
03 January 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Borsatti D., Davoli G., Cerroni W., Raffaelli C. (2021). Enabling Industrial IoT as a Service with Multi-
Access Edge Computing. IEEE COMMUNICATIONS MAGAZINE, 59(8), 21-27 [10.1109/MCOM.001.2100006].

Published Version:

Enabling Industrial IoT as a Service with Multi-Access Edge Computing

Published:
DOI: http://doi.org/10.1109/MCOM.001.2100006

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/834330 since: 2021-10-05

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/MCOM.001.2100006
https://hdl.handle.net/11585/834330

1

Enabling Industrial IoT as a Service
with Multi-access Edge Computing

Davide Borsatti, Gianluca Davoli, Walter Cerroni and Carla Raffaelli

Abstract—Industrial IoT coupled with emerging cloud comput-
ing architectures shows high potential in transforming the way
industrial processes are managed and carried out. This potential
can be further enhanced by enabling on-demand deployment
of IoT services located very close to the factory premises.
This paper proposes an architecture, based on the ETSI Multi-
access Edge Computing (MEC) framework, for the automated
deployment of Industrial IoT applications “as a service,” taking
advantage of proximity computing platforms such as edge and
fog environments. A proof-of-concept implementation is reported
to demonstrate that transforming Industrial IoT applications into
MEC-based services running over multiple technological domains
is not only feasible, but can achieve full service deployment in a
matter of a few seconds.

I. INTRODUCTION

The Internet of Things (IoT) concept has evolved in the last
decade, and has expanded in many fields of today’s society. An
increasing number of smart environments are being created,
unlocking unprecedented potentialities for innovative appli-
cations and developments [1]. One of the context attracting
increasing interest for extensive IoT applications and adoption
of advanced communication network technology is represented
by smart industry and manufacturing, often referred to as
Industry 4.0 [2]. Smart connectivity capabilities of a large
number of sensors and devices, the availability of cloud
computing platforms, and the implementation of software-
defined network control and management techniques bring the
opportunity to support rapid material handling, efficient in-
formation sharing, fault detection time reduction, and flexible
production processes in manufacturing environments.

Recently, 5G technologies have been making their way
inside factories as well, enabling the capability to manage a
high density of devices and different classes of service, includ-
ing massive machine-type communications, enhanced mobile
broadband, and ultra-reliable low latency communications [3].
This is expected to make the integration of components easier,
by improving the communication between heterogeneous de-
vices. Also, Cyber-physical Systems (CPS), such as machine
digital twins, which combine statistics, computer modeling,
and real-time data measured on physical systems, can help
in modeling the response of a system under multiple working
scenarios. Industrial systems can benefit from the combination
of multiple technologies and agents, in order to take real-
time decisions and reach the common goal of improving the
efficiency and responsiveness of production systems [4].

As an Internet-based commodity to share computing, stor-
age, and network resources, cloud computing can be part of

The authors are with the Department of Electrical, Electronic and Informa-
tion Engineering “G. Marconi,” University of Bologna, Italy.

the answer to the increasing need of manufacturers for data
processing. New cloud-based manufacturing models can be
defined, where all resources and capabilities are virtualized
and offered “as a service” allocated on-demand through the
cloud, leading to the concept of smart manufacturing [5].
However, exchanging data between machines/sensors and re-
mote cloud locations may result in delayed responses, high
usage of bandwidth, and energy consumption. Besides, the
long-distance communication exposes the system to the risk of
external network faults and security breaches, which represent
highly critical challenges.

To overcome those problems, fog and edge computing
solutions have been proposed to bring compute, storage, and
network capabilities closer to or even within the user premises.
As a consequence, data collected from smart machines and
sensors can be processed locally or at the edge, without reach-
ing the cloud, to fulfill stringent requirements on latency, real-
time responsiveness, limited network traffic, and protection of
sensitive data. In particular, considering the nature of devices
and equipment used in a factory, peripheral processing in
support of highly reactive systems could be more effective
than a typical cloud-based approach [6].

All the discussed aspects should be considered in order
to reach the original objective of Industry 4.0 of achieving
much higher gains in operational efficiency with respect to
the marginal improvements expected from traditional cost-
cutting measures. Therefore, it is clear that the transition to
Industry 4.0 will depend on the successful adoption of many
new information and communications technologies, which, in
addition to enhanced IoT connectivity and processing, will
provide highly flexible control and management capabilities,
as well as high reliability and security. All of this will be
offered to the customers in a fully automated and collaborative
environment through suitable programmable platforms, thus
fostering the introduction of an Industrial IoT as a Service
(IIoTaaS) model.

Despite the availability of technologies at an adequate
level of maturity, there still exist the need for a suitable
framework in which the different communication and software
technologies can operate efficiently to achieve the objectives
of smart manufacturing and IIoTaaS. The main contribution
of this paper is the definition of an architecture for IIoTaaS
applications which takes advantage of a multi-level computing
platform, consisting of edge, fog and cloud environments. In
particular, the proposed approach aims at unifying the orches-
tration of heterogeneous fog and edge computing resources
under a single framework, which is designed to be compliant
with existing standards for Multi-access Edge Computing
(MEC) [7], rather than defining a new set of interfaces. This

2

brings all the advantages of MEC-based service management
to the development and deployment of IIoTaaS applications.
In this paper, a reference operational architecture, the dif-
ferent components of the framework, and a proof-of-concept
implementation are reported, showing how the MEC-based
approach and the supporting information and communication
technologies enable the automated deployment of IIoTaaS ap-
plications in a matter of seconds. Smart industry environment
is considered here, representing one of the most challenging
and demanding application of the proposed framework. In any
case the proposed methodology has a high potential to be
reused in other fields as well.

II. REFERENCE SCENARIO FOR IIOT AS A SERVICE

In a smart manufacturing environment, production line
appliances are equipped with sensor nodes that generate and
exchange monitoring data over a (wireless) network, according
to IoT principles [3]. Such data then needs to be processed, to
evaluate production performance and recognize faults in the
procedure, as well as for other purposes. To this aim, several
diverse compute and network resources are available, ranging
from nearer and less powerful ones located at the edge or in
one or multiple fog clusters, to farther but more powerful ones
located in a remote cloud, as depicted in Fig. 1.

According to its original definition, the fog domain includes
compute resources offered by infrastructures located anywhere
from the cloud to the edge. For the purpose of this work,
however, only fog resources located in the edge domain are
considered. Therefore, in the following, the term fog resources
identifies computing resources located in the local network
of the factory, including mobile devices being carried around
the premises by personnel as well as devices located on
production line machinery. On the other hand, the term edge
resources identifies local datacenters, closer to the access net-
work or within factory premises, and possibly including high-
performance servers normally employed to perform specific
low-latency tasks.

Considering that IIoTaaS applications can include software
components that must take advantage of the proximity to the
source of data, both edge and fog resources should be used
to deploy them, based on their availability. Orchestrating edge
and fog resources in a unified way according to the ETSI
MEC framework [7] allows to benefit from its additional
features. The MEC approach can be used to facilitate the
interoperability between services hosted on different domains
and implemented with different technologies, towards a seam-
less integration of heterogeneous service components. It also
allows for a direct interaction with the 5G access network,
including direct knowledge of end-system position and con-
nection quality, for which standard APIs already exist (e.g.,
MEC 013 for Location API, or MEC 012 for Radio Network
Information API), thus enabling the support of new types of
services. This reference scenario still supports a more classic
cloud-based approach, in which the computational resources
are located in remote datacenters, public or private, offering
higher capacity than the one provided by local resources.

Recent work includes valuable examples of the adoption of
fog and edge paradigms in 5G and Industrial IoT contexts.

Factory premises Operator premises

Fog
resources

Edge
resources

Edge
resources

Remote datacenter

Cloud
resources

IoT-enabled
manufacturing

appliances
WAN

Fig. 1. Reference scenario, where cloud, edge and fog computing resources
are available; in specific cases, only fog or edge resources may be available
in addition to cloud ones.

A number of such scenarios are presented in [8], but no
specific management architecture dealing with the diversified
infrastructure is proposed. On this matter, some architectures
integrate NFV and Fog [9], but do not adopt standardized
functionalities that can be provided at the edge. Other research
efforts target a scenario that is very similar to the one presented
here [10] [11], but consider a fog infrastructure including fixed
hardware only. In contrast, this paper proposes a management
architecture based on ETSI MEC and ETSI NFV standards
to supervise remote cloud, edge and fog resources, with the
benefits that come with the integration of a MEC system,
including service discovery, location services, and more. Also,
in this work fog clusters comprise devices that are not neces-
sarily known a-priori, considering the possibility of allocating
services on them in a dynamic and automated fashion. Finally,
the fog domain service orchestrator employed here is able to
allocate the service according to multiple allocation models,
and to choose the most efficient allocation technique available
at the time of service request [12].

In line with one of the use cases presented in [8], a possible
example of an IIoT service spanning across multiple domains
could be based on data exchanged according to a publish-
subscribe paradigm. A set of remote cloud resources could be
allocated to store and analyze long-term data received from
the factory premises. A set of edge resources may be allocated
to act as brokers between the sources of IoT data and their
subscribers, being them running in the local or remote domain.
Furthermore, local processing of the aforementioned data may
be needed to comply with the requirements of low latency
services. Finally, exploiting the proximity and mobility of fog
devices, their resources may be used on demand to collect data
from specific areas and/or appliances of the factory, to perform
light processing on them, and to redirect pre-processed infor-
mation toward the message broker and, in turn, to interested
subscribers when needed. All the data exchanges just described
could use typical IoT messaging protocols, whose components
must then be dynamically deployed according to the specific
service needs.

III. FEATURES AND COMPONENTS IN A MEC-ENABLED
IIOTAAS FRAMEWORK

A framework and reference architecture for MEC is intro-
duced in [7], along with the description of relevant functional
elements. Based on this reference architecture and the scenario

3

MEC host

MEC in NFV architecture
for Edge Cloud domain

MEC architecture
for Fog domain

Multi-access
Edge

Orchestrator

MEC Platform
Manager

VIM

MEC app

Service
MEC app

MEC
Application

Orchestrator

VNFM
(for MEP and

MEC apps LCM)

MEC app
(VNF)

Service

NFVO

VIM

MEC Platform
Manager - NFV

OSS / BSS

MEC app
(VNF)

Fog
Virtualization Infrastructure

Edge Cloud
NFV Infrastructure

MEC Platform
(VNF)

Fig. 2. MEC-compliant proposed architecture, incorporating elements from
the edge (highlighted in red) and fog (highlighted in blue) computing
environments.

described in Section II, the proposed MEC-compliant archi-
tecture for IIoTaaS application deployment and resource allo-
cation across edge and fog computing environments is shown
in Fig. 2. The supervising entity is the Operation/Business
Support System (OSS/BSS), representing users or third-party
services that manage service deployment, enforce company
policies, or react to computational needs.

Service deployment in the fog computing subsystem is man-
aged by FORCH [12] (Fog ORCHestrator, or FO for brevity),
a modular orchestrator for flexible deployment of computing
services over dynamic fog computing infrastructures. The
components of FORCH can be mapped onto functional blocks
described in the reference MEC standard. With reference to
the left side of Fig. 2, this mapping is described as follows:

• the functionalities of the Multi-access Edge Orchestrator
are realized by the FO mediator module, which receives
service requests and selects the appropriate resources to
be allocated to the service;

• tasks pertinent to the MEC Platform Manager are ex-
ecuted by the FO aggregator module, which gathers
and aggregates information on service deployment and
resource usage;

• the Virtualization Infrastructure Manager (VIM) defined
in the MEC standard is mapped onto the FO VIM
module, which manages the activation of services on fog
resources, handling technology-specific details required
by allocation and deployment procedures, and collecting
monitoring information;

• the Fog Virtualization Infrastructure (VI) is represented
by the VI offered by each of the fog nodes, which hosts
activated services running on local resources, and reports

monitoring information to the FO VIM module.
The latter component is meant to be configured on each of

the nodes offering resources to the fog system. The resource
utilization of every node is monitored, and this information is
passed to the fog orchestrator, along with the set of services
that the node can host, allowing the orchestrator to make
informed decisions on the allocation of services on nodes.
Allocation policies are configurable to meet specific needs,
via a multi-tenant system, based on an approach similar to
that of major cloud orchestrators.

Considering the right side of Fig. 2, the architecture pro-
posed for the edge domain is essentially based on the “MEC
in NFV” architecture defined by ETSI in [7], which aims at re-
using components from the Network Function Virtualization
(NFV) framework to fulfill a part of the MEC management
and orchestration tasks, thus allowing to instantiate both MEC
applications and Virtualized Network Functions (VNFs) within
a unified framework. Specifically, the functionalities offered by
the Multi-access Edge Orchestrator (MEO) are split into two
different functional blocks, the NFV Orchestrator (NFVO) and
the MEC Application Orchestrator (MEAO). The former is in
charge of managing MEC applications as if they were typical
VNF instances. The latter is in charge of the remaining MEO
functions, such as enabling the instantiation and termination
of MEC applications and maintaining a view of the status
of the MEC system (e.g., deployed MEC hosts, available
resources). The MEC Platform Manager becomes the MEC
Platform Manager - NFV (MEPM-V), which is in charge of
the same tasks as the MEC Platform Manager but without any
Life-Cycle Management (LCM) action on the MEC Platform.
These actions are instead delegated to a Virtualized Network
Function Manager (VNFM), being the MEC Platform itself
deployed as a VNF.

The edge and fog computing environments are merged at
the MEC host level. A MEC host functional block can be
implemented as a single physical or virtual machine offering
computing resources, or as a cluster of such machines, operat-
ing behind a single abstraction. Therefore, the set of fog nodes
and edge resources can be grouped into a single MEC host,
operating with a single MEC Platform (MEP). The choice of
considering both the edge and fog domains as a single MEC
host is motivated by the particular characteristics of fog nodes.
Having assumed the set of fog resources to be mutable over
time, instantiating and maintaining an active MEC Platform
in this kind of scenario could be challenging. For this reason,
the proposed architecture relies on a single MEC Platform for
both domains, hosted in the edge, considering it to be a more
stable infrastructure over time. This solution also enables the
adoption of a single abstraction for heterogeneous computing
environments (fog and edge) and simplifies the interoperability
between the two domains since it does not require to handle
the communication between different MEC Platforms.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

In order to demonstrate the feasibility of the proposed
MEC-based architecture for IIoTaaS applications and how it
enables interoperability between the edge and fog domains, a

4

proof-of-concept (PoC) implementation1 has been developed
and tested on commercial off-the-shelf servers under a use
case relevant to Industry 4.0 scenarios. The example briefly
discussed in Section II is considered, where the widely adopted
Message Queuing Telemetry Transport (MQTT) protocol has
been chosen as a publish-subscribe solution: an MQTT broker
is deployed on edge resources, multiple sensing applications
are instantiated on available fog nodes and edge nodes, acting
as MQTT publishers sending data to the MQTT broker, and
a sink application running in the cloud acts as an MQTT
subscriber receiving data from the MQTT broker. All the
required software components running in the edge and fog
environments are instantiated on demand using the automated
procedures offered by the proposed framework architecture
and detailed below. By taking advantage of the MEC-based
approach, those software components are deployed and made
capable of interacting with each other independently of the
specific computing platform being used, resulting in an Indus-
trial IoT application truly offered “as a service.”

The interoperability among the different computing domains
introduced in Section II is achieved by making use of a testbed
composed of several platforms:

• OpenStack is employed in the core cloud domain to
instantiate Virtual Machines (VMs). For the PoC no
specific configuration was needed.

• Kubernetes orchestrates the deployment of containers
that execute MEC applications in the edge domain. For
this PoC, the Kubernetes cluster was configured with
Docker as a container engine, CoreDNS as DNS service,
Calico as container networking solution, Metallb as load
balancer, and OpenEBS as persistent volume manager.

• Open Source MANO (OSM) handles the deployment of
NFV Management and Orchestration services in the edge.
Specifically, it is used to deploy MEC applications in the
Kubernetes cluster.

• FORCH takes care of the deployment of containers that
execute MEC applications in the fog cluster.

As mentioned in Section III, the fog orchestrator FORCH is
a Python-based original solution for fog computing service de-
ployment recently developed at the University of Bologna [12],
composed of several cooperating modules. In this PoC, a
subset of the APIs offered by the fog orchestrator is utilized
to deploy MEC services in the fog domain.

The MEC applications employed to test this solution are
based on the “Unibo MEC API Tester,” also developed at
the University of Bologna as part of the ETSI NFV&MEC
Plugtests 2020 [13]. It already implements most of the MEC
011 APIs [14], which were integrated with a simple MQTT
client service that can be exposed and consumed through the
aforementioned APIs. Due to the limited scope of this PoC
and constraints in the experimental platform, this setup only
employs the MEC 011 APIs for service registration/discovery.
However the same architecture is also capable of supporting
different MEC-enabled services.

To the best of our knowledge, a working open-source
software tool that implements all the functionalities of a

1https://github.com/DavideBorsatti/IIoTaaS

MEC Platform is not available yet. Therefore, a Python-based
custom solution has been developed to implement the set of
MEC Platform features required by the PoC. This custom
solution follows the directive defined by ETSI in terms of
API specification.

The MEC 011 APIs are adopted to aid the interaction
between different MEC applications and their services, even
if they are deployed on different infrastructures. More specif-
ically, each MEC application can register its own services
to the MEC Platform through a REST API POST request
to the /applications/{appInstanceId}/services
endpoint. This request includes all the details of the specific
service being registered, such as hostname or IP address,
transport layer protocol, and port, and/or other endpoint infor-
mation. The MEC Platform receives this request and loads it
into its internal database. The list of registered services can be
retrieved by any other MEC application via the /services
REST endpoint of the MEC Platform. This way, MEC ap-
plications can discover the list of available services and how
to consume them. An example of the format standardized by
ETSI used to describe MEC services is included below.

As specified in the ETSI MEC standard, the MEC Platform
should also provide DNS resolution to all MEC applications
in its domain. In the presented scenario, this would ease the
communication between services deployed on the edge and
the fog computing domains. It would also partly justify the
choice of considering both edge and fog nodes as parts of
a single MEC host abstraction. The internal DNS service
of Kubernetes was configured to be exposed outside of the
Kubernetes cluster, to be used also by MEC applications
deployed in the fog domain. Then, two different DNS zones
were defined, one for services running in the edge domain and
another for those running in the fog domain. For the former,
CoreDNS was configured to resolve all incoming requests
related to the mec.host zone to external IP addresses used
by the Kubernetes cluster, thus reachable by any other MEC
application running in either edge or fog nodes. As for the
DNS zone related to services running in the fog, the fog
orchestrator adds its DNS associations to a DNS zone file
that is shared with the Kubernetes DNS service, which refers
to it for all the requests directed to the fog.host zone.

Having deployed all the necessary components, the prac-
ticability of the proposed solution is verified through an
experiment that follows these steps:

1) Deployment of the MEC Platform as a Kubernetes
application in the edge.

2) Instantiation of the data sink as a VM in the core cloud,
which may happen before, during, or after the execution
of the previous step.

3) Deployment via OSM of an MQTT broker as a MEC
application running in the edge. The MQTT broker
registers its service to the MEC Platform, providing
details of the exposed MQTT endpoint according to a
standardized JSON format, as reported in the following
extract:

{"serInstanceId": "Mec-Broker",
...

5

"transportInfo":{
...
"type": "MB_TOPIC_BASED",
"protocol": "MQTT",
"endpoint":{
"addresses":[{
"host" : "mec-broker.mec.host",
"port" : "1883"}]
} } }

Specifically, the transportInfo section contains in-
formation such as the type of messaging mechanism
used (e.g., a topic-based message bus which routes
messages to receivers based on topic subscriptions), the
protocol used (MQTT in the example) and on which
endpoint the service is available.

4) Subscription by the sink in the core cloud to the MQTT
broker application.

5) Deployment via the fog orchestrator of an MQTT pub-
lisher as a MEC application running in the fog domain.
The application Mec-app registers its service to the
MEC Platform by simply exposing the REST end-
points to be used to start or stop the generation of
MQTT traffic, therefore the value of the key endpoint
will change to uris, which is a list of two ele-
ments mec-app.fog.host/start-sensing and
mec-app.fog.host/stop-sensing respectively.
Of course in this case the type and protocol fields in
the service descriptor will be different, with "type":
"REST_HTTP" and "protocol": "HTTP".

6) Generation of MQTT traffic from the MEC applica-
tion in the fog node, initiated by a REST call to its
/start-sensing endpoint.

7) Deployment via OSM and Kubernetes of another MQTT
publisher as a MEC application running in the edge
domain. The application registers its service (start/stop
sensing) to the MEC Platform.

8) Generation of MQTT traffic from the MEC application
in the edge node.

9) Interruption of MQTT traffic generated by the MEC
application in the fog domain, caused by a REST call
to its /stop-sensing endpoint.

10) Interruption of MQTT traffic generated by the MEC
application in the edge domain.

The described steps are represented in the sequence diagram
of Fig. 3, limited to steps 3) to 6) for readability reasons. The
deployment of any new MEC application in the fog or edge
domain will follow the same steps as for the deployment of
the first MEC application in the fog or the MQTT broker
in the edge domain, respectively. In the experiment, multiple
MQTT publishers were deployed in the form of additional
MEC applications, following the steps described above.

In this PoC, MQTT was the only protocol employed to
transmit sensor data. However, the system is completely ag-
nostic to the protocol of choice. For example, OPC UA, a
common industrial protocol, still uses TCP or HTTP/S as
underlying transport, therefore its MEC 011 service defini-
tion would still be similar to the one described for MQTT,

with "protocol": "TCP/HTTP" and of course with the
correct host and port pair.

V. EVALUATION

The proposed architecture implementation is evaluated by
measuring the response time of the most relevant APIs and
the footprint of the required running components. The inter-
operability of different computing platforms is validated by
observing the MQTT traffic generated by MEC applications in
different domains. Along with the partial representation of the
PoC steps, Fig. 3 reports the average values of the measured
time required for the system to perform each individual action.
This assessment shows that the time needed to deploy an
MQTT MEC application and start the MQTT message flow
towards a broker heavily depends on the domain chosen,
ranging from slightly more than 1s for deployments in the
fog domain, to almost 16s in the edge domain. It is however
worth to mention that the total time required to deploy from
scratch the first complete working MQTT mechanism for
this PoC, including the MQTT broker in the edge and an
MQTT publisher in the fog, is marginally higher than 17
seconds, proving the advantage offered by the proposed MEC-
based architecture to automate the deployment of IIoTaaS
applications.

A foreseeable bottleneck resides in the MEC Platform itself.
As shown in Fig 3, MEC applications need to interact with
it to register and discover services. The time required to
perform this operation has been observed to grow linearly
with the amount of simultaneous requests and the number
of registered services. However, improved performance of
the MEC Platform can be achieved by applying the scaling
mechanisms offered by Kubernetes.

Table I reports the amount of storage and memory resources
each node needs to support hosting MEC applications, in
the two considered domains. Both Kubernetes and FORCH
are configured to use the same container runtime engine
(i.e., Docker), but the former platform is designed for more
general and complex scenarios, thus requiring more software
components running in the edge nodes to operate the cluster.
As expected, the results highlight that the resource utilization
on fog nodes is smaller compared to edge nodes. Furthermore,
the resource consumption of the employed MEC Platform
is comparable to that of MEC applications. Their container
images occupy about 60 MB of storage space and require
approximately 21 MB of RAM to be run.

TABLE I
RESOURCE UTILIZATION IN DIFFERENT COMPUTING DOMAINS.

Domain Disk util. [MB] RAM util. [MB]
Edge 1366 202
Fog 124 180

In Fig. 4, every rising/falling edge of the curve represents
the activation/deactivation of an MQTT message flow, as
perceived by the only subscriber deployed, i.e., the sink
application located in the cloud domain and subscribed to all
MQTT topics. The line represents the amount of MQTT traffic
received by said subscriber, corresponding to the sum of all

6

User

MQTT+MEC
Application N

MEC MQTT
Broker

MEC
Platform OSM+K8s FORCH

MQTT
Sink

Deploy

Deploy

Deploy OK

Deploy MQTT
Broker
 15.98s

POST /applications/{appInstanceId}/services

201 Created

Register MQTT
Broker Service

6ms

MQTT sub
on any topics

Deploy

Deploy

Deploy OK

Deploy MEC app N
1.13s

POST /applications/{appInstanceId}/services

201 Created

Register MEC app
 Service
6ms

GET /services

200 OK Service List

Retrieve the Endpoint
 of the MQTT+MEC API

 21ms

GET /start-sensing

Start MQTT traffic
 generation
~21ms

GET /services

200 OK Service List

Retrieve the Broker
Endpoint(s)
 21ms

MQTT Publish Sensor
 Data Stream

200
Broker.appInstanceId

start-sensing

Fig. 3. Sequence diagram of part of the described PoC evaluation, with measured response times.

MQTT data flows generated by all MQTT publishers that are
active at a given time. MQTT publishers are deployed as MEC
applications both in the fog and in the edge domains and are
activated according to an alternating pattern. Specifically, the
first publisher to be activated resided in the fog domain, the
second one in the edge domain, the third one in the fog, and
so on. MQTT traffic generation only lasts for a limited amount
of time, after which the publisher stops generating data and
remains silent. In this particular example, in order to keep
the figure readable, a maximum of five concurrent MQTT
clients were kept active at any given time. However, this is
not a generic upper bound, which would depend on available
resources. The asynchronous activation of publishers causes
a variable superposition of MQTT traffic at the subscriber,
resulting in a step-shaped curve. The fact that the subscriber
receives MQTT traffic from all publishers, regardless of the
technological domain they are deployed onto, proves the
effective interoperability of the proposed solution.

In this paper we focus on the application/service deployment
process and limit our proof of concept to the management
plane aspects of the proposed architecture. As for the data-

0 5 10 15 20 25 30 35 40 45 50 55 60
Time [s]

0

1

2

3

4

5

M
QT

T
tra

ffi
c

at
 si

nk
 [K

B
/s

]

Fig. 4. Evolution of MQTT traffic received by the MQTT subscriber (sink)
running in the core cloud, while varying the number of MQTT publishers and
their deployment domain.

7

plane performance, which depends on hardware capacity,
adopted technology, and geographic location, there is no
general consensus on typical values for the latency in the
three different domains this work considers, and only generic
assumptions are typically made [15].

However, based on practical experience, it is reasonable
to consider the data plane latency to be below 1ms for fog
resources, around 5ms for edge resources, and around 50ms
for core cloud resources.

VI. CONCLUSION

A novel architecture to deploy ETSI compliant Multi-access
Edge Computing for Industrial IoT has been proposed and
demonstrated by a proof-of-concept experiment. The solution
enables inter-operation among fog, edge and cloud computing
to configure and provide services with a high degree of
flexibility and adaptability in a complete Industry 4.0 context.
MEC applications can be seamlessly deployed over multiple
technological domains in a matter of tens of seconds and can
operate over different computing platforms thus transforming
the Industrial IoT into a service, namely IIoTaaS. The next step
will be to evolve the proposed architecture following upcoming
relevant standardization activities (e.g., ETSI MEC), believing
this could foster the industrial adoption of the framework as
a standard-compliant solution.

REFERENCES

[1] E. Ahmed, I. Yaqoob, A. Gani, M. Imran, and M. Guizani, “Internet-of-
things-based smart environments: state of the art, taxonomy, and open
research challenges,” IEEE Wireless Communications, vol. 23, no. 5, pp.
10–16, 2016.

[2] T. Taleb, I. Afolabi, and M. Bagaa, “Orchestrating 5G network slices to
support industrial internet and to shape next-generation smart factories,”
IEEE Network, vol. 33, no. 4, pp. 146–154, 2019.

[3] J. Cheng, W. Chen, F. Tao, and C.-L. Lin, “Industrial IoT in 5G environ-
ment towards smart manufacturing,” Journal of Industrial Information
Integration, vol. 10, pp. 10–19, 2018.

[4] Y. Cai, B. Starly, P. Cohen, and Y.-S. Lee, “Sensor data and information
fusion to construct digital-twins virtual machine tools for cyber-physical
manufacturing,” Procedia Manufacturing, vol. 10, pp. 1031–1042, 2017.

[5] F. Tao, L. Zhang, Y. Liu, Y. Cheng, L. Wang, and X. Xu, “Manufacturing
service management in cloud manufacturing: Overview and future
research directions,” J. Manuf. Sci. Eng., vol. 137, no. 4, 2015.

[6] Q. Qi and F. Tao, “A smart manufacturing service system based on edge
computing, fog computing, and cloud computing,” IEEE Access, vol. 7,
pp. 86 769–86 777, 2019.

[7] Multi-access edge computing (MEC); framework and reference
architecture. Accessed Dec. 30, 2020. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi gs/MEC/001 099/003/02.02.01
60/gs mec003v020201p.pdf

[8] G. S. S. Chalapathi, V. Chamola, A. Vaish, and R. Buyya, “Industrial
Internet of Things (IIOT) applications of edge and fog computing: A
review and future directions,” arXiv preprint arXiv:1912.00595, 2019.

[9] P. Habibi, S. Baharlooei, M. Farhoudi, S. Kazemian, and S. Khor-
sandi, “Virtualized sdn-based end-to-end reference architecture for fog
networking,” in 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA). IEEE,
2018, pp. 61–66.

[10] R. Vilalta, V. López, A. Giorgetti, S. Peng, V. Orsini, L. Velasco,
R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini et al., “Telcofog: A
unified flexible fog and cloud computing architecture for 5g networks,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 36–43, 2017.

[11] P. Pop, B. Zarrin, M. Barzegaran, S. Schulte, S. Punnekkat, J. Ruh,
and W. Steiner, “The fora fog computing platform for industrial iot,”
Information Systems, vol. 98, p. 101727, 2021.

[12] G. Davoli, D. Borsatti, D. Tarchi, and W. Cerroni, “FORCH: An
orchestrator for fog computing service deployment,” in 2020 IFIP
Networking Conference (Networking). IEEE, 2020, pp. 677–678.

[13] Unibo MEC API Tester. Accessed Dec. 30, 2020. [Online]. Available:
https://mecwiki.etsi.org/index.php?title=MEC Ecosystem

[14] Multi-access edge computing (MEC); edge platform application
enablement. Accessed Dec. 30, 2020. [Online]. Avail-
able: https://www.etsi.org/deliver/etsi gs/MEC/001 099/011/02.02.01
60/gs MEC011v020201p.pdf

[15] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia,
“Fog computing: a comprehensive architectural survey,” IEEE Access,
vol. 8, pp. 69 105–69 133, 2020.

Davide Borsatti received his B.S. and M.S. in Telecommunications Engi-
neering from University of Bologna in 2016 and 2018 respectively. He is
currently enrolled in the Electronics, Telecommunications, and Information
Technologies Engineering Ph.D. program at the University of Bologna. His
research interests include NFV, SDN, Intent Based Networking, MEC, and
5G Network slicing.

Gianluca Davoli (Member, IEEE) is a Post-Doc Researcher at the University
of Bologna, Italy. His research interests revolve around communication
networks, focusing on the new approaches to programmability, management,
and monitoring of software-based network infrastructures.

Walter Cerroni (Senior Member, IEEE) is an Associate Professor of com-
munication networks with the University of Bologna, Italy. His most recent
research interests include software-defined networking, network function
virtualization, service function chaining, intent-based networking, service
models for fog/edge computing platforms. He serves/served as a Series
Editor for the IEEE Communications Magazine, an Associate Editor for the
IEEE Communications Letters, and a Technical Program Co-Chair for IEEE-
sponsored international workshops, symposia and conferences.

Carla Raffaelli (Senior Member, IEEE) is Associate Professor at the
University of Bologna, Italy. She received her M.Sc. and Ph.D degrees
in Electronic and Computer Engineering (University of Bologna, Italy), in
1985 and 1990, respectively. Her research interests include performance
analysis and optimization of communication networks,switch architectures,
optical networks and 5G networks. She regularly acts as a reviewer for top
international conferences and journals. She is a member of the editorial board
of the journal Photonic Network Communications by Springer and associate
editor of IEEE OJ-COMS.

