENCE(a), EXISTENCE(b), EXISTENCE(c), INIT(a),
INIT(b), INIT(c)}. If we want to learn the most general model,
Algorithm 1 elects the following compatible constraints and emits
sheriffs(ab):

compatibles = {EXISTENCE(a),EXISTENCE(b),

EXISTENCE(c), INIT(b)}
sheriffs(ab) = {EXISTENCE(c), INIT(b)}.

In this simple case, the subsets satisfying the condition of Line
5 in Algorithm 2 would be:

S1 ={EXISTENCE(c)}
S2 ={INIT(b)}
S3 ={EXISTENCE(c), INIT(b)}
S4 ={EXISTENCE(c),EXISTENCE(a)}
...

Sn ={EXISTENCE(c), INIT(b),EXISTENCE(a)}
...

As we are interested in the most general models, both S1 =
{ EXISTENCE(c) } and S2 = { INIT(b) } are optimal solutions.
Note that these two solutions cannot be compared according to the
definitions of generality because there exist traces (such as the
unknown trace b) compliant with S2 and non-compliant with S1

(i.e., there is no subset relation between S1 and S2). Obviously,
the choice of one model over another influences the classification of
all those unknown traces that—being not part of the input log—
are not labelled as positive of negative.

If we were interested in the most simple solution instead,
S1 = { EXISTENCE(c) } would have been our choice, because
its closure is the smaller in cardinality.

Finally, if we were interested in the most specific set of
constraints, the application of a convenient is_better func-
tion would have determined the choice of {EXISTENCE(a),
EXISTENCE(c), INIT(b)}—where the redundancy check of Eq.
(6b) operated by discarding EXISTENCE(b).

3.4 Complexity considerations

To understand the complexity of the above algorithms we
focus on the size of the input logs; i.e., we do not consider
the Declare language bias as part of the input. This assump-
tion fits most of the use cases, where the set of Declare tem-
plates is fixed. The choice of templates affects the maximum
arity of the templates (commonly used templates restrict to
1 or 2 arguments), regular expressions used in Algorithm 1,
and the deductive rules; therefore, also the rule part of ASP
program can be considered fixed.

The size of the input (n) is therefore the sum of positive
and negative log traces. We can also assume that all actions
appear in the logs, so the input size bounds also the number
of actions. Note that the set D[A] of all grounded templates
is linearly bound by the number of actions; in particular
|D[A]| ≤ |A|δ , where δ is the maximum arity of the selected
Declare templates. This bounds linearly both the complexity
of Algorithm 1 and the size of sheriffs; the latter because
each negative trace is associated to a subset of compatibles.
In general, we expect that the sheriffs function is going to be
much smaller than all the traces; note that a larger number
of positive traces further restricts the size of compatibles. To
understand the linear bound of Algorithm 1 we consider
that each grounded template must be checked at most once
for each trace (both positive and negative), and we use an
optimal implementation of regexp that guarantees liner time
w.r.t. the input to be checked.

The size of the input to the optimisation stage is the size
of sheriffs and, since we do not consider the ASP rules as
part of the input, the size of the grounded ASP program is

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

linearly bound w.r.t. the size of sheriffs. Since we do not use
Disjunctive ASP, the complexity of ASP optimisation using
weak constraints is ∆P

2 [28].
Characterising the theoretical complexity analysis of the

general problem of optimisation in the context of binary
process discovery [14] is outside the objectives of this work.
However, the fact that verifying that a given trace satisfies
a set of Declare constraints can be performed in linear
time, suggests that the problem of optimising the choice of
a Declare model falls under the general umbrella of NP-
complete optimisation problems analysed in [29]. Therefore
its complexity should be ∆P

2 as well.

4 EXPERIMENTAL EVALUATION

One of the difficulties of evaluating process mining algo-
rithms is that given a log, the underlying model might not
be known before. As a consequence, it might be difficult
to establish an ideal model (a golden standard) to refer
and confront with. In this regard, a number of metrics
and evaluation indexes have been proposed in the past to
evaluate how a discovered model fits a given log [4], [5],
[6]. However, those metrics might provide only a partial
answer to the question of “how good” the discovered model
is. In the case of NegDis, a further issue influences the
evaluation process: the difficulty of performing a “fair”
comparison with existing techniques because the majority
of the methods we could access have been designed to use
“positive” traces only.

We pursued two different evaluation strategies. On one
side, we defined a model, and from that model we gener-
ated a synthetic, artificial log, taking care that it exhibits
a number of desired properties: in a sense, this part of
the evaluation can be referred as being about a “controlled
setting”. A first aim is to understand if NegDis succeeds
to discover a minimum set of constraints for distinguishing
positive from negative examples; a second aim is to qualita-
tively evaluate the discovered model, having the possibility
to confront it with the original one. Experiments conducted
on that synthetic log are discussed in Section 4.1.

On the other side, we applied NegDis to some existing
logs, thus evaluating it on some real data set. Again, this
experiment has two aims: to understand weakness and
strengths of NegDis w.r.t. to some relevant literature; and
to confront the proposed approach with real-world data—
and difficulties that real-world data bring along. Section
4.2 is devoted to present the selected logs and discuss the
obtained results. The source code and the experiments are
available in [23].

4.1 Experiments on a synthetic dataset
The synthetic log has been generated starting from a Declare
model, using a tool [30] based on Abductive Logic Program-
ming. The model has been inspired by the Loan Application
process reported in [31]. In our model, the process starts
when the loan application is received. Before assessing the
eligibility, the bank proceeds to appraise the property of the
customer, and to assess the loan risk. Then, the bank can either
reject the application or send the acceptance pack and, optionally,
notify the approval (if not rejected). During the process execu-
tion the bank can also receive positive or negative feedback (but

Fig. 1: Loan approval declare process model.

not both), according to the experience of the loan requester.
It is not expected, however, that the bank receives a negative
feedback if the acceptance pack has been sent. Moreover, due
to temporal optimisation, the bank requires that the appraisal
of the property is done before assessing the loan risk. To ease
the understanding of the loan application process, a Declare
model of the process is reported in Fig. 1. Moreover, all the
activities have been constrained to either not be executed at
all, or to be executed at most once: in Declare terminology,
all the activities have been constrained to absence2(X).

To test NegDis, besides positive traces, we generated
also negative traces. In particular, we generated traces that
violate two different constraints:
(a) the precedence(assess_loan_risk, assess_eligibility), that

is violated when either the latter activity is executed
and the former is absent, or if both the activities appear
in the log, but in the wrong temporal order;

(b) the exclusive_choice(send_acceptance_pack,
receive_negative_feedback), that is violated when a
trace either contains both the activities, or does not
contain any of them.

The resulting log consists of 64,000 positives traces, 25,600
traces that violate the constraint as in (a), and 10,240 traces
that violate the constraint as specified in (b). When fed with
the positives traces and traces violating the constraint in
(a), NegDis successfully manages to identify constraints
that allow to clearly distinguish positive/negative traces.
Moreover, the discovered constraint coincides with the one
we originally decided to violate during the generation
phase. When confronted with the scenario (b), NegDis
again successfully managed to identify a minimum model
able to discriminate between positive and negative traces,
and the identified constraint is indeed logically consistent
with the constraint originally selected for the violation.
Table 2 summarize the obtained results and reports the
best selected model for each scenario. The Time column
highlights how the most expensive task is the generation of
the compatibles set. This is indeed expected, as it requires
to check all constraints in D[A] against all traces in L+.

For the sake of completeness, we decided to experi-
ment also with the Process Discovery Tool of the RuM

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Scenario Positive Trace # Negative Trace # Time Originally Violated Constraint Best Discovered Model

(a) 64 000 25 600

Total: 22.93s
Compatibles: 13.96s precedence(assess_loan_risk, precedence(assess_loan_risk,

sheriffs: 7.85s assess_eligibility) assess_eligibility)
Optimisation: 1.12s

(b) 64 000 10 240

Total: 17.68s
Compatibles: 13.96s exclusive_choice(send_acceptance_pack, coExistence(reject_application,

sheriffs: 3.4s receive_negative_ feedback) receive_negative_feedback)
Optimisation: 0.18s

TABLE 2: Models discovered when dealing with the synthetic data set.

Framework8, that is based on the Declare Miner algorithm
[32]. Based on the exploitation of positive traces only, De-
clare Miner discovers a rich model that describes as “most
exactly” as possible the given traces. When fed with the
positive traces of our artificial log, and with the coverage
parameter set to 100% (i.e., prefer constraints that are valid
for all the traces in the logs), the RuM Framework discovers
a model made of 514 constraints. If the coverage is relaxed
to 80% (prefer constraints that are satisfied by at least the
80% of the traces), the model cardinality grows up to 1031
constraints.

In both cases the discovered model is able to distinguish
between the positive and the negative traces. This is not
surprising, since Declare Miner aims to identify all the
constraints that hold for a given log: hence, it will discover
also those constraints that allow to discern positive from
negative traces. Rather, this result is a clear indication that
indeed our artificial log has been constructed “correctly”,
since negative traces differ from the positive ones for some
specific constraints, and the positive traces exhaustively
elicit the cases that can occur. This is typical of artificial logs,
while real-life logs might not enjoy these properties.

Another consideration is about the cardinality of the
discovered model: the Declare Miner approach provides
a far richer description of the positive traces, at the cost
perhaps of bigger models. Our approach instead has the
goal of identifying the smallest set of constraints that allow to
discriminate between positive and negatives. In this sense,
approaches like the one presented in this paper and Declare
Miner are complementary.

4.2 Evaluation on case studies from real data

For the experimentation with real datasets, we used six real-
life event logs: BPIC12, CERV, DREYERS, PROD, SEPSIS and
TRAFFIC_FINES. Starting from these event logs we generated
18 different datasets, each composed of a set of positive
and a set of negative traces, by applying different criteria
to distinguish between positive and negative traces, i.e., by
labelling the event log with different labelling functions. All
logs have been labeled according to three criteria: the first
one is domain dependent and varies for each dataset, while
the remaining two datasets (XXXmean and XXXmedian) for
each log are generated based on the execution cycle time. In
the XXXmean dataset (resp. XXXmedian), traces with a cycle
time lower than the mean (resp. median) duration of the

8. https://rulemining.org/

traces in the event log are labeled as positive; as negative
otherwise.9

BPIC12 is a real-life logs from the Business Process Intel-
ligence Challenge 2012 [33]. The log pertains to the applica-
tion process for personal loans or overdrafts in a Dutch fi-
nancial institute. It merges three intertwined sub-processes.
Besides the cycle-time datasets, in the BPIC12CANC dataset,
traces have been labeled based on the occurrence of the
activity O_CANCELLED [34].

CERV is an event log related to the process of cervical
cancer screening carried out in an Italian cervical cancer
screening centre [35]. Cervical cancer is a disease in which
malignant (cancer) cells form in the tissues of the cervix of
the uterus. The screening program proposes several tests in
order to early detect and treat cervical cancer. It is usually
composed by five phases: Screening planning; Invitation
management; First level test with pap-test; Second level
test with colposcopy, and eventually biopsy. The traces con-
tained in the event log (CERVcompl) have been analysed by a
domain expert and labeled as compliant (positive traces) or
non-compliant (negative traces) with respect to the cervical
cancer screening protocol adopted by the screening centre.

The DREYERS log [36] is an event log documenting the
application grant process of the Dreyers Foundation, a Dan-
ish foundation supporting budding lawyers and architects.
The application requests are traced through an information
system and the DREYERS event log also collects the early
stages of deployment and the testing phase of the system.
The domain-specific labelling for the DREYERSreset dataset
is the one used in [14]: it classifies the executions based on
whether they were reset due to a system failure (negative
traces) or not (positive traces).

The production event log (PROD) [34] contains data from
a manufacturing process. Each trace records information
about activities, workers and machines involved in the
production of items. The labelling for the PRODrej dataset
distinguishes between executions with at least a rejected
work order (negative traces) and executions with no rejected
orders (positive traces) [34].

SEPSIS [37] is an event log that records trajectories of pa-
tients with symptoms of the life-threatening sepsis condition
in a Dutch hospital. Each case logs events since the patient’s
registration in the emergency room until her discharge from
the hospital. Among others, laboratory tests together with
their results are recorded as events. The traces contained in
the event log have been labeled based on the formula φ1 =

9. Since the DREYERS log does not contain timestamps, we syn-
thetically added them for the generation of the DREYERSmean and
DREYERSmedian dataset.

https://rulemining.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

RESPONSE(IVAntibiotics, Leucocytes)∧RESPONSE(LacticAcid, IVAntibiotics)∧
RESPONSE(ERTriage,CRP). The positive traces satisfies φ1, while
the negative ones violate the constraint.

Finally, the TRAFFIC fines event log [38], which comes
from an Italian local police force, contains events on fine
notifications, as well as (partial) repayments. This event log
has also been labeled based on whether the fine is finally
repaid in full (positive traces) or sent for credit collection
(negative traces) [34] (TRAFFICpaid dataset).

Table 3 summarizes the data related to the 18 resulting
datasets.

Dataset Log Trace # Activity # Label
Positive Negative
Trace # Trace #

BPIC12CANC
BPIC12 13087 36

O_CANCELLED occurs 2660 10427
BPIC12mean mean duration 8160 4927
BPIC12median median duration 6544 6543

CERVcompl
CERV 157 16

compliant 55 102
CERVmean mean duration 93 64
CERVmedian median duration 92 65

DREYERSreset
DREYERS 700 33

reset executions 492 208
DREYERSmean mean duration 206 494
DREYERSmedian median duration 406 294

PRODrej
PROD 220 26

reset executions 103 117
PRODmean mean duration 148 72
PRODmedian median duration 110 110

SEPSISφ1

SEPSIS 1050 16
φ1 685 365

SEPSISmean mean duration 838 212
SEPSISmedian median duration 525 525

TRAFFICpaid
TRAFFIC 129 615 10

fine paid 70 602 59 013
TRAFFICmean mean duration 70 585 59 030
TRAFFICmedian median duration 65 003 64 612

TABLE 3: Dataset description

The results obtained by applying the NegDis algorithm
are summarised in Table 4. The table reports for each
dataset, the results related to the SUBSET (connected to the
generality criterion of Eq. 6a and 6b) and CARDINALITY
(simplicity criterion of Eq. 8a and 8b) optimizations in terms
of number of returned models10, minimum size of the
returned models, as well as percentage of negative traces
violated by the returned model. Moreover, the table reports
the time required for computing the set of compatibles, the
set of sheriffs, as well as the SUBSET and CARDINALITY
optimizations.

The table shows that for the CERVcompl dataset, NegDis
is able to return models that satisfy the whole set of pos-
itive traces and violate the whole set of negative traces
(the percentage of violated traces in L− is equal to 100%)
with a very low number of constraints (4). A similar re-
sult is obtained also with the BPIC12CANC dataset (with
a minimum model of a single constraint) and with the
DREYERSmean dataset (with a minimum model composed
of 3 constraints). For the other datasets, the returned models
are always able to satisfy all traces in L+, however not
all the negative traces are violated by the returned models.
For some of the datasets, as for instance, the DREYERSreset
and the DREYERSmedian, the percentage of violated traces
is quite close to 100% (98.56% and 96.94%, respectively),
with relatively small models (8 and 14 constraints, respec-
tively). For other datasets, as the BPIC12mean, SEPSISφ1,
SEPSISmean, TRAFFICpaid, TRAFFICmean and TRAFFICmedian,
the percentage of violated traces is relatively small (4.25%

10. We stop generating models after 20 models, i.e., max in Table 4
indicates that more than 20 models have been returned within the
timeout (one hour).

for SEPSISmean and less than 1% for all the other datasets), as
the number of constraints of the returned models (ranging
from 1 for TRAFFICpaid to 13 for BPIC12mean, TRAFFICmean
and TRAFFICmedian. However, while for SEPSISmean and
BPIC12mean the number of L− traces violated by the model
returned by NegDis is relatively low (around 49 and 4,
respectively), in case of the TRAFFIC log, NegDis returns
a model able to violate around 600 traces in L−. Moreover,
NegDis is able to obtain reasonable results also with the
other real datasets. For the datasets related to the PROD
event log it returns slightly larger minimum models (in-
cluding about 21-30 constraints) able to to accept all traces
in L+ and to violate from around 40% to 80% of L− traces.
In the case of BPIC12median and SEPSISmedian, the models
discovered with NegDis are instead able to violate around
30% of the traces in L−. Overall, the inability to identify
a set of constraints that is able to fulfil all traces in L+

and to violate all negative ones is due to a bias of the
considered language (Declare without data) that does not
allow to explain the positive traces without the negative
ones. A language bias issue could also be the cause of the
huge difference in terms of percentage of L− violated traces
obtained with the mean and the median cycle time for some
of the datasets (e.g., BPIC12 and SEPSIS). Indeed, when the
positive and negative trace sets are quite balanced (i.e., for
BPIC12median and SEPSISmedian) NegDis is able to identify
a set of constraints (related to the control flow) describing
the traces with a low-medium cycle time and excluding the
ones with a medium-high cycle time; when, instead, the sets
of the positive and the negative traces are quite imbalanced
(i.e., for BPIC12mean and SEPSISmean) characterizing the
high number of traces with a low or medium cycle time
while excluding the ones with a very high cycle time can
become hard.

The table also shows that NegDis is overall very fast
for small datasets with SUBSET (e.g., less than 30 seconds
for CERV, PROD and SEPSIS), while it requires some more
time for the large ones (e.g., BPIC12 and TRAFFIC) and the
ones with a large alphabet (e.g., DREYERS). While the time
required for computing compatibles and sheriffs seems to be
related to the size and complexity of the dataset, the time
required for computing the optimizations especially the
CARDINALITY seems to depend also on other characteristics
of the datasets.

Compared to state-of-the-art techniques for the discov-
ery of declarative models starting from the only positive
traces, NegDis is able to return a small number of con-
straints satisfying all traces in L+ without decreasing the
percentage of violated traces in L−. Among the classical
declarative discovery approach, we selected the state-of-
the-art DeclareMiner algorithm [32] implemented in the
RuM toolkit [39]. We discovered the models using the only
positive traces and setting the support parameter, which
measures the percentage of (positive) traces satisfied by the
Declare model, to 100%11.

11. We run the DeclareMiner algorithm with vacuity detection
disabled, activity support filter set to 0%, using both transitive closure
and hierarchy-based reduction of the discovered constraints, as well as
with the whole set of Declare templates.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Dataset

SUBSET CARDINALITY Required Time (s)

Number of Min model Violated Number of Min model Violated
Comp. sheriffs SUBSET CARDINALITY

models size L− trace % models size L− trace %

BPIC12CANC max 1 100% 2 1 100% 4.92 12.39 22.15 4
BPIC12mean max 13 0.91% max 13 0.91% 2.83 5.87 19.99 0.08
BPIC12median max 23 32.71% max 23 32.71% 2.13 7.24 6.59 54.24

CERVcompl max 4 100% max 4 100% 0.4 0.06 19.24 0.05
CERVmean max 2 100% max 2 100% 0.01 0.91 10.86 7.79
CERVmedian max 1 100% 1 1 100% 0.01 0.84 11.8 0.5

DREYERSreset max 8 98.56% 4 8 98.56% 1.62 0.1 78.03 0.12
DREYERSmean max 4 100% max 4 100% 0.6 2.56 23.77 462.09
DREYERSmedian max 14 96.94% 1 14 96.94% 1.25 1.07 81.16 timeout

PRODrej max 21 40.17% 1 21 40.17% 0.8 0.41 7.03 timeout
PRODmean max 21 81.94% 1 21 81.94% 0.71 0.66 8 timeout
PRODmedian max 30 78.18% 1 30 78.18% 0.56 0.93 12.31 timeout

SEPSISφ1
3 3 0.82% 2 3 0.82% 0.67 0.32 0.37 0.05

SEPSISmean 2 8 4.25% 2 8 4.25% 0.72 0.26 0.4 0.06
SEPSISmedian max 14 26.86% max 14 26.86% 0.46 0.62 2.99 0.12

TRAFFICpaid 1 1 0.01% 1 1 0.01% 20.51 20.82 0.26 0.07
TRAFFICmean max 13 0.76% 2 13 0.76% 18.98 23.4 5.63 0.05
TRAFFICmedian max 13 0.75% 4 13 0.75% 15.35 28.03 2.02 0.04

TABLE 4: NegDis results on the real-life logs

Table 5 summarises the obtained results12. The table
reports for each dataset, the size of the model in terms of
number of constraints, as well as the percentage of nega-
tive traces violated by the model. For lower values of the
support parameter, i.e., for a lower percentage of positive
traces satisfied by the model, the model returned by the
DeclareMiner violates a higher percentage of negative
traces. In this way, the support parameter allows for balanc-
ing the percentage of positive traces satisfied and negative
traces violated.

As hypothesised, the optimisation mechanism in
NegDis is able to identify a small set of constraints, that
guarantees the satisfaction of all traces in L+ and the same
or higher percentage of negative trace violations obtained
with DeclareMiner (with support to 100%).

Dataset Model size Violated L− trace %

BPIC12CANC 795 100%
BPIC12mean 515 0.91%
BPIC12median 532 32.55%

CERVcompl 323 100%
CERVmean 6 0%
CERVmedian 2 0%

DREYERScompl 909 98.56%
DREYERSmean 425 100%
DREYERSmedian 798 96.94%

PRODrej 377 36.75%
PRODmean 269 79.17%
PRODmedian 241 77.27%

SEPSISφ1
211 0.82%

SEPSISmean 213 4.25%
SEPSISmedian 203 22.29%

TRAFFICpaid 67 0.01%
TRAFFICmean 84 0.76%
TRAFFICmedian 86 0.75%

TABLE 5: DeclareMiner results

Finally, we evaluated the results obtained with NegDis

12. Note that the results obtained with DeclareMiner and NegDis are
not fully comparable. Indeed, the discovery mechanisms behind the
two tools are different, and different is even the information that the
tools take as input. DeclareMiner takes as input only the positive log
and bases the discovery on the positive log alphabet. Instead, NegDis
uses information from both positive and negative logs, including the
alphabet of the discovered model that, in general, is not the same as the
one retrieved from the positive log only.

relying on the same procedure and dataset (CERVcompl) used
in [35] to assess the results of DecMiner, a state-of-the-art
declarative discovery approach based on Inductive Logic
Programming (ILP) that is able to use both positive and
negative execution traces. Five fold-cross validation is used,
i.e., the CERVcompl dataset is divided into 5 folds and, in each
experiment, 4 folds are used for training and the remaining
one for validation purposes. The average accuracy of the five
executions is collected, where the accuracy is defined as the
sum of the number of positive (compliant) traces that are
(correctly) satisfied by the learned model and the number of
negative (non-compliant) traces that are (correctly) violated
by the learned model divided by the total number of traces.

Table 6 reports the obtained accuracy values for the
DecMiner, the DeclareMiner (with the support parame-
ter set to 100%) and the NegDis (both for the CARDINALITY
and SUBSET optimization) approach. The table shows that
on this specific dataset, NegDis and DecMiner have very
close performance (with NegDis CARDINALITY performing
slightly better). DeclareMiner presents instead on average
a slightly lower accuracy mainly due to the highly con-
strained discovered model that, on one hand, allows for
violating all negative traces in the validation set, and, on
the other hand, leads to the violation of some of the positive
traces in the validation set.

5 RELATED WORK

Process discovery is generally considered a challenging task
of process mining [40]. The majority of works in this field
are focused on discovering a process model from a set of
input traces that are supposed compliant with it. In this

Approach Accuracy

DecMiner 97.44%
DeclareMiner 96.79%
NegDis (SUBSET) 97.38%
NegDis (CARDINALITY) 97.57%

TABLE 6: Accuracy results obtained with DeclareMiner, DecMiner
and NegDis

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

sense, process discovery can be seen as the application of
a machine learning technique to extract a grammar from
a set of positive sample data. Angluin et al. [41] provide
an interesting overview on this wide field. Differently from
grammar learning, where the model is often expressed with
automata, regular expressions or production rules, process
discovery usually adopts formalisms that can express con-
currency and synchronization in a more understandable
way [12]. The language to express the model is a cru-
cial point, which inevitably influences the learning task
itself. Indeed, the two macro-categories of business process
discovery approaches—procedural and declarative—differ
precisely by the type of language to express the model.
Well known examples of procedural process discoverers
are the ones presented in the works [7], [8], [9], [10], [42],
[43], [44]. See [45], [46] for systematic literature reviews of
this field. Like most procedural approaches, all these works
contemplate the presence of non-informative noise in the
log, which should be separated from the rest of the log and
disregarded.

Traditional declarative approaches to process discovery
stem from the necessity of a more friendly language to ex-
press loosely-structured processes. Indeed—as also pointed
out by [40]—process models are sometimes less structured
than one could expect, so procedural discovery could pro-
duce spaghetti-models. In that case, a declarative approach
is more suitable to briefly list all the required or prohibited
behaviours in a business process. Similarly to our technique,
the one exposed by Maggi et al. in [47] starts by considering
the set of all activities in the log and building a set of all
possible candidate Declare constraints. The performance of
this technique is improved in [40], while [48] proposes a
model refinement to efficiently exclude vacuously satisfied
constraints.

The MINERFul approach described in [49] proposes to
employ four metrics to guide the declarative discovery
approach: support, confidence and interest factor for each
constraint w.r.t. the log, and the possibility to include in the
search space constraints on prohibited behaviours. Particu-
larly relevant for our purposes is the work by Di Ciccio et
al. [22], who focus on refining Declare models to remove the
frequent redundancies and inconsistencies. The algorithms
and the hierarchy of constraints described in that work were
particularly inspiring to define our discovery procedure.
Similarly to the procedural approaches, all the declarative
ones described so far do not deal with negative examples,
although the vast majority of them envisage the possibility
to discard a portion of the log by setting thresholds on the
value of specific metrics that the discovered model should
satisfy. In the work [50] the authors propose a declarative
miner for learning Dynamic Condition Response (DCR)
graphs from event logs. Similarly to our approach, they
focus on control-flow-related aspects only, and disregard
timing, data and resource perspectives. Negative examples
are not exploited in the learning process, but taken into
account when measuring underfitting and overfitting of the
resulting model.

In the wider field of grammar learning, the foundational
work by Gold [51] showed how negative examples are
crucial to distinguish the right hypothesis among an infinite
number of grammars that fit the positive examples. Both

positive and negative examples are required to discover
a grammar with perfect accuracy. Since process discovery
does not usually seek perfection, but only a good perfor-
mance according to defined metrics, it is not surprising that
many procedural and declarative discoverers disregard the
negative examples. Nonetheless, in this work we instead
claim that negative traces are extremely important when
learning declarative process models.

The information contained in the negative examples is
actively used in a subset of the declarative process discov-
ery approaches [13], [14], [52], [53], [54]. All these works
can be connected to the basic principles of the Inductive
Constraint Logic (ICL) algorithm [55], whose functioning
principle is intrinsically related to the availability of both
negative and positive examples. The Declarative Process
Model Learner (DPML) described in [35], [52] by Lamma
et al. focuses on learning integrity constraints expressed as
logical formulas. The constraints are later translated into an
equivalent construct of the declarative graphical language
DecSerFlow [56]. Similarly to this approach, the DecMiner
tool described in [13], learns a set of Social Constrained if-
and-only-if (SCIFF) rules [57] which correctly classify an
input set of labelled examples. Such rules are then trans-
lated into ConDec constraints [58]. Differently from [13],
the present work directly learns Declare constraints without
any intermediate language. DPML has been later used in
[53] to extract integrity constraints, then converted into
Markov Logic formulas. Taking advantage of the negative
examples, the approach of [53] is improved in [54]. Another
recent related work is the Rejection Miner by Slaats et al.
[14], which—analogously to our vision—considers process
discovery as a binary classification task and provides an
algorithm where some parts can be customised to include
more constraints and different model minimisation strate-
gies. Likewise, our approach envisages the possibility to
employ a different language bias or closure operator. Since
the aim of [14] is to provide a general miner (not limited
to Declare notation), they do not focus on notation-specific
improvements like our use of the closure to avoid redundan-
cies and provide more compact models. Interestingly, [14]
also reports a demonstration of the reasons why Declare is
not able to perfectly separate any pair of positive/negative
traces. Consistently with this finding, our approach aims
at discovering a model that accepts all traces in L+ and
rejects as many traces in L− as possible. Despite its limits,
we believe that Declare’s diffusion in both industry and
academia motivates the need to further investigate process
discovery with this language.

Since for all these works the availability of negative ex-
amples is crucial, recent years have seen the development of
synthetical log generators able to produce not only positive
but also negative process cases [12], [30], [59], [60], [61], [62].
In the experimental evaluation of this work, we employ the
abductive-logic generator by Loreti et al. [30] to synthesise
part of the input event logs.

Two-class declarative process discovery is sometimes
related to sequence mining and classification [15], [63], [64],
[65], [66]. In [63] the authors propose a probabilistic ma-
chine learning approach that infers subsequences which best
compress a sequence database. A similar Bayesian technique
is used by Egho et al. [64] to mine Standard Classification

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Rule Models, where the antecedent is the relevant subse-
quence, and the consequent expresses the support of that
subsequence in each class. The above-mentioned work by
Maggi et al. [47] originated from the idea that Apriori-
like approaches can discover local patterns in a log, but
not rules representing prohibited behaviours and choices.
The same motivation is behind the work by De Smedt
et al. [15], which significantly enriches the expressiveness
of the discovered models employing Declare behavioural
constraints in sequence classification. Differently from [15],
our work does not focus on characterising the traces of
multiple, possibly intersected, input classes, but rather on
refining the relevant feature of the traces belonging to a
single class (the positive). In order to do so, we assume two
disjunct sets of examples and suggest extracting from one
class (the negative) the information relevant to characterise
the other (the positive). In other words, the information
that is relevant for our purpose is the fact that a trace does
not belong to a certain class. Another important difference
regards the mining algorithm: while [15] explicitly considers
each relevant Declare constraint, we envisage the language
bias, as well as the subsumption hierarchy as input and we
exploit the power of a satisfiability-based solver to deter-
mine the best model in terms of generality or simplicity.

Particularly related to our approach are the works by
Neider et al. [67], Camacho et al. [68], and Reiner [69] where
a satisfiability-based solver is employed to learn a simple
set of LTL formulas consistent with an input data set of
positive and negative examples. In particular, Neider et
al. [67] employ decision tree to improve the performance
and manage large example sets; Camacho et al. [68] exploit
the correspondence of LTL formulae with Alternating Finite
Automata (AFA); whereas Reiner [69] uses partial Directed
Acyclic Graphs (DAGs) to decompose the search space into
smaller subproblems. Furthermore, the concept of negative
example used in this work could be related to both the
definitions of syntactical and semantic noise of [70].

It is important to underline that also a limited number of
procedural approaches envisage the need for taking into ac-
count the information contained into the negative examples.
In particular, the work [71] showed how negative examples
can be employed to alleviate problems like log incomplete-
ness and noise. The Artificially Generated Negative Events
(AGNEs) tool described in [12] increases the dimension of
an event log with artificially generated negative examples,
then uses ILP multi-relational classification to discover a
Petri net model. Negative examples are generated in a rather
syntactical way, by adding a unique negative event at the
end of a positive trace. This concept is extended in the work
of Ponce de Leon et al. [6] which envisage the concatenations
of a sequence of negative events. Differently from these
approaches, our technique does not assume syntactical re-
strictions on the input negative examples. ILP is also used in
[72], where the authors suppose a set of negative examples
provided by domain experts. The approach uses partial-
order planning to discover a structured model.

Deviant cases—intended as traces whose sequence of
activities deviates from the expected behaviour—are the
subject of deviance mining approaches reviewed and evalu-
ated by Nguyen et al. in [17]. Some applications of deviance
mining tend to highlight the differences between models

discovered from deviant and non-deviant traces [73], [74].
Other works intend deviance mining as a classification task,
where the miner is required to identify normal and deviant
traces given a set of examples. The classification inherently
causes the discovery of patterns which distinguish different
types of traces. In this sense, deviance mining is particularly
similar to sequence classification. The discovered patterns
can be based on the simple frequency of individual activ-
ities as in [75], [76], their co-occurrence as in [77], or the
occurrence of specific subsequences [25], [78], [79]. Table 7
briefly illustrate the classification of the cited related works.

Procedural

One-class discovery [7], [8], [9], [10], [42],
[43], [44], [46]

Two-class discovery [6], [71], [72]

Log generation [12], [61], [62]

Declarative

One-class discovery [22], [40], [47], [48], [49],
[50]

Two-class discovery [13], [14], [35], [52], [53],
[54], [67], [68], [69]

Log generation [30], [59], [60]

Deviance mining [17], [25], [73], [74], [75],
[76], [77], [78], [79]

Sequence mining/classification [15], [63], [64], [65], [66]

TABLE 7: Classification of related works.

6 CONCLUSION

While the vast majority of works see process discovery as a
one-class supervised learning task, we embrace the less pop-
ular view of process discovery as a binary supervised learn-
ing job, where traces representing a “stranger” behaviour
can be considered as heralds of valuable information about
the process itself. Devoted to this vision, we developed a
technique which considers both positive and negative traces
and performs process discovery as a satisfiability problem,
where different heuristics can be adopted to assess the
optimal model according to different goals.

Being able to extract valuable knowledge from nega-
tive examples, our proposal NegDis can be employed to
enrich the process description extracted by a state-of-the-
art declarative process discovery algorithm. However, it is
worth to underline that the resulting declarative process
discoverer taking advantage of explicitly defined positive
and negative examples would not be necessarily an alter-
native to procedural discovery techniques. Indeed in some
cases, when correct thresholds and language biases are
adopted, procedural discoverers have the great advantage
to provide the user with a rather easy-to-understand def-
inition of the process model. Nonetheless, the informative
content provided by those process cases that are discarded
by procedural discoverer can still be extremely important.
For the future, as NegDis extracts valuable information
from L− without excluding any trace of L+, it could also be
applied as a post processing technique to enrich the output
of procedural discoverers with declarative constraints. The

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

resulting output would be an hybrid procedural/declarative
process model, showing a simple and handy structured
representation of the main business process together with a
set of declarative constraints. The goal of such constraints
would be to account for less frequent deviances or pro-
hibited behaviours in a much more synthetic and easy-to-
understand way with respect to an equivalent spaghetti-like
procedural formulation.

Such a hybrid solution could also greatly simplify the
elicitation of long-term dependencies between activities that
occur at the beginning of the process and those carried out
towards the end. Indeed, the structured nature of procedural
approaches makes them not properly suitable to express
such dependencies. One current way to tackle such issue
is through the employment of global variables and “if”
statements to control the execution flow of each instance. For
example, Kalenkova et al. [80] propose a process discovery
technique devoted to repair free-choice procedural work-
flows with additional modelling constructs, which can more
easily capture non-local dependencies. Nonetheless, since
such additional constraints are intended to preserve the
procedural nature of the model, the result may increase its
complexity and ultimately affect its readability. An hybrid
procedural/declarative model formulation would maintain
a structured form to express the model while integrating
it with handy declarative long-term constraints involving
activities occurring far from each other in the workflow. This
idea of a hybrid procedural/declarative model formulation
has been explored by various works and proved to be partic-
ularly effective in the field of medical clinical guidelines [81],
[82], [83]. A wider landscape of applications is considered by
Maggi et al. in the work [3].

Finally, the performance of NegDis presented in this
paper could be boosted through a parallel approach. Analo-
gously to previous works [32], [84], [85] we can envisage two
possible directions to decompose our task: by spitting the
model (i.e. in this case the set of constraints to be learned),
or the input data (i.e. the business log). The algorithm pre-
sented here could easily adopt the first kind of partitioning,
whereas the second might be more challenging.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission funded projects “Humane AI: Toward AI Systems
That Augment and Empower Humans by Understanding
Us, our Society and the World Around Us” (grant # 820437)
and “AI4EU: A European AI On Demand Platform and
Ecosystem” (grant # 825619). The support is gratefully ac-
knowledged.

REFERENCES

[1] van der Aalst, et al., “Process mining manifesto,” in Business Pro-
cess Management Workshops, F. Daniel, K. Barkaoui, and S. Dustdar,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp.
169–194.

[2] D. Fahland, D. Lübke, J. Mendling, H. A. Reijers, B. Weber,
M. Weidlich, and S. Zugal, “Declarative versus imperative process
modeling languages: The issue of understandability,” in BMMD-
S/EMMSAD, ser. LNBIP, vol. 29. Springer, 2009, pp. 353–366.

[3] F. M. Maggi, A. Marrella, G. Capezzuto, and A. Armas-Cervantes,
“Explaining non-compliance of business process models through
automated planning,” in ICSOC, ser. Lecture Notes in Computer
Science, vol. 11236. Springer, 2018, pp. 181–197.

[4] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. F. van Dongen,
and W. M. P. van der Aalst, “Measuring precision of modeled
behavior,” Inf. Syst. E Bus. Manag., vol. 13, no. 1, pp. 37–67, 2015.

[5] S. K. L. M. vanden Broucke, J. D. Weerdt, J. Vanthienen, and B. Bae-
sens, “Determining process model precision and generalization
with weighted artificial negative events,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 8, pp. 1877–1889, 2014.

[6] H. P. de León, L. Nardelli, J. Carmona, and S. K. L. M. vanden
Broucke, “Incorporating negative information to process discov-
ery of complex systems,” Inf. Sci., vol. 422, pp. 480–496, 2018.

[7] W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow
mining: Discovering process models from event logs,” IEEE Trans.
Knowl. Data Eng., vol. 16, no. 9, pp. 1128–1142, 2004.

[8] A. J. M. M. Weijters and W. M. P. van der Aalst, “Rediscovering
workflow models from event-based data using little thumb,”
Integr. Comput. Aided Eng., vol. 10, no. 2, pp. 151–162, 2003.

[9] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining - adap-
tive process simplification based on multi-perspective metrics,” in
BPM, ser. Lecture Notes in Computer Science, vol. 4714. Springer,
2007, pp. 328–343.

[10] W. M. P. van der Aalst, V. A. Rubin, H. M. W. Verbeek, B. F. van
Dongen, E. Kindler, and C. W. Günther, “Process mining: a two-
step approach to balance between underfitting and overfitting,”
Software and Systems Modeling, vol. 9, no. 1, pp. 87–111, 2010.

[11] L. Maruster, A. J. M. M. Weijters, W. M. P. van der Aalst, and
A. van den Bosch, “A rule-based approach for process discovery:
Dealing with noise and imbalance in process logs,” Data Min.
Knowl. Discov., vol. 13, no. 1, pp. 67–87, 2006.

[12] S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens, “Robust
process discovery with artificial negative events,” J. Mach. Learn.
Res., vol. 10, pp. 1305–1340, 2009.

[13] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and
S. Storari, “Exploiting inductive logic programming techniques for
declarative process mining,” Trans. Petri Nets Other Model. Concurr.,
vol. 2, pp. 278–295, 2009.

[14] T. Slaats, S. Debois, and C. O. Back, “Weighing the Pros and
Cons: Process Discovery with Negative Examples,” in Business
Process Management, A. Polyvyanyy, M. T. Wynn, A. Van Looy,
and M. Reichert, Eds. Cham: Springer International Publishing,
2021, pp. 47–64.

[15] J. D. Smedt, G. Deeva, and J. D. Weerdt, “Mining behavioral
sequence constraints for classification,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 6, pp. 1130–1142, 2020.

[16] M. Pesic, “Constraint-based workflow management systems :
shifting control to users,” Ph.D. dissertation, Industrial Engineer-
ing & Innovation Sciences, 2008.

[17] H. Nguyen, M. Dumas, M. L. Rosa, F. M. Maggi, and S. Suri-
adi, “Business process deviance mining: Review and evaluation,”
CoRR, vol. abs/1608.08252, 2016.

[18] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P.
van der Aalst, “Xes, xesame, and prom 6,” in CAiSE Forum (Selected
Papers), ser. Lecture Notes in Business Information Processing,
vol. 72. Springer, 2010, pp. 60–75.

[19] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Comput.
Sci. Res. Dev., vol. 23, no. 2, pp. 99–113, 2009.

[20] M. Montali, M. Pesic, W. M. P. van der Aalst, F. Chesani, P. Mello,
and S. Storari, “Declarative specification and verification of service
choreographiess,” ACM Trans. Web, vol. 4, no. 1, pp. 3:1–3:62, 2010.

[21] G. D. Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, F. Rossi, Ed. IJCAI/AAAI, 2013, pp. 854–860.

[22] C. D. Ciccio, F. M. Maggi, M. Montali, and J. Mendling, “Resolving
inconsistencies and redundancies in declarative process models,”
Inf. Syst., vol. 64, pp. 425–446, 2017.

[23] S. Tessaris, C. Di Francescomarino, and F. Chesani, “Code
for Negdis experiments,” Aug. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5158528

[24] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot
ASP solving with clingo,” Theory and Practice of Logic Programming,
vol. 19, no. 1, pp. 27–82, Jan. 2019, publisher: Cambridge
University Press. [Online]. Available: https://www.cambridge.

https://doi.org/10.5281/zenodo.5158528
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

org/core/journals/theory-and-practice-of-logic-programming/
article/abs/multishot-asp-solving-with-clingo/
FAED3429900D84CDD5155326A36548F2

[25] M. L. Bernardi, M. Cimitile, C. Di Francescomarino, and F. M.
Maggi, “Do activity lifecycles affect the validity of a business rule
in a business process?” Inf. Syst., vol. 62, pp. 42–59, 2016.

[26] V. Lifschitz, “What is answer set programming?” in AAAI. AAAI
Press, 2008, pp. 1594–1597.

[27] F. Buccafurri, N. Leone, and P. Rullo, “Enhancing Disjunctive
Datalog by constraints,” IEEE Transactions on Knowledge and Data
Engineering, vol. 12, no. 5, pp. 845–860, Sep. 2000.

[28] ——, “Enhancing Disjunctive Datalog by constraints,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 12, no. 5, pp. 845–
860, Sep. 2000.

[29] M. W. Krentel, “The complexity of optimization problems,”
Journal of Computer and System Sciences, vol. 36, no. 3, pp. 490–509,
Jun. 1988. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0022000088900396

[30] D. Loreti, F. Chesani, A. Ciampolini, and P. Mello, “Generating
synthetic positive and negative business process traces through
abduction,” Knowl. Inf. Syst., vol. 62, no. 2, pp. 813–839, 2020.

[31] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamen-
tals of Business Process Management, Second Edition. Springer, 2018.

[32] F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala,
“Parallel algorithms for the automated discovery of declarative
process models,” Inf. Syst., vol. 74, no. Part, pp. 136–152, 2018.

[33] B. van Dongen, “Bpi challenge 2012,” Apr 2012. [Online].
Available: https://data.4tu.nl/articles/dataset/BPI_Challenge_
2012/12689204/1

[34] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi, “Outcome-
oriented predictive process monitoring: Review and benchmark,”
ACM Trans. Knowl. Discov. Data, vol. 13, no. 2, pp. 17:1–17:57,
2019. [Online]. Available: https://doi.org/10.1145/3301300

[35] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari, “Induc-
ing declarative logic-based models from labeled traces,” in Busi-
ness Process Management, G. Alonso, P. Dadam, and M. Rosemann,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
344–359.

[36] S. Debois and T. Slaats, “The analysis of a real life declarative
process,” in IEEE Symposium Series on Computational Intelligence,
SSCI 2015, Cape Town, South Africa, December 7-10, 2015. IEEE,
2015, pp. 1374–1382.

[37] F. Mannhardt, “Sepsis cases - event log,” Dec 2016. [Online].
Available: https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_
Event_Log/12707639/1

[38] M. M. de Leoni and F. Mannhardt, “Road Traffic Fine Management
Process,” 2 2015. [Online]. Available: https://data.4tu.nl/articles/
dataset/Road_Traffic_Fine_Management_Process/12683249

[39] A. Alman, C. Di Ciccio, D. Haas, F. M. Maggi, and A. Nolte, “Rule
mining with rum,” in 2nd International Conference on Process Min-
ing, ICPM 2020, Padua, Italy, October 4-9, 2020, B. F. van Dongen,
M. Montali, and M. T. Wynn, Eds. IEEE, 2020, pp. 121–128.

[40] F. M. Maggi, R. P. J. C. Bose, and W. M. P. van der Aalst, “Efficient
discovery of understandable declarative process models from
event logs,” in CAiSE, ser. Lecture Notes in Computer Science,
vol. 7328. Springer, 2012, pp. 270–285.

[41] D. Angluin and C. H. Smith, “Inductive inference: Theory and
methods,” ACM Comput. Surv., vol. 15, no. 3, pp. 237–269, 1983.

[42] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discov-
ering block-structured process models from event logs - A con-
structive approach,” in Petri Nets, ser. Lecture Notes in Computer
Science, vol. 7927. Springer, 2013, pp. 311–329.

[43] Q. Guo, L. Wen, J. Wang, Z. Yan, and P. S. Yu, “Mining invisible
tasks in non-free-choice constructs,” in BPM, ser. Lecture Notes in
Computer Science, vol. 9253. Springer, 2015, pp. 109–125.

[44] A. Augusto, R. Conforti, M. Dumas, and M. L. Rosa, “Split miner:
Discovering accurate and simple business process models from
event logs,” in ICDM. IEEE Computer Society, 2017, pp. 1–10.

[45] A. Augusto, R. Conforti, M. Dumas, M. L. Rosa, F. M. Maggi,
A. Marrella, M. Mecella, and A. Soo, “Automated discovery of
process models from event logs: Review and benchmark,” IEEE
Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 686–705, 2019.

[46] I. Yürek, D. Birant, and K. Birant, “Interactive process miner:
a new approach for process mining,” Turkish Journal of Electrical
Engineering and Computer Sciences, vol. 26, no. 3, pp. 1314–
1328, 2018. [Online]. Available: https://journals.tubitak.gov.tr/
elektrik/vol26/iss3/16

[47] F. M. Maggi, A. J. Mooij, and W. M. P. van der Aalst, “User-guided
discovery of declarative process models,” in CIDM. IEEE, 2011,
pp. 192–199.

[48] D. M. M. Schunselaar, F. M. Maggi, and N. Sidorova, “Patterns for
a log-based strengthening of declarative compliance models,” in
IFM, ser. Lecture Notes in Computer Science, vol. 7321. Springer,
2012, pp. 327–342.

[49] C. D. Ciccio, M. H. M. Schouten, M. de Leoni, and J. Mendling,
“Declarative process discovery with minerful in prom,” in BPM
(Demos), ser. CEUR Workshop Proceedings, vol. 1418. CEUR-
WS.org, 2015, pp. 60–64.

[50] C. O. Back, T. Slaats, T. T. Hildebrandt, and M. Marquard, “Dis-
CoveR: accurate and efficient discovery of declarative process
models,” Int. J. Softw. Tools Technol. Transfer, 2021.

[51] E. M. Gold, “Language identification in the limit,” Inf. Control.,
vol. 10, no. 5, pp. 447–474, 1967.

[52] E. Lamma, P. Mello, F. Riguzzi, and S. Storari, “Applying inductive
logic programming to process mining,” in ILP, ser. Lecture Notes
in Computer Science, vol. 4894. Springer, 2007, pp. 132–146.

[53] E. Bellodi, F. Riguzzi, and E. Lamma, “Probabilistic logic-based
process mining,” in CILC, ser. CEUR Workshop Proceedings, vol.
598. CEUR-WS.org, 2010.

[54] ——, “Statistical relational learning for workflow mining,” Intell.
Data Anal., vol. 20, no. 3, pp. 515–541, 2016.

[55] L. D. Raedt and W. V. Laer, “Inductive constraint logic,” in ALT,
ser. Lecture Notes in Computer Science, vol. 997. Springer, 1995,
pp. 80–94.

[56] W. M. P. van der Aalst and M. Pesic, “Decserflow: Towards a truly
declarative service flow language,” in WS-FM, ser. Lecture Notes
in Computer Science, vol. 4184. Springer, 2006, pp. 1–23.

[57] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni, “Verifiable agent interaction in abductive logic pro-
gramming: The SCIFF framework,” ACM Trans. Comput. Log.,
vol. 9, no. 4, pp. 29:1–29:43, 2008.

[58] M. Pesic and W. M. P. van der Aalst, “A declarative approach
for flexible business processes management,” in Business Process
Management Workshops, ser. Lecture Notes in Computer Science,
vol. 4103. Springer, 2006, pp. 169–180.

[59] F. Chesani, C. Di Francescomarino, C. Ghidini, D. Loreti, F. M.
Maggi, P. Mello, M. Montali, V. Skydanienko, and S. Tessaris,
“Towards the generation of the "perfect" log using abductive logic
programming,” in CILC, ser. CEUR Workshop Proceedings, vol.
2396. CEUR-WS.org, 2019, pp. 179–192.

[60] F. Chesani, A. Ciampolini, D. Loreti, and P. Mello, “Abduction
for generating synthetic traces,” in Business Process Management
Workshops, ser. Lecture Notes in Business Information Processing,
vol. 308. Springer, 2017, pp. 151–159.

[61] T. Stocker and R. Accorsi, “Secsy: A security-oriented tool for
synthesizing process event logs,” in BPM (Demos), ser. CEUR
Workshop Proceedings, vol. 1295. CEUR-WS.org, 2014, p. 71.

[62] K. M. van Hee and Z. Liu, “Generating benchmarks by random
stepwise refinement of petri nets,” in ACSD/Petri Nets Workshops,
ser. CEUR Workshop Proceedings, vol. 827. CEUR-WS.org, 2010,
pp. 403–417.

[63] J. M. Fowkes and C. Sutton, “A subsequence interleaving model
for sequential pattern mining,” in KDD. ACM, 2016, pp. 835–844.

[64] E. Egho, D. Gay, M. Boullé, N. Voisine, and F. Clérot, “A user
parameter-free approach for mining robust sequential classifica-
tion rules,” Knowl. Inf. Syst., vol. 52, no. 1, pp. 53–81, 2017.

[65] M. J. Zaki, “Sequence mining in categorical domains: Incorporat-
ing constraints,” in CIKM. ACM, 2000, pp. 422–429.

[66] H. T. Lam, F. Mörchen, D. Fradkin, and T. Calders, “Mining
compressing sequential patterns,” Stat. Anal. Data Min., vol. 7,
no. 1, pp. 34–52, 2014.

[67] D. Neider and I. Gavran, “Learning linear temporal properties,”
in FMCAD. IEEE, 2018, pp. 1–10.

[68] A. Camacho and S. A. McIlraith, “Learning interpretable models
expressed in linear temporal logic,” in ICAPS. AAAI Press, 2019,
pp. 621–630.

[69] H. Riener, “Exact synthesis of LTL properties from traces,” in FDL.
IEEE, 2019, pp. 1–6.

[70] C. W. Günther, “Process mining in flexible environments,” Ph.D.
dissertation, Technische Universiteit Eindhoven, 2009.

[71] H. P. de León, C. Rodríguez, J. Carmona, K. Heljanko, and S. Haar,
“Unfolding-based process discovery,” in ATVA, ser. Lecture Notes
in Computer Science, vol. 9364. Springer, 2015, pp. 31–47.

https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2
https://www.cambridge.org/core/journals/theory-and-practice-of-logic-programming/article/abs/multishot-asp-solving-with-clingo/FAED3429900D84CDD5155326A36548F2
https://www.sciencedirect.com/science/article/pii/0022000088900396
https://www.sciencedirect.com/science/article/pii/0022000088900396
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
https://doi.org/10.1145/3301300
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639/1
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
https://journals.tubitak.gov.tr/elektrik/vol26/iss3/16
https://journals.tubitak.gov.tr/elektrik/vol26/iss3/16

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[72] H. M. Ferreira and D. R. Ferreira, “An integrated life cycle for
workflow management based on learning and planning,” Int. J.
Cooperative Inf. Syst., vol. 15, no. 4, pp. 485–505, 2006.

[73] S. Suriadi, R. Mans, M. T. Wynn, A. Partington, and J. Karnon,
“Measuring patient flow variations: A cross-organisational process
mining approach,” in AP-BPM, ser. Lecture Notes in Business
Information Processing, vol. 181. Springer, 2014, pp. 43–58.

[74] A. Armas-Cervantes, P. Baldan, M. Dumas, and L. García-
Bañuelos, “Behavioral comparison of process models based on
canonically reduced event structures,” in BPM, ser. Lecture Notes
in Computer Science, vol. 8659. Springer, 2014, pp. 267–282.

[75] S. Suriadi, M. T. Wynn, C. Ouyang, A. H. M. ter Hofstede, and N. J.
van Dijk, “Understanding process behaviours in a large insurance
company in australia: A case study,” in CAiSE, ser. Lecture Notes
in Computer Science, vol. 7908. Springer, 2013, pp. 449–464.

[76] A. Partington, M. T. Wynn, S. Suriadi, C. Ouyang, and J. Karnon,
“Process mining for clinical processes: A comparative analysis of
four australian hospitals,” ACM Trans. Management Inf. Syst., vol. 5,
no. 4, pp. 19:1–19:18, 2015.

[77] J. Swinnen, B. Depaire, M. J. Jans, and K. Vanhoof, “A process
deviation analysis - A case study,” in Business Process Management
Workshops (1), ser. Lecture Notes in Business Information Process-
ing, vol. 99. Springer, 2011, pp. 87–98.

[78] R. P. J. C. Bose and W. M. P. van der Aalst, “Discovering signature
patterns from event logs,” in CIDM. IEEE, 2013, pp. 111–118.

[79] D. Lo, S. Khoo, and C. Liu, “Efficient mining of iterative patterns
for software specification discovery,” in KDD. ACM, 2007, pp.
460–469.

[80] A. A. Kalenkova, J. Carmona, A. Polyvyanyy, and M. L. Rosa,
“Automated repair of process models using non-local constraints,”
in Petri Nets, ser. Lecture Notes in Computer Science, vol. 12152.
Springer, 2020, pp. 280–300.

[81] A. Bottrighi, F. Chesani, P. Mello, M. Montali, S. Montani,
S. Storari, and P. Terenziani, “Analysis of the GLARE and
GPROVE approaches to clinical guidelines,” in KR4HC, ser. Lec-
ture Notes in Computer Science, vol. 5943. Springer, 2009, pp.
76–87.

[82] A. Bottrighi, F. Chesani, P. Mello, G. Molino, M. Montali, S. Mon-
tani, S. Storari, P. Terenziani, and M. Torchio, “A hybrid approach
to clinical guideline and to basic medical knowledge confor-
mance,” in AIME, ser. Lecture Notes in Computer Science, vol.
5651, 2009, pp. 91–95.

[83] A. Bottrighi, F. Chesani, P. Mello, M. Montali, S. Montani, and
P. Terenziani, “Conformance checking of executed clinical guide-
lines in presence of basic medical knowledge,” in Business Process
Management Workshops (2), ser. Lecture Notes in Business Informa-
tion Processing, vol. 100. Springer, 2011, pp. 200–211.

[84] D. Loreti, F. Chesani, A. Ciampolini, and P. Mello, “A distributed
approach to compliance monitoring of business process event
streams,” Future Gener. Comput. Syst., vol. 82, pp. 104–118, 2018.

[85] D. Loreti, M. Lippi, and P. Torroni, “Parallelizing machine learning
as a service for the end-user,” Future Gener. Comput. Syst., vol. 105,
pp. 275–286, 2020.

Federico Chesani , Ph.D. in Computer Science,
is associate professor of Computer Science at
DISI—University of Bologna. His research activ-
ities focus on the area of Logic Programming,
Business Processes Modelling, Distributed Ver-
ification and Monitoring, and Rule-based Deci-
sion Support Systems.

Chiara Di Francescomarino is a researcher at
Fondazione Bruno Kessler in the Process and
Data Intelligence Unit. She received her PhD
in Information and Communication Technologies
from the University of Trento, working on busi-
ness process modeling and reverse engineering
from execution logs. She is currently working in
the field of process mining, investigating prob-
lems related to process monitoring, process dis-
covery, as well as predictive process monitoring.
She has published papers in the top business

process conferences and journals and she has worked in local and
international research projects.

Chiara Ghidini is a Senior Research Scientist
at Fondazione Bruno Kessler where she leads
the Process & Data Intelligence Research Unit.
Her scientific work in the areas of Semantic
Web, Knowledge Engineering and Representa-
tion, Multi-Agent Systems and Process Mining is
internationally well known and recognised, and
she has actively been involved in the organisa-
tion of several reference conferences in these
areas. She is a board member of the Italian As-
sociation for Artificial Intelligence and is involved

in the scientific coordination of the Centre for Digital Health and Well
Being of Head of Fondazione Bruno Kessler.

Daniela Loreti is junior assistant professor of
Operating Systems at Department of Computer
Science and Engineering, University of Bologna.
She received her Ph.D. in Computer Science
in 2016. Her research focuses on distributed
systems for big data management and stream
processing as well as parallel paradigms for high
performance computing. She is also interested
in the parallelization of artificial intelligence tech-
niques in the fields of machine learning, process
mining and expert systems.

Fabrizio Maria Maggi is Associate Professor
at the KRDB Research Centre for Knowledge
and Data. He devises techniques grounded in
business process management, process mining,
predictive analytics and his work is specifically
focused on the application of artificial intelli-
gence and machine learning in the context of
business process analytics. On these topics, he
authored more than 130 papers, appeared in
top-tier, international journals and conferences.
He is recipient of 4 best paper awards, two of

which in the International Conference on Business Process Manage-
ment.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Paola Mello is Full Professor at the University
of Bologna, where she conducts research, both
practical and theoretical in Artificial Intelligence.
In particular, her research activity is about knowl-
edge representation, computational logic, multi-
agent and decision support systems, with ap-
plications in medicine, web services, business
processes, monitoring and verification. She has
been President of the Italian Association for Arti-
ficial Intelligence and Head of the Department
of Computer Science and Engineering of the

University of Bologna. She is fellow of the European Association for
Artificial Intelligence.

Marco Montali is Full Professor and Vice-Dean
for Studies at the Faculty of Computer Science,
Free University of Bozen-Bolzano, Italy, where
he also coordinates the MSc Program in Com-
putational Data Science. He investigates foun-
dational and applied techniques grounded in ar-
tificial intelligence and formal methods for the
model- and data-driven analysis of business pro-
cesses and multiagent systems. He is member
of the Steering Committee of the IEEE Task
Force on Process Mining. He is co-author of

more than 200 papers, many of which in top-tier conferences and
journals, and recipient of 8 best paper awards.

Sergio Tessaris received the PhD degree in
computer science from the University of Manch-
ester (UK). He is Assistant Professor at the Fac-
ulty of Computer Science of the Free University
of Bozen-Bolzano (Italy). His research interests
include the use of Semantic Technologies and
Knowledge Representation formalisms to sup-
port the management, access, and exploitation
of data and processes.

	Copertina_postprint_IRIS_UNIBO(2)
	deviant-tkde-all-black
	Introduction
	Contributions

	Background
	The approach
	Definitions
	Two-step procedure
	Implementation
	Complexity considerations

	Experimental evaluation
	Experiments on a synthetic dataset
	Evaluation on case studies from real data

	Related work
	Conclusion
	References
	Biographies
	Federico Chesani
	Chiara Di Francescomarino
	Chiara Ghidini
	Daniela Loreti
	Fabrizio Maria Maggi
	Paola Mello
	Marco Montali
	Sergio Tessaris

