
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

FutureWare: Designing a Middleware for Anticipatory Mobile Computing / Mehrotra, A and Pejovic, V and
Musolesi, M. - In: IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. - ISSN 0098-5589. - ELETTRONICO. -
47:10(2021), pp. 2107-2124. [10.1109/tse.2019.2943554]

Published Version:

FutureWare: Designing a Middleware for Anticipatory Mobile Computing

Published:
DOI: http://doi.org/10.1109/tse.2019.2943554

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/810201 since: 2021-02-28

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/tse.2019.2943554
https://hdl.handle.net/11585/810201

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Mehrotra, V. Pejovic and M. Musolesi, "FutureWare: Designing a Middleware for
Anticipatory Mobile Computing," in IEEE Transactions on Software Engineering, vol.
47, no. 10, pp. 2107-2124, 1 Oct. 2021, doi: 10.1109/TSE.2019.2943554.

The final published version is available online at:
https://dx.doi.org/10.1109/tse.2019.2943554

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/tse.2019.2943554

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

FutureWare: Designing a Middleware for
Anticipatory Mobile Computing

Abhinav Mehrotra, Veljko Pejovic, and Mirco Musolesi

Abstract—Ubiquitous computing is moving from context-awareness to context-prediction. In order to build truly anticipatory systems
developers have to deal with many challenges, from multimodal sensing to modeling context from sensed data, and, when necessary,
coordinating multiple predictive models across devices. Novel expressive programming interfaces and paradigms are needed for this
new class of mobile and ubiquitous applications.
In this paper we present FutureWare, a middleware for seamless development of mobile applications that rely on context prediction.
FutureWare exposes an expressive API to lift the burden of mobile sensing, individual and group behavior modeling, and future context
querying, from an application developer. We implement FutureWare as an Android library, and through a scenario-based testing and a
demo app we show that it represents an efficient way of supporting anticipatory applications, reducing the necessary coding effort by
two orders of magnitude.

Index Terms—Anticipatory computing, mobile middleware, mobile sensing, prediction.

F

1 INTRODUCTION

EQUIPPED with accelerometers, GPS, light, humidity, and
orientation sensors, boasting high-power computation

resources, and also being with their owners at all times, to-
day’s smartphones represent an ideal platform for context-
aware computing. A range of different aspects of the con-
text, such as users’ physical activity [1], co-location with
friends [2], social activity [3], even emotions [4], can be
extracted thanks to smartphone’s multimodal sensors and
machine learning [5]. Contextual information, in turn, can
augment mobile applications ranging from healthcare [6],
[7], safety [8], environment monitoring [9], transport [10],
[11] to human-computer interactions [12], [13], [14].

Most of the work in the area of context-aware computing
focuses on inferring current context, yet highly personal
everyday use of the smartphone allows us to go beyond
and identify the inherent patterns of human behavior from
the sensed data. In a nutshell, machine learning models of
human behavior can be built, and, on top of them, predictions
of future context can be made. Compared to merely infer-
ring context from currently sensed data, context predictions
are more difficult to make. Certain modalities, however,
tend to be more suitable for prediction – mobility is one
such example. People follow circadian rhythms, commute
to work, relax during weekends and so on. Consequently,
behavioral patterns can be mined and human mobility can
be predicted with a high level of accuracy [15], [16]. In
addition to mobility, predictive models of other contextual
aspects such as mobile users’ network connectivity [17], [18],

• A. Mehrotra is with the Department of Geography, University College
London, UK.
E-mail: a.mehrotra@ucl.ac.uk

• V. Pejovic is with the Faculty of Computing and Information Science,
University of Ljubljana, Slovenia.
E-mail: veljko.pejovic@fri.uni-lj.si

• M. Musolesi is with the Department of Geography, University College
London, UK.
E-mail: m.musolesi@ucl.ac.uk

communication patterns [19], application usage [20], [21]
and even for health state [6] have been demonstrated.

Context prediction has the potential to revolution-
ize mobile applications. This is evident through a recent
wave of commercial applications such as MindMeld [22],
GoogleNow [23], Yahoo Aviate [24], Microsoft Cortana [25],
Alexa [26] and Siri [27]. These applications harness data
obtained from different sources such as mobile sensors,
emails, Web navigation history, and calendar entries, to
provide information relevant for immediate-future context
of a user. These predictive applications can, for example,
pop-up a Wikipedia article which is about to be relevant
for a point raised in a discussion, check a user in to a
pending flight, or provide the duration of a commute before
being explicitly asked by the user. Yet, we believe that these
are just forerunners to truly anticipatory applications that
will act autonomously on the basis of past, present and
predicted future context, and modify the future to satisfy
users’ requirements [28]. Such applications will be able
to suggest alternative routes to a driver who is about to
experience congestion, will provide well-being coaching to
prevent behavior-related health issues, and will organize
our busy days to minimize the predicted stress levels [29].

However, realizing anticipatory applications relying on
predicted context is challenging due to the intricacy of
implementing prediction logic on a mobile device. Such
logic, necessary for any context-aware application, includes
sensor sampling, managing multiple streams of sensed data,
labeling sensor data, and building machine learning models
that can be queried in order to infer high-level context of
a user. Yet, in the context prediction case, the prediction
logic needs encompass machine learning models that de-
scribe the evolution of the sensed context, as well as further
probing to ensure that the models are capturing possible
irregularities in user behavior. Moreover, predictive appli-
cations need to overcome specific challenges of the mobile
platform, for example, they need to maintain the prediction

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

models and the information about the prediction request
across the device and the OS shutdowns. Finally, advanced
anticipatory applications might be interested in predictions
of a context modality (i.e., context types, such as location,
movement and network connectivity, to name a few), only
when the future state of some other modality satisfies a
certain condition (e.g., know the application that the user
will launch, the next time her Internet connectivity is down),
something that conventional mobile sensing applications do
not have to deal with. Therefore, compared to the standard
sense-and-classify apps, anticipatory context-aware applica-
tions can be significantly more challenging to implement,
as the developer needs to master all of the above aspects. A
general purpose platform with an easy-to-use API that hides
the intricacy of implementing prediction logic is poised to
unlock the true potential of context prediction, speeding
up the process of building and deploying predictive mobile
applications.

To address these challenges we present FutureWare – a
middleware that lifts the burden of context prediction from
application developers. FutureWare comes with a publish-
subscribe interface that offers asynchronous subscriptions
to a one-time or a stream of predicted future contexts.
The middleware exposes an expressive and flexible API to
abstract the means of mobile sensing, individual and group
behavior modeling, and future context querying, and lets
the developers concentrate on high level functionalities of
mobile applications that rely on context prediction. Future-
Ware is designed with the restrictions of mobile devices in
mind, thus the middleware has a minimal data storage and
memory footprint, minimizes energy consumption during
sensing and modeling, keeps the data transmission burden
low, and ensures privacy of mobile users.

FutureWare is composed of two parts: a mobile mid-
dleware residing on smartphones, and a centralized server
component necessary for group-based predictions. We im-
plement the mobile middleware as an Android library and
the server component as an executable Java archive. Inte-
gration with existing mobile sensing tools lets FutureWare
sense a range of different modalities, including, but not
limited to, location, sound, light, and physical movement.

To evaluate the middleware, we first provide several
examples that demonstrate the expressivity of the pro-
gramming interface of FutureWare in mobile and Internet
of Things (IoT) settings. Second, we analyze the features
of a variety of existing applications that could be built
through FutureWare. In our analysis we show that the
FutureWare API has the potential of providing support for
all the fundamental predictive functionalities of the apps
taken into consideration. Finally, we discuss a real world
case study, the design and implementation of a predictive
application, namely an intelligent lock screen that predicts
applications that a user is about to request, and enables
quick launching of these applications through direct placing
of selected application icons on the lock screen. We gathered
and analyzed usage logs from the lock screen applications
run by nine users over ten days. The results show that all
the prediction techniques outperform the random selection-
based application icon placement strategy. We implemented
the lock screen application both with and without using the
FutureWare middleware in order to evaluate the program-

ming effort needed to develop such an application. The code
analysis of these applications shows that by using Future-
Ware, the same predictive functionality can be implemented
with a drastically reduced coding effort.

Specific contributions that FutureWare brings to the field
of predictive mobile computing can be summarized as fol-
lows:

1) Expressive and extensible API for context prediction.

FutureWare provides an expressive API that lets a
developer configure the parameters of context predic-
tion: types of sensors that will be sampled, how often
should the sampling happen, machine learning tools
upon which prediction models will be based, and many
other configuration parameters. Furthermore, Future-
Ware API asynchronously accepts the input provided
by the overlying application about the correctness of
the latest prediction (i.e., the user’s feedback), and this
information is used in the next model training itera-
tion. Finally, the extensible API of FutureWare enables
easy integration of our middleware with third-party
machine learning models.

2) Filtered context prediction querying. Querying Fu-
tureWare for the upcoming state of the context can be
done through topic-based and content-based subscrip-
tions to the middleware. In a topic-based subscription
the subscriber (i.e., the overlying application) can spec-
ify the modalities (e.g. user’s mobility, physical activity,
etc.) of interest for prediction, whereas, a content-based
subscription allows the subscriber to specify the modal-
ities of interest as well as the conditions under which
the subscriber is to be notified about the predicted
context (e.g., a user’s predicted location when the user
is running).

3) Multi-user context predictions. FutureWare supports
group-based predictions. A single user-based predic-
tions involve only the individuals for whom the pre-
diction is made and can be computed on each user’s
mobile. By contrast, in the case of group-based pre-
dictions, individual predictions for the users belonging
to a group are collected and aggregated on the server
in order to make the final prediction. Here, individual
predictions for all users can either be made locally
and the prediction results are transmitted to the server.
Alternatively, the server maintains models of these
users to make their predictions whenever required.
We note, however, that building predictive models to
learn collective behavior of users is orthogonal to the
scope of FutureWare’s group-prediction mechanism. In
other words, FutureWare does not exploit the data of
multiple users to train a single group-prediction models
for making predictions about the behavior of these
users. Instead, FutureWare’s group-prediction mecha-
nism exploits the predictions obtained by means of
individual-based models of a group of users separately
and merge them in order to make predictions about
generic (common) behavioral patterns of the users.

To clarify the scope of our work, we emphasize that the
focus of FutureWare is the provision of highly expressive
programming abstractions for making context predictions.
The main contribution is not on the implementation of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

forecasting algorithms themselves or a predictive applica-
tion, but on the design, implementation and evaluation of
the expressiveness of the framework to support seamless
development of next generation anticipatory mobile and
Internet of Things applications.

2 RELATED WORK

Several middleware systems were proposed in order to
relieve the developers from the burden of interacting with
and managing low-level sensors, delivering energy-efficient
sensing on battery constrained mobile phones, and ensur-
ing the privacy compliance. Energy Efficient Mobile Sens-
ing System (EEMSS) [30], Jigsaw [31], AnonySense [32],
Pogo [33], PRISM [34], Aware [35], and SenSocial [3] are
examples of such middleware. All of the above projects
address the challenges of mobile sensing for the recogni-
tion of current context. These projects are orthogonal to
FutureWare; our middleware focuses on supporting context
prediction by using the knowledge of the past contextual
information.

A few existing works have proposed middleware frame-
works for mining user behavior by using longitudinal con-
text data [36], [37], [38]. The Acquisitional Context Engine
(ACE) [36] is an example of such a system that maintains
a knowledge base of the contextual events on the server
and mines the co-occurrence patterns among these context
events to sense the users context in an energy-efficient
manner. Another example is the MobileMiner [37] that
proposed the idea of on-device mining of mobile user’s
frequent co-occurrence patterns to predict which context
events frequently occur together. Similarly, PrefMiner [38]
exploits the contextual information and notification data
in order to discover the patterns of users’ interaction with
mobile notifications. These frameworks are built for specific
predicting problem. FutureWare, on the other hand, has no
such limitations and it is designed to provide an API for
enabling seamless development of mobile apps that rely on
context predictions. Moreover, unlike previous approaches
that are based on some specific machine learning algo-
rithms, FutureWare enables the integration of third-party
machine learning algorithms that allows the developers to
use any prediction techniques while building an application
overlying on the FutureWare middleware. To the best of
our knowledge, FutureWare is the first middleware that
abstracts the intricacy of implementing sensing and pre-
dictive features in a mobile app. Furthermore, to hide the
complexity of managing the sensing and prediction streams,
FutureWare uses a publish-subscribe interface in order to
offer asynchronous communication with the middleware.

A number of commercial applications have been built
by using anticipatory mobile computing techniques [39].
Applications such as MindMeld [22], GoogleNow [23], Ya-
hoo Aviate [24] and Microsoft Cortana [25] exploit users’
personal data in order to forecast the context and provide
context-aware services beforehand. All of the above appli-
cations infer the cues of current and future events from var-
ious sources, such as microphone, calendar entries, emails,
search queries and many others, in order to provide relevant
information to the user, however they do not provide a
generic API for predicting future events and context. To

address this, FutureWare enables further exploitation of the
collected data to predict the future context of the user.
Moreover, FutureWare can be used not only as a source of
personal predictions, but also to make group predictions.

The above listed efforts in providing mobile sensing and
machine learning support to application developers, as well
as a flurry of commercial applications relying on context
prediction, point to the gap that our work aims to fill: Fu-
tureWare provides support throughout the whole process,
from sampling and storing the sensed data, over machine
learning modeling, to managing and utilizing predictions
for anticipatory mobile computing.

3 FUTUREWARE AT A GLANCE

The FutureWare middleware is distributed over two com-
ponents, one residing on mobiles to support individual-
based predictions and the other on a centralized server to
make group-based predictions. Figure 1 presents the high-
level architecture and the flow of information in our system.
Once an application subscribes to FutureWare, a Predictor
(i.e., an abstraction that facilitates construction and querying
of the context evolution models) is initialized with the
configuration specified by the overlying application. The
Predictor is also revised as new sensor data comes in, to
ensure a high accuracy of predictions. If a subscription
requires predictions pertaining to more than one client, a
group prediction query is sent to the server that in turn
communicates with the relevant clients by sending a remote
prediction query. These clients return the predicted data
that is aggregated by the server to forecast the context
pertaining to the group. Once the prediction1 (individual
or group-based) is made, the predicted data is handed over
to the filter that checks if the optional developer-defined
conditions are satisfied, before the prediction result is sent
to the overlying application. The filtering conditions are
specified while making a subscription, and ensure that only
relevant predictions are forwarded to the application.

To illustrate the potential of FutureWare we consider
two possible scenarios in which application developers can
benefit from the abstractions provided by our middleware.
Scenario 1. Alice uses Internet-based mobile applications
while she commutes to work by train, yet faces patchy
connectivity on the route. To deal with this poor network
connectivity, she runs PreFetcher that predicts when she will
leave the connectivity range and which applications she is
likely to use thereafter in order to prefetch the content of
these applications before the predicted time of disconnec-
tion. PreFetcher periodically samples Alice’s context, and
learns her mobility and network connectivity patterns; then
it predicts if she is going to leave the connectivity range in
the next forecast period or not. If PreFetcher predicts that
she will be out of coverage, it infers the applications Alice is
going to use and prefetches all the related application data
before she leaves the network coverage area.
Scenario 2. Alice was not able to attend Bob’s birthday
party because she was not in town. She wants to give Bob a
present next time they meet. Therefore, she sets a predictive

1. We use the term prediction here for indicating the computation of
probabilities for future events, but as a limit case, these might refer to
current events, as in traditional publish-subscribe systems.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Application

FutureWare Mobile Middleware

MOBILE CLIENT

SERVER

Subscription

Predictor Filter

Predicted
Data

FutureWare
Server Component

Group
Prediction

Query

Remote
Query

Predicted
Data

Prediction
Results

Predicted
Data

FutureWare ManagerSubscription
Data

Prediction
Results

Fig. 1. FutureWare architecture overview. FutureWare is distributed over a server and participating mobiles. The mobile middleware exploits the
user’s contextual information to make predictions. The server-side of the middleware remotely aggregates predictions concerning the context of
multiple users to derive group forecasting. The overlying application can subscribe to either individual or group-related future context information.

alarm for reminding her to bring the present before meeting
Bob. The application subscribes to FutureWare in order
to get notified an hour in advance of the next predicted
encounter. FutureWare predicts the time for next encounter
based on the mobility patterns of both Alice and Bob, and
triggers the application an hour before the predicted time.
On receiving this trigger, the application triggers a notifi-
cation on Alice’s mobile that reminds her to take a present
for Bob, if the meeting is about to happen in the next hour.
In case Alice snoozes the alarm, the application requests
that FutureWare makes another prediction for the encounter.
Crucially, this mechanism works only if Bob agrees to use
the same encounter predictor application.

The implementation of these scenarios with the help of
FutureWare API is discussed in Section 7.

FutureWare middleware enables seamless development
of the anticipatory functionalities for their apps by hiding
the complexity of constructing and maintaining predictive
models as well as by facilitating them with a set of APIs
to build sophisticated logics for their anticipatory apps. On
the other hand, since the interfacing with other services
(such online social networks) could be subject to the type of
application and depend on the developers choice, Future-
Ware does not include any API for implementation of such
features.

4 DESIGN OF KEY ABSTRACTIONS

The middleware design principles focus mainly on the
following aspects: (i) abstracting the complexity of the im-
plemented features; (ii) providing flexibility for extending
the platform; (iii) enabling the customization of predictions;
(iv) exposing intuitive and easy to use APIs.

4.1 Predictor

This is the key abstraction of the middleware that is pro-
vided for constructing and querying behavioral models.
Behavioral models are built from sensed context data [40],
and querying a model provides predictions of a user’s

future context/behavior. Developers can access instances of
the the Predictor class according to a publish-subscribe
paradigm through the FutureWareManager class. Such
abstractions let middleware internally manage multiple
context prediction subscriptions. Therefore, at the time of
binding with the middleware, an overlying application
can define the requirements of the context prediction it
needs through a set of subscriptions by means of the
FutureWareManager class. The middleware will then au-
tomatically instantiate a new predictor, or bind an existing
one, for each subscription as needed. More specifically, in
case the app has created a new subscription that requires
a predictive model with identical context modalities as
another existing subscription, the middleware will bind
this new subscription to the existing predictor rather than
creating a duplicate one. However, since the middleware is
implemented as a library (discussed in Section 6), the pre-
dictors are not shared across applications. This also ensures
that the middleware complies with the privacy of users’ data
based on the permission they have given to specific apps.
We discuss the details of the subscription mechanism in the
next section.

To construct a behavioral model, the predictor uses the
historical data (collected by the middleware or provided by
the overlying app) as specified in the subscription of that
predictor. It is worth noting that the overlying app must
already have the permission from the users to collect the
data that is required for making the prediction. In order
to construct a model, the generateDataModel function
(of Predictor class) is invoked by passing the historical
data (that is collected and stored in the phone’s memory
by that middleware) along with the labels of each data point.

Types of Predictions

In general, anticipatory apps make two types of predictions:
(i) the time when the user will be in a given state (i.e.,
context states); (ii) the state at a given time in future. In
order to perform the former, the instance of the Predictor
class invokes predictionRequest function by passing

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

Subscribe to
the predictor Prediction

for time=t+20+60
(Filter conditions

failed)

t t+20 t+50

Prediction
for time=t+50+60
(Filter conditions

failed)

t+80

Prediction
for time=t+80+60
(Filter conditions

passed)

t+100

Prediction for
time=t+100+60

(Filter conditions
failed)

Subscription
Sleep Time

Prediction
Interval

Prediction
Interval

Subscription
Sleep Time

Send a notification with predicted
event and re-subscribe to the

predictor
Notification Interval (i.e. 60

minutes) is added to the
current time

Fig. 2. Timeline for a prediction configuration object. Here, subscription sleep time is 20 minutes, notification interval is 60 minutes, and prediction
interval is 30 minutes. Subscription sleep time is the delay before the predictor is subscribed to start making predictions, notification interval is the
future time for which the context is to be predicted, and prediction interval is the time gap between two consecutive predictions.

the states that are to be predicted along with the current
context state as arguments. Whereas, in the case of latter, the
predictionRequest function is invoked by providing
the time horizon after which user’s context has to be
predicted along with the current context state. In order to
facilitate such predictions, FutureWare comes with a set of
built-in machine learning tools, such as frequency-based
and Markov Chain algorithms, which are used to compute
the probability of future occurrence of a class in a given
time interval. The flexible API of FutureWare enables easy
integration of our middleware with third-party machine
learning tools that suit the application requirements.
This can be done simply by providing a class path of an
external machine learning algorithm through the Prediction
Configuration Object (discussed later in this section) while
making a subscription. The external prediction algorithm
must implement the PredictorInterface interface,
override all the methods of the interface which are
internally used by the middleware for making predictions,
and have a nullary constructor with “public" access modifier
so that the middleware can use reflection to instantiate it.

Training and Storing Prediction Models

The Predictor resides both on the mobile middleware
and the server. The mobile side Predictor is in charge of
individual-based predictions and the server side Predictor
supports group-based predictions. Once an application sub-
scribes to FutureWare, by default the client-side Predictor
builds the behavioral models of the user and stores them
locally in the phone’s memory. However, the developer can
also choose to build the models on the server in order
to avoid heavy computations on the client. This can be
done by simply enabling the transmission of data to the
server by invoking enableDataTransmissionToServer
function from PrivacyManager class. In such a case, the
mobile middleware sends the context information collected
since the last model training to the server and requests
model retraining. Once the freshly trained model is ready,
the server informs the mobile middleware, which then
downloads and stores it locally. Hence, FutureWare offers
flexibility for processing model training either locally on the

client or on the server. FutureWare manages context sensing
and labeling, so that behavioral models can be retrained
after each context life-cycle time period (i.e., the developer-
defined expiry time of the model).

Since the mobile app could be killed by the OS due to re-
source limitations or by the users themselves, it is important
to periodically store the trained prediction models so that
the middleware does not have train them from scratch once
the app is relaunched. To do so, in FutureWare the models
are stored (in the external memory) after every iteration of
model training, which allows the middleware always keep
the freshly trained model. FutureWare also allows the devel-
oper to integrate third-party machine learning algorithm for
building the prediction models (discussed in Section 4.2.4).
To support the functionality of storing trained models for
third-party ML algorithms, FutureWare exposes storeModel
and loadModel that can be implemented to store and load the
model in an arbitrary file format.

4.2 Publish-Subscribe Paradigm

The FutureWare Manager is the core component of the
mobile middleware and represents a point of entry for the
overlying application. We design FutureWare Manager as
a publish-subscribe interface to offer asynchronous com-
munication with the middleware. This enables the over-
lying application to specify its interest, in order to be
notified of any predicted event that matches the appli-
cation’s registered interest. The FutureWare Manager ex-
poses the subscribeOnce and subscribe methods to
subscribe for a single event or a stream of future events
that are predicted by the middleware. In order to access
these methods, an application has to create an object of
the FutureWareManager class, which is designed as a
singleton class to ensure that there is only one instance of
the middleware running at a time. To make a subscription
of either type (i.e., for a single event or a stream of fu-
ture events), an application should provide the following
arguments: (i) modalities of interest, (ii) listener, (iii) filter,
and (iv) prediction configuration object. Details of these
arguments are discussed below in this section.

FutureWare allows the overlying application to make
multiple subscriptions. On receiving a new subscription,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

the FutureWare Manager passes the subscription object to
the Event Manager that maintains a list of all subscriptions
along with their registered prediction configurations. The
Event Manager periodically initiates sensing, classifies the
sensed data to obtain high level contextual information and
stores this contextual information that is used for re-training
models. All classes involved in the process of making a
subscription implement standard Serializable interface.
This allows the middleware to store objects of these classes
as string and later deserialize the objects in case the applica-
tion restarts after getting killed by the OS.

4.2.1 Modalities of interest

Modalities of interest refers to a list of context modalities
that the middleware needs to predict for a specific subscrip-
tion. All supported context modalities (such as location,
physical activity, calling behavior and so on) are imple-
mented as separate classes that extend PredictorData
class. Moreover, for each of these classes, their pre-
defined objects are exposed as static variables of the
PredictorData type. This allows a single API call for
finding all the supported context modalities. For instance,
if a subscription requires a prediction of a user’s location, it
can simply create an empty list, add a single element (i.e.,
PredictorData.LOCATION) to it, and pass it to a newly-
created subscription.

4.2.2 Listener

Listener interface contains a method signature for
onNewEvent through which the middleware notifies
the overlying application about the prediction results
that match the registered interests. In other words,
FutureWareListener enables the middleware to support
asynchronous communication for a subscription as results
can be passed to the subscriber once they are ready.
A listener can be any developer made component that
implements the FutureWareListener interface. A
listener can be used to receive notifications for multiple
subscriptions that can be classified according to the sub-
scription IDs. Since the mobile OS could kill an application,
the middleware could lose all references to these listeners.
Therefore, FutureWare stores the canonical names of
the registered listeners (i.e., any class that implements
FutureWareListener) that can be obtained by invoking
getClass and getCanonicalName methods as following:
listener.getClass().getCanonicalName().
Once the results are ready, the middleware uses the
stored canonical name (let’s say canonical_name)
of the registered listener class to instantiate an object
that class through the following Java method call
Class.forName(canonical_name). Finally, this listener
class object is used to trigger onNewEvent for delivering
new results.

4.2.3 Filter

The key feature of the middleware is its ability to support
both sensor-based and event-based subscriptions for context
prediction. A sensor-based subscription enables an appli-
cation to specify the modalities of interest. For example,
subscription to get periodically notified about the user’s

location in the subsequent hour. Whereas, an event-based
subscription allows an application to define the modalities
of interest as well as the filtering conditions under which
the application should be notified. Unlike the sensor-based
subscriptions for which the middleware publishes all the
predicted events for the registered modality, the event-based
subscriptions only receive the predicted events that match
the registered modality and filter conditions. For example,
we can have a subscription that ensures the application is
notified an hour in advance of the user’s visit to a restaurant.

In order to create an event-based subscription, a filter
must be provided at the time of subscription initialization to
specify the conditions under which the application should
be notified. Whereas, a null value can be passed in the case
of a sensor-based subscription as there are no conditions to
checked. A filter consists of a set of conditions which can
be based on: (i) time interval of a day, (ii) the probability
of the prediction, or (iii) a certain value of the context of a
user or a group of users. A condition can be written as a
Java conditional statement and each condition consists of a
variable, a comparison operator, and a target value of the
variable. Since there are three types of conditions supported
by the FutureWare, therefore, a variable of a condition
can be a the time, prediction probability or modality type.
These supported values of variables can be accessed through
Variable class. Similarly, the supported operators and
target values relevant to the used variable could be accessed
from Operators and Values classes respectively.

Let us assume that a developer wants to be notified
only when the user’s predicted location is “home"
and the probability of this prediction is greater than
fifty percent. Such a filter (f) can be written in the
following way: f = V ariable.Sensor.Location +
Operators.EqualTo + V alues.Location.Home +
Operators.And + V ariable.PredictionProbability +
Operators.Greater + V alues.Probability(0.5).
Alternatively, the filter f can also be defined as:
f = “Location == Home && Probability > 0.500.
In this example there are two conditions 1) predicted
location is home, and 2) the probability of prediction is
greater than 50%. Thus, the predicted data for the relevant
subscription is sent to the application only if the user’s
predicted location is Home with a probability of 50%
minimum.

FutureWare stores all filters in the internal memory as
serializable strings. This is done in order to re-instantiate
filters for active subscriptions in case the app restarted itself
after it is killed by the OS. This way the middleware helps
in avoiding the permanent allocation of volatile memory
consumed for these filters.

4.2.4 Prediction configuration object

The goal of FutureWare is to streamline the development
and at the same time support a wide range of possible antic-
ipatory mobile applications. Expressiveness and easy-to-use
primitives are key design requirements of our middleware,
particularly, having in mind that a simple prediction of a
single context modality (e.g. location), may be insufficient
for many applications (that would require joint location
and physical activity prediction, for example). Moreover,
applications might also require different machine learning

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

approaches and predictions with varying prediction hori-
zons (i.e. how far in future should the middleware look). In
order to increase the flexibility of the platform, FutureWare
provides a Prediction Configuration Object (implemented by
the PredictionConfig class), that offers the possibility of
configuring the prediction and notification (i.e., information
about the newly predicted event) process according to de-
veloper’s requirements. In addition, the Prediction Configura-
tion Object can also be used to manage the trade-off between
prediction accuracy and resource consumption: frequent
sensing and model querying requires significant battery
and CPU resources [41]. Prediction Configuration Object, as
is, offers a large number of potential configurations that
an anticipatory application might need for its predictive
functionalities. However, it is flexible enough to enable
developers to construct their own prediction architectures.

The Prediction Configuration Object is defined through a
set of key value pairs where each key refers to a specific
setting of the predictor. In order to increase the usability
of this API, the middleware expose it in the same way
as other standard configuration APIs of Android. In the
FutureWare middleware, this abstraction is implemented
as Configuration class and the configuration keys are
implemented as static variables of this class. The following
are the five configuration keys that can be used to customize
a prediction task:

(i) Notification Interval (Prediction Horizon): the time
interval that defines how far in the future should the
model look to make a prediction. It is added to the
current time when a prediction is made to obtain the
future time for which a prediction is to be made. More
specifically, Notification Interval can be defined by set-
ting the NotificationInterval key to any integer
value (i.e., time period in minutes).

(ii) Prediction Interval: the time gap between two con-
secutive predictions (given that the former prediction
failed to satisfy the filter conditions). To define this
interval, developers can assign any integer value (i.e.,
time period in minutes) to the PredictionInterval
key.

(iii) Predictor Module Selector: the selection for a built-
in prediction algorithm or the absolute path of a
third-party machine learning algorithm. Developers
can pick a built-in algorithm for building their pre-
diction model through the PredictorCollection
class, which provides codes for all supported algo-
rithms. One of these values can then be assigned to the
PredictorNameOrPath key and added to the Predic-
tion Configuration Object . When a third-party machine
learning algorithm is used, its absolute path can be
linked to the PredictorNameOrPath key.

(iv) Subscription Lease Time: this defines the expiry time
for a subscription, which enables developers to cre-
ate dynamic subscriptions with the predefined lease.
This expiry period can be configured by setting the
SubscriptionLeasePeriod key to any integer value
(i.e., time period in minutes).

(v) Subscription Sleep Time: the time delay before mak-
ing the first prediction for a subscription (Subscription
Sleep Time is also valid for the re-subscriptions made

after every successful prediction). In order to define this
interval, developers can assign any integer value (i.e.,
time period in minutes) to the PredictionPeriod
key. The motivation for introducing this configuration
key is to allow the app to collect enough data for train-
ing the model at the first instance. A classic problem in
developing predictive mobile apps is the initial training
of the predictors: when an app is installed by a user,
his/her behavioral data is not usually available to train
the prediction model. This key is used to set the interval
between the start time of an app and the time of the first
training of a prediction model.

Let us consider the prediction requirements summarized
in the time line showed in Figure 2. In this specific case
the Prediction Configuration Object has to be set with the
following values: (i) Notification Interval = 60 minutes;
(ii) Prediction Interval = 30 minutes; (iii) Predictor Module
Selector = MarkovChain; (iv) Subscription Lease Time =
SubscriptionTypeContinuous; (v) Subscription Sleep
Time = 20 minutes.

In this example, a subscription (made at time t) requests
the predictor to make predictions, for example, about a
user’s future location, continuously by using the Markov-
Chain-based prediction algorithm. As the subscription sleep
time is defined as 20 minutes, the middleware waits for
that amount of time before subscribing to the predictor
for making predictions. At time t+20 the predictor makes
a prediction for time t+20+60 (i.e., current time + notifica-
tion interval). If the prediction results satisfy a given filter,
for example, location == home, they are passed to the
application listener by clearing the filter conditions and the
process resets, otherwise the next prediction is made after a
time interval provided by prediction interval. Therefore, the
second and third predictions are made with an interval of
30 minutes (i.e., defined by prediction interval). However,
the third prediction satisfies the filtering conditions and is
passed to the application, and thus the subscription cycle
resets and the middleware sleeps for the given subscription
sleep time (i.e., 20 minutes in this example) before subscrib-
ing again to the predictor.

Finally, in to order to provide an efficient context predic-
tion platform, FutureWare uses a single machine learning-
based model for multiple subscriptions (belonging to the
same application) that have a similar configuration when it
comes to context prediction. For this, FutureWare matches
the configuration of every new subscription with the con-
figurations of existing subscriptions in order to identify
matching subscriptions. For example, two different sub-
scriptions request a user’s future location 20 minutes in
advance of the location change. In such a case only a single
model is constructed by the middleware to support both
subscriptions.

5 INTERACTION BETWEEN FUTUREWARE COMPO-

NENTS FOR MAKING PREDICTIONS

In Figure 3 we present the location of the components
within the architecture of FutureWare and types of data
that are exchanged among these components. The goal of
these components is to efficiently support the abstractions
we explained earlier. The middleware exposes a concise

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Application

Middleware

FutureWare Manager

Model
Data

Model
Data

Group Prediction,
Remote Prediction,

and Model Data

Predictor
Event Manager

Event Manager Predictor

Communication Manager

Privacy Manager

S
en

so
r M

an
ag

er

Subscribe Notify

Subscription
Data Event

Prediction
RequestFilter Group Prediction

and Model DataPrediction
Data

Prediction
Request

Prediction
Data

Communication Manager

Privacy Manager

Mobile Client

Server

onNewEvent()

subscribe()

Prediction and
Model Data

Prediction
Data

Remote
Prediction
Request

Fig. 3. FutureWare components of mobile client and server-side middleware. The server can control multiple clients; we show a single client for
clarity.

Algorithm 1 Pseudo-code for implementing the prediction task presented in Scenario 1 (discussed in Section 3) by using
the FutureWare abstractions.
PC1 Prediction Configuration Object with Notification Interval and Prediction Interval as tevent and tgap respectively
filter Filter as “WiFi == Unavailable”
sid1 subscribe for predicting WiFi with Filter and Prediction Configuration Object as filter and PC1 respectively
function ONNEWEVENT(data)

if data.subscriptionId == sid1 then

PC2 Prediction Configuration Object with Notification Interval as tevent
sid2 subscribe for predicting app usage with Prediction Configuration Object as PC2

end if

if data.subscriptionId == sid2 then

results data.result
end if

end function

set of API calls that are sufficient for controlling these
components.

5.1 Making Individual-based Predictions

In FutureWare context predictions for all the subscriptions
are managed by the Event Manager. Based on the prediction
horizon (provided as PredictionInterval through the
PredictionConfig class) a timer is set to remind the
Event Manager to make context predictions for the relevant
subscription. On receiving a trigger to make prediction,
the Event Manager fetches the relevant behavioral models
from a phone’s database and instantiates the Predictor with
this model. Once the Predictor is instantiated, the Event
Manager instructs the Sensor Manager to get current con-
text data and sends a prediction request to the Predictor
for predicting the requested context modality (specified
as modalities of interest while making the subscription).
Finally, when all conditions provided via subscription filter
are satisfied, the Predictor passes the predicted results to the
Event Manager, which then asks the FutureWare manager to
trigger the results to the subscription’s listener.

5.2 Making Group-based Predictions

In order to make group predictions, the Event Manager
(client side) transmits a group prediction request to the

server component via the Communication Manager. This
request contains the user identification codes of a group of
users, the modality for which the prediction is to be made,
and the future time at which the context is to be predicted
or the context modality value that is to be predicted.

On receiving a group prediction request, the Event Man-
ager (server side) obtains the individual-based prediction
results for the requested set of users. In order to so, the Event
Manager (server side) uses the behavioral models of the
users who opt to builds share their contextual information
and build models on server. For the users who opt not to
share the raw context data with the server client, the server
component sends a remote prediction request to the mobile
client of the corresponding users and obtains the prediction
results of the requested query. On receiving the prediction
results of all users specified in the group-prediction query,
the Event Manager (server side) merges them to make
predictions about generic (common) behavioral patterns of
these users. Finally, the predicted result is transmitted back
to the mobile client of the user who generated the request.

FutureWare does not exploit the data of multiple
users to train a single group-prediction model for making
predictions about the behavior of these users. Instead,
FutureWare’s group-prediction mechanism exploits the
predictions obtained by means of individual-based models
of a group of users separately and merges them in order

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

to make predictions about generic (common) behavioral
patterns of the users.

Ensuring Privacy Compliance

Since group-based predictions deal with sharing
individual’s predicted context information with others,
FutureWare exposes API calls for the developers to define
the application’s privacy policies. These can be dynamically
defined by the developer or exposed as settings to give
users the control over their data sharing policies. These
policies can be defined by specifying the sensor modalities
and friends’ ids through the allowPredictorAccess
and givePredictionModelReadAccessToFriends
functions of the PrivacyManager class, and then call
commitChanges function to add these policies to the
Privacy Manager (on both mobile and server). For instance,
a user can define her privacy policies such that a set of
Facebook friends can be permitted to use predicted location
and accelerometer data, whereas, another set of users
connected on Foursquare can be allowed to access only the
predicted location data.

Once a group prediction request is received, the Privacy
Manager (server side) screens this request to confirm that it
complies with the privacy policies of all the relevant users.
In other words, it checks if all the users included in the
group prediction have granted permission to share their
prediction data of the requested sensor with the requester.
To support dynamic handling of privacy policies, every time
a user changes their privacy policies, the Privacy Manager
(server side) is notified to update them. This ensures that the
group prediction could not be made if any user in the group
who was initially sharing the prediction results data with
the requester has later decided to revoked the permission to
share their data, or the vice versa.

Finally, on successfully passing the privacy screening,
a group prediction request is transferred to the Event
Manager (server side), that makes the group-prediction by
obtaining and merging prediction results of individuals
through the models of users available on the server or by
sending remote prediction requests (as discussed earlier in
this section). Note that the requests that fail the privacy
screening are notified about the failure for privacy check
(without sharing the users for which it failed) and are stored
in the Group Prediction Stack. This allows the mobile client to
either cancel the group-prediction subscription or leave it
until the privacy checks are cleared. In the case of latter, the
group-prediction requests in the Group Prediction Stack are
screened again when user’s privacy policies are modified.

To better understand the process of ensuring privacy
compliance, let us consider an example by assuming that
Alice has made a request to predict her next encounter
with Bob. In order to make this prediction, the middleware
requires that Bob has already allowed to share his location
prediction data with Alice. If this was not permitted, the
middleware would not allow Alice’s mobile client to make
the requested prediction. Similarly, if Bob has initially al-
lowed to share his predicted location with Alice but later
on he decides to revoke this location sharing policy, Alice
would not be allowed to make any more predictions about
her next encounter with Bob.

6 IMPLEMENTATION

The FutureWare mobile middleware is implemented as an
Android Java library and the server component consists
of an executable Java library. All the manager components
– FutureWare, Event, Privacy Policy and Communication
Managers – are implemented as singleton Java classes to
secure the uniqueness of the global state. As far as the
implementation of the mobile middleware is concerned,
we follow the best practice of Android programming and
ensure that heavy processing tasks are performed on their
individual background threads. FutureWare is released as
an open source project2.

Sensing and Classification. The middleware builds a
knowledge base about the user’s contextual information
by streaming sensor data through the Sensor Manager. To
implement the Sensor Manager, the FutureWare includes its
own sensing library capable of sampling data from numer-
ous sensors including: location, physical activity, environ-
ment sound, network connectivity, Bluetooth environment,
application usage, phone call, SMS logs, notifications and
screen events. The library is designed for adaptive sensing
mechanism that samples sensor data only when there is
significant change in their values. Such a mechanism re-
duces the consumption of energy and, thus, the app has
low impact on battery life. The library has been used and
tested in multiple apps developed for different studies [38],
[42], [43].

The FutureWare Manager exposes the API calls to define
the sampling cycle rate (i.e., time window after which
a sensor is sampled) of a sensor in a key-value object.
The developers can adjust the sensing rate to manage the
trade-off between accuracy and energy consumption, as
high sampling rate consumes more battery but reduces
the chance to miss important context information and vice
versa. The current version of FutureWare also provides a k-
Nearest Neighbors classifier to group the raw sensed data
into higher level context classes (with additional classifiers
planned for future releases). Note that this classifier is used
to label the raw sensor data, but not for making predictions.
Additionally, the middleware relies on the Google’s Activity
Recognition library to obtain higher level information about
the user’s physical activity [1].

Mobile operating system vendors have started
centralizing control over the mobile’s resources. This
not only saves phone’s resources by prohibiting individual
applications from overusing the phone’s resources, but
also coordinates the needs of multiple applications – the
same reading can be served to multiple applications, if the
data “freshness” requirements are met. Therefore, instead
of device-wide mobile sensing, FutureWare supports per-
application sensing because this allows for much cleaner
privacy and permission management. We also underline
the fact that predictors might not be shared since different
models are trained for each user.

Data Storage. The mobile middleware stores the user’s
temporal contextual information (context data at different

2. https://github.com/AbhinavMehrotra/FutureWareMiddleware

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

times) and the behavioral models, encapsulated as JSON-
formatted strings, locally in the SQLite database. To main-
tain the updated behavioral models, the mobile middleware
replaces the old models with the newly generated models
after each context life-cycle period. The information about
the user’s privacy policies and the list of subscriptions are
stored in an external storage as the serialized strings of
their object. These strings are de-serialized and used by the
FutureWare Manager to re-instantiate the state of the mobile
middleware when the overlying application restarts. This
ensures that the persistence of the models is preserved even
if the application is abruptly terminated by the Android OS.

The user’s temporal contextual information and
privacy policies are transmitted to the server if the user
allows sharing. The server component uses a MongoDB
database [44] to store this information encapsulated
as JSON-formatted strings. To maintain the updated
information, the mobile middleware transmits an updated
privacy policy to the server every time it is modified on
the client. On the other hand, users’ temporal contextual
information is transmitted periodically after a defined
context life-cycle time period. The context life-cycle can be
set through the API calls exposed by the Sensor Manager.
All the group prediction requests that fail to comply with
privacy policies are stored in the database as serialized
objects and once the privacy policies are modified, these
requests are de-serialized and go through a privacy check
again.

Server Client Communication. The possibility of making
a group prediction in FutureWare is enabled by a persis-
tent communication link between a mobile client and a
centralized server component. FutureWare implements a
Mosquitto broker [45] on the server side and each client
runs a MQTT client service in the background. To transmit
a group prediction request, the mobile middleware creates
a prediction query and publishes it through the MQTT ser-
vice. The published requests are received by the server com-
ponent via the Mosquitto broker. FutureWare uses MQTT
over HTTP protocols due to the fact that MQTT is based
on the push paradigm, thus, unlike HTTP-based solutions,
does not require continuous polling from the mobile side,
resulting in a lower battery consumption. For example,
in the case of group-based prediction request, the mobile
client does not continuously poll the server to check if the
prediction results are available, instead the server transmits
the results once they are computed.

7 EVALUATION

In this section we evaluate the performance of the Future-
Ware middleware by focusing on the aspects related to
memory efficiency, energy management, scalability and API
expressivity.

7.1 Source Code and Memory Footprint

We evaluate FutureWare on a LG Nexus 5 phone with 2 GB
of RAM, and a quad-core 2.3 GHz Krait 400 CPU, running
a clean slate Android 5 (Lollipop) operating system. We use
third-party measurement tools, namely Count Lines of Code

TABLE 1
Memory footprint for sample FutureWare applications.

Application Heap-size
allowed (MB)

Heap-size
allocated (MB) Objects

Stub 16.847 16.243 46872
SingleMod 17.453 16.585 51951
MultiMod 17.496 16.792 52175

TABLE 2
Memory required to store the sensor data obtained per sensing cycle.

Sensor Memory consumed (Bytes)
GPS 58

Physical Activity 37
Microphone 48

Bluetooth 40
WiFi 40

App Usage 53
Call 52
SMS 52

(CLOC) [46], and Android Dalvik Debug Monitor Server
(DDMS) [47] to quantify the middleware performance. We
use CLOC to obtain code count statistics. The Android-
based mobile middleware comprises of 85 Java classes con-
taining 7052 lines of code, while the server component is
made of 28 Java classes and 1734 lines of code.

In the Android OS, paused applications are retained in
the phone’s memory so that the OS can maintain the state
of these application instances. However, as discussed in
the documentation of Android’s activity lifecycle [48], the
OS could kill the application process (which destroys not
only the activity but everything else running in the process,
including the sensing of contextual information) to release
the memory allocated to it when another higher priority
application requests additional memory that is not available
at the moment. The likelihood of the OS killing a certain
process depends on the state of the process at that time,
which in turn, depends on the state of the activity running in
the process. Applications with activities in the background
state are most likely to be killed, whereas, applications with
foreground activities are least likely to be killed by the
OS3. Consequently, if an application uses a large amount
of memory, it may cause other background applications to
be killed. Thus, it is essential for an application to occupy as
little memory space as possible.

We evaluate the memory footprint of three test appli-
cations: a first simple stub application (Stub) that invokes
FutureWare without making any subscription, a second one
(SingleMod) that subscribes to FutureWare for a continuous
prediction of a single modality – location – and a third one
(MultiMod) that subscribes to FutureWare for predictions
of multiple modalities – WiFi connectivity, communication
patterns (calls and SMSs), applications currently in use,
current activity (from the Google Activity Recognition API)
and location.

The memory footprint obtained via the Android DDMS
tool is shown in Table 1. Compared to SingleMod, the fully

3. The documentation of activity state and ejection from memory [49]
provides detailed information on the relationship between state and
vulnerability to ejection.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

0

10

20

30

40

50
G

PS
 (M

ov
in

g)

G
PS

 (S
til

l)

Ac
tiv

ity
 (M

ov
in

g)

Ac
tiv

ity
 (S

til
l)

M
ic

ro
ph

on
e

Bl
ue

to
ot

h

Ap
p

U
sa

ge C
al

l

SM
S

En
er

gy
 C

on
su

m
pt

io
n

(A
H

) p
er

 D
ay

Fig. 4. Average battery charge consumed per day by FutureWare for
different sensors.

TABLE 3
Battery charge consumed for transmitting sensor data (obtained per

sensing cycle) to the server.

Sensor Energy consumed (mAh)
GPS 2.5

Physical Activity 1.5
Microphone 2.0

Bluetooth 1.7
WiFi 1.7

App Usage 2.1
Call 2.1
SMS 2.1

loaded MultiMod uses only 207 KB of extra memory to
provide a much broader set of context predictions.

Additionally, we also evaluate the memory requirements
for storing the data obtained through each sensor. Since the
sampling rate can be set by the developers depending on the
requirements of their application, we compute the memory
required to store the sensor data obtained per sensing cycle.
As shown in Table 2, FutureWare requires 40-58 Bytes of
memory to store the sensor data. This demonstrates that the
maximum storage required (when all sensors are sampled
at 1 min intervals) for daily sensor data ranges from 57.6 to
83.5 KB.

7.2 Energy Management

One of the key challenges for mobile sensing-based applica-
tions is to optimize energy consumption. Continuous sens-
ing could have an adverse impact on the phone’s battery
life. Moreover, the energy consumption by an app depends
not only on the type of sensor, but also on the sampling
duty cycle of these sensors (i.e., interval at which sensor
values are sampled). In FutureWare, we use an adaptive
sampling technique in which the duty cycle is not constant
but it relies on the previously sampled values. Details of the
implementation of this sampling technique are discussed
in [50]. In particular, we use this is used for location sensing
as continuous sensing of GPS may lead to a twenty-fold
reduction in the battery lifetime [51] compared to no GPS

sampling. Similarly, for physical activity sensing we rely on
the Google’s Activity Recognition API that uses the same
technique internally [1].

We now evaluate the energy requirements of Future-
Ware for primary key task of mobile sensing. In order to
perform this evaluation, we develop an application with a
background service instance that samples sensors and write
the data to a file. We investigate energy requirements of
each of the sensing modalities supported by FutureWare:
GPS location, physical activity, microphone, Bluetooth, app
usage, call and SMS logs. We performed 1 hour experiments
in which sensing is separately performed every 60 seconds
for each sensor. Since activity and location sensing is per-
formed with an adaptive sensing technique, we evaluate
the energy consumption of these sensors in two scenarios:
(i) when the user is continuously moving; and (ii) when the
user is not moving at all. We chose these scenarios in order
to get the maximum (by the former) and the minimum (by
the latter) energy consumption values. The energy profiling
was carried out using PowerTutor [52].

Figure 4 shows the energy consumed by FutureWare for
different sensors. As expected, different sensor modalities
are characterized by remarkably different energy costs. The
GPS sensor consumes the most (i.e., 42 mAh) and the
minimum energy is consumed by the activity sensor (i.e., 4
mAh). This indicates that the energy cost of the FutureWare
middleware ranges from 0.17% to 1.82% considering an
average phone that comes with 2300 mAh battery.

Often, however, GPS readings are shared at operating
system level across multiple applications and, therefore, the
energy consumption associated to this sensor is actually
lower in practice. At the same time, we observe there is neg-
ligible difference in the energy consumption for sampling
app usage, call and SMS logs. This is due to the fact that
there are no sensors for sampling these values, instead their
values are sampled from the logs of the operating system
with a negligible energy use overhead.

Furthermore, we also evaluate the energy consumed for
transmitting sensor data to the server, which is needed for
the case of group-based predictions. As discussed above,
we compute the energy consumed for transmitting sen-
sor data obtained per sensing cycle because the sampling
rate can vary depending on the application requirements.
As shown in Table 3, FutureWare consumes 1.7-2.5 mAh
for transmission of data obtained per sensing cycle. This
demonstrates that over a day 2.5-3.6 Ah of battery charge is
consumed to transmit sensor data to the server. In other
words, FutureWare consumes 0.07-0.1% of battery of an
average phone that comes with 2300 mAh battery.

7.3 System Scalability

In this section we discuss the scalability of our middleware
with respect to the number of active prediction subscrip-
tions. Increasing a number of subscriptions initiated by an
overlying application may influence the CPU load as it
would require additional computations. We measure the im-
pact on CPU load by increasing the number of subscriptions
from 1 to 10.

As shown in Figure 5, the CPU load grows linearly
as the number of subscription increases. More specifically,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10
Subscription Count

C
PU

 (%
)

Fig. 5. CPU load for the prediction task with increasing number of
subscription.

to perform a prediction task, we observe a CPU load of
around 1% for a single subscription and around 20% for
10 subscriptions. Here, the CPU load is computed only for
the prediction task, which includes loading the model and
predicting the output, without considering the impact of
sensing. The measurements of CPU load was also carried
out using PowerTutor.

The results demonstrate that a simple anticipatory mo-
bile app that requires two or three predictive models add
a significantly low amount of additional CPU load and,
thus, it should not hinder the overall users’ mobile expe-
rience. However, in the case of a sophisticated anticipatory
mobile app that is based on multiple predictive function-
alities, as the number of subscriptions increases, the CPU
requirements of FutureWare also increases. In such cases,
FutureWare’s Prediction Configuration Object can be used to
configure the values of the prediction interval and sleep time
(discussed in Section 4) to lower down the CPU load.

7.4 Conceptual Apps Demonstrating API Usability

In this subsection, in order to evaluate expressiveness of
the FutureWare API, we perform scenario-based usability
testing frequently used by the API designers [53], [54]. We
present a series of novel anticipatory applications based on
different predictive scenarios and their implementation by
using FutureWare API. Since the scope of this work is to
evaluate expressiveness of the FutureWare API, we present
the code for implementing the required predictive function-
alities. The evaluation of the usability of these applications
is indeed an interesting aspect to be investigated, but it is
outside the scope of this article.

7.4.1 Making One-time and Periodic Predictions

We first demonstrate how an application developer can use
FutureWare for implementing applications that rely on both
one-time and periodic predictions. Such a prediction is use-
ful in Scenario 1 discussed in Section 3. Here, two modalities
(i.e., network connectivity failure and application usage) are
predicted. However, to prefetch applications before network
disconnection, we need to perform network connectivity

PredictionConfig pc1 = new PredictionConfig();
pc1.put(NotificationInterval, t_event);
pc1.put(PredictionInterval, t_gap);
PredictionConfig pc2 = new PredictionConfig();
pc2.put(NotificationInterval, t_event);
ModalitiesOfInterest wifi =

ModalitiesOfInterest.WiFi;
ModalitiesOfInterest app =

ModalitiesOfInterest.App;
Filter filter = new Filter("WiFi ==

Unavailable");
int sid1 = subscribe(wifi, filter, pc1, this);
onNewEvent(PredictionData data) {
if(data.getSubscriptionId() == sid1)
int sid2 = subscribeOnce(app, null, pc2,
this);

else {
for(PredictionResult pr :
data.getResults()) {
String app = pr.getState();
/* Prefetch data for this app */

}
}

}

Fig. 6. A code snippet for making one-time and periodic predictions
using the primitives provided by FutureWare.

prediction continuously and predict the usage of applica-
tions in the near future only when a network disconnection
is predicted. Figure 6 presents a code snippet that shows
how it is possible to implement the key prediction mech-
anisms by relying on FutureWare. PredictionConfig is
used to specify the prediction settings. Then, in order to
define the time horizon for disconnection prediction, we
set NotificationInterval equal to t_event. The time
gap between two consecutive predictions is defined by
PredictionInterval. In the example, it is set to t_gap.
Time t_gap and t_event can be set according to the re-
quired trade-off between resource (CPU and battery) utiliza-
tion and prediction accuracy. We then create a subscription
sid1 to periodically predict WiFi disconnections. Finally,
once we predict that the WiFi will not be available in the
next t_event, we make another one-off prediction sid2 to
retrieve the applications used in the next hour.

7.4.2 Making Group-based Predictions

In this scenario we show how an application developer
can use FutureWare to implement applications that rely on
group-based prediction of the future occurrence time of a
given event. Such a prediction scenario is useful for imple-
menting the application described in Scenario 2 discussed
above. In this case the event to be predicted Alice’s next
encounter with Bob.

Figure 7 presents a code snippet that shows how we
can implement the required predictive functionalities with
FutureWare. We use PredictionConfig to specify the
required prediction settings. As we need to predict the
location of Alice and Bob in the next hour, we set the
time horizon (i.e., NotificationInterval) to 60. Then,
in order to specify the time gap between two consecutive
predictions we set PredictionInterval as t_gap. We
create two filters: (i) f1: to make predictions for Bob’s future

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

PredictionConfig pc = new PredictionConfig();
pc.put(NotificationInterval, 60);
pc.put(PredictionInterval, t_gap);
ModalitiesOfInterest moi =

ModalitiesOfInterest.Location;
Filter f1 = new Filter("User == " +

friend_osn_id + " Time > " +
Time.getCurrentTime());

Filter f2 = new Filter("Time > " +
Time.getCurrentTime());

int sid1 = subscribe(moi, f1, pc, this);
int sid2 = subscribe(moi, f2, pc, this);
PredictionResult pr1 = null;
PredictionResult pr2 = null;
onNewEvent(PredictionData data) {
if(data.getSubscriptionId() == sid1)
pr1 = data. getMostProbableResult();

else
pr2 = data. getMostProbableResult();

if(pr1 != null && pr2 != null &&
pr1.getState() == pr2.getState() &&
pr1.getTime().getHour() ==
pr2.getTime().getHour())

/* Trigger an alarm at
pr1.getTime().getHour()-1 hours for next
encounter. */

}

Fig. 7. A code snippet for the prediction of the next encounter with a
friend, implemented using FutureWare. Filter f1 ensures the location of
the person with an OSN identifier as “friend_osn_id” is predicted, while
filter f2 is used to predict the location of the user running the app (i.e.,
owner of the device). Later, the stream of predicted locations of these
two users are compared until a match (i.e., their encounter) is found.

locations (assuming his identifier is friend_osn_id); (ii) f2:
to make predictions for Alice’s future locations.

We create two subscriptions with f1 and f2 filters but
the same ModalitiesOfInterest (as Location). On re-
ceiving the prediction data for sid1 and sid2, we store the
prediction result in pr1 and pr2 respectively. Additionally,
each time a prediction data is received, we check if the
predicted locations and times (in hours) of both the users are
the same. Finally, when the above conditions are satisfied,
an alarm can be triggered to notify Alice that she is likely to
meet Bob at pr1.getTime().getHour().

The code snippet presented in Figure 7 runs on the
mobile (client) side. On detecting a subscription for group-
based prediction, the middleware itself transmits it to the
server-side middleware that starts performing the required
prediction task.

7.4.3 Predicting First And Last Occurrences of an Event

In this scenario we consider the case of predicting the time
of the first and last occurrences of an event starting within
a given time interval. Let us consider a potential Internet of
Things application, namely a smart coffee machine linked
with the corresponding smartphone app that learns a user’s
coffee making pattern to predictively start the coffee ma-
chine in advance of the user’s first instance of making coffee
in a day and switches the coffee machine OFF (if it is left
switched ON) after the last instance of making coffee in a
day. Figure 8 presents the code snippet for implementing
a mobile service for such an intelligent coffee machine by
using the abstractions offered by FutureWare. We use two

PredictionConfig pc = new PredictionConfig();
pc.put(NotificationInterval, t_notify);
ModalitiesOfInterest moi =

ModalitiesOfInterest.Activity;
int t_start = 0;
Filter filter = new Filter("Time > " + t_start);
/* Predict when to switch the coffee machine ON

*/
while(true) {
int s_first = subscribeOnce(moi, filter, pc,

new FutureWareListener() {
onNewEvent(PredictionData data) {

PredictionResult pr = data.getResult();
String activity = pr.getState();
int prob = pr.getProbability();
if(activity.equals("MakingCoffee") &&

prob > prob_min)
/* User will make first coffee of the

day at (t_start - t_notify) hour */
else
t_start++;

}
});

}

/* Predict when to switch the coffee machine
off */

t_start = 0;
while(true) {
subscribeOnce(moi, filter, pc, new

FutureWareListener() {
int s_last = onNewEvent(PredictionData
data) {
PredictionResult pr = data.getResult();
String activity = pr.getState();
int prob = pr.getProbability();
if(activity.equals("MakingCoffee") &&

prob > prob_min)
/* User will make last coffee of the

day at (t_start + t_notify) hour */
else
t_start == 0 ? 23 : t_start--;

}
});

}

Fig. 8. A code snippet for implementing a Internet of Things service that
predictively notifies the smart coffee machine about the user’s first and
last instance of making coffee.

subscriptions 1) s_first to predict the first instance of
making coffee; 2) s_last to predict the last instance of
making coffee.

In order to evaluate s_first we predict the proba-
bility that the user will make coffee (i.e., Activity ==
MakingCoffee) in a loop for each subsequent hour starting
from midnight and once the predicted probability is greater
than a given probability value (say prob_min), we exit the
loop and switch the coffee machine ON in advance of the
predicted time for fist instance of making coffee. In case of
s_last we predict the same but in a loop for each pre-
ceding hour starting from midnight and once the predicted
probability is greater than prob_min, we exit the loop and
switch the coffee machine OFF in case it is left switched ON
after the predicted time for last instance of making coffee.
In order to train the model we assume that the coffee ma-
chine detects if the user is indeed making coffee and trans-
mits this information to the mobile application. We define

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

a PredictionConfig with NotificationInterval as
t_notify (i.e., the time in advance for notifying about the
predicted event) and an appropriate Filter capturing the
notification requirements. The value of t_start depends
on the subscription (i.e., s_first and s_last) and the
iteration count.

7.5 Analyzing API Usability through Real-world Apps

In this subsection we evaluate how FutureWare can be used
to develop some popular existing applications to show its
potential practical uses. In order to perform this evaluation,
we selected eight apps from the following two domains:
(i) Personal Assistant, and (ii) Health and Personalization.
There are three personal assistant apps (GoogleNow, Cor-
tana and MindMeld), and five health and personalization
apps (Yahoo Aviate, Z Launcher, EverythingMe, Neura
Platform and PrefMiner). As shown in Table 4, our analy-
sis demonstrates that FutureWare is capable of providing
support for all fundamental predictive functionalities of
the examined apps. These functionalities are: (i) predicting
next task based on contextual information, (ii) predictive
suggestions to assist in the current task, (iii) predicting next
app, (iv) predictive reminders, and (v) predicting irrelevant
notifications. These functionalities, as discussed in the pre-
vious section, could be achieved through a proper setup of
the Prediction Configuration Object while making subscription
for one-time or continuous predictions.

FutureWare can also be used together with other libraries
to improve the usability of apps by extending features such
as speech recognition and gesture recognition. Example
of such libraries include Android Speech Recognition [58]
and Android Gesture Recognition [59] APIs. These features
along with other non-supported features (such as infor-
mation search and transparency of prediction model) are
orthogonal to the scope of FutureWare and can be imple-
mented at the application level.

8 IMPLEMENTATION SUPPORT FOR DEVELOPERS

The implementation of the prediction logic is not a trivial
task for developers who do not have expertise in building
anticipatory mobile applications. In this section we discuss
how FutureWare provides support for implementing such
applications, by examining some key aspects of the devel-
opment and testing process.

8.1 Data Collection and User’s Permissions

The main component of an anticipatory mobile app is the
data that is obtained through mobile sensors and interaction
with the users. FutureWare removes the burden of imple-
menting the sensor sampling process and the management
of the sensor data from the developer. An overlying app
does not have to subscribe to sensors as the underlying sub-
scriptions to the sensors are automatically done by the mid-
dleware. At the same time, the middleware offers primitives
to tailor the sampling rate of sensors in order to manage the
trade-off between accuracy and energy consumption (dis-
cussed in Section 6). However, the middleware assumes that
the app built on top of it has the necessary permissions to
query the required sensors. In other words, the middleware

does not explicitly ask users for permissions. In case the
middleware identifies a missing permission for a modality
requested in a subscription, it throws an error when the app
tries to create that subscription.

8.2 Selecting the Right Machine Learning Algorithm

We envision FutureWare as a framework whose utility will
grow with the evolution of context prediction methods.
Therefore, we deliberately enable easy integration of our
middleware with third-party machine learning models. The
middleware offers additional flexibility by enabling the
reuse of the third-party ML components by different sub-
scriptions. Overall, the middleware enables the developers
to select the ML algorithm based on the predictive task they
try to implement. For example, it could be a classification
or regression task and accordingly there are variety of
algorithms (such as linear regression [60], support vector
machines [61] and random forest [62]) to model the task.

Developers can integrate any third-party ML com-
ponent, such as those provided by Weka for An-
droid [63], by creating a Java class that implements the
PredictorInterface interface offered by the middle-
ware. The PredictorInterface exposes a method sig-
nature named generateModel that can be implemented
to train (and return) prediction models. Another important
method signature is predictionRequest that can be used
to make predictions. The arguments of this method are the
current values of the context modalities that are required
to make the prediction and a reference to the model itself.
The method returns the prediction results wrapped in the
PredictionResult class. To summarize, these functions
allow the app to integrate third-party ML components by
enabling the two fundamental steps of training of a model
and making predictions using it.

8.3 Reasoning about Prediction Requirements

Context prediction is not usually a part of an average
developer’s repertoire, thus it might be challenging for them
to reason about it while designing an application. To facil-
itate the process we suggest an approach that builds upon
the standard context inference pipeline (Figure 4 in [39]).
Namely, one should start from the high-level context aspect
that they would like to predict, and follow down to the
sensing modalities and their features that had been shown
to be relevant for inferring that specific context.

We refer the reader to [39] where the authors have
presented a breakdown of commonly used features and
machine learning approaches that can then be used for a
particular domain (Table 2 and Table 3 in [39]).

8.4 Quick Implementation and Validation Procedure

FutureWare enables rapid prototyping of anticipatory mo-
bile applications, which in turn enables quick sanity check-
ing of envisioned applications. Anticipatory mobile appli-
cations are by their nature complex and their testing needs
to cover both the performance of low-level sensing, feature
extraction, and machine learning methods’ implementa-
tion. FutureWare comes with built-in sensing and machine
learning implementation, however, it also allows developers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 4
Review of FutureWare API support for existing applications.

Domain Application Supported Features Non-supported Features

Personal
Assistant

GoogleNow [23] Predict next task based on time and location Speech recognition
Cortana [25] Predict next task based on time and location Information search

MindMeld [22] Predictive suggestions to perform current task Information search

Health and
Personalization

Yahoo Aviate [24] Predictive home-screen based on time and location –
Z Launcher [55] Predictive home-screen based on the context Gesture recognition

EverythingMe [56] Predictive app-bar based on location –
Neura platform [57] Predictive reminders for medication and staying active –

PrefMiner [38] Predictive suggestions for blocking irrelevant notifications Transparency of model

to incorporate their own sensing and machine learning
mechanisms that can be linked to the middleware through
FileManager and PredictionConfiguration APIs re-
spectively. We suggest that anticipatory mobile application
developers independently test sensing and machine learn-
ing components using standard procedures (e.g. using unit
testing).

Integration and validation testing are the next steps, and
here the abstraction Predictor (discussed in Section 4) not
only enables quick implementation of anticipatory mobile
applications, but also reduces the time needed for testing
these applications. To test an application, developers could
provide previously collected data and link them with the
middleware through the FileManager API. The data is
then used to train the model once a new subscription is
made. Furthermore, developers can wait until the new con-
text is captured and investigate their models’ performance
on it, or they can also provide mock test data (through the
FileManager API) to speed-up the testing process. In this
way, developers do not have to rely on a separate platform
for validating the performance of their models and can also
quickly test their prediction mechanism.

8.5 Bootstrapping the Prediction Models

A classic problem in developing predictive mobile applica-
tions is the initial bootstrapping and training of the predic-
tors: when an app is installed by a user, his/her behavioral
data is not usually available to train the prediction model.
The training of the model is only possible after collecting a
certain amount of data, which becomes available gradually
over time. For example, if the app aims to build a mobility
prediction model it might fail to make any accurate predic-
tions until it has collected a sufficient amount of location
data. This amount depends on the type of underlying clas-
sifier.

In order to address this issue, previous studies have
shown that group-based models could be constructed to
make predictions at the initial stage and, then, the perfor-
mance of the predictors can be gradually improved by suc-
cessive re-training over time as more data is collected [64].
Separate models could be trained for each group of users
who possess identical behavioral or personal characteristics.
During the deployment, these models are then assigned to
new users based on their behavioral or personal characteris-
tics. These characteristics could be chosen by the developers
based on the app domain. For example, the developer of a
mobility prediction app can use profession and age group
as the two factors to cluster users. It is worth noting that

Fig. 9. QuickLaunch, a lock screen application. The lock icon (in the
centre) can be slided towards an application icon in order to launch
that application. Also, the phone can be unlocked (without launching any
application) by sliding the lock icon towards the unlock icon (i.e., towards
top in this case).

group-based models could not be used for predicting very
specific activities, instead they should be adopted to make
predictions about generic behavioral patterns of users.

FutureWare allows for pre-training the model by exploit-
ing historical data of other users. For example, developers
could collect such behavioral data with test users and vali-
date the predictive power of the models through an offline
analysis during the app development phase.

9 CASE STUDY: PREDICTIVE LOCK SCREEN APP

9.1 Overview

To show a potential practical use of FutureWare in devel-
oping a predictive mobile application, we now present the
design of a simple illustrative application named Quick-
Launch – an intelligent lock screen to launch applications
without unlocking the phone. Given a growing number
of application installed on the smartphones, managing ap-
plications on a home screen is cumbersome. QuickLaunch
reduces the time a user spends in navigating through a
home screen to find an application icon. QuickLaunch is
a replacement for Android’s default lock screen that learns
the user’s application usage behavior and provides easy and
fast access to the desired application at the right time. We

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

 0

 10

 20

 30

 40

 50

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

A
gg

re
ga

te
d

C
lic

k
C

ou
nt

s
%

Randomly Selected
Overall Frequency-based

Sequence-based
Hourly Frequency-based

Ag

gr
eg

at
ed

 Q
ui

ck
 A

pp
 L

au
nc

h
%

Fig. 10. Quick Launch application results. We show aggregated quick
app launch percentages along with the confidence intervals of nine
users for each day.

present this application as an illustrative case study. The
goal of this implementation is not to develop and evaluate
a particularly novel solution for predictive lock screens but
in showing the expressiveness of FutureWare.

QuickLaunch builds a behavioral model of the user’s
application usage to predict what applications will be used
by the user in near future and places the relevant icons on
the lock screen for quick access (see Figure 9). For example,
on predicting that the user will use Chrome, Google Maps
and Skype in the next hour, QuickLaunch displays the rele-
vant icons on the lock screen so that user can launch these
applications by swiping the lock icon towards an applica-
tion icon, without unlocking and searching for the apps.
However, if the required application icon is not present on
the lock screen, the user can simply swipe the lock icon
towards the unlock icon to go straight to the home screen.
The position of the unlock icon changes on each launch of
the lock screen so that the users do not establish the habit of
swiping the lock icon in a single direction without looking
at the available application icons.

9.2 Programming Effort Comparison

We demonstrate the benefits of using FutureWare by eval-
uating FutureWare’s potential to reduce the programming
effort for the development of mobile applications that rely
on context prediction. We compute the lines of code (LOC)
needed for the implementation of QuickLaunch both with
and without using the FutureWare middleware. For a fair
measure of programming effort between the two versions
of the application, we use the same ML tools in both cases,
and do not include these tools in the LOC computation. In
total, FutureWare halves the LOC from 6085 to 2720, for im-
plementing the QuickLaunch application. However, in the
case of programming effort comparison for implementing
only the predictive functionalities used in the QuickLaunch
application, FutureWare reduces the LOC eighty three folds
from 3406 to 41 LOC.

9.3 Prediction Results

QuickLaunch relies on FutureWare to predict application
usage. It subscribes to the middleware to make predictions
periodically at the time interval of 60 minutes for predicting

the application usage in the next 60 minutes. QuickLaunch
exploits the following FutureWare components: (i) hourly
frequency-based predictor: predicts the most used appli-
cations in the given hour of a day, for example, the most
used applications during 22.00 to 23.00 hours; (ii) overall fre-
quency-based predictor: predicts the most used applications
from the entire data set; (iii) sequence-based predictor: uses
the last application to predict the next applications based
on the sequential history of applications. However, for the
evaluation purpose we also consider (iv) randomly selected
applications. Every time the user unlocks the mobile device,
QuickLaunch arranges the application icons based on a
strategy that is sequentially chosen from the above four
strategies: hourly frequency-based, overall frequency-based,
sequence-based and randomly selected.

For completeness we now present results related to
the performance of the prediction mechanisms to show a
possible real-world use of the middleware4. We collected the
application usage and the lock screen logs of nine users for
ten days, including the number of times the lock screen was
seen by the users and the usage of the applications launched
by them. The first two days were considered as training
period for the predictive mechanisms at the basis of the
application. In Figure 10 we present the aggregated quick
app launch percentages for all strategies on each day. The
results show that all three prediction techniques outperform
the randomly selected strategy. Comparing the three pre-
diction strategies, the hourly frequency-based predictions
were better than the overall frequency-based and sequential-
based predictions.

10 DISCUSSION AND CONCLUSION

In this paper we have presented the design, implementation
and evaluation of FutureWare, a middleware that abstracts
the complexity of unified context sensing and prediction
from the application developer. FutureWare is not limited to
a single aspect of the context: it supports location, physical
activity, and communication patterns prediction, to name
a few. The novelty of FutureWare resides in the set of
powerful abstractions that are provided to the users to build
novel applications for anticipatory mobile computing.

The main goal of FutureWare is to enable a novel set
of anticipatory applications that bring intelligent decisions
based on the past, present, and the predicted future context.
Anticipatory applications can revolutionize the way we use
mobile devices, and in this paper we have presented a few
novel conceptual anticipatory application scenarios that can
be written in a few tens of lines of code by using Future-
Ware. By means of a demo application, we have shown that
FutureWare can drastically reduce the development effort
and time. The aim of this work was not the design of novel
prediction algorithms or a predictive application, but of an
expressive programming framework for applications that
rely on prediction algorithms.

4. At the same time, the focus of our work is not on the implemen-
tation of predictive mechanisms themselves, but on the design of a
framework for reducing the complexity of implementing anticipatory
mobile applications. More complex and accurate algorithms can be in-
tegrated in the middleware. The API of FutureWare has been designed
to allow an easy integration of third-party predictive components.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

We believe that the field of anticipatory mobile comput-
ing is still in its nascency. In particular, we see room for
improvement when it comes to prediction accuracy that can
be enhanced by designing more sophisticated behavioral
models. Furthermore, in anticipatory applications predic-
tions are tightly bound to application’s needs. Due to these
reasons, we leave an option for the developers to define
learners that suit their requirements and integrate them
with the middleware. FutureWare provides a framework for
the design, implementation and evaluation of more refined
prediction models and we hope it will represent a useful
tool for developers and researchers working in this field.
We plan to release the middleware as open source tool for
the community and ask developers to provide us feedback
on the usability of the middleware. This would help us
accurately evaluate the effectiveness of the API offered by
the middleware and will also enable us to further improve
it in terms of both usability and versatility.

11 ACKNOWLEDGEMENTS

This work was supported through the EPSRC grants
EP/L018829/2 and EP/P016278/1 at UCL and by The Alan
Turing Institute under the EPSRC grant EP/N510129/1.

Veljko Pejovic acknowledges the financial support from
the Slovenian Research Agency (research core funding No.
P2-0098).

REFERENCES

[1] “Google’s Activity Recognition Application,” http://developer.
android.com/training/location/activity-recognition.html.

[2] D. Quercia and L. Capra, “Friendsensing: recommending friends
using mobile phones,” in RecSys’09, New York City, NY, USA,
October 2009.

[3] A. Mehrotra, V. Pejovic, and M. Musolesi, “SenSocial: A Middle-
ware for Integrating Online Social Networks and Mobile Sensing
Data Streams,” in Middleware’14, Bordeaux, France, December
2014.

[4] K. K. Rachuri, M. Musolesi, C. Mascolo, J. Rentfrow, C. Long-
worth, and A. Aucinas, “EmotionSense: A Mobile Phones based
Adaptive Platform for Experimental Social Psychology Research,”
in UbiComp’10, Copenhagen, Denmark, September 2010.

[5] N. D. Lane and P. Georgiev, “Can deep learning revolutionize
mobile sensing?” in HotMobile’15, Santa Fe, New Mexico, February
2015.

[6] A. Mehrotra, R. Hendley, and M. Musolesi, “Towards Multi-modal
Anticipatory Monitoring of Depressive States through the Anal-
ysis of Human-Smartphone,” in Adjunct UbiComp’16, September
2016.

[7] A. Mehrotra and M. Musolesi, “Designing effective movement
digital biomarkers for unobtrusive emotional state mobile mon-
itoring,” in MobiSys’17 Adjunct (Workshop on Digital Biomarkers),
2017.

[8] T. Wang, G. Cardone, A. Corradi, L. Torresani, and A. T. Campbell,
“WalkSafe: A Pedestrian Safety App for Mobile Phone Users Who
Walk and Talk While Crossing Roads,” in HotMobile’12, San Diego,
CA, USA, February 2012.

[9] M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin,
M. Hansen, E. Howard, R. West, and P. Boda, “PEIR, the Personal
Environmental Impact Report, as a Platform for Participatory
Sensing Systems Research,” in MobiSys’09, Krakow, Poland, June
2009.

[10] “Mobile Millennium Project,” http://traffic.berkeley.edu.
[11] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Bal-

akrishnan, S. Toledo, and J. Eriksson, “VTrack: Accurate, Energy-
Aware Road Traffic Delay Estimation Using Mobile Phones,” in
SenSys’09, Berkeley, CA, USA, November 2009.

[12] J. Ruiz, Y. Li, and E. Lank, “User-defined motion gestures for
mobile interaction,” in CHI’11, Vancouver, Canada, April 2011.

[13] A. Mehrotra, M. Musolesi, R. Hendley, and V. Pejovic, “Designing
Content-driven Intelligent Notification Mechanisms for Mobile
Applications,” in UbiComp’15, September 2015.

[14] A. Mehrotra, S. Muller, G. Harari, S. Gosling, C. Mascolo, M. Mu-
solesi, and P. J. Rentfrow, “Understanding the role of places
and activities on mobile phone interaction and usage patterns,”
IMWUT, vol. 1, no. 3, 2017.

[15] S. Scellato, M. Musolesi, C. Mascolo, V. Latora, and C. A.,
“Nextplace: A spatio-temporal prediction framework for perva-
sive systems,” in Pervasive’11, San Francisco, CA, USA, June 2011.

[16] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining User
Mobility Features for Next Place Prediction in Location-based
Services,” in ICDM’12, Brussels, Belgium, December 2012.

[17] A. J. Nicholson and B. D. Noble, “Breadcrumbs: forecasting mobile
connectivity,” in MobiCom’08, San Francisco, CA, USA, September
2008.

[18] J. Manweiler, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi,
“Predicting length of stay at WiFi hotspots,” in INFOCOM’13,
Turin, Italy, April 2013.

[19] M. Pielot, “Large-scale evaluation of call-availability prediction,”
in UbiComp’14, Seattle, WA, USA, September 2014.

[20] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app
launching for mobile devices using predictive user context,” in
MobiSys’12, Lake District, UK, June 2012.

[21] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction
of mobile application usage for smart phones,” in UbiComp’12,
Pittsburgh, PA, USA, September 2012.

[22] “Mindmeld,” http://www.expectlabs.com/mindmeld/.
[23] “Google Now,” http://www.google.com/landing/now/.
[24] “Yahoo Aviate,” http://aviate.yahoo.com/.
[25] “Cortana,” www.windowsphone.com/en-us/features-8-1/.
[26] “Alexa,” https://www.alexa.com.
[27] “Siri,” https://www.apple.com/uk/ios/siri/.
[28] R. Rosen, Anticipatory Systems. Pergamon, 1985.
[29] V. Pejovic and M. Musolesi, “Anticipatory mobile computing for

behaviour change interventions,” in UbiComp’14 Adjunct, Seattle,
WA, USA, September 2014.

[30] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, and
B. Krishnamachari, “A Framework of Energy Efficient Mobile
Sensing for Automatic User State Recognition,” in MobiSys’09,
Krakow, Poland, June 2009.

[31] H. Lu, J. Yang, Z. Liu, N. Lane, T. Choudhury, and A. Campbell,
“The Jigsaw Continuous Sensing Engine for Mobile Phone Appli-
cations,” in SenSys’10, Zurich, Switzerland, November 2010.

[32] C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and
N. Triandopoulos, “Anonysense: Privacy-Aware People-Centric
Sensing,” in MobiSys’08, Breckenridge, CO, June 2008.

[33] N. Brouwers and K. Langendoen, “Pogo, a Middleware for Mobile
Phone Sensing,” in Middleware’12, Montreal, Canada, December
2012.

[34] T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma,
“PRISM: Platform for Remote Sensing Using Smartphones,” in
MobiSys’10, San Francisco, CA, USA, June 2010.

[35] D. Ferreira, V. Kostakos, and A. K. Dey, “Aware: mobile context
instrumentation framework,” Frontiers in ICT, vol. 2, no. 6, pp.
1–9, 2015.

[36] S. Nath, “ACE: Exploring Correlation for Energy-Efficient and
Continuous Context Sensing,” in MobiSys’12, Lake District, UK,
June 2012.

[37] V. Srinivasan, S. Moghaddam, A. Mukherji, K. K. Rachuri, C. Xu,
and E. M. Tapia, “Mobileminer: Mining your frequent patterns on
your phone,” in UbiComp’14, Seattle, WA, USA, September 2014.

[38] A. Mehrotra, R. Hendley, and M. Musolesi, “PrefMiner: Mining
User’s Preferences for Intelligent Mobile Notification Manage-
ment,” in UbiComp’16, September 2016.

[39] V. Pejovic and M. Musolesi, “Anticipatory mobile computing: A
survey of the state of the art and research challenges,” ACM
Computing Surveys, vol. 47, no. 3, pp. 1–47, 2015.

[40] A. Campbell and T. Choudhury, “From smart to cognitive
phones,” Pervasive Computing, 2012.

[41] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow,
“SociableSense: Exploring the Trade-offs of Adaptive Sampling
and Computation Offloading for Social Sensing,” in MobiCom’11,
Las Vegas, NV, USA, September 2011.

[42] A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley, and M. Mu-
solesi, “My Phone and Me: Understanding People’s Receptivity to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

Mobile Notifications,” in CHI’16. ACM, April 2016, pp. 1021–
1032.

[43] A. Mehrotra, F. Tsapeli, R. Hendley, and M. Musolesi, “Mytraces:
Investigating correlation and causation between users’ emotional
states and mobile phone interaction,” IMWUT, vol. 1, no. 3, 2017.

[44] MongoDB, 2013, http://www.mongodb.org.
[45] “Mosquitto MQTT Broker,” http://mosquitto.org/.
[46] “CLOC – Count Lines of Code,” http://cloc.sourceforge.net.
[47] “Android DDMS,” http://developer.android.com/tools/

debugging/ddms.html.
[48] “Android Activity Lifecycle,” https://developer.android.com/

guide/components/activities.html.
[49] “Android Activity State and Ejection from Memory,”

https://developer.android.com/guide/components/activities/
activity-lifecycle.html#asem.

[50] L. Canzian and M. Musolesi, “Trajectories of depression: unob-
trusive monitoring of depressive states by means of smartphone
mobility traces analysis,” in UbiComp’15, September 2015.

[51] F. Ben Abdesslem, A. Phillips, and T. Henderson, “Less is more:
energy-efficient mobile sensing with senseless,” in SIGCOMM’09
Adjunct, Barcelona, Spain, August 2009.

[52] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate Online Power Estimation and Automatic Bat-
tery Behavior Based Power Model Generation for Smartphones,”
in CODES/ISSS’10, Scottsdale, AZ, USA, October 2010.

[53] S. Clarke, “Measuring API usability,” Doctor Dobbs Journal, vol. 29,
no. 5, pp. S1–S5, 2004.

[54] J. M. Daughtry, U. Farooq, J. Stylos, and B. A. Myers, “API
Usability: CHI’2009 Special Interest Group Meeting,” in CHI’09
Extended Abstracts, Boston, USA, April 2009.

[55] “Z Launcher,” https://www.zlauncher.com.
[56] “EverythingMe,” http://emlauncher.com.
[57] “Neura platform,” https://www.theneura.com.
[58] “Android speech recognition,” https://developer.android.com/

reference/android/speech/package-summary.html.
[59] “Android gestures recognition,” https://developer.android.com/

training/gestures/index.html.
[60] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman,

Applied linear statistical models. Irwin Chicago, 1996.
[61] N. Cristianini and J. Shawe-Taylor, An introduction to support

vector machines and other kernel-based learning methods. Cambridge
University Press, 2000.

[62] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[63] “WEKA,” https://www.cs.waikato.ac.nz/ml/weka.
[64] N. D. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. T. Campbell,

and F. Zhao, “Enabling Large-scale Human Activity Inference on
Smartphones using Community Similarity Networks (CSN),” in
UbiComp’11, Beijing, China, September 2011.

Abhinav Mehrotra Abhinav Mehrotra is a Re-
search Associate at University College London.
His main areas of interest include human behav-
ior modeling and digital health. More specifically,
his current research focuses on understanding
and predicting human behavior by using contex-
tual information obtained via embedded sensors
for the development of intelligent systems. He
also works on projects in the digital health area,
in particular on the development of techniques
for predicting mental health symptoms through

the analysis of mobile sensing data. He obtained his PhD in computer
science from the University of Birmingham, UK, where he worked on
intelligent mobile notification systems.

Veljko Pejovic Veljko Pejovic is an assistant pro-
fessor of computer science at the University of
Ljubljana, Slovenia. His broader interests include
mobile computing, HCI, resource-efficient com-
puting, and the interaction of technology and so-
ciety. He obtained his PhD in computer science
from the University of California, Santa Barbara,
USA, where he worked on mobile and wireless
technologies for bringing connectivity to remote
rural regions. Before joining the University of
Ljubljana, he worked as a research fellow at the

University of Birmingham, UK, investigating and developing mobile-
based behavioral change interventions.

Mirco Musolesi Mirco Musolesi is a Reader in
Data Science at the Department of Geography at
University College London and a Turing Fellow at
the Alan Turing Institute. At UCL he leads the In-
telligent Social Systems Lab. He received a PhD
in Computer Science from University College
London and a Master in Electronic Engineering
from the University of Bologna. After postdoc-
toral work at Dartmouth College and Cambridge,
he held academic posts at St Andrews and Birm-
ingham. The research focus of his lab is on sens-

ing, modeling, understanding and predicting human behavior in space
and time, at different scales, using the ‘digital traces’ we generate daily in
our online and offline lives. He is interested in developing mathematical
and computational models as well as implementing real-world systems
based on them. This work has applications in a variety of domains, such
as ubiquitous systems design, healthcare and security&privacy.

	Copertina_postprint_IRIS_UNIBO(2)
	tse19_futureware

