Kleene Algebra with Observations

Tobias Kappé
University College London, UK
tkappe@Qcs.ucl.ac.uk

Paul Brunet
University College London, UK

Jurriaan Rot
University College London, UK
Radboud University, Nijmegen, The Netherlands

Alexandra Silva
University College London, UK

Jana Wagemaker
University College London, UK

Fabio Zanasi
University College London, UK

—— Abstract

Kleene algebra with tests (KAT) is an algebraic framework for reasoning about the control flow of
sequential programs. Generalising KAT to reason about concurrent programs is not straightforward,
because axioms native to KAT in conjunction with expected axioms for concurrency lead to an
anomalous equation. In this paper, we propose Kleene algebra with observations (KAO), a variant
of KAT, as an alternative foundation for extending KAT to a concurrent setting. We characterise
the free model of KAO, and establish a decision procedure w.r.t. its equational theory.

2012 ACM Subject Classification Theory of computation — Formal languages and automata theory

Keywords and phrases Concurrent Kleene algebra, Kleene algebra with tests, free model, axiomat-
isation, decision procedure

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2019.41
Related Version A full version of the paper is available at https://arxiv.org/abs/1811.10401.

Funding ERC Starting Grant ProFoundNet (679127)
Jurriaan Rot: Marie Curie Fellowship (795119)
Alezandra Silva: Leverhulme Prize (PLP-2016-129)
Fabio Zanasi: EPSRC grant (EP/R020604/1)

Acknowledgements We are grateful to Jean-Baptiste Jeannin, Dan Frumin and Damien Pous
individually, for their input which helped contextualise this work.

1 Introduction

The axioms of Kleene algebra (KA) [22, 9] correspond well to program composition [14],
making them a valuable tool for studying equivalences between programs from an algebraic
perspective. An extension of Kleene algebra known as Kleene algebra with tests (KAT) [24]
adds primitives for conditional branching, and is particularly useful when proving validity of
program transformations, such as optimisations applied by a compiler [28, 41].

As a matter of fact, KAT is sufficiently abstract to express not only program behaviour,
but also program specifications; consequently, its laws can be used to compare programs to
specifications [25, 1]. What makes this connection especially powerful is that KA (resp. KAT)

© Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi;

licensed under Creative Commons License CC-BY
30th International Conference on Concurrency Theory (CONCUR 2019).
Editors: Wan Fokkink and Rob van Glabbeek; Article No. 41; pp.41:1-41:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6068-880X
mailto:tkappe@cs.ucl.ac.uk
https://orcid.org/0000-0002-9762-6872
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://arxiv.org/abs/1811.10401
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2

Kleene Algebra with Observations

is known to be sound and complete with respect to a language model [5, 30, 23, 29], meaning
that an equation is valid in any KA (resp. KAT) precisely when it holds in the corresponding
language model. Practical algorithms for deciding language equivalence [17, 6, 34] enable
checking equations in KA or KAT, and hence automated verification becomes feasible [10].

More recently, Kleene algebra has been extended with a parallel composition operator,
yielding concurrent Kleene algebra (CKA) [15, 13, 16]. Crucially, CKA includes the exchange
law, which encodes interleaving, i.e., the (partial) sequentialisation of threads. Like its
predecessors, CKA can be applied to verify (concurrent) programs by reasoning about
equivalences [16]. The equational theory of CKA has also been characterised in terms of a
language-like semantics [32, 21], where equivalence is known to be decidable [7].

Since both KAT and CKA are conservative extensions of KA, this prompted Jipsen and
Moshier [19] to study a marriage between the two, dubbed concurrent Kleene algebra with
tests (CKAT). The aim of CKAT is to extend CKA with Boolean guards, and thus arrive at a
new algebraic perspective on verification of concurrent programs with conditional branching.

The starting point of this paper is the realisation that CKAT is not a suitable model
of concurrent programs. This is because for any test p and CKAT-term e, one can prove
D-e-D =car 0, an equation that appears to have no reasonable interpretation for programs.
The derivation goes as follows:

OéKATp'e'T?chAGH (pﬁ) EKATeH 0= 0.

As we shall see, this is possible because of the interplay between the exchange law and
the fact that KAT identifies conjunction of tests with their sequential composition. For
sequential programs, this identification is perfectly reasonable. In the context of concurrency
with interleaving, however, actions from another thread may be scheduled in between two
sequentially composed tests, whereas the conjunction of tests executes atomically. Indeed,
an action scheduled between the tests might very well change the result of the second test.
It thus appears that, to reason algebraically about programs with both tests and con-
currency, one needs a perspective on conditional branching where the conjunction of two
tests is not necessarily the same as executing one test after the other. The remit of this
paper is to propose an alternative to KAT, which we call Kleene algebra with observations
(KAO), that makes exactly this distinction. We claim that, because of this change, KAO
is more amenable to a sensible extension with primitives for concurrency. Establishing the
meta-theory of KAO turns out to be a technically demanding task. We therefore devote this
paper to such foundations, and leave development of concurrent KAO to follow-up work.
Concretely, we characterise the equational theory of KAO in terms of a language model
(Section 5). Furthermore, we show that we can decide equality of these languages (and
hence the equational theory of KAO) by deciding language equivalence of non-deterministic
finite automata (Section 6). Both proofs show a clear separation of concerns: their kernel is
idiomatic to KAO, and some well-known results from KA complete the argument.

For space reasons, detailed proofs are only included in the full version of this paper [20];
here, we sketch the main insights needed to prove the core propositions and theorems.

2 Preliminaries

We start by outlining some concepts and elementary results.

Boolean algebra. We use 2 to denote the set {0,1}. The powerset (i.e., set of subsets) of a
set S is denoted 2°. We fix a finite set Q of symbols called observables.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:3

The propositional terms over €2, denoted Tp, are generated by the grammar
pgui=L [T |o€eQ | pVvg]|phrg|Dp.

We write =g, for the smallest congruence on Tp that satisfies the axioms of Boolean algebra,
i.e., such that for all p,q,r € Tp the following hold:

pV L =ep PVq=eaqVDp PVD=ea T pV(qVT)=e (V@ VT
PAT =gap PAG=ea qAD DPAD =g L PA(Q/\T)EBA(P/\Q)/\T
PVI(gAT) = (PV @ A(PVT) PA(@VT)=ea (PAQ) V(PAT) .

The set of atoms, denoted A, is defined as 22. The semantics of propositional terms is given
by the map [~]ea : Tp — 24, as follows:

[[J‘]]BAZQ [[OHBA:{O‘G-A:OEO‘} [[pvQ]]BA: [[p]]BAU[[Q]]BA

[[T]]BA =A [ﬁﬂBA = A\ H_P]]BA [[P/\ q]]BA = H_P]]BA N [[q]]BA .

We also write p <ga ¢ as a shorthand for pV ¢ =g, ¢.
It is known that [—]s. characterises =g, (c.f. [4, Chapter 5.9]), in the following sense:

» Theorem 2.1 (Completeness for BA). Let p,q € Tp; now p =ea q if and only if [plea = [¢]ea-

When a € A, we write 7, for the Boolean term A ¢, 0 A A e\ o 0, in Which A is the
obvious generalisation of A for some (arbitrary) choice of bracketing and order on terms.
The following is then straightforward to prove.

» Lemma 2.2. For all « C Q it holds that [74]es = {a}.

Kleene algebra. A word over a set A is a sequence of symbols dg - --d,_1 from A. The
empty word is denoted €. A set of words is called a language. Words can be concatenated: if
w and x are words, then wz is the word where the symbols of w precede those of z. If L
and L’ are languages over A, then L - L’ is the language of pairwise concatenations from L
and L', i.e., {wx:w € L,z € L'}. We write L* for the Kleene closure of L, which is the set
{wo - wp—_1 : W, ..., wy—1 € L}. This makes A* the set of all words over A.

We fix a finite set of symbols X called the alphabet. The rational terms over X, denoted
Tr, are generated by the grammar

e,fu=0]1]aeX |et+flef|er.

We write =, for the smallest congruence on Tg that satisfies the axioms of Kleene algebra,
i.e., such that for all e, f, g € Tr the following hold:

e+0=ne e+e=qe e+ f=wnf+te e+ (f+g)=anlet+f)+yg
e-l1=n e e=1-e e-0=n0 0=0-¢ e (f-9)=nle-f)g
e-(f+g)=we-fte-g 1+e-e" =, e e+ f-9Smg = [feSug
(e+f)-g=ame-g+f-g l+e e=ne etf9Saf = e g Salf,

in which e <y, f is a shorthand for e + f =, f.

CONCUR 2019

41:4

Kleene Algebra with Observations

The semantics of rational terms is given by [—]ua : TR — 2" in the following sense:

[[OHKA =0 [[a]]KA = {a} [[e + f]]KA = [[e]]KA U [[fHKA
[10ka = {€} [e*Nka = [elia le - fla = [e]xa - [Tk -

It is furthermore known that [—]x. characterises =, [5, 30, 23], as follows:
» Theorem 2.3 (Completeness for KA). Lete, f € Tr; nowe = [if and only if [e]ua = [fTxa-

We also work with matrices and vectors of rational terms. Let) be a finite set. A
Q-vector is a function = : Q — Tr; a Q-matriz is a function M : Q X Q@ — Tg.

Let e € Tg, let z and y be @-vectors, and let M be a Q-matrix. Addition of vectors is
defined pointwise, i.e., 4+ y is the Q-vector given by (x + y)(q) = z(q) + y(q). We can also
scale vectors, writing x § e for the Q-vector given by (x §e)(q) = x(q) - e.

Multiplication of a Q-vector by a @-matrix yields a @-vector, as expected:

(M-2)(q) =) M(a,4) 2(d) -

q'€Q

Here, > is the usual generalisation of + for some (arbitrary) choice of bracketing and order
on terms; the empty sum is defined to be 0.

We write x =, y when x and y are pointwise equivalent, i.e., for all ¢ €) we have
x(q) =xa y(q); we extend Sy, to Q-vectors as before. Matrices over rational terms again obey
the axioms of Kleene algebra [23]. As a special case, we can obtain the following;:

» Lemma 2.4. Let M be a Q-matriz. Using the entries of M and applying the operators of
Kleene algebra, we can construct a Q-matriz M*, which has the following property. Let y be
any Q-vector; now M* -y is the least (w.r.t. <) Q-vector x such that M -z +y Sga .
Automata and bisimulations. We briefly recall bisimulation up to congruence for language
equivalence of automata, from [6]. This will be used in Section 6.

A non-deterministic automaton (NDA) over an alphabet ¥ is a triple (X, 0,d) where
0: X — 2isan output function, and d: X x¥ — X a transition function. A non-deterministic
finite automaton (NFA) is an NDA where X is finite. It will be convenient to characterise
the semantics of an NDA (X, 0,d) recursively as the unique map ¢: X — 2%" such that

() ={e:o@)=13U |J {a}-£().

z'ed(z,a)

This coincides with the standard definition of language acceptance for NDAs. The determin-
isation of an NDA (X, 0,d) is the deterministic automaton (2%,9,d) [35], where

d(V,a) = U d(s,a) .

0 otherwise sov

{1 if3se Vst o(s) =1
The congruence closure of a relation R C 2% x 2%, denoted R¢, is the least equivalence
relation such that R C R°, and if (C,D) € R and (E,F) € R® then (CUE,DUF) € R
A bisimulation up to congruence for an NDA (X, 0,d) is a relation R C 2% x 2% such
that for all (V,W) € R, we have o(V) = o(W) and furthermore for all a € ¥, we have

(d(V,a),d(W,a)) € R°. Bisimulations up to congruence give a proof technique for language
equivalence of states of non-deterministic automata, as a consequence of the following [6].

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi

» Theorem 2.5. Let (X, 0,d) be an NDA. For allU,V € 2%, we have |,y €(z) = U ey U(x)
if and only if there exists a bisimulation up to congruence R for (X, o0,d) such that (U,V) € R.

In [6], it is shown how the construction of bisimulations up to congruence leads to a very
efficient algorithm for language equivalence.

3 The problem with CKAT

Our motivation for adjusting the axioms of KAT is based on the fact that conjunction
and sequential composition are distinct when interleaving is involved, because sequential
composition leaves a “gap” between tests that might be used by another thread, possibly
changing the outcome of the second test. We now formalise this, by detailing how combining
KAT and CKA to obtain CKAT (as in [19]) leads to the absurd equation p - e - P =car 0.

Kleene algebra with tests. To obtain KAT, we enrich rational terms with propositions;
concretely, the set of guarded rational terms over ¥ and €2, denoted TR, is generated by

e,fu=01]1]aeX | peTp |e+f|e-f]|e".

We define =y, as the smallest congruence on 7gr which contains =g, and obeys the axioms
of =, (e.g., e + e =« €). Furthermore, =, should relate constants and operators on
propositional subterms: for all p, ¢ € Tp it holds that!

L =0 T =ar 1 PVq=wrptq PAQ=xr P q -

Guarded rational terms relate to programs by viewing actions as statements and proposi-
tions as assertions. The last axiom is therefore not strange: if we assert x = 1 followed by
y = 1 then surely, if x and y remain the same, this is equivalent to asserting x =1 Ay = 1.

Concurrent Kleene algebra. To obtain CKA, we add a parallel composition operator to
KA. Concretely, the set of series-rational terms [33] over X, denoted Tgg, is generated by

e,fu=01]1]aeX e+ flef|lellfl]e.

We define =, as the smallest congruence on Tgr which obeys the axioms that generate =a,
as well as the following for all e, f, g, h € Tgg:

el f=an flle ell1=cae el 0=c 0 (et fllg=xmellg+flg

ell (flg)=ca el f)llg el f)-(gllh) Scale-g) |l (f-h),

in which e <., f is an abbreviation for e + f =, f.

Here, 0 annihilates parallel composition because 0 corresponds to the program without
valid traces; hence, running e in parallel with 0 also cannot yield any traces. Distributivity
of || over 4+ witnesses that a choice within a thread can also be made outside that thread.

The last axiom, called the exchange law [15], encodes interleaving. Intuitively, it says
that when programs e - g and f - h run in parallel, their behaviour includes running their
heads in parallel (i.e., e || f) followed by their tails (i.e., g || h). Taken to its extreme, the
exchange law says that the behaviour of a program includes its complete linearisations.

! This is a slightly contrived definition of KAT; one usually presents the constants and operators using
the same symbols [24]. To contrast KAO and KAT it is helpful to make this identification explicit.

41:5

CONCUR 2019

41:6

Kleene Algebra with Observations

Concurrent Kleene algebra with tests. To define CKAT [19], we choose guarded series-
rational terms over X and €, denoted Tgsg, as those generated by the grammar

e, fu=0]1]acX | peTp|letfleflelfl|e.

Now, =car i the least congruence on Tggr obeying the axioms of =y and =a.

If we view guarded series-rational terms as representations of programs, and use =y to
reason about them, then we should expect to obtain sensible statements about programs,
since the axioms that underpin CKAT seem reasonable in that context.

To test this hypothesis, consider the guarded series-rational term p- e -p, which represents
a program that first performs an assertion p, then runs a program described by e, and asserts
the negation of p. There are choices of p and e that should make p - ¢ - p describe a program
with valid behaviour; for instance, p could assert that x = 1, and e could be the program
x < 0. Hence, by our hypothesis, p - e - p should not, in general, be equivalent to 0, the
program without any valid behaviour. Unfortunately, the opposite is true.

» Antinomy 3.1. Lete € Tgsr and p € Tp; now p-e-P =cear 0.

Proof. By the axiom that 1 is the unit of || and the exchange law, we derive that
preP=au (PI1)-(1]e)PEan (p-1) [(1-€)-P.

By the same reasoning, and the axiom that 1 is the unit of -, we have that
(- D (1-€) P=ccar (0l €)@ 1) Zckar (p-P) I (e-1) .

Applying the unit, and using the identification of A and - on tests, we find that
(p-P) [l (e 1) =cxar (D) | € Zcar (PAD) || € Zcxar Ll €.

Since | and 0 are identified, and 0 annihilates parallel composition, we have that
L] e=c«ar Ol € =ckar O -

By the above, we have p- e D Scear 0. Since 0 Scar p - € - P, the claim follows. <

Another way of contextualising the above is to consider that propositional Hoare logic
can be encoded in KAT [26]. Concretely, a propositional Hoare triple {p}S{q} is valid if
D-es - q =xar 0, where eg is a straightforward encoding of S. It stands to reason that
sequential programs should similarly encode in CKAT. However, if we apply that line of
reasoning to the above, then any Hoare triple of the form {p}S{p} is valid, which would
mean that any property is an invariant of any program.

4 Kleene algebra with observations

We now propose KAO as an alternative way of embedding Boolean guards in rational terms.
This approach should prevent Antinomy 3.1, and thus make KAO more suitable for an
extension with concurrency. We start by motivating how we adapt KAT, before proceeding
with a language model and a generalisation of partial derivatives to KAO.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi

4.1 From tests to observations

The root of the problem in Antinomy 3.1 is the axiom p - ¢ =¢ar p A ¢, telling us that
(p-D) || € =ckar (p AD) || e Interpreted as programs, these are different: in one, e can be
interleaved between p and p, which the other does not allow.

To fix this problem, we propose a new perspective on Boolean guards. Rather than
considering a guard a test, which in KAT entails an assertion valid from the last action to
the next, we consider a guard an observation, i.e., an assertion valid at that particular point
in the execution of the program. This weakens the connection between conjunction and
concatenation: if a program observes p followed by ¢, there is no guarantee that p and ¢
can be observed simultaneously. Hence, we drop the equivalence between conjunction and
concatenation of tests. We call this system weak Kleene algebra with observations; like KAT,
its axioms are based on the axioms of Boolean algebra and Kleene algebra, as follows.

» Definition 4.1 (WKAOQO axioms). We define =yao s the smallest congruence on Tagr that
contains =g, and also obeys the axioms of =¢a. Furthermore, L =ywao 0 and for all p,q € Tp
it holds that pV q¢ =wkao P+ q-

Since conjunction and concatenation no longer coincide, we have also dropped the axiom
that relates their units. This can be justified from our shift in perspective: T, i.e., the
observation that always succeeds, is an action that leaves some record in the behaviour of
the program, whereas 1, i.e., the program that does nothing, has no such obligation.?

As hinted before, it may happen that when a program observes p followed by ¢, both
these assertions are true simultaneously, i.e., their conjunction could have been observed;
hence, the behaviour of observing p and ¢ should be contained in the behaviour of observing
p and then q. For instance, consider the pseudo-programs S = assert p A ¢; e and
S’ = assert p; assert ¢q; e. Here, S asserts that p and ¢ hold at the same time before
proceeding with e, while S’ first asserts p, and then g. The behaviour of S should be included
in that of S’: if p and ¢ are simultaneously observable, then the first two observations might
take place simultaneously. Encoding this in an additional axiom leads to KAO proper.

» Definition 4.2 (KAO axioms). We define =¢uo as the smallest congruence on Tar that
containsg =wxao, and furthermore satisfies the contraction law: for all p,q € Tp it holds that
PAGSuao P q — where € Sxao [is a shorthand for e + f =¢po f-

We briefly return to our example programs. If we encode S as (pA¢q)-eand S’ asp-q-e,
then the behaviour of S is contained in that of S’, because (p A q) - € Skao D q - €.

» Remark 4.3. In the presence of the other axioms, p A q Suao P ¢ is equivalent to p Sao P p-

Indeed, the second inequality may be inferred from the first, since p =¢a,0 p A p. The converse

implication is obtained as follows: pAg Sxao (DA @)+ (P A @) Skno P+ ¢, using that pAqg S0 D, g

While the contraction law is more convenient to compare terms, the axiom p Syuo p - p will
serve implicitly as the basis for the contraction relation < defined in the next section.
4.2 A language model

The Kleene algebra variants encountered thus far have models based on rational languages,
which characterise the equivalences derivable using the axioms. To find a model for guarded
rational terms which corresponds to KAQO, we start with a model of weak KAO:

2 We refer to [20, Appendix E] for further algebraic details on the consequences of identifying these units.

41:7

CONCUR 2019

41:8

Kleene Algebra with Observations

» Definition 4.4 (WKAO semantics). Let ' = AUX. Languages over I' are called observation
languages. We define [—]wkao : Tar — oI as follows:

[[OHWKAO =0 [[a]]WKAo = {a} [[6 + f]]WKAO = [[e]]WKAO) [[f]]WKAO [[e*ﬂWKAO = [[e]]\thAo
[[1HWKAO = {6} [[p]]WKAO = HPHBA [[6 : f]]WKAO = H:e]]WKAO : [[fHWKAO)

where it is understood that [plen € A CT CT*.
Observation languages are a model for guarded rational terms w.r.t. =uxao:
» Lemma 4.5 (WKAO soundness). Lete, f € Tar. Now, if € =wkao |, then [e]wkao = [fJwkao-

More work is necessary to get a model of guarded rational terms w.r.t. =¢,o. In particular,
[—Jwwao does not preserve the contraction law: if 01,02 € Q, then

o1 A 02]lwkao = {x € A : 01,02 € a} [o1 - 02]wkao = {aB € A-A:01 €00 € F},

meaning that [o1 A 02]wkao Z [01 + 02]wkao, despite 01 A 03 Sypo 01 - 02.3
To obtain a sound model, we need the counterpart of the contraction law on the level of

observation languages, which works out as follows

» Definition 4.6 (Contraction). We define < as the smallest relation on T'™* s.t.

w,r € I'* ac A

war X waox

When L CT'*, we write L| for the <-closure of L, that is to say, the smallest observation
language such that L C L|, and if w < x with x € L], then w € L.

Thus, L| contains all words obtained from words in L by contracting any number of repeated
atoms (but not actions) into one. Applying this closure to the semantics encodes the intuition
that repeated observations may also correspond to just one step in the execution.

With these tools, we can define a model of KAO as follows.

» Definition 4.7 (KAO semantics). We define [~]xno : Tar — 25 by [e]kno = [€]wraod-
Alternatively, we can describe [—]xao compositionally, using the following.

» Lemma 4.8. Lete, f € Tar. The following hold: (i) [e + flkao = [€]kao U [f]kao, and
(“) [[e : f]]KAO = ([[e]]KAO : [[f]]KAO)\L} and (”Z) [[e*HKAO = [[eﬂ:,\oin

It is now straightforward to check that [—]xso preserves the axioms of =yao.

» Lemma 4.9 (KAO soundness). Let e, f € Tar. Now, if € =o [, then [e]kao = [fxno-

4.3 Partial derivatives

Derivatives [8] are a powerful tool in Kleene algebra variants. In the context of programs, we
can think of derivatives as an operational semantics; they tell us whether the term represents
a program that can halt immediately (given by the termination map), as well as the program
that remains to be executed once an action is performed (given by the continuation map).

3 Incidentally, this shows that the contraction law is independent of the axioms that build =wxao, i.€.,
that those axioms are not sufficient to prove the contraction law.

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:9

Derivatives are typically compatible with the congruences used to reason about terms;
what’s more, they are closely connected to finite automata [8]. This makes them useful for
reasoning about language models [26, 6, 34]. We therefore introduce a form of derivatives of
guarded rational terms that works well with =.,,. Let us start by giving the termination
map, which is close to the termination map of rational terms compatible with =,.

» Definition 4.10 (Termination). We define € : Tar — 2 inductively, as follows:
e(0)=0 ela)=0 ele + f) = max{e(e),e(f)} ee’) =1
e(1)=1 e(p) =0 e(e- f) = minf{e(e), e(f)} .

To check that e characterises guarded rational terms that can terminate, we record the
following lemma, which says that e(e) = 1 precisely when [€]xao includes the empty string.

» Lemma 4.11. Let e € Tgr. Now €(e) Suno €, and e(e) =1 if and only if € € [€]kao-

Next we define the continuation map, or more specifically, partial continuation map [2]:
given a € I, this function gives a set of terms representing possible continuations of the
program after performing a. We start with the continuation map for actions.

» Definition 4.12 (X-continuation). We define § : Tar x ¥ — 276% inductively

5(0,a) = 6(1,a) =0 de+ f,a) =d(e,a)Ud(f,a)
§(a,a)={1:a=2d'} Sle- foa)={e' - f:e €d(e,a)} UAle, f,a)
d(p,a) =10 de*,a)={e -e*: e €d(e,a)},

where Ale, f,a) = 6(f,a) when e(e) =1, and O otherwise.

Finally, we give the continuation map for observations, which is similar to the one for
actions, except that on sequential composition it is subtly different.

» Definition 4.13 (A-continuation). We define ¢ : Tgr x A — 2768 inductively

C(0,0x) = 5(170‘) =0 C(e"_ fva) = C(eva) U C(fv a)
C(ava):(a C(e'f7a):{e,'f:6/EC(eva)}UZ(67f7O‘)
C(p,a) = {1: 7o Zeap} ((e,a) = {el e* e € Cle,a)}

where Z(e, f,a) = ((f,a) when e(e) =1 or e(e’) =1 for some €' € ((e,a), and O otherwise.

For instance, let p,q € Tp. If a € [p]ea N [¢]ea, then we can calculate that

C(p-g,0) ={p" -q:p" €C(p,0)} UZ(p,q,a) = {1-q} U {1},

which is to say that the program can either continue in 1 - ¢, where it has to make an
observation validating ¢, or it can choose to re-use the observation « to validate ¢, continuing
in Z(p,q,a) = ((g,a) = {1}, because 1 € {(p,). This notion that ¢ can apply an observation
more than once to validate multiple assertions in a row can be formalised.

» Lemma 4.14. Lete € Tar, a € A, and ' € ((e,a). Now ((e/,a) C (e,).

To check that § and ¢ indeed output continuations of the term after the action or assertion
has been performed, we should check that they are compatible with =,,.

» Lemma 4.15. Let ¢ € Tgr. For all a € X and €' € §(e,a), we have a - € Zyno €.
Furthermore, for all a« € A and ¢’ € ((e,), we have Ty - €' Sgao €.

CONCUR 2019

41:10

Kleene Algebra with Observations

We also need the reach of a guarded rational term, which is meant to describe the set of
terms that can be obtained by repeatedly applying continuation maps.

» Definition 4.16 (Reach of a term). For e € Tar, we define p : Tar — 2797 inductively:
p(0) = pla) = {1,a} ple+f) = ple) Up(f)
p

0
(1) = {1} p(p) = {1,p} ple-f)=A{e'-f:e €ple)}Up(f)
ple)={1}uU{e -e*: e €ple)} .

Indeed, p(e) truly contains all terms reachable from e by means of § and (:

» Lemma 4.17. Lete € Tar. Ifa € X, then §(e,a) C p(e); if € € p(e), then d(e’,a) C p(e).
Furthermore, if o € A, then ((e,a) C p(e); if € € p(e), then ((/,a) C p(e).

It is not hard to see that for all e € Tgr, we have that p(e) is finite. Note that p(e) does
not, in general, contain e itself. On the other hand, p(e) does contain a set of terms that is
sufficient to reconstruct e, up to =«x. We describe these as follows.

» Definition 4.18 (Initial factors). For e € Tgr, we define v : Tar — 2767 inductively:
4(0) = v(a) = {a} e+ f)=e)uuf)
L

0
(1) = {1} up) = {p} we f)={e f:e €ule)}
ey ={1yu{e -e*: e €ule)} .

Now, to reconstruct e from ¢(e), all we have to do is sum its elements.

» Lemma 4.19. Lete € Tgr. Then e =¢no Ze,eb(e) e'.

5 Completeness

We now set out to show that [—]uao characterises =¢,0. Since soundness of [—[up0 W.T.t.
=0 Was already shown in Lemma 4.9, it remains to prove completeness, i.e., if e and f are
interpreted equally by [—]«ao, then they can be proven equivalent via =¢ao. To this end, we
first identify a subset of guarded rational terms for which a completeness result can be shown
by relying on the completeness result for KA. To describe these terms, we need the following.

» Definition 5.1 (Atomic and guarded terms). Let II denote the set {m, : a € A}. The set of
atomic guarded rational terms, denoted Tagr, is the subset of Tar generated by the grammar

e,fu=0]1]aceXl | mp€ll | e+f e f]|e.
Furthermore, if e € Tar such that [€]uno = [€]wkao, we say that e is closed.

Completeness of =, with respect to [—]«ao can then be established for atomic and closed
guarded rational terms as follows.

» Proposition 5.2. Let e, f € Tagr be closed, and [€]xao = [f]kno; then € =¢ao f-

Sketch. By noting that the semantics of an atomic and closed term coincide with the KA-
semantics (over an extended alphabet); the result then follows by appealing to completeness
of KA, and the fact that the axioms of KA are contained in those for KAO. <

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi

To show that [—]ko characterises =¢ao for all guarded rational terms, it suffices to find for
every e € Tar a closed é € Tagr with e = é. After all, if we have such a transformation,
then [€]uao = [f]kao implies [€]uno = [[fﬂKAo, which implies é =0 f7 and hence e =, f.

In the remainder of this section, we describe how to obtain a closed and atomic guarded
rational term from a guarded rational term e. This transformation works by first “dis-
assembling” e using partial derivatives; on an intuitive level, this is akin to creating a
(non-deterministic finite) automaton that accepts the observation language described by e.
Next, we “reassemble” from this representation an atomic term é, equivalent to e; this is
analogous to constructing a rational expression from the automaton. To show that é is closed,
we leverage Lemma 4.14, essentially arguing that the automaton obtained from e encodes <.

We extend the notation for vectors and matrices over rational terms to guarded rational
terms. We can then represent a guarded rational term by a matrix and a vector, as follows.

» Definition 5.3. For e € Tgr, define the p(e)-vector x. and p(e)-matriz M. by

ze(e) = e(e’) M, (' e") = Z a+ Z T -

e’’ed(e’,a) e’’el(e’,a)

Note that, in the above, d(¢/,a) and ((¢’,) are finite by Lemma 4.17.

Kozen’s argument that matrices over rational terms satisfy the axioms of Kleene al-
gebra [23] generalises to guarded rational terms. This leads to a straightforward generalisation
of Lemma 2.4. For the sake of brevity, we use T to stand in for WKAO or KAO.

» Lemma 5.4. Let M be a Q-matrix. Using the entries of M and applying the operators of
Kleene algebra, we can construct a Q-matriz M*, which has the following property. Let y be
any Q-vector; now M* -y is the least (w.r.t. <;) Q-vector x such that M - x +y <1 x.

We can now use the above to reassemble a term from M, and z. as follows.

» Definition 5.5 (Transformation of terms). Let e € Tar. We write s. for the p(e)-vector
given by MY - z., and é for the guarded rational term given by Ze’EL(e) se(€)).

Since é is constructed from M, and s., and these are built using atomic guarded rational
terms, € is atomic. We carry on to show that é =, e. To this end, the following is useful.

» Proposition 5.6 (Least solutions). Let e, f € Tar. Now s, f is the least (w.r.t. <;)
p(e)-vector s such that for each ¢’ € p(e), it holds that

e(e)- f+ Z a-s(e")+ Z 7o - s(€") 1 os(€) .
e’ €d(e’ ,a) e’ el (e,)

When s = s. 3 f, the above is an equivalence, i.e., we can substitute <; with =.

Sketch. The least such s coincides with s, = M} - z., by using the property of s. that we
obtain as a result of Lemma 5.4. The latter claim goes by standard argument akin to the
argument showing that the least pre-fixpoint of a monotone operator is a fixpoint. |

Using the above, we show that the contents of p(e) themselves qualify as a least p(e)-vector
satisfying system obtained from e (and fixing f = 1). More concretely, we have the following.

» Proposition 5.7. Let e € Tgr and €' € p(e). Then sc(€') =ao €.

Sketch. The key idea is to first relate the least p(e)-vectors satisfying the system obtained
from e to those satisfying the systems arising from its subterms. The proof then follows by
induction on e, and some straightforward derivations. <

41:11

CONCUR 2019

41:12

Kleene Algebra with Observations

This allows us to conclude (using Lemma 4.19) that e =40 é.
» Corollary 5.8 (Transformation preserves equivalence). Let e € TgRr; then € =¢po €.

It remains to show that € is closed. To this end, the following characterisation is helpful:
» Lemma 5.9. Let L C T, and define < as the smallest relation on I'* satisfying the rules

acl wdx ac A wdx

ede aw 4 ax ow d aax
L| is the smallest subset of I'* such that L C L, and if w < x with x € L|, then w € L|.

We can then employ the characterisation of s, in Proposition 5.6 to show, by induction
on the length of the <-chain, that the components of s, are closed.

» Proposition 5.10. Let e € T. For all ¢’ € p(e), it holds that s.(€') is closed.

Sketch. Note that s, satisfies the system obtained from e as in Proposition 5.6, both w.r.t.

=0 and =yxpo. Using Lemma 5.9, we can then show (by induction on the number of

applications of <) that [s(€’)]wkao C [$(€')]kao; the other inclusion holds trivially. <
Hence, we can conclude (using Lemma 4.8) that é is closed as well, as follows.

» Corollary 5.11 (Transformation yields closed term). Let e € Tggr; now é is closed.

We are now ready conclude with the main result of this section.

» Theorem 5.12 (Soundness and completeness). Let e, f € Tar; then

€ =xno f — [[eﬂKAO = [[f]]KAO .

Sketch. Since we have a way to obtain from e € Tgg a closed term é € Tagg, for which it
furthermore holds that e =4, €, we can appeal to Proposition 5.2. |

6 Decision procedure

We now design a procedure that takes terms e, f € Tor and decides whether [e]xao = [f]xao;

by Theorem 5.12, this gives us a decision procedure for e =¢,, f. To this end, we reduce to

the problem of language equivalence between NFAs over guarded rational terms, defined using

partial derivatives. This, in turn, can be efficiently decided using bisimulation techniques.
First, observe that Tgr carries a non-deterministic automaton structure.

» Definition 6.1 (Syntactic automaton). The set Tar carries an NDA structure (Tgr, €,0)
where € : Tar — 2 is as in Definition 4.10, and 0 : Tar x I' — 2767 4s given by

o ifacd
0(eq) = (e,a) ifa .
C(e,a) ifac A
We call this the syntactic automaton of guarded rational terms.

Let £: Tar — 25 be the semantics of this automaton as given in Section 2. It is easy to see
that £ is the unique function such that

le)={eze(e)=1}U |J {a}-L(hu |J {a}-e). (1)
e’'€d(e,a) e'eC(e,a)

To use this NDA for KAO equivalence, we need to show that the language accepted by the
state e € Tgr is [e]kao- For this goal, it helps to algebraically characterise expressions in
terms of their derivatives. We call this a fundamental theorem of KAO, after [39, 40].

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi 41:13

» Theorem 6.2 (Fundamental theorem). For all e € Tgg, the following holds

€ =0 €(€) + Z a-e + Z T - €.

e’'€d(e,a) e’e((e,a)

Sketch. The right-to-left containment is a result of Lemmas 4.11 and 4.15. The converse is
a straightforward calculation using Proposition 5.6 and Corollary 5.8. |

Next, we turn the fundamental theorem into a statement about the KAO semantics.
Before we do, however, we need the following basic result about the KAO semantics.

» Lemma 6.3. Let us fir « € A. For all e € Tgr, we have:

ﬂze’e«e,a)ﬂ“'e,ﬂm: U {a}-[€]o -

e’eC(e,a)
We now arrive at a semantic analogue of the fundamental theorem.

» Proposition 6.4. For all e € Tgr, we have:

[e]kno = {e:e(e) =1} U U {a} - [€Tuno U U {a} - [€Tkno -

e’€d(e,a) e’€¢(e,)

Sketch. By applying soundness of =¢y0 w.r.t. [—]uao (Lemma 4.9) to the fundamental
theorem, and using Lemma 6.3 for the term summing over the A-continuations of e. |

The language of a state in the syntactic NFA is then characterised by the KAO semantics.
» Theorem 6.5 (Soundness of translation). Let e € Tag; then [€]ua = £(€).

Sketch. A direct consequence of Proposition 6.4 and the uniqueness of £ in satisfying (1). <«

To decide whether [e]xao = [f]xno it suffices to show that e and f are language equivalent
in the syntactic automaton. We express this in terms of ¢ as defined in Definition 4.18.

» Corollary 6.6. For alle, f € Tgr, we have

[elo = [flo = U b(e’) = U e(f' -

e’€ufe) fred)

By construction, t(e) C p(e) for every e € Tgr. Since p(e) and p(f) are closed under
partial derivatives, we can restrict the syntactic automaton to p(e) U p(f), to obtain a finite
NDA. To decide e =¢ao f, it suffices to decide Ue’a(e) () = Uf'a(f) £(f") on this NFA.

This leads us to the main result of this section: a decision procedure for KAO.

» Theorem 6.7 (Decision procedure). For all e, f € Tar, we have e =4 f if and only if
there exists R such that (c(e),c(f)) € R and R is a bisimulation up to congruence for the
syntactic automaton restricted to p(e) U p(f).

Sketch. By Theorem 2.5, such an R exists precisely when U, ¢, () [€'Tkao = Upre,(5)[f Tknos
by Corollary 6.6 and Theorem 5.12 this is equivalent to e =¢no f- <

CONCUR 2019

41:14

Kleene Algebra with Observations

» Example 6.8. We know that for all a,b € Q we have that a A b Z«ao a-b. This also follows
from our decision procedure, which we argue by showing that any attempt to construct a
bisimulation up to congruence R containing ({a A b}, {a - b}) fails.

We start with R = {({a A b}, {a - b})}, and note that é({a A b}) = 0 = €({a - b}). We
now take a derivative w.r.t. a € A such that 7, <ga a Ab. To grow R into a bisimulation
up to congruence, all derivatives should be checked and possibly added to R; this specific
choice, however, will lead to a counterexample. We have that 8({a A b},a) = {1} and
6({a-b},a)={1-b,1}. We add ({1},{1-b,1}) to R, noting that é({1}) =1 = ({1 -b,1}),
and continue with the next derivative w.r.t. 8 € A such that mg <gs b. We get 0({1},8) = 0
and 0({1-b,1},8) = {1}. We now have (§,{1}) € R, but &) # &{1}). Thus, we cannot

construct a bisimulation up to congruence R such that ({a A b}, {a-b}) € R.

» Remark 6.9. For KAO-expressions without observations, the derivatives with respect to an
element of A result in the empty set. Hence, for these KAO-expressions, deciding equivalence
comes down to standard derivative-based techniques for rational expressions [37].

7 Related work

This work fits in the larger tradition of Kleene algebra as a presentation of the “laws of
programming”, the latter having been studied by Hoare and collaborators [14, 13]. More
precisely, our efforts can be grouped with recent efforts to extend Kleene algebra with
concurrency [15, 13, 32, 21], and thence with Boolean guards [19].

We proved that =, is sound and complete w.r.t. [—]«ao, based on the existing complete-
ness proof for KA. By re-using completeness results for a simpler algebra, the proof shows a
clear separation of concerns between the “old” algebra being extended and the new layer of
axioms placed on top. This strategy pops up quite often in some form [29, 1, 32, 21]. We
note that unlike [29, 1], our transformation does not proceed by induction on the term, but
leverages the least fixpoints computable in every Kleene algebra. Further, the combination of
KA with additional hypotheses presented in [27] might yield another route to completeness.

The use of linear systems to study automata was pioneered by Conway [9] and Back-
house [3]. Kozen’s completeness proof expanded on this by generalising Kleene algebra to
matrices [23]. The connection between linear systems, derivatives and completeness was
studied by Kozen [26] and Jacobs [18]. To keep our presentation simple, we give our proof of
completeness in elementary terms; a proof in terms of coalgebra [38] may yet be possible.

Using bisimulation to decide language equivalence in a deterministic finite automaton
originates from Hopcroft and Karp [17]. This technique has many generalisations [36].

8 Conclusions and further work

Kleene algebra with observations (KAO) is an algebraic framework that adds Boolean guards
to Kleene algebra in such a way that a sensible extension with concurrency is still possible, in
contrast with Kleene algebra with tests (KAT). Indeed, the laws of KAO prevent the problem
presented by Antinomy 3.1. The axiomatisation of KAO, as well as the decision procedure
for equivalence, give an alternative foundation for combining KAO with concurrent Kleene
algebra to arrive at a new equational calculus of concurrent programs.

The most obvious direction of further work is to define concurrent Kleene algebra with
observations (CKAQO) as the amalgamation of axioms of KAO and CKA, in pursuit of a
characterisation of its equational theory and an analogous decidability result. We conjecture

T. Kappé, P. Brunet, J. Rot, A. Silva, J. Wagemaker and F. Zanasi

that languages of sp-pomsets [12, 11, 33| over actions and atoms, closed under some suitable
relation, form the free model; a proof would likely build on [31] and re-use techniques from [21].
While the equational theory of CKAO might be decidable, we are less optimistic about a
feasible algorithm; deciding the equational theory of CKA is already EXPSPACE-complete [7].

Another avenue of future research would be to create a programming language using
KAO (or, possibly, CKAO) by instantiating actions and observations, and adding axioms
that encode the intention of those primitives. NetKAT [1, 10, 41], a language for describing
and reasoning about network behaviour is an excellent example of such an endeavour based
on KAT. Our long-term hope is that CKAO will function as a foundation for a “concurrent”
version of NetKAT aimed at describing and reasoning about networks with concurrency.

Finally, we note that the decision procedure for KAO based on bisimulation up to con-
gruence leaves room for optimisation. Besides adapting the work on symbolic algorithms for
bisimulation-based algorithms in KAT [34], the transitivity property witnessed in Lemma 4.14
seems like it could sometimes allow a bisimulation-based algorithm to decide early.

—— References

1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In POPL, pages
113-126, 2014. doi:10.1145/2535838.2535862.

2 Valentin M. Antimirov. Partial Derivatives of Regular Expressions and Finite Automaton
Constructions. Theor. Comput. Sci., 155(2):291-319, 1996. doi:10.1016/0304-3975(95)
00182-4.

3 Roland Backhouse. Closure algorithms and the star-height problem of regular languages. PhD
thesis, University of London, 1975.

4 Garrett Birkhoff and Thomas C. Bartee. Modern applied algebra. McGraw-Hill, 1970.

5 Maurice Boffa. Une remarque sur les systémes complets d’identités rationnelles. ITA, 24:419—
428, 1990.

6 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In POPL, pages 457-468, 2013. doi:10.1145/2429069.2429124.

7 Paul Brunet, Damien Pous, and Georg Struth. On Decidability of Concurrent Kleene Algebra.
In CONCUR, pages 28:1-28:15, 2017. doi:10.4230/LIPIcs.CONCUR.2017.28.

8 Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481-494, 1964.
doi:10.1145/321239.321249.

9 John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.

10 Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thompson. A
Coalgebraic Decision Procedure for NetKAT. In POPL, pages 343-355, 2015. doi:10.1145/
2676726.2677011.

11 Jay L. Gischer. The Equational Theory of Pomsets. Theor. Comput. Sci., 61:199-224, 1988.
doi:10.1016/0304-3975(88)90124-7.

12 Jan Grabowski. On partial languages. Fundam. Inform., 4(2):427, 1981.

13 Tony Hoare. Laws of Programming: The Algebraic Unification of Theories of Concurrency. In
CONCUR, pages 1-6, 2014. doi:10.1007/978-3-662-44584-6_1.

14 Tony Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm
Sgrensen, J. Michael Spivey, and Bernard Sufrin. Laws of Programming. Commun. ACM,
30(8):672-686, 1987. doi:10.1145/27651.27653.

15 Tony Hoare, Bernhard Moller, Georg Struth, and Ian Wehrman. Concurrent Kleene Algebra.
In CONCUR, pages 399-414, 2009. doi:10.1007/978-3-642-04081-8_27.

16 Tony Hoare, Stephan van Staden, Bernhard Méller, Georg Struth, and Huibiao Zhu. Develop-
ments in Concurrent Kleene Algebra. J. Log. Algebr. Meth. Program., 85(4):617-636, 2016.
doi:10.1016/3.jlamp.2015.09.012.

17 John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite
automata. Technical Report TR71-114, Cornell University, December 1971.

41:15

CONCUR 2019

https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1007/978-3-662-44584-6_1
https://doi.org/10.1145/27651.27653
https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1016/j.jlamp.2015.09.012

41:16

Kleene Algebra with Observations

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

Bart Jacobs. A Bialgebraic Review of Deterministic Automata, Regular Expressions and
Languages. In Algebra, Meaning, and Computation (Joseph A. Goguen festschrift), pages
375-404, 2006. doi:10.1007/11780274_20.

Peter Jipsen and M. Andrew Moshier. Concurrent Kleene algebra with tests and branching
automata. J. Log. Algebr. Meth. Program., 85(4):637-652, 2016. doi:10.1016/j.jlamp.2015.
12.005.

Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio
Zanasi. Kleene Algebra with Observations. CoRR, abs/1811.10401, 2018. arXiv:1811.10401.
Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent Kleene Al-
gebra: Free Model and Completeness. In ESOP, pages 856-882, 2018. doi:10.1007/
978-3-319-89884-1_30.

Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Automata
Studies, pages 3—41, 1956.

Dexter Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Inf. Comput., 110(2):366-390, 1994. doi:10.1006/inco.1994.1037.

Dexter Kozen. Kleene algebra with tests and commutativity conditions. In TACAS, pages
14-33, 1996. doi:10.1007/3-540-61042-1_35.

Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log.,
1(1):60-76, 2000. doi:10.1145/343369.343378.

Dexter Kozen. Myhill-Nerode Relations on Automatic Systems and the Completeness of
Kleene Algebra. In STACS, pages 27-38, 2001. doi:10.1007/3-540-44693-1_3.

Dexter Kozen and Konstantinos Mamouras. Kleene Algebra with Equations. In ICALP, pages
280—292, 2014. doi:10.1007/978-3-662-43951-7_24.

Dexter Kozen and Maria-Christina Patron. Certification of Compiler Optimizations Using
Kleene Algebra with Tests. In CL, pages 568-582, 2000. doi:10.1007/3-540-44957-4_38.
Dexter Kozen and Frederick Smith. Kleene Algebra with Tests: Completeness and Decidability.
In CSL, pages 244-259, 1996. doi:10.1007/3-540-63172-0_43.

Daniel Krob. Complete Systems of B-Rational Identities. Theor. Comput. Sci., 89(2):207-343,
1991. doi:10.1016/0304-3975(91)90395-1.

Michael R. Laurence and Georg Struth. Completeness Theorems for Bi-Kleene Algebras
and Series-Parallel Rational Pomset Languages. In RAM:iCS, pages 65-82, 2014. doi:
10.1007/978-3-319-06251-8_5.

Michael R. Laurence and Georg Struth. Completeness Theorems for Pomset Languages and
Concurrent Kleene Algebras, 2017. arXiv:1705.05896.

Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theor. Comput. Sci., 237(1):347-380, 2000. doi:10.1016/S0304-3975(00)00031-1.

Damien Pous. Symbolic Algorithms for Language Equivalence and Kleene Algebra with Tests.
In POPL, pages 357-368, 2015. doi:10.1145/2676726.2677007.

Michael O. Rabin and Dana S. Scott. Finite Automata and Their Decision Problems. IBM J.
of Research and Dev., 3(2):114-125, 1959. doi:10.1147/rd.32.0114.

Jurriaan Rot, Filippo Bonchi, Marcello M. Bonsangue, Damien Pous, Jan Rutten, and
Alexandra Silva. Enhanced coalgebraic bisimulation. Mathematical Structures in Comput.
Sei., 27(7):1236-1264, 2017. doi:10.1017/80960129515000523.

Jan J. M. M. Rutten. Automata and Coinduction (An Exercise in Coalgebra). In CONCUR,
pages 194-218, 1998. doi:10.1007/BFb0055624.

Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3—80, 2000. doi:10.1016/S0304-3975(00)00056-6.

Jan J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theor. Comput. Sci., 308(1-3):1-53, 2003. doi:
10.1016/50304-3975(02) 00895-2.

Alexandra Silva. Kleene Coalgebra. PhD thesis, Radboud Universiteit Nijmegen, 2010.
Steffen Smolka, Spiridon Aristides Eliopoulos, Nate Foster, and Arjun Guha. A fast compiler
for NetKAT. In ICFP, pages 328-341, 2015. doi:10.1145/2784731.2784761.

https://doi.org/10.1007/11780274_20
https://doi.org/10.1016/j.jlamp.2015.12.005
https://doi.org/10.1016/j.jlamp.2015.12.005
http://arxiv.org/abs/1811.10401
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1007/3-540-61042-1_35
https://doi.org/10.1145/343369.343378
https://doi.org/10.1007/3-540-44693-1_3
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1016/0304-3975(91)90395-I
https://doi.org/10.1007/978-3-319-06251-8_5
https://doi.org/10.1007/978-3-319-06251-8_5
http://arxiv.org/abs/1705.05896
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1145/2676726.2677007
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1007/BFb0055624
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1016/S0304-3975(02)00895-2
https://doi.org/10.1145/2784731.2784761

	Introduction
	Preliminaries
	The problem with CKAT
	Kleene algebra with observations
	From tests to observations
	A language model
	Partial derivatives

	Completeness
	Decision procedure
	Related work
	Conclusions and further work

