Supporting Information

Unexpected reactivity of cyclometalated iridium(III) dimers. Direct synthesis of a mononuclear luminescent complex

Jing Tu,^a Daniele Veclani,^b Filippo Monti,^{*b} Andrea Mazzanti,^a Letizia Sambri,^a Nicola Armaroli^b and Andrea Baschieri^{*b}

^a Department of Industrial Chemistry "Toso Montanari", University of Bologna, 40136 Bologna, Italy.
 ^b Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy.

E-mail: F. M.: <u>filippo.monti@isof.cnr.it</u> A. B.: <u>andrea.baschieri@isof.cnr.it</u>

Table of contents

Contents	Pages
NMR spectra of complexes A and B	S2 – S8
NMR spectra of complexes A and B obtained using alternative synthetic procedures	S9
NMR spectra of the $[Ir(ppy)_2(\mu-OH)]_2$ dimer	S10
ESI ⁺ spectrum of complexes A and B	S11 – S12
X-ray data for compound A	S13 – S22
Optimized structures and DFT data for the reaction mechanism	S23 – S27
Computational, electrochemical and photophysical data	S28 – S33

Fig. S1 ¹H NMR spectrum of complex A in CDCl₃.

Fig. S2 1 H NMR spectrum of complex A in CD₂Cl₂.

Ir-O-fenil-piridina-verde-buono-1H-CD2Cl2-ATB

Fig. S4 $~^{13}C$ {1H} NMR spectrum of complex A in CD_2Cl_2.

Fig. S5 $~^{13}C$ {1H} NMR spectrum of complex A in $CD_2Cl_2.$

-150.98 -149.07 -137.55 -137.55 -133.66 -133.66 -133.66 -133.66 -133.66 -133.66 -133.66 -133.66 -133.66 -133.66 -123.68 -123.66 -123.6

Fig. S6 DEPT 135 ${^{1}H}$ NMR spectrum of complex A in CD₂Cl₂.

Fig. S7 ¹H NMR spectrum of complex B in CDCl₃.

Fig. S8 ¹H NMR spectrum of complex B in CDCl₃.

Fig. S10 $~^{13}C$ {^1H} NMR spectrum of complex B in CDCl_3.

Fig. S11 DEPT 135 { 1 H} NMR spectrum of complex B in CDCl₃.

Fig. S12 ¹H NMR spectrum of complex **A** in CDCl₃ synthesized following a method previously reported in the literature and using 2-(*o*-hydroxyphenyl) pyridine as a ligand.

Fig. S13 ¹H NMR spectrum of complex **B** in CDCl₃ synthesized following a method previously reported in the literature and using 2-phenylpyridine as a ligand.

Fig. S14 ¹H NMR spectrum of $[Ir(ppy)_2(\mu$ -OH)]_2 dimer in CDCl₃ synthesized following a method previously reported in the literature.

Fig. S15 ESI⁺ spectrum of complex A.

Fig. S16 ESI⁺ spectrum of complex **B**.

Table S1Sample and crystal data for complex A.

Identification code	leti1704		
Chemical formula	C ₃₅ H ₂₈ Cl ₄ IrN ₃ O		
Formula weight	840.60	g/mol	
Temperature	296	(2) K	
Wavelength	0.710)73 Å	
Crystal size	0.250 x 0.270 x 0.450 mm		
Crystal system	triclinic		
Space group	P-1		
Unit cell dimensions	a = 10.884(3) Å	$\alpha = 67.451(5)^{\circ}$	
	b = 11.985(3) Å	β = 86.387(5) °	
	c = 14.161(3) Å	γ = 79.182(5) °	
Volume	1675.6	6(7) Å ³	
Z	-	2	
Density (calculated)	1.666	g/cm ³	
Absorption coefficient	4.336 mm ⁻¹		
F(000)	82	24	

Table S2Data collection and structure refinement for complex A.

Theta range for data collection	1.56 to 25.00°			
Index ranges	-12<=h<=12, -14<=k<=14, -16<=l<=16			
Reflections collected	18317			
Independent reflections	5884 [R(int) = 0.1711]			
Coverage of independent reflections	99.9%			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.4100 and 0.2460			
Structure solution technique	direct methods			
Structure solution program	XT, VERSION 2014/5			
Refinement method	Full-matrix least-squares on F ²			
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)			
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$			
Data / restraints / parameters	5884 / 0 / 397			
Goodness-of-fit on F ²	1.057			
Final R indices	4652 data; I>2σ(I) R1 = 0.0593, wR2 = 0.1382			
	all data R1 = 0.0783, wR2 = 0.1475			
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0.0620P) ²] where P=(F_{o}^{2} +2 F_{c}^{2})/3			
Largest diff. peak and hole	2.407 and -1.238 eÅ ⁻³			
R.M.S. deviation from mean	0.193 eÅ ⁻³			

Table S3 Atomic coordinates and equivalent isotropic atomic displacement parameters ($Å^2$) for complex **A**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
lr1	0.34095(3)	0.24579(3)	0.66540(2)	0.03900(15)
01	0.2322(6)	0.1368(6)	0.6255(5)	0.0494(16)
N9	0.4683(8)	0.2135(7)	0.5507(6)	0.047(2)
N14	0.2402(7)	0.4086(6)	0.5702(5)	0.0397(17)
N26	0.4362(7)	0.0927(7)	0.7709(6)	0.0447(19)
C2	0.2145(9)	0.1553(7)	0.5290(7)	0.045(2)
C3	0.1013(10)	0.1316(8)	0.5037(9)	0.052(2)
C4	0.0731(12)	0.1530(11)	0.4041(11)	0.076(3)
C5	0.1564(13)	0.1979(11)	0.3245(10)	0.076(3)
C6	0.2691(12)	0.2167(10)	0.3501(9)	0.066(3)
C7	0.3018(9)	0.1905(8)	0.4505(7)	0.048(2)
C8	0.4349(9)	0.1859(7)	0.4734(7)	0.043(2)

0.5920(10)	0.2091(10)	0.5637(8)	0.059(3)
0.6859(10)	0.1755(11)	0.5048(9)	0.067(3)
0.6545(11)	0.1421(10)	0.4298(9)	0.065(3)
0.5286(10)	0.1475(9)	0.4113(8)	0.059(3)
0.2647(10)	0.4714(8)	0.4721(8)	0.053(3)
0.1988(11)	0.5815(9)	0.4133(8)	0.058(3)
0.0968(13)	0.6324(9)	0.4553(9)	0.069(3)
0.0691(10)	0.5699(8)	0.5567(8)	0.060(3)
0.1370(10)	0.4593(8)	0.6128(8)	0.052(2)
0.1214(10)	0.3840(10)	0.7213(8)	0.055(3)
0.0185(11)	0.4133(11)	0.7782(9)	0.076(4)
0.0127(12)	0.3400(12)	0.8813(10)	0.078(4)
0.1005(13)	0.2419(12)	0.9258(9)	0.083(4)
0.2033(10)	0.2089(9)	0.8680(7)	0.060(3)
0.2125(10)	0.2807(8)	0.7617(7)	0.045(2)
0.4189(11)	0.9773(8)	0.7901(8)	0.058(3)
0.4866(13)	0.8771(9)	0.8603(9)	0.071(4)
0.5806(13)	0.8915(10)	0.9157(9)	0.075(4)
0.5996(11)	0.0074(10)	0.8976(8)	0.070(3)
0.5251(10)	0.1084(10)	0.8240(7)	0.053(3)
0.5351(10)	0.2392(9)	0.7997(8)	0.052(2)
0.6141(12)	0.2772(12)	0.8489(9)	0.071(3)
0.6157(14)	0.3997(13)	0.8224(11)	0.085(4)
0.5378(12)	0.4860(11)	0.7441(10)	0.072(4)
0.4547(11)	0.4478(9)	0.6953(8)	0.057(3)
0.4508(10)	0.3215(10)	0.7208(7)	0.053(3)
0.7508(14)	0.3687(8)	0.1403(11)	0.355(8)
0.7429(10)	0.5766(7)	0.9586(6)	0.246(5)
0.702(3)	0.5173(19)	0.076(2)	0.30(2)
0.8970(7)	0.0900(7)	0.1337(9)	0.351(9)
0.1166(5)	0.9467(6)	0.2373(5)	0.160(2)
0.9741(18)	0.9454(19)	0.1959(15)	0.132(7)
	0.5920(10) 0.6859(10) 0.6545(11) 0.5286(10) 0.2647(10) 0.1988(11) 0.0968(13) 0.0691(10) 0.1370(10) 0.1214(10) 0.0185(11) 0.0127(12) 0.1005(13) 0.2033(10) 0.2125(10) 0.4189(11) 0.4866(13) 0.5806(13) 0.5996(11) 0.5251(10) 0.5351(10) 0.6141(12) 0.6157(14) 0.5378(12) 0.4547(11) 0.4508(10) 0.7508(14) 0.7429(10) 0.702(3) 0.8970(7) 0.1166(5) 0.9741(18)	0.5920(10)0.2091(10)0.6859(10)0.1755(11)0.6545(11)0.1421(10)0.5286(10)0.1475(9)0.2647(10)0.4714(8)0.1988(11)0.5815(9)0.0968(13)0.6324(9)0.0691(10)0.5699(8)0.1370(10)0.4593(8)0.1214(10)0.3840(10)0.0185(11)0.4133(11)0.0127(12)0.3400(12)0.1005(13)0.2419(12)0.2033(10)0.2089(9)0.2125(10)0.2807(8)0.4189(11)0.9773(8)0.4866(13)0.8915(10)0.5996(11)0.0074(10)0.5351(10)0.2392(9)0.6141(12)0.2772(12)0.6157(14)0.3997(13)0.5378(12)0.4860(11)0.4508(10)0.3215(10)0.7508(14)0.3687(8)0.7429(10)0.5766(7)0.702(3)0.5173(19)0.8970(7)0.0900(7)0.1166(5)0.9467(6)0.9741(18)0.9454(19)	0.5920(10)0.2091(10)0.5637(8)0.6859(10)0.1755(11)0.5048(9)0.6545(11)0.1421(10)0.4298(9)0.5286(10)0.1475(9)0.4113(8)0.2647(10)0.4714(8)0.4721(8)0.1988(11)0.5815(9)0.4133(8)0.0968(13)0.6324(9)0.4553(9)0.0691(10)0.5699(8)0.5567(8)0.1370(10)0.4593(8)0.6128(8)0.1214(10)0.3840(10)0.7213(8)0.0185(11)0.4133(11)0.7782(9)0.0127(12)0.3400(12)0.8813(10)0.1005(13)0.2419(12)0.9258(9)0.2033(10)0.2089(9)0.8680(7)0.2125(10)0.2807(8)0.7617(7)0.4189(11)0.9773(8)0.7901(8)0.4866(13)0.8771(9)0.8603(9)0.5806(13)0.8915(10)0.9157(9)0.5996(11)0.0074(10)0.8976(8)0.5251(10)0.1084(10)0.8240(7)0.5351(10)0.2392(9)0.7997(8)0.6141(12)0.2772(12)0.8489(9)0.6157(14)0.3997(13)0.8224(11)0.5378(12)0.4860(11)0.7441(10)0.4508(10)0.3215(10)0.7208(7)0.7508(14)0.3687(8)0.1403(11)0.7429(10)0.5766(7)0.9586(6)0.702(3)0.5173(19)0.076(2)0.8970(7)0.0900(7)0.1337(9)0.1166(5)0.9467(6)0.2373(5)0.9741(18)0.9454(19)0.1959(15)

Table S4Bond lengths (Å) for complex **A**.

lr1-C37	1.984(11)	lr1-C25	1.992(8)
lr1-N26	2.013(8)	lr1-N14	2.047(7)
lr1-01	2.158(7)	lr1-N9	2.169(7)
01-C2	1.318(11)	N9-C8	1.346(12)
N9-C10	1.359(14)	N14-C15	1.340(12)
N14-C19	1.392(11)	N26-C31	1.344(13)
N26-C27	1.350(11)	C2-C7	1.405(12)
C2-C3	1.412(14)	C3-C4	1.377(16)
C3-H3	0.93	C4-C5	1.404(17)
C4-H4	0.93	C5-C6	1.381(16)
C5-H5	0.93	C6-C7	1.388(14)
C6-H6	0.93	C7-C8	1.491(14)
C8-C13	1.431(12)	C10-C11	1.378(13)
C10-H10	0.93	C11-C12	1.352(16)
C11-H11	0.93	C12-C13	1.397(16)
C12-H12	0.93	C13-H13	0.93
C15-C16	1.351(14)	C15-H15	0.93
C16-C17	1.378(15)	C16-H16	0.93
C17-C18	1.385(14)	C17-H17	0.93
C18-C19	1.354(14)	C18-H18	0.93
C19-C20	1.472(14)	C20-C25	1.383(14)
C20-C21	1.408(13)	C21-C22	1.389(16)
C21-H21	0.93	C22-C23	1.334(18)
C22-H22	0.93	C23-C24	1.430(14)
C23-H23	0.93	C24-C25	1.426(13)
C24-H24	0.93	C27-C28	1.348(15)
C27-H27	0.93	C28-C29	1.402(18)
C28-H28	0.93	C29-C30	1.365(16)
C29-H29	0.93	C30-C31	1.406(14)
C30-H30	0.93	C31-C32	1.494(14)
C32-C33	1.379(15)	C32-C37	1.417(15)
C33-C34	1.372(16)	C33-H33	0.93
C34-C35	1.388(18)	C34-H34	0.93
C35-C36	1.408(16)	C35-H35	0.93
C36-C37	1.424(13)	C36-H36	0.93
Cl40-C400	1.66(2)	Cl41-C400	1.61(2)
C400-H40A	0.97	C400-H40B	0.97
CI10-C100	1.69(2)	Cl11-C100	1.697(19)

0.97

Table S5Bond angles (°) for complex A.

C37-lr1-C25	86.1(4)	C37-Ir1-N26	80.8(4)
C25-Ir1-N26	95.4(3)	C37-Ir1-N14	95.4(4)
C25-Ir1-N14	79.5(3)	N26-Ir1-N14	173.9(3)
C37-Ir1-O1	170.9(3)	C25-Ir1-O1	93.2(3)
N26-Ir1-O1	90.3(3)	N14-Ir1-01	93.4(3)
C37-Ir1-N9	97.4(3)	C25-Ir1-N9	175.1(4)
N26-Ir1-N9	88.5(3)	N14-Ir1-N9	96.7(3)
01-lr1-N9	83.9(3)	C2-O1-Ir1	120.8(5)
C8-N9-C10	117.7(8)	C8-N9-Ir1	124.5(7)
C10-N9-Ir1	117.5(7)	C15-N14-C19	117.1(8)
C15-N14-Ir1	126.7(6)	C19-N14-Ir1	116.2(6)
C31-N26-C27	118.5(10)	C31-N26-Ir1	116.4(6)
C27-N26-Ir1	125.1(8)	01-C2-C7	125.2(9)
01-C2-C3	117.3(8)	C7-C2-C3	117.4(10)
C4-C3-C2	121.0(11)	C4-C3-H3	119.5
C2-C3-H3	119.5	C3-C4-C5	121.2(12)
C3-C4-H4	119.4	C5-C4-H4	119.4
C6-C5-C4	117.6(12)	C6-C5-H5	121.2
C4-C5-H5	121.2	C5-C6-C7	122.2(11)
C5-C6-H6	118.9	C7-C6-H6	118.9
C6-C7-C2	120.1(10)	C6-C7-C8	118.0(9)
C2-C7-C8	121.4(9)	N9-C8-C13	120.2(9)
N9-C8-C7	122.4(8)	C13-C8-C7	117.4(9)
N9-C10-C11	124.6(11)	N9-C10-H10	117.7
C11-C10-H10	117.7	C12-C11-C10	118.5(11)
C12-C11-H11	120.8	C10-C11-H11	120.8
C11-C12-C13	119.6(9)	С11-С12-Н12	120.2
C13-C12-H12	120.2	C12-C13-C8	119.4(10)
C12-C13-H13	120.3	C8-C13-H13	120.3
N14-C15-C16	124.6(9)	N14-C15-H15	117.7
C16-C15-H15	117.7	C15-C16-C17	118.5(10)
C15-C16-H16	120.8	C17-C16-H16	120.8
C16-C17-C18	118.4(10)	C16-C17-H17	120.8
C18-C17-H17	120.8	C19-C18-C17	121.3(10)

C19-C18-H18	119.3	C17-C18-H18	119.3
C18-C19-N14	120.0(9)	C18-C19-C20	127.6(9)
N14-C19-C20	112.2(8)	C25-C20-C21	122.8(10)
C25-C20-C19	115.1(8)	C21-C20-C19	122.1(10)
C22-C21-C20	118.6(12)	C22-C21-H21	120.7
C20-C21-H21	120.7	C23-C22-C21	121.3(11)
C23-C22-H22	119.3	C21-C22-H22	119.3
C22-C23-C24	120.5(11)	C22-C23-H23	119.7
C24-C23-H23	119.7	C25-C24-C23	120.1(10)
C25-C24-H24	119.9	C23-C24-H24	119.9
C20-C25-C24	116.4(8)	C20-C25-Ir1	116.8(7)
C24-C25-Ir1	126.8(7)	C28-C27-N26	123.0(12)
C28-C27-H27	118.5	N26-C27-H27	118.5
C27-C28-C29	119.3(11)	C27-C28-H28	120.4
C29-C28-H28	120.4	C30-C29-C28	118.7(11)
C30-C29-H29	120.7	C28-C29-H29	120.7
C29-C30-C31	119.4(12)	C29-C30-H30	120.3
C31-C30-H30	120.3	N26-C31-C30	121.1(11)
N26-C31-C32	114.7(9)	C30-C31-C32	124.2(11)
C33-C32-C37	123.2(10)	C33-C32-C31	124.7(11)
C37-C32-C31	112.0(10)	C34-C33-C32	120.8(13)
C34-C33-H33	119.6	С32-С33-Н33	119.6
C33-C34-C35	119.4(13)	C33-C34-H34	120.3
C35-C34-H34	120.3	C34-C35-C36	120.0(11)
C34-C35-H35	120.0	C36-C35-H35	120.0
C35-C36-C37	122.0(11)	C35-C36-H36	119.0
C37-C36-H36	119.0	C32-C37-C36	114.5(10)
C32-C37-Ir1	116.0(8)	C36-C37-Ir1	129.4(9)
Cl41-C400-Cl40	118.5(14)	Cl41-C400-H40A	107.7
Cl40-C400-H40A	107.7	Cl41-C400-H40B	107.7
Cl40-C400-H40B	107.7	H40A-C400-H40B	107.1
Cl10-C100-Cl11	110.9(11)	Cl10-C100-H10A	109.5
Cl11-C100-H10A	109.5	Cl10-C100-H10B	109.5
Cl11-C100-H10B	109.5	H10A-C100-H10B	108.1

Table S6. Torsional angles (°) for complex A.

lr1-01-C2-C7	34.4(11)	lr1-01-C2-C3	-149.0(6)
01-C2-C3-C4	177.5(9)	C7-C2-C3-C4	-5.7(13)
C2-C3-C4-C5	0.6(16)	C3-C4-C5-C6	1.7(18)
C4-C5-C6-C7	1.2(18)	C5-C6-C7-C2	-6.5(16)
C5-C6-C7-C8	166.1(10)	O1-C2-C7-C6	-174.9(9)
C3-C2-C7-C6	8.5(13)	01-C2-C7-C8	12.8(13)
C3-C2-C7-C8	-163.8(8)	C10-N9-C8-C13	3.1(13)
Ir1-N9-C8-C13	-170.2(6)	C10-N9-C8-C7	-178.6(9)
Ir1-N9-C8-C7	8.2(12)	C6-C7-C8-N9	151.0(9)
C2-C7-C8-N9	-36.6(13)	C6-C7-C8-C13	-30.6(13)
C2-C7-C8-C13	141.9(9)	C8-N9-C10-C11	-1.7(16)
Ir1-N9-C10-C11	172.1(9)	N9-C10-C11-C12	-1.2(18)
C10-C11-C12-C13	2.6(18)	C11-C12-C13-C8	-1.2(17)
N9-C8-C13-C12	-1.7(14)	C7-C8-C13-C12	179.8(10)
C19-N14-C15-C16	2.3(16)	lr1-N14-C15-C16	-176.8(8)
N14-C15-C16-C17	-2.0(18)	C15-C16-C17-C18	2.0(18)
C16-C17-C18-C19	-2.6(19)	C17-C18-C19-N14	2.9(17)
C17-C18-C19-C20	178.1(11)	C15-N14-C19-C18	-2.6(15)
Ir1-N14-C19-C18	176.6(8)	C15-N14-C19-C20	-178.5(9)
Ir1-N14-C19-C20	0.7(11)	C18-C19-C20-C25	-173.5(11)
N14-C19-C20-C25	2.1(13)	C18-C19-C20-C21	8.7(19)
N14-C19-C20-C21	-175.7(10)	C25-C20-C21-C22	4.5(19)
C19-C20-C21-C22	-177.8(11)	C20-C21-C22-C23	-2.(2)
C21-C22-C23-C24	0.(2)	C22-C23-C24-C25	0.(2)
C21-C20-C25-C24	-5.0(17)	C19-C20-C25-C24	177.2(10)
C21-C20-C25-Ir1	173.9(9)	C19-C20-C25-Ir1	-3.9(12)
C23-C24-C25-C20	2.8(16)	C23-C24-C25-Ir1	-175.9(10)
C31-N26-C27-C28	0.0(14)	Ir1-N26-C27-C28	178.7(8)
N26-C27-C28-C29	-0.7(16)	C27-C28-C29-C30	0.9(18)
C28-C29-C30-C31	-0.3(17)	C27-N26-C31-C30	0.6(12)
lr1-N26-C31-C30	-178.3(7)	C27-N26-C31-C32	-178.3(7)
lr1-N26-C31-C32	2.8(9)	C29-C30-C31-N26	-0.4(15)
C29-C30-C31-C32	178.4(9)	N26-C31-C32-C33	175.9(9)
C30-C31-C32-C33	-2.9(15)	N26-C31-C32-C37	-2.6(11)
C30-C31-C32-C37	178.6(8)	C37-C32-C33-C34	-0.7(17)
C31-C32-C33-C34	-179.0(10)	C32-C33-C34-C35	-0.8(19)
C33-C34-C35-C36	2.4(18)	C34-C35-C36-C37	-2.6(16)
C33-C32-C37-C36	0.6(14)	C31-C32-C37-C36	179.1(8)
C33-C32-C37-lr1	-177.4(8)	C31-C32-C37-Ir1	1.2(10)

C35-C36-C37-C32	1.1(14)	C35-C36-C37-lr1	178.7(7)
-----------------	---------	-----------------	----------

	U11	U22	U33	U23	U13	U12
lr1	0.0353(2)	0.0410(2)	0.0392(2)	-0.01418(15)	0.00110(16)	-0.00562(16)
01	0.053(4)	0.058(4)	0.040(4)	-0.015(3)	-0.001(3)	-0.026(3)
N9	0.047(5)	0.043(4)	0.050(5)	-0.020(4)	0.005(4)	-0.005(4)
N14	0.038(4)	0.047(4)	0.037(4)	-0.015(3)	-0.004(3)	-0.012(3)
N26	0.039(4)	0.056(4)	0.040(4)	-0.020(4)	0.009(4)	-0.009(4)
C2	0.043(5)	0.031(4)	0.061(6)	-0.017(4)	-0.002(5)	-0.009(4)
C3	0.046(6)	0.046(5)	0.070(7)	-0.027(5)	-0.012(5)	-0.011(5)
C4	0.071(8)	0.076(8)	0.097(10)	-0.047(8)	-0.023(8)	-0.011(7)
C5	0.084(10)	0.085(8)	0.065(8)	-0.035(7)	-0.033(7)	-0.005(7)
C6	0.068(8)	0.072(7)	0.063(7)	-0.027(6)	-0.009(6)	-0.015(6)
C7	0.049(6)	0.050(5)	0.044(5)	-0.018(4)	-0.006(5)	0.000(5)
C8	0.042(5)	0.036(4)	0.048(5)	-0.014(4)	0.006(4)	-0.008(4)
C10	0.050(6)	0.071(6)	0.060(6)	-0.029(5)	-0.001(5)	-0.011(6)
C11	0.032(5)	0.090(8)	0.081(8)	-0.037(7)	0.013(6)	-0.008(6)
C12	0.048(7)	0.074(7)	0.071(8)	-0.031(6)	0.023(6)	-0.007(6)
C13	0.057(7)	0.065(6)	0.066(7)	-0.040(5)	0.009(6)	-0.008(5)
C15	0.047(6)	0.051(5)	0.057(6)	-0.017(5)	0.008(5)	-0.012(5)
C16	0.068(7)	0.053(5)	0.050(6)	-0.014(5)	-0.001(6)	-0.015(6)
C17	0.088(9)	0.039(5)	0.068(7)	-0.014(5)	-0.011(7)	0.007(6)
C18	0.058(7)	0.044(5)	0.069(7)	-0.014(5)	0.007(6)	-0.008(5)
C19	0.057(6)	0.044(5)	0.057(6)	-0.022(4)	-0.006(5)	-0.002(5)
C20	0.043(6)	0.070(6)	0.061(6)	-0.035(5)	0.005(5)	-0.010(5)
C21	0.054(7)	0.091(8)	0.078(8)	-0.033(7)	0.014(7)	-0.001(7)
C22	0.050(7)	0.101(9)	0.072(8)	-0.031(7)	0.011(7)	0.005(7)
C23	0.084(10)	0.102(9)	0.052(7)	-0.023(7)	0.023(7)	-0.014(8)
C24	0.053(6)	0.062(6)	0.048(6)	-0.006(5)	0.012(5)	-0.003(5)
C25	0.046(6)	0.046(5)	0.043(5)	-0.017(4)	0.001(5)	-0.007(5)
C27	0.077(8)	0.046(5)	0.050(6)	-0.017(4)	0.005(6)	-0.010(5)
C28	0.082(9)	0.047(6)	0.072(8)	-0.016(5)	0.003(7)	0.002(6)
C29	0.084(9)	0.057(6)	0.062(7)	-0.008(6)	-0.013(7)	0.009(7)
C30	0.059(7)	0.082(8)	0.050(6)	-0.011(6)	-0.012(6)	0.006(6)
C31	0.046(6)	0.076(6)	0.034(5)	-0.020(5)	0.003(5)	-0.005(5)
C32	0.049(6)	0.062(6)	0.055(6)	-0.032(5)	0.005(5)	-0.018(5)

Table S7 Anisotropic atomic displacement parameters (Å²) for complex **A**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂].

C33	0.057(7)	0.091(8)	0.061(7)	-0.025(7)	-0.009(6)	-0.010(7)
C34	0.091(11)	0.105(10)	0.083(10)	-0.051(9)	-0.001(8)	-0.040(9)
C35	0.064(8)	0.079(8)	0.095(10)	-0.050(8)	0.021(7)	-0.031(7)
C36	0.063(7)	0.046(5)	0.065(7)	-0.023(5)	-0.001(6)	-0.012(5)
C37	0.044(6)	0.075(6)	0.040(5)	-0.026(5)	0.002(5)	-0.006(5)
Cl40	0.437(19)	0.142(6)	0.442(17)	-0.077(9)	0.158(15)	-0.070(10)
Cl41	0.369(14)	0.191(6)	0.206(7)	-0.139(6)	-0.063(8)	0.046(8)
C400	0.39(5)	0.105(15)	0.31(4)	-0.023(19)	0.28(4)	-0.05(2)
CI10	0.119(5)	0.195(7)	0.463(16)	0.152(8)	0.074(8)	0.008(5)
Cl11	0.112(4)	0.191(5)	0.180(5)	-0.059(5)	0.037(4)	-0.071(4)
C100	0.110(14)	0.168(18)	0.131(15)	-0.051(14)	0.002(12)	-0.065(14)

Table S8 Hydrogen atomic coordinates and isotropic atomic displacement parameters ($Å^2$)for A.

	x/a	y/b	z/c	U(eq)
H3	0.0448	0.1010	0.5551	0.062
H4	-0.0025	0.1374	0.3892	0.091
H5	0.1365	0.2144	0.2570	0.091
H6	0.3249	0.2479	0.2983	0.08
H10	0.6148	0.2304	0.6159	0.07
H11	0.7690	0.1757	0.5164	0.081
H12	0.7164	0.1158	0.3908	0.078
H13	0.5058	0.1262	0.3590	0.07
H15	0.3317	0.4367	0.4423	0.064
H16	0.2218	0.6220	0.3462	0.07
H17	0.0477	0.7068	0.4165	0.083
H18	0.0025	0.6047	0.5868	0.072
H21	-0.0443	0.4804	0.7475	0.092
H22	-0.0537	0.3598	0.9200	0.094
H23	0.0948	0.1945	0.9950	0.099
H24	0.2642	0.1404	0.8997	0.072
H27	0.3574	-0.0335	0.7533	0.07
H28	0.4711	-0.2008	0.8718	0.085
H29	0.6292	-0.1764	0.9637	0.09
H30	0.6611	0.0194	0.9336	0.084
H33	0.6670	0.2191	0.9007	0.085
H34	0.6685	0.4247	0.8565	0.102
H35	0.5406	0.5690	0.7239	0.087

H36	0.4008	0.5069	0.6448	0.068
H40A	0.6113	0.5326	0.0777	0.358
H40B	0.7309	0.5614	0.1125	0.358
H10A	0.9843	0.9011	0.1504	0.159
H10B	0.9253	0.9031	0.2540	0.159

Fig. S17 Optimized structures for the first and second hydrolysis stages of [Ir(ppy)₂Cl]₂.

Fig. S18 Calculated free energy profile in methanol for the two-hydrolysis stages (first hydrolysis in blue, second in light blue) of [Ir(ppy)₂Cl]₂. Gibbs free energies (reported below the label name of complex) are in kcal·mol⁻¹ and are related to separated reactants (**Ir-dimer** is 0.0 by definition).

TS_{4b}

I'₄

RA₅

Fig. S20 2D plot related to electrostatic potential from Hirshfeld charges along the Ir–O–Ir plane for: a) P_2 ; b) I_3 ; c) TS_{3b} ; d) P_3 . In P_2 and I_3 complexes, the two iridium atoms show similar positive Hirshfeld charge values, while in P_3 the octahedral iridium(III) moieties keep the positive charge value and the square-planar iridium(I) site show a negative Hirshfeld charge, indicating the change of the oxidation state.

l step – hydrolysis reaction					
Ir dimer $\rightarrow RA_1$	$RA_1 \rightarrow TS_{1a}$	$TS_{1a} \not \to I_1$	$I_1 \rightarrow TS_{1b}$	$TS_{1b} \rightarrow PA_1$	$PA_1 \rightarrow P_1$
10.1	8.9	-27.2	11.9	-22.7	-2.4
$P_1 \rightarrow RA_2$	$RA_2 \rightarrow TS_{2a}$	$TS_{2b} \rightarrow I_2$	$I_2 \rightarrow TS_{2b}$	$TS_{2b} \rightarrow PA_2$	$PA_2 \rightarrow P_2$
8.2	9.4	-26.1	12.0	-21.7	-4.1
II Step – C-O Formation					
$P_2 \rightarrow TS_{3a}$	TS ₃	$_{a} \rightarrow I_{3}$	$I_{3b} \rightarrow TS_{3b}$		$TS_{3b} \rightarrow P_3$
22.6	(0.4	35.1		-31.9
III Step – Ir-N Formation					
$P_3 \rightarrow RA_4$	$RA_4 \rightarrow TS_{4a}$	TS _{4a} TS_{4a}	4 4	$\rightarrow TS_{4b}$	$TS_{4b} \rightarrow PA_4$
2.3	36.9	-12.7		9.0	-20.4
$P_3 \rightarrow RA'_4$	$RA_4 \rightarrow TS'_4$	a TS'₄a →	l4		
1.7	39.3	-14.9			
IV – Final product					
$PA_4 \rightarrow RA_5$	RA₅	→ TS ₅	$TS_5 \rightarrow PA_5$	PA	$_{\rm S} \rightarrow {\rm A} + {\rm X}$
-5.3	1	1.2	-9.4		9.2

Table S9 Relative Gibbs free energy values (kcal mol⁻¹) associated to the overall reactionpathway (including all four steps)

Fig. S21 Structural overlap (H atoms omitted for clarity) between the experimental X-ray structure of complex **A** (red) and the DFT-computed one (green). The overlap is calculated by minimizing the root-mean-square deviation (RMSD) of all the atomic positions; RMSD = 0.350 Å.

Fig. S22 Cyclic voltammograms of complexes **A**–**C** (0.5 mM) in acetonitrile solution at 298 K, recorded at a scan rate of 100 mV s⁻¹. The voltammograms show the full reversibility of all redox process of the two [Ir(ppy)₃] isomers (**B** and **C**); on the contrary, irreversibility is observed for the oxidation process of novel [Ir(ppy)₂(Oppy)] complex (**A**).

Reduced species (radical anions)

Fig. S23 Spin-density distribution of the oxidized and reduced radicals of **A**–**C** in their fully-relaxed geometry, computed by spin-unrestricted DFT in acetonitrile (isovalues: 0.002 e bohr⁻³).

Fig. S24 Anodic cyclic voltammograms of complex $[Ir(ppy)_2(Oppy)]$ (**A**) at different scan rates in acetonitrile solution at 298 K (sample concentration: 0.5 mM). Experiments show the complete irreversibility of the oxidation process.

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	[eV (nm)]	(λ)	
$S_0 \to T_1$	2.58 (481)	(93.1%)	mainly ³ LC on the ppy₁ ligand with minor ³ MLCT contribution
$S_0 \to T_2$	2.64 (469)	(88.0%)	mainly ³ LC on the ppy₅ ligand with minor ³ MLCT contribution
		the the	
$S_0 \to T_3$	2.76 (449)		mainly ³ LC on the Oppy ligand with minor ³ MLCT contribution
		(75.0%)	
$S_0 \to T_4$	2.85 (435)	(75.4%)	mixed ³ LC/ ³ LL'CT involving the Oppy and ppy _b ligands with minor ³ MLCT contribution
$S_0 \to T_5$	3.01 (412)	(75.1%)	mainly ³ LC on the ppya ligand with minor ³ MLCT contribution
$S_0 \rightarrow T_6$	3.19 (388)	(92.7%)	mainly ³ MLCT from iridium to the ppya ligand with minor ³ LL'CT contribution involving Oppy

Table S10 Calculated NTOs couples describing the lowest six triplet excitations for $[Ir(ppy)_2(Oppy)]$ (A) in acetonitrile. The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole $ ightarrow$ electron	Nature
	[eV (nm)]	(λ)	
$S_0 \to T_1$	2.64 (470)	(82.9%)	mainly ³ LC on the <i>trans</i> -ppy ligands with minor ³ MLCT contribution
$S_0 \to T_2$	2.69 (461)	(75.6%)	mainly ³ LC on the <i>trans</i> -ppy ligands with minor ³ MLCT contribution
$S_0 \to T_3$	2.79 (444)	(90.8%)	mainly ³ LC on the <i>equatorial</i> -ppy ligand with minor ³ MLCT contribution
$S_0 \to T_4$	2.88 (431)	(87.0%)	mainly ³ LC on the <i>trans</i> -ppy ligands with minor ³ MLCT contribution
$S_0 \to T_5$	2.96 (418)	(80.6%)	mainly ³ LC on the <i>trans</i> -ppy ligands with minor ³ MLCT contribution
S ₀ T ₆	3.05 (407)	(96.3%)	mainly ³ MLCT from iridium to <i>equatorial</i> -ppy ligand

Table S11 Calculated NTOs couples describing the lowest six triplet excitations for *mer*-Ir(ppy)₃ (**B**) in acetonitrile. The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole $ ightarrow$ electron	Nature
	[eV (nm)]	(λ)	
$S_0 \to T_1$	2.72 (456)	(65.7%)	mainly ³ MLTC from iridium to ppy ligands with minor ³ LC contribution
$S_0 \to T_2$	2.76 (449)	(63.5%)	mainly ³ MLTC from iridium to a ppy ligand with ³ LC contribution
$S_0 \to T_3$	2.77 (447)	(59.3%)	mainly ³ MLTC from iridium to a ppy ligand with ³ LC contribution
$S_0 \to T_4$	3.15 (393)	(88.9%)	mainly ³ MLTC from iridium to a ppy ligand with minor ³ LC contribution
$S_0 \to T_5$	3.20 (388)	(82.3%)	mainly ³ MLTC from iridium to a ppy ligand with minor ³ LC contribution
$S_0 \to T_6$	3.22 (385)	(56.1%)	mainly ³ MLTC from iridium to a ppy ligand with minor ³ LC contribution

Table S12 Calculated NTOs couples describing the lowest six triplet excitations for *fac*-Ir(ppy)₃ (**C**) in acetonitrile. The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

Fig. S25 Schematic energy diagram reporting the ground state (S_0) and the three lowest triplet states (T_1 , T_2 and T_3 , numbered following the order of Tables S10–12) of complexes **A**–**C**. The spin-density surfaces, calculated at the fully-relaxed triplet-state minima, are also depicted (isovalue: 0.002 e bohr⁻³). Reported energy values refer to adiabatic energy differences between the states.

Fig. S26 Corrected emission spectra of **A**–**C** in room-temperature acetonitrile solution, reported in relative quanta per energy interval. The mean-phonon energy (indicated by the dots) is calculated as the energy value at which the emission integral reaches 50% of the overall emission.