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A NOTE ON RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV
SPACES

ALESSANDRO CARBOTTI1 AND GIOVANNI E. COMI2

Abstract. Taking inspiration from a recent paper by Bergounioux et al., we study the
Riemann-Liouville fractional Sobolev space W s,p

RL,a+(I), for I = (a, b) for some a, b ∈
R, a < b, s ∈ (0, 1) and p ∈ [1,∞]; that is, the space of functions u ∈ Lp(I) such that
the left Riemann-Liouville (1 − s)-fractional integral I1−s

a+ [u] belongs to W 1,p(I). We
prove that the space of functions of bounded variation BV (I) and the fractional Sobolev
space W s,1(I) continuously embed into W s,1

RL,a+(I). In addition, we define the space
of functions with left Riemann-Liouville s-fractional bounded variation, BV s

RL,a+(I), as
the set of functions u ∈ L1(I) such that I1−s

a+ [u] ∈ BV (I), and we analyze some fine
properties of these functions. Finally, we prove some fractional Sobolev-type embedding
results and we analyze the case of higher order Riemann-Liouville fractional derivatives.
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1. Introduction

The goal of this paper is to analyze in detail the connection between some functional
spaces defined through the Riemann-Liouville fractional operator and the classical Sobolev
and BV spaces on an interval I = (a, b) of the real line.

The intuitive idea of defining a fractional version of the derivative and integral operators
is as old as calculus itself, having being mentioned for the first time in an epistular
exchange between Leibniz and de l’Hôpital which dates back to 1695 [26]. Fractional
integrals and derivatives have proved to be useful in applications, since they arise naturally
in many contexts such as viscoelasticity, neurobiology and finance, see for instance [2,3,9,
17, 18]. Therefore, different examples of such operators are present in literature. Among
these ones, Riemann-Liouville and Caputo fractional derivatives are the most exploited
in the one-dimensional applications. Given a sufficiently smooth function u on an interval
(a, b) and s ∈ (0, 1), the left and right Riemann-Liouville s-fractional derivatives of u are
defined as

Ds
a+ [u] (x) := d

dx

1
Γ(1− s)

∫ x

a

u(t)
(x− t)sdt,

Ds
b− [u] (x) := − d

dx

1
Γ(1− s)

∫ b

x

u(t)
(t− x)sdt,

respectively, where Γ is Euler’s Gamma function. On the other hand, the left and right
Caputo s-fractional derivatives of u are set to be

CDs
a+[u](x) := 1

Γ(1− s)

∫ x

a

u′(t)
(x− t)s dt,

CDs
b−[u](x) := − 1

Γ(1− s)

∫ b

x

u′(t)
(t− x)s dt.

It is easy to notice that Caputo s-fractional derivatives are just given by a commutation
in the order of the operations of the left and right (1− s)-fractional integrals,

I1−s
a+ [u](x) := 1

Γ(1− s)

∫ x

a

u(t)
(x− t)s dt and I1−s

b− [u](x) := 1
Γ(1− s)

∫ b

x

u(t)
(t− x)s dt,

and the classical differentiation which define the Riemann-Liouville s-fractional deriva-
tives. Indeed, it is possible to show that the difference between these two notion of frac-
tional derivatives depends only on the values of u on the endpoints a, b: more precisely,
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for any u ∈ C1([a, b]) we have

Ds
a+[u](x) = CDs

a+u(x) + u(a)
Γ(1− s)(x− a)−s,

Ds
b−[u](x) = CDs

b−u(x) + u(b)
Γ(1− s)(b− x)−s.

These relations can be used to derive, at least formally, an interesting relation between
these notions of derivatives and the fractional Laplacian on the whole R (as it was done in
[11]). Indeed, by sending a→ −∞ and b→ +∞, we see that the Riemann-Liouville and
Caputo fractional derivatives coincide for functions in C∞c (R) (or even C1

c (R)). Therefore,
we can define the “improper” left and right Riemann-Liouville fractional derivatives of u
with fixed base points ±∞ as

Ds
−∞[u](x) := d

dx
I1−s
−∞ [u](x) = 1

Γ(1− s)

∫ x

−∞

u′(t)
(x− t)s dt,

Ds
+∞[u](x) := − d

dx
I1−s

+∞ [u](x) = − 1
Γ(1− s)

∫ +∞

x

u′(t)
(t− x)s dt.

Then, using the equivalent Marchaud formulation (see for instance [30, Section 13]), we
can prove that

Ds
−∞[u](x) +Ds

+∞[u](x) = s

Γ(1− s)

∫ +∞

0

2u(x)− u(x+ y)− u(x− y)
ys+1 dy

= s

2Γ(1− s)

∫ +∞

−∞

2u(x)− u(x+ y)− u(x− y)
|y|s+1 dy

= s

2csΓ(1− s) (−∆)
s
2 u(x),

where (−∆)
s
2 denotes the fractional Laplacian of order s

2 and

cs :=
(∫ +∞

−∞

1− cos(ω)
|ω|s+1 dω

)−1

.

In addition, as it has been pointed out also in [33, Section 1], it is easy to see that

Ds
−∞[u](x)−Ds

+∞[u](x) = 1
Γ(1− s)

∫ +∞

−∞

u′(t)
|x− t|s

dt = 1
Γ(1− s)ν1−s

I1−s[u′](x),

where
Iσ[v](x) := νσ

∫ +∞

−∞

v(t)
|x− t|1−σ

dt,

is the Riesz potential of order σ ∈ (0, 1) of a function v ∈ C∞c (R), and

νσ =
Γ
(

1−σ
2

)
2σ
√
πΓ

(
σ
2

) .
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This suggests that we may define a fractional derivative operator on the whole R for
u ∈ C∞c (R) by setting

∇su(x) := µs

∫ +∞

−∞

u′(t)
|x− t|s

dt = µs
ν1−s

I1−s[u′](x),

for some multiplicative constant µs > 0, so that

Ds
−∞[u](x)−Ds

+∞[u](x) = 1
Γ(1− s)µs

∇su(x).

This is indeed the one dimensional case of the new notion of fractional gradient on the
whole R, suitable also for a meaningful extension to Rn, for all n ≥ 1, which has been
investigated in some recent papers, as [13,14,31–34], with the aim of generalizing classical
vector calculus rules to the fractional setting, and thus providing a way to define weakly
fractionally differentiable functions.

In the case of a bounded open interval I = (a, b), the left (and right) Riemann-Liouville
fractional derivatives for regular functions have been widely studied in the literature (we
refer the interested reader to the monograph [30] and the bibliography therein), while
in recent years it has been considered the case of Lp-functions which admit left (and
right) Riemann-Liouville fractional derivatives in a weak sense, thus defining the left (and
right) Riemann-Liouville fractional Sobolev spaces W s,p

RL,a+(I) (and W s,p
RL,b−(I)) [7, 8, 25].

In this paper, we answer some questions posed in [7]; namely, we extend [7, Theorem 4.1]
from SBV to BV by proving that BV (I), continuously embed into W s,1

RL,a+(I) (Theorem
3.4). We actually show also that the embedding W s,1(I) ↪→ W s,1

RL,a+(I) is continuous
(Proposition 3.7). The continuity of these embeddings can be useful in many variational
models involving this kind of fractional operators. In addition, we advance the study of
the spacesW s,p

RL,a+(I) by proving Sobolev-type embedding theorems (Theorem 6.1) and by
considering also the case s > 1. Furthermore, we introduce the space BV s

RL,a+(I) of the
functions with left Riemann-Liouville s-fractional bounded variation; that is, functions in
L1(I) with (1−s)-fractional integral in BV (I). Then, we study some of its properties. For
instance, we show that a function u ∈ BV s

RL,a+(I) belongs to W s,1
RL,a+(I) if and only if its

distributional left Riemann-Liouville fractional derivative Dsa+[u] is absolutely continuous
with respect to the one-dimensional Lebesgue measure L 1 (Proposition 4.3). In addition,
we extend the case p = 1 of the fractional Sobolev-type embedding by proving that
BV s

RL,a+(I) ↪→ L
1

1−s ,∞(I) (Theorem 6.3).
Since both left and right Riemann-Liouville fractional Sobolev spaces behave exactly

in the same way for the results that we are interested into, we shall consider only the left
ones. We specify further in the Remarks 2.20 and 2.31 how the two spaces are related
and, with a simple counterexample, we show that they do not coincide.
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The paper is structured in the following way. In Section 2, after having set some nota-
tion and recalled definitions and preliminary notions, we prove some representation for-
mulas for Riemann-Liouville fractional Sobolev functions and duality relations involving
the Caputo fractional derivative. Section 3 is devoted to the aforementioned embedding
results, and, in addition, to the analysis of the asymptotics as s → 1− of the Riemann-
Liouville fractional derivative Ds

a+[u] for a function u ∈ BV (I). We also provide an
extension result for the Riemann-Liouville fractional integral to the space of finite Radon
measures on an open bounded interval I, and a counterexample to the embedding re-
sults in the case in which the interval is instead unbounded. In Section 4 we define the
space BV s

RL,a+(I) and we prove that it strictly contains W s,1
RL,a+(I) and hence, thanks to

Theorem 3.4, also BV (I). Moreover, we show through an example that, despite the regu-
larization properties of the fractional integral, the fractional derivative measure Dsa+[u] of
a function u ∈ BV s

RL,a+(I) does not enjoy any particular absolute continuity property in
general, since it may involve Dirac delta measures. In Section 5, we study the continuity
of the (1 − s)-fractional integral in the Sobolev space W 1,p(I) for 1 ≤ p ≤ ∞. As a
corollary, we obtain the well known result on the inclusion relations between Riemann-
Liouville fractional Sobolev spaces. In the case p =∞, we show through a simple example
that, if the function does not vanish in the initial point, its Riemann-Liouville fractional
derivative cannot be essentially bounded, even if the function is locally analytic. We con-
clude the section with some results on the improved differentiability properties of Isa+[u]
for Sobolev functions u ∈ W 1,p(I). Then, in Section 6 we prove some fractional Sobolev-
type embedding theorems for W s,p

RL,a+(I) and BV s
RL,a+(I). In Section 7 we extend some

results obtained in the rest of the paper by taking into account higher order fractional
derivatives; namely, we prove the continuity of the fractional integral between Sobolev
spaces of greater integer order and the inclusion of the space of functions with bounded
Hessian in a higher order Riemann-Liouville fractional Sobolev space. We conclude the
work with some open questions in Section 8.

2. Notation and preliminaries

Through this paper we shall work on bounded open intervals I = (a, b) in R, for some
a, b ∈ R, a < b. Following the usual notation, the map Γ : (0,∞) → (0,∞) is Euler’s
Gamma function, see [6]. As it is customary, we denote by M(V ) the space of Radon
measures on some Borel set V ⊂ R, and we will consider mainlyM(I) andM(I), where
I = [a, b]. We shall say that ρ ∈ C∞c ((−1, 1)) is a standard mollifier if ρ ≥ 0, ρ(x) = ρ(−x)
and

∫ 1

−1
ρ dx = 1. In addition, for all ε > 0, we set ρε(x) := 1

ε
ρ
(
x

ε

)
. For k ∈ N, h ∈ N0,



RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES 6

p ∈ [1,∞] and β ∈ (0, 1) we define the following spaces

W k,p
a (I) :=

{
u ∈ W k,p(I) : u(j)(a) = 0 for all j ∈ {0, . . . , k − 1}

}
,

Ch,β
a (I) :=

{
u ∈ Ch,β(I) : u(j)(a) = 0 for all j ∈ {0, . . . , h}

}
,

where
Ch,β(I) := {u ∈ Ch(I) : u(h) ∈ C0,β(I)}.

We employ analogous definitions when the left endpoint a is replaced with the right
endpoint b.

For the convenience of the reader we recall in this section the definitions and some
properties of a few well known functional spaces.

Definition 2.1. Let 1 ≤ p < ∞. We say that a measurable function u belongs to the
weak Lp-space Lp,∞(I) if

sup
t>0

tpL 1({x ∈ I : |u(x)| > t}) <∞.

The function
(0,+∞) 3 t→ L 1({x ∈ I : |u(x)| > t})

is called the distribution function of u. The space Lp,∞(I) is equipped with the quasi-norm

‖u‖Lp,∞(I) := sup
t>0

tL 1({x ∈ I : |u(x)| > t})
1
p .

We recall a well known result on the embeddings of the weak Lp spaces on sets with
finite measure (see [22, Exercise 1.1.11]).

Lemma 2.2. For all 1 ≤ r < p we have the continuous embeddings

Lp(I) ↪→ Lp,∞(I) ↪→ Lr(I),

with the estimates
‖u‖Lp,∞(I) ≤ ‖u‖Lp(I) for all u ∈ Lp(I),

and

‖u‖Lr(I) ≤
(

p

p− r

) 1
r

(b− a)
1
r
− 1
p‖u‖Lp,∞(I) for all u ∈ Lp,∞(I).

2.1. BV functions on the real line.

Definition 2.3. Let U be an open set in R. We say that u ∈ BV (U) if u ∈ L1(U) and
its distributional derivative Du is a finite Radon measure on U ; that is, if there exists
µ ∈M(U) such that ∫

U
u(x)φ′(x)dx = −

∫
U
φ(x)dµ(x),

for all φ ∈ C1
c (U), in which case we have µ = Du.
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The space BV (U) is a Banach space when equipped with the norm

‖u‖BV (U) := ‖u‖L1(U) + |Du|(U).

In addition, BV functions on the real line are essentially bounded: we recall the statement
in the case in which U is a segment.

Lemma 2.4. We have BV (I) ↪→ L∞(I) with a continuous embedding. In particular,

‖u‖L∞(I) ≤ max
{

1, 1
b− a

}
‖u‖BV (I), (2.1)

for all u ∈ BV (I).

Proof. Thanks to [20, Proof of Lemma 5.21, Claim 3], we know that, for all u ∈ BV (I)
and L 1-a.e. z ∈ I,

|u(z)| ≤ 1
b− a

∫ b

a
|u(x)| dx+ |Du|(I).

Hence, (2.1) follows immediately. �

As a consequence, it is not difficult to show that, if u ∈ BV (I) and we set

ũ(x) =

u(x) if x ∈ I,
0 if x ∈ R \ I,

(2.2)

then ũ ∈ BV (R). In addition, we may prove that, if u ∈ BV (I), the approximate limits
of u in a from the right, u(a+), and in b from the left, u(b−), exist and they coincide with
the precise representative of 2ũ on those points. In other words, we have

u(a+) := lim
r→0

1
r

∫ a+r

a
u(x) dx and u(b−) := lim

r→0

1
r

∫ b

b−r
u(x) dx,

so that, thanks to Lemma 2.4, we obtain

max{|u(a+)|, |u(b−)|} ≤ max
{

1, 1
b− a

}
‖u‖BV (I). (2.3)

In addition, thanks to [4, Corollary 3.80] it is possible to see that, for any standard
mollifier ρ, we have

(ρε ∗ u)(a)→ u(a+)
2 and (ρε ∗ u)(b)→ u(b−)

2 . (2.4)

Finally, it is easy to notice that, consistently with [7, Remark 4.1],

Dũ = Du I + u(a+)δa − u(b−)δb, (2.5)

where δ is the Dirac delta measure; while clearly Dũ = 0 in R \ I.
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Remark 2.5. It is well known that W 1,p(I) ↪→ BV (I) for all p ∈ [1,∞], so that, thanks
to Lemma 2.4 and Hölder’s inequality, for all Sobolev function u ∈ W 1,p(I) we have

‖u‖L∞(I) ≤ max
{

1, 1
b− a

}
‖u‖BV (I) ≤ max {(b− a), 1} (b− a)−

1
p‖u‖W 1,p(I).

As a consequence, the approximate limits of u in a from the right, u(a+), and in b from
the left, u(b−), exist and satisfy

max{|u(a+)|, |u(b−)|} ≤ max {(b− a), 1} (b− a)−
1
p‖u‖W 1,p(I).

In particular, Sobolev functions on an interval I admit absolutely continuous representa-
tives in AC(I) (see [4, Theorem 3.28 and Definition 3.31] and the subsequent observations
therein). Therefore, in the following we shall identify Sobolev functions with their abso-
lutely continuous representatives, and write u(a), u(b) instead of u(a+), u(b−).

Now, we recall some known facts from Measure Theory. If µ ∈ M(I), then, by the
Radon-Nikodym Theorem, we can split it into an absolutely continuous part (with respect
to the Lebsegue measure) µac, and a singular part µs, such that µ = µac + µs. Moreover,
we can decompose the singular part µs into an atomic measure µj and a diffuse measure
µc; in this way, we have

µ = µac + µs = µac + µj + µc.

In particular, this decomposition induces an analogous decomposition on BV functions on
the real line, which does not have a counterpart in higher dimensions. Namely, following
[4, Corollary 3.33], for any u ∈ BV (I) we have

u = uac + uj + uc,

where uac ∈ W 1,1(I), uj is a jump function and uc is a Cantor function; that is, they
satisfy

(Du)ac = u′acL
1, (Du)j = Duj and (Du)c = Duc.

2.2. Fractional Sobolev spaces on the real line. We recall here the definition of
Gagliardo-Slobodeckij fractional Sobolev space. For an exhaustive exposition of this the-
ory, we refer the interested reader to [16].

Definition 2.6. Let s ∈ (0, 1) and p ∈ [1,∞). We define the fractional Sobolev space
W s,p(I) as

W s,p(I) :=

u ∈ Lp(I) : (x, y)→ u(x)− u(y)
|x− y|

1
p

+s
∈ Lp(I × I)

 .
We define the Gagliardo-Slobodeckij seminorm of u as

[u]W s,p(I) :=
(∫ b

a

∫ b

a

|u(x)− u(y)|p
|x− y|sp+1 dxdy

)1/p

.
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The space W s,p(I), endowed with the norm

‖u‖W s,p(I) := ‖u‖Lp(I) + [u]W s,p(I),

is a Banach space, which is Hilbert when p = 2 (see [16]).

Remark 2.7. In the case s > 1, s = m + σ for some m ∈ N and σ ∈ (0, 1), we say that
u belongs to the fractional Sobolev space W s,p(I) if u ∈ Wm,p(I) and u(m) ∈ W σ,p(I).

We recall that the density of smooth compactly supported functions in W s,p(I) is en-
sured only in some cases.

Theorem 2.8 ([27], Theorem D.2.1.). Let I a bounded open interval, s ∈ (0, 1) and
1 ≤ p <∞ such that sp < 1.
Then, we have C∞c (I)‖·‖Ws,p(I) = W s,p(I); that is, C∞c (I) is dense in W s,p(I).

Remark 2.9. As a byproduct of Theorem 2.8, we have that also C1
c (I) is dense inW s,1(I).

Now, we recall a fractional Hardy inequality introduced in [19]. For the sake of sim-
plicity, we state it only in the one dimensional case for open bounded intervals, though
the result holds in any dimension and for any open bounded set with Lipschitz boundary;
see also [27, Theorem D.1.4] for a different proof.

Lemma 2.10. [27, Theorem D.1.4] Let s ∈ (0, 1), p ∈ [1,∞) such that sp < 1 and
I = (a, b). Then, there exists c = c(s, p, a, b) > 0 such that∫ b

a

|u(x)|p
|δI(x)|spdx ≤ c ‖u‖pW s,p(I) for all u ∈ W s,p(I),

where |δI(x)| := dist(x, ∂I) = min{x− a, b− x}.

2.3. Fractional integrals.

Definition 2.11. Let u ∈ L1 (I) and s ∈ (0, 1). We define the left and right Riemann-
Liouville s-fractional integrals as

Isa+ [u] (x) := 1
Γ (s)

∫ x

a

u (t)
(x− t)1−s dt, (2.6)

and
Isb− [u] (x) := 1

Γ (s)

∫ b

x

u (t)
(t− x)1−s dt. (2.7)

Remark 2.12. It is not difficult to check that definitions (2.6) and (2.7) are well posed
for all u ∈ L1(I) and s ∈ (0, 1). Indeed, we have

‖Isa+ [|u|] ‖L1(I) = 1
Γ (s)

∫ b

a

∫ x

a

|u(t)|
(x− t)1−s dt dx = 1

Γ (s)

∫ b

a

∫ b

t

|u(t)|
(x− t)1−s dx dt

= 1
sΓ (s)

∫ b

a
|u(t)|(b− t)s dt ≤ (b− a)s

Γ (s+ 1)‖u‖L
1(I),
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so that Isa+ [|u|] ∈ L1(I), which implies Isa+[u] ∈ L1(I) with the same bound on the L1-
norm. In particular, Isa+ [u] (x) is well defined for L 1-a.e. x ∈ I. A similar argument
shows that also Isb− [u] ∈ L1(I), with

‖Isb− [u] ‖L1(I) ≤
(b− a)s
Γ (s+ 1)‖u‖L

1(I),

so that Isb− [u] is well defined almost everywhere in I.

For the ease of the reader, we summarize in the following Propositions 2.15 and 2.18
some results on the continuity properties of Isa+ presented in [30, Section 3] and [24, The-
orem 4]. As a preliminary result, we recall here the known fact that s-Riemann-Liouville
fractional integrals are continuous mappings from L1(I) into L

1
1−s ,∞(I), in analogy with

the continuity properties of the Riesz potential of order s on the whole R, defined as

Is[v](x) :=
Γ
(

1−s
2

)
2s
√
πΓ

(
s
2

) ∫ +∞

−∞

v(t)
|x− t|1−s

dt, (2.8)

for v ∈ L1(R), for which we refer to [35, Chapter 5] and [23, Chapter 1], for instance.

Lemma 2.13. Let s ∈ (0, 1). The fractional integral Isa+ is a weak type
(
1, 1

1−s

)
operator;

namely, there exists Cs > 0 such that

L 1
({
x ∈ I : |Isa+[u](x)| > t

})
≤ Cs

(‖u‖L1(I)

t

) 1
1−s

for all u ∈ L1(I). (2.9)

Proof. Given u ∈ L1(I), we set

ũ(x) :=

u(x) if x ∈ I
0 if x /∈ I,

and, for c ∈ R, we set Hc(x) := H(x − c), where H denotes the Heaviside function
H(x) := χ(0,+∞)(x). Clearly, we have

‖u‖L1(I) = ‖ũ‖L1(R) = ‖ũHa‖L1(R) .

Now, we notice that, for L 1-a.e. x ∈ I,

Isa+[u](x) = Isa+[ũ](x),

and
Isa+[ũ](x) = ((ũHa) ∗ (KH))(x), (2.10)

where ∗ denotes the usual convolution operator on R, andK(y) := 1
Γ(s)|y|1−s . In addition,

for all x ∈ R we have

|Isa+[ũ](x)| ≤ ((|ũ|Ha) ∗K)(x) = 1
Γ(s)

∫ +∞

−∞

|ũ|(t)Ha(t)
|x− t|1−s

dt = csI
s(|ũ|Ha)(x),
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where Is is the Riesz potential of order s on the whole R, as defined in (2.8), and

cs =
2s
√
πΓ

(
s
2

)
Γ(s)Γ

(
1−s

2

) .
Thus, thanks to the weak type

(
1, 1

1−s

)
estimates for the Riesz potentials on the whole R

(see [35, Chapter 5, Theorem 1] and [23, Theorem 1.2.3]), there exists a constant Cs > 0
such that, for all t > 0,

L 1
({
x ∈ I : |Isa+[u](x)| > t

})
= L 1

({
x ∈ I : |Isa+[ũ](x)| > t

})
≤ L 1 ({x ∈ R : csIs(|ũ|Ha)(x) > t})

≤ Cs

(‖ũHa‖L1(R)

t

) 1
1−s

= Cs

(‖u‖L1(I)

t

) 1
1−s

.

This ends the proof. �

Remark 2.14. We notice that also Isb− is a weak type
(
1, 1

1−s

)
operator. Indeed, using

the same notation as in the proof of Lemma 2.13, it is enough to observe that

Isb−[ũ] = (ũHb) ∗ (KH−),

where Hb(x) := H(b− x) and H−(x) := H(−x). Then the proof is analogous.

Proposition 2.15 (Continuity properties of the fractional integral in Lp spaces). Let
s ∈ (0, 1). The fractional integral Isa+ is a continuous operator

(1) from Lp(I) into Lp(I) for all p ∈ [1,∞],
(2) from L1(I) into L

1
1−s ,∞(I), and so into Lr(I), for all r ∈

[
1, 1

1−s

)
,

(3) from Lp(I) into Lr(I) for all p ∈
(
1, 1

s

)
and r ∈

[
1, p

1−sp

]
,

(4) from Lp(I) into C0,s− 1
p (I) for all p ∈

(
1
s
,∞

)
,

(5) from L1/s(I) into Lr(I) for all r ∈ [1,∞),
(6) from L∞(I) into C0,s(I).

Proof. Point (2) is a straightforward consequence of Lemmas 2.13 and 2.2, while the other
points follow from [30, Section 3] and [24, Theorem 4]. �

Remark 2.16. We notice that point (i) of Proposition 2.15 is a consequence of a gener-
alized Minkowski inequality, as observed in the proof of [30, Theorem 2.6.]. Alternatively,
we may use the fact that Isa+ is bounded from L1(I) into L1(I), thanks to Remark 2.12,
and from L∞(I) to L∞(I), thanks to the trivial estimate

|Isa+[u](x)| ≤ (b− a)s
Γ(s+ 1) ‖u‖L∞(I) for L 1-a.e. x ∈ I,

so that we can apply the Riesz-Thorin Theorem [22, Theorem 1.3.4] to get the continuity
from Lp(I) into Lp(I) for all 1 < p < ∞. In particular, since the constants of continuity
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from L1(I) into L1(I) and from L∞(I) into L∞(I) coincide, the Riesz-Thorin Theorem
gives a bound for the constant of continuity Cs,p from Lp(I) into Lp(I), namely,

Cs,p ≤
(b− a)s
Γ(s+ 1) for all p ∈ [1,∞].

This shows that Cs,p is uniformly bounded in p ∈ [1,∞].

Corollary 2.17. Let s ∈ (0, 1). The fractional integral Isa+ is a continuous operator from
BV (I) into C0,s(I).

Proof. The statement follows by combining Lemma 2.1 and the last point of Proposition
2.15. �

Proposition 2.18 (Continuity properties of the fractional integral in Hölder spaces). Let
s ∈ (0, 1) and α ∈ (0, 1]. The fractional integral Isa+ is a continuous operator

(1) from C0,α
a (I) onto C0,α+s

a (I) if α + s < 1,
(2) from C0,α

a (I) onto H1,1
a (I) if α + s = 1,

(3) from C0,α
a (I) onto C1,α+s−1

a (I) if α + s > 1,
where H1,1

a (I) is the space of functions f ∈ C0(I) that satisfy f(a) = 0 and admit ω(h) =
|h|| log |h|| as a local modulus of continuity; namely, for which there exists C > 0 such
that

|f(x+ h)− f(x)| ≤ C|h|| log |h|| for all h ∈ (a− x, b− x) \ {0} and x ∈ I.

Proof. We refer to [30, Theorem 3.1], [30, Lemma 13.1] and the subsequent remark therein
for the proof of the continuity of Isa+ in the cases α + s ≤ 1 and α + s > 1 respectively.
Then, we have that the operator Isa+ is also onto by [30, Theorem 13.17], which actually
holds for functions with a more general modulus of continuity and that vanish in the
endpoint a. �

We recall now the semigroup law, one of the most useful property of the fractional
integrals, for which we refer to [30, Section 2.3, formula (2.21)] (see also [30, Theorem
2.5]).

Lemma 2.19 (Semigroup law). Let α, β ∈ (0, 1) such that α + β ≤ 1 and u ∈ L1(I).
Then, we have

Iαa+[Iβa+[u]] = Iα+β
a+ [u],

where I1
a+[u](x) :=

∫ x

a
u(t)dt.

Remark 2.20. As stated in [30, Section 2.3], the operators Isa+ and Isb− are related by a
simple change of variable through the following formula

Isa+[u](Q(x)) = Isb−[uQ(·)](x),

where Q(x) := b+ a− x and uQ(·) := u(Q(·)).
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We recall now a simple duality relation between Isa+ and Isb−, which shall prove to be
useful in the sequel.

Lemma 2.21. Let u, v ∈ L1(I) and s ∈ (0, 1). Then we have∫ b

a
Isa+[u](x) v(x) dx =

∫ b

a
u(x) Isb−[v](x) dx. (2.11)

Proof. By Fubini’s Theorem, we have∫ b

a
Isa+[u](x) v(x) dx = 1

Γ (s)

∫ b

a

∫ x

a

u(t)
(x− t)1−s v(x) dt dx

= 1
Γ (s)

∫ b

a

∫ b

t

v(x)
(x− t)1−s u(t) dx dt

=
∫ b

a
u(t) Isb−[v](t) dt.

�

We conclude this section by recalling a well known result on the convergence of Isa+ to
the identity operator as s→ 0+.

Lemma 2.22. For any u ∈ L1(I) we have ‖Isa+[u]−u‖L1(I) → 0 as s→ 0+. In particular,
if u ∈ C1(I), then Isa+[u](x)→ u(x) for all x ∈ I and it holds that

Isa+[u](x) = u(a)
Γ(s+ 1)(x− a)s + 1

Γ(s+ 1)

∫ x

a
u′(t)(x− t)sdt. (2.12)

Analogous statements hold for Isb−.

Proof. We start by assuming that u ∈ C1(I), then, thanks to a simple integration by
parts, equality (2.12) immediately follows. Thus, letting s → 0+ we immediately obtain
pointwise convergence, and by Lebesgue’s dominated convergence theorem we have con-
vergence in L1(I). Otherwise, if u ∈ L1(I), for any ε > 0 there exists v ∈ C1(I) such
that

‖v − u‖L1(I) ≤ ε.

Then, by Remark 2.12, we have
‖Isa+[u]− u‖L1(I) ≤ ‖Isa+[u− v]‖L1(I) + ‖Isa+[v]− v‖L1(I) + ‖v − u‖L1(I)

≤ max
{

1, (b− a)s
Γ(s+ 1)

}
‖v − u‖L1(I) + ‖Isa+[v]− v‖L1(I)

≤ max
{

1, (b− a)s
Γ(s+ 1)

}
ε+ ‖Isa+[v]− v‖L1(I).

This implies that
lim sup
s→0+

‖Isa+[u]− u‖L1(I) ≤ ε,

so that the claim is proved, since ε is arbitrary. �
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2.4. Fractional derivatives.

Definition 2.23 (Riemann-Liouville fractional derivatives). Let s ∈ (0, 1). For any
u : I → R sufficiently smooth, so that I1−s

a+ [u] and I1−s
b− [u] are differentiable, we define the

left and right Riemann-Liouville s-fractional derivatives of u as

Ds
a+ [u] (x) := d

dx
I1−s
a+ [u] (x) , (2.13)

and
Ds
b− [u] (x) := − d

dx
I1−s
b− [u] (x) . (2.14)

Remark 2.24. As a consequence of the preceding Proposition 2.18, for 0 < s < α < 1
and u ∈ C0,α

a (I), we have I1−s
a+ [u] ∈ C1,α−s

a (I). Therefore, α-Hölder continuity with α > s

is a sufficient condition to ensure the existence of (2.13) and (2.14).

If one applies the Riemann-Liouville fractional integrals to the first derivative u′, when-
ever this operation makes sense, one has the following alternative definitions of left and
right fractional derivatives.

Definition 2.25 (Caputo fractional derivatives). Let s ∈ (0, 1). For any u ∈ C1(I) we
define the left and right Caputo s-fractional derivatives of u as

CDs
a+[u](x) := I1−s

a+ [u′](x) = 1
Γ(1− s)

∫ x

a

u′(t)
(x− t)sdt. (2.15)

CDs
b−[u](x) := −I1−s

b− [u′](x) = − 1
Γ(1− s)

∫ b

x

u′(t)
(t− x)sdt. (2.16)

We notice that the minimal functional spaces in which (2.15) and (2.16) are well defined
are given by

C1,s
a+ :=

{
f : (a,+∞)→ R : f ∈ AC

(
(a, t)

)
and Θs,f,t ∈ L1

(
(a, t)

)
, for all t > a

}
.

(2.17)

and

C1,s
b− :=

{
f : (−∞, b)→ R : f ∈ AC

(
(t, b)

)
and Ψs,f,t ∈ L1

(
(t, b)

)
, for all t < b

}
.

(2.18)

where
(a, t) 3 τ 7→ Θs,f,t(τ) := f

′(τ)(t− τ)−s

and
(t, b) 3 τ 7→ Ψs,f,t(τ) := f

′(τ)(τ − t)−s;
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see e.g. [10] for more details about this fact. We remark that, in the notation of [10], the
space C1,s

a+ is the space Ck,β
a with k = 1 and β = s, while the function Θs,f,t is Θ1,s,f,t.

For u ∈ AC(I), a simple computation relates Riemann-Liouville and the Caputo frac-
tional derivatives. Indeed, by formula (2.12) with 1− s in place of s we have

1
Γ(1− s)

∫ x

a

u(t)
(x− t)s dt = u(a)

Γ(2− s)(x− a)1−s + 1
Γ(2− s)

∫ x

a
u′(t)(x− t)1−s dt. (2.19)

Hence, differentiating in x on both sides of (2.19) we obtain the following formula

Ds
a+[u](x) = CDs

a+u(x) + u(a)
Γ(1− s)(x− a)−s. (2.20)

Analogously, for right derivatives we have

Ds
b−[u](x) = CDs

b−u(x) + u(b)
Γ(1− s)(b− x)−s. (2.21)

Therefore, Riemann-Liouville and Caputo fractional derivatives coincide for all u ∈ AC(I)
that vanish in the initial point a for left derivatives, or in the final point b for right
derivatives.

We also notice that, if u ∈ AC(I), we can exploit formula (2.20) to obtain another
representation of the left Riemann-Liouville fractional derivative:

Ds
a+[u](x) = u(a)

Γ(1− s)(x− a)s + 1
Γ(1− s)

∫ x

a

u′(t)
(x− t)sdt

= u(a)
Γ(1− s)(x− a)s + 1

Γ(1− s)

∫ x

a
u′(t)

(
s
∫ x−a

x−t
ξ−s−1dξ + 1

(x− a)s

)
dt

= u(x)
Γ(1− s)(x− a)s + s

Γ(1− s)

∫ x−a

0

∫ x

x−ξ
u′(t)ξ−s−1 dt dξ

= u(x)
Γ(1− s)(x− a)s + s

Γ(1− s)

∫ x−a

0

u(x)− u(x− ξ)
ξs+1 dξ

= u(x)
Γ(1− s)(x− a)s + s

Γ(1− s)

∫ x

a

u(x)− u(t)
(x− t)s+1 dt.

(2.22)

This different representation formula of the left Riemann-Liouville fractional derivative is
known as the left Marchaud fractional derivative:

MDs
a+[u](x) := u(x)

Γ(1− s)(x− a)s + s

Γ(1− s)

∫ x

a

u(x)− u(t)
(x− t)s+1 dt;

For a precise treatment of this fractional differential operator, we refer to [21] and [30].

Now, we recall the notion of Lp-representability.

Definition 2.26. Let 1 ≤ q ≤ ∞ and u ∈ Lq(I). We say that u is Lp-representable if
u ∈ Isa+(Lp(I)) or u ∈ Isb−(Lp(I)) for some 1 ≤ p ≤ q and s ∈ (0, 1).
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From Proposition 2.15, we see that, for all 1 ≤ p ≤ ∞ and s ∈ (0, 1), we have

Isa+(Lp(I)) ↪→ Lp(I).

However, the above definition is nontrivial since the inclusion is strict, as it is shown by
the following example.

Example 2.27. Consider

u(x) := (x− a)s−1

Γ(s)
for some s ∈ (0, 1). Then we have u ∈ Lp(I) for all 1 ≤ p < 1

1−s , and, for all x ∈ I, we
see that

I1−s
a+ [u](x) = 1

Γ(1− s)Γ(s)

∫ x

a
(t− a)s−1(x− t)−s dt = 1

Γ(1− s)Γ(s)

∫ 1

0
σs−1(1− σ)−sdσ

= β(s, 1− s)
Γ(1− s)Γ(s) = 1, (2.23)

by the properties of Euler’s beta function β (or Euler’s first integral, see [6]). Therefore,
we conclude that

Ds
a+[u](x) = 0 for all x ∈ I, (2.24)

while the left Caputo s-fractional derivative is not well defined. We prove now that the
equation

Isa+[f ] = u (2.25)

has no solution in Lp(I). In fact, suppose by contradiction that there exists f ∈ Lp(I)
satisfying (2.25). If we apply the (1−s)-fractional integral on both sides of (2.25), thanks
to Lemma 2.19 and (2.23), we get∫ x

a
f(t) dt = I1

a+[f ](x) = I1−s
a+ [Isa+[f ]](x) = I1−s

a+ [u](x) = 1,

for all x ∈ I. Therefore, differentiating on both sides of the equation, we obtain f = 0,
which is clearly a contradiction.

The next lemma gives a characterization of Lp-representability. We are going to state
and prove it only in the case of left fractional integral, the other case being analogous.

Lemma 2.28 (Lp-representability criterion). Let q ∈ [1,∞], u ∈ Lq(I), s ∈ (0, 1) and
p ∈ [1, q]. We have that u ∈ Isa+(Lp(I)) if and only if I1−s

a+ [u] ∈ W 1,p(I) and I1−s
a+ [u](a) = 0.

Proof. If u ∈ Isa+(Lp(I)), then u = Isa+[f ] for some f ∈ Lp(I); therefore, using Lemma
2.19, we get

I1−s
a+ [u](x) = I1−s

a+ [Isa+[f ]](x) = I1
a+[f ](x) =

∫ x

a
f(t)dt ∈ W 1,p(I),



RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES 17

and I1−s
a+ [u](a) = I1

a+[f ](a) = 0. On the other hand, if I1−s
a+ [u] ∈ W 1,p(I) and I1−s

a+ [u](a) =
0, then I1−s

a+ [u] admits an absolutely continuous representative, its pointwise derivative
Ds
a+[u] is well defined L 1-a.e. and satisfies

I1−s
a+ [u](x) =

∫ x

a
Ds
a+[u](t)dt = I1

a+[Ds
a+[u]](x) = I1−s

a+ [Isa+[Ds
a+[u]]](x), (2.26)

where we used Lemma 2.19 in the last equality. Therefore, by applying D1−s
a+ to both

sides of the equation and exploiting (2.26), we conclude that, for L 1-a.e. x ∈ I,

u(x) = d

dx

∫ x

a
u(t) dt = d

dx
Isa+[I1−s

a+ [u]](x) = D1−s
a+ [I1−s

a+ [u]](x)

= D1−s
a+ [I1−s

a+ [Isa+[Ds
a+[u]]]](x) = d

dx
Isa+[I1−s

a+ [Isa+[Ds
a+[u]]]](x)

= d

dx

∫ x

a
Isa+[Ds

a+[u]](t) dt = Isa+[Ds
a+[u]](x),

with Ds
a+[u] ∈ Lp(I), since I1−s

a+ [u] ∈ W 1,p(I); so that u ∈ Isa+(Lp(I)), and this concludes
the proof. �

2.5. Riemann-Liouville fractional Sobolev spaces. We introduce now the left Riemann-
Liouville fractional Sobolev spaces.

Definition 2.29 (Riemann-Liouville fractional Sobolev spaces). Let p ∈ [1,∞] and
s ∈ (0, 1). We define the left Riemann-Liouville fractional Sobolev space of order s and
summability p as

W s,p
RL,a+ (I) :=

{
u ∈ Lp (I) : I1−s

a+ [u] ∈ W 1,p(I)
}
. (2.27)

Remark 2.30. Clearly, it is possible to define in an analogous way the right Riemann-
Liouville fractional Sobolev spaces

W s,p
RL,b−(I) :=

{
u ∈ Lp (I) : I1−s

b− [u] ∈ W 1,p(I)
}
.

Remark 2.31. We notice that, if u ∈ W s,1
RL,a+(I), we have uQ ∈ W s,1

RL,b−(I), thanks to
Remark 2.20. However, this does not necessarily imply that u ∈ W s,1

RL,b−(I). Indeed, let
I = (0, 1) and consider

u(x) := xs−1

Γ(s) .

By Example 2.27, we have I1−s
0+ [u](x) = 1 for any x ∈ I, and so I1−s

0+ [u] ∈ W 1,1((0, 1)).
On the other hand, we have

I1−s
1− [u](x) = 1

Γ(1− s)Γ(s)

∫ 1

x
ts−1(t− x)−sdt = 1

Γ(1− s)Γ(s)

∫ 1
x

1
ωs−1(ω − 1)−sdω,
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and this function belongs to L1((0, 1))\W 1,1((0, 1)). It is easy to check the L1-summability.
On the other hand, for any ϕ ∈ C1

c (I), we have∫ 1

0
I1−s

1− [u](x)ϕ′(x) dx = 1
Γ(1− s)Γ(s)

∫ 1

0

∫ 1
x

1
ωs−1(ω − 1)−sϕ′(x) dω dx

= 1
Γ(1− s)Γ(s)

∫ ∞
1

∫ 1
ω

0
ωs−1(ω − 1)−sϕ′(x) dx dω

= 1
Γ(1− s)Γ(s)

∫ ∞
1

ωs−1(ω − 1)−sϕ
( 1
ω

)
dω

= 1
Γ(1− s)Γ(s)

∫ 1

0
τ 1−s(1− τ)−sτ sϕ(τ) dτ

τ 2

= 1
Γ(1− s)Γ(s)

∫ 1

0

1
τ(1− τ)sϕ(τ) dτ,

which means that the weak derivative of I1−s
1− [u](x) is

− 1
Γ(1− s)Γ(s)

1
x(1− x)s ,

and so we conclude that

Ds
1−[u](x) = 1

Γ(1− s)Γ(s)
1

x(1− x)s /∈ L
1(I).

Remark 2.20 actually shows that u ∈ W s,p
RL,a+(I) if and only if uQ ∈ W s,p

RL,b−(I), where
Q(x) = a + b− x, though Remark 2.31 clarifies that W s,p

RL,a+(I) 6= W s,p
RL,b−(I), in general.

Nevertheless, since our results are analogous both for left and for right fractional integrals
and derivatives, from this point on we shall work with the left Riemann-Liouville fractional
Sobolev spaces.

It is not difficult to see that the space W s,p
RL,a+ (I), endowed with the norm

‖u‖W s,p
RL,a+(I) := ‖u‖Lp(I) +

∥∥∥I1−s
a+ [u]

∥∥∥
W 1,p(I)

, (2.28)

is a Banach space.
In the light of Definition 2.29, we may rephrase Lemma 2.28 in the following way.

Lemma 2.32. Let s ∈ (0, 1) and p ∈ [1,∞]. Then, u ∈ Isa+(Lp(I)) if and only if
u ∈ W s,p

RL,a+(I) and I1−s
a+ [u](a) = 0.

We consider now a version of the fundamental Theorem of Calculus for left Riemann-
Liouville fractional derivatives. A similar result was stated in [8, Proposition 5], however
we provide here a short proof, for completeness.

Lemma 2.33. Let s ∈ (0, 1) and u ∈ L1(I). Then, for L 1-a.e. x ∈ I, we have

u(x) = Ds
a+[Isa+[u]](x). (2.29)
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If u ∈ W s,1
RL,a+(I), then, for L 1-a.e. x ∈ I, we also have

u(x) = Isa+[Ds
a+[u]](x) + I1−s

a+ [u](a)
Γ(s) (x− a)s−1. (2.30)

Finally, if u ∈ W s,1
RL,a+(I) ∩ Isa+(L1(I)), then

u(x) = Ds
a+[Isa+[u]](x) = Isa+[Ds

a+[u]](x) for L 1-a.e. x ∈ I. (2.31)

Proof. If u ∈ L1(I), we have Isa+[u] ∈ L1(I), by Remark 2.12, and, by Lemma 2.19,

I1−s
a+ [Isa+[u]](x) = I1

a+[u](x) =
∫ x

a
u(t)dt ∈ W 1,1(I).

Therefore, for L 1-a.e. x ∈ I, we get

Ds
a+[Isa+[u]](x) = d

dx
I1−s
a+ [Isa+[u]](x) = d

dx
(I1
a+[u](x)) = u(x).

In order to prove (2.30), we notice that I1−s
a+ [u] ∈ W 1,1(I) with weak derivative Ds

a+[u] ∈
L1(I), so that, for L 1-a.e. x ∈ I,

I1−s
a+ [u](x) =

∫ x

a
Ds
a+[u](t)dt+ I1−s

a+ [u](a)

= I1−s
a+ [Isa+[Ds

a+[u]]](x) + I1−s
a+

[
I1−s
a+ [u](a)

Γ(s) (· − a)s−1
]

(x),

by Lemma 2.19 and (2.23). We notice that, by Remark 2.12, Isa+[Ds
a+[u]] ∈ L1(I), since

Ds
a+[u] ∈ L1(I) by assumption. Therefore, we apply D1−s

a+ to both sides of the equation
and use (2.29) to obtain (2.30). Finally, if u ∈ W s,1

RL,a+(I) ∩ Isa+(L1(I)), then, by Lemma
2.28 with p = q = 1, we have I1−s

a+ [u](a) = 0, and this ends the proof. �

We notice that, in an analogous way, it is possible to find a version of the Fundamental
Theorem of Calculus for right Riemann-Liouville derivatives (see [8, Proposition 6]).

Remark 2.34. It is worth noticing that these equalities are stable when s → 1− for
u ∈ C1(I). Indeed, we have

u(x) = lim
s→1−

Ds
a+[Isa+[u]](x) = d

dx

(∫ x

a
u(t)dt

)
=
∫ x

a
u′(t)dt+ u(a)

= lim
s→1−

Isa+[Ds
a+[u]](x) + I1−s

a+ [u](a)
Γ(s) (x− a)s−1,

where the second equality exploits Lemma 2.22.

We point out that there is a duality relation between the left Riemann-Liouville frac-
tional derivative and the Caputo right fractional derivative, as shown in the following
lemma.
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Lemma 2.35. Let u ∈ W s,1
RL,a+(I), v ∈ C1

c (I) and s ∈ (0, 1). Then we have∫ b

a
Ds
a+[u](x) v(x) dx =

∫ b

a
u(x) CDs

b−[v](x) dx. (2.32)

Proof. Integrating by parts, and using Fubini’s theorem, we have∫ b

a
Ds
a+[u](x)v(x)dx = −

∫ b

a
I1−s
a+ [u](x) v′(x) dx

= − 1
Γ (1− s)

∫ b

a

∫ x

a

u(t)
(x− t)s v

′(x) dt dx

= − 1
Γ (1− s)

∫ b

a

∫ b

t

v′(x)
(x− t)s u(t) dx dt

=
∫ b

a
u(t) CDs

b−[v](t) dt.

�

We notice that, in light of the continuity of the fractional integral in Lp given by
Proposition 2.15, the norm in (2.28) is equivalent to the one given by

‖u‖ := ‖u‖Lp(I) +
∥∥∥Ds

a+[u]
∥∥∥
Lp(I)

.

Therefore, one could define the space W s,p
RL,a+(I) simply requiring that u ∈ Lp(I) has

a weak fractional derivative in Lp(I). This would mean that there exists a function
w ∈ Lp(I) such that ∫ b

a
u(x) CDs

b−[v](x) dx =
∫ b

a
w(x) v(x) dx,

for any v ∈ C1
c (I), in analogy with the duality formula (2.32).

3. Main embedding and asymptotic results

We start with a technical result concerning the action of the fractional integral on
M(I). In what follows, for any µ ∈M(I) and x ∈ I, we shall use the notation

∫ x

a
f dµ to

denote the integral on the open interval (a, x) of some Borel measurable function f . This
choice is justified by the fact that |µ| ({x}) = 0 for all but countably many x ∈ (a, b),
thanks to the nonconcentration properties of Radon measures. As a consequence, there
is no ambiguity when integrating the function x→

∫ x

a
f dµ in dx over I.

Proposition 3.1. Let s ∈ (0, 1). The map Isa+ can be continuously extended to a map
fromM(I) into L1(I), by setting

Isa+[µ](x) := 1
Γ (s)

∫ x

a

dµ(t)
(x− t)1−s
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for µ ∈M(I). Then, Isa+ satisfies the following bound:∥∥∥Isa+[µ]
∥∥∥
L1(I)

≤ (b− a)s
Γ (1 + s) |µ|(I), (3.1)

for all µ ∈M(I).

Proof. Since the function (x − t)s−1 is continuous in t ∈ (a, x), for any fixed x ∈ (a, b),
the integral of this function against any nonnegative measure µ ∈ M(I) is well defined,
and we set

Isa+[µ](x) := 1
Γ (s)

∫ x

a

dµ(t)
(x− t)1−s .

Then, a simple computation similar to the one in Remark 2.12 shows that∥∥∥Isa+[µ]
∥∥∥
L1(I)

=
∫ b

a

∣∣∣Isa+[µ](x)
∣∣∣ dx = 1

Γ (s)

∫ b

a

∣∣∣∣∣
∫ x

a

dµ(t)
(x− t)1−s

∣∣∣∣∣ dx = 1
Γ(s)

∫ b

a

∫ x

a

dµ(t)
(x− t)1−s dx

= 1
Γ (s)

∫ b

a
dµ(t)

∫ b

t

dx

(x− t)1−s = 1
sΓ (s)

∫ b

a
(b− t)sdµ(t)

≤ (b− a)s
Γ (1 + s)

∫ b

a
dµ(t) = (b− a)s

Γ (1 + s)µ(I).

In the general case of µ ∈M(I), we consider the Jordan decomposition µ = µ+−µ− and
we set

Isa+[µ](x) := Isa+[µ+](x)− Isa+[µ−](x) = 1
Γ (s)

∫ x

a

dµ(t)
(x− t)1−s ,

by the linearity of the integral. Therefore, arguing as above, for any µ ∈M(I) we get∥∥∥Isa+[µ]
∥∥∥
L1(I)

≤ 1
Γ(s)

∫ b

a

∫ x

a

d|µ|(t)
(x− t)1−s dx ≤

(b− a)s
Γ (1 + s) |µ|(I),

which ends the proof. �

It is not difficult to see that Lemma 2.21 can be extended to couples of measures and
essentially bounded functions.

Lemma 3.2. Let µ ∈M(I), φ ∈ L∞(I) and s ∈ (0, 1). Then we have∫ b

a
Isa+[µ](x)φ(x) dx =

∫ b

a
Isb−[φ](x) dµ(x). (3.2)

Proof. Notice that, by Proposition 2.15, Isb−[φ] ∈ C0,s(I), so that it is continuous and
bounded, in particular. This implies that the integral on the right hand side of (3.2) is
well defined. In addition, notice that∫ b

a

∫ x

a

|φ(x)|
(x− t)1−s d|µ|(t) dx ≤ ‖φ‖L∞(I)

∫ b

a

∫ b

t
(x− t)s−1 dx d|µ|(t)

≤ ‖φ‖L∞(I)
(b− a)s

s
|µ|(I) <∞.
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Therefore, we may apply Fubini’s theorem, and we obtain∫ b

a
Isa+[µ](x)φ(x) dx = 1

Γ (s)

∫ b

a

∫ x

a
φ(x) dµ(t)

(x− t)1−s dx = 1
Γ (s)

∫ b

a

∫ b

t

φ(x)
(x− t)1−s dx dµ(t)

=
∫ b

a
Isb−[φ](t) dµ(t).

�

Another interesting consequence of Proposition 3.1 is that we can generalize Lemma
2.13, by proving the continuity of Isa+ fromM(I) to L

1
1−s ,∞(I).

Lemma 3.3. Let s ∈ (0, 1). Then Isa+ maps continuously M(I) in L
1

1−s ,∞(I); that is,
there exists Cs > 0 such that

L 1
({
x ∈ I : |Isa+[µ](x)| > t

})
≤ Cs

(
|µ|(I)
t

) 1
1−s

for all µ ∈M(I).

Proof. Given µ ∈ M(I), we denote by µ̃ its zero extension to the whole R; that is, the
measure defined by

µ̃(B) = µ(B ∩ I) for all Borel sets B ⊂ R.

As in the proof of Lemma 2.13, we set H(x) := χ(0,+∞)(x) and K(x) := 1
Γ(s)|x|1−s . It is

then obvious that
|µ|(I) = |µ̃|(R).

It is also clear that, for L 1-a.e. x ∈ I,

Isa+[µ](x) = Isa+[µ̃](x) = (µ̃ ∗ (KH))(x). (3.3)

Let now ρ ∈ C∞c ((−1, 1)) be a standard mollifier. Thanks to [4, Theorem 2.2], we have

‖ρε ∗ µ̃‖L1(R) ≤ |µ̃|(R) = |µ|(I), (3.4)

while, by (2.10) and the standard associativity properties of convolution, for all x ∈ I we
get

Isa+[ρε ∗ µ̃](x) = ((Ha(ρε ∗ µ̃)) ∗ (KH))(x)

= (ρε ∗ µ̃ ∗ (KH))(x) + (((Ha − 1)(ρε ∗ µ̃)) ∗ (KH))(x)

= (ρε ∗ Isa+[µ̃])(x)− ((χ(a−ε,a)(ρε ∗ µ̃)) ∗ (KH))(x), (3.5)

since (ρε ∗ µ̃)(x) = 0 for all x < a− ε, and (1−χ(a,+∞))χ(a−ε,+∞) = χ(a−ε,a). By (2.9) and
(3.4), there exists Cs > 0 such that, for all ε, t > 0, we get

L 1
({
x ∈ I : |Isa+[ρε ∗ µ̃](x)| > t

})
≤ Cs

(
‖ρε ∗ µ̃‖L1(I)

t

) 1
1−s

≤ Cs

(
|µ|(I)
t

) 1
1−s
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Finally, we recall that there exists a suitable subsequence εk → 0 such that

(ρεk ∗ Isa+[µ̃])(x)→ Isa+[µ̃](x) = Isa+[µ](x) for L 1-a.e. x ∈ I,

since Isa+[µ] ∈ L1(I), by Proposition 3.1, and by (3.3). As for the term (χ(a−ε,a)(ρε ∗ µ̃)) ∗
(KH), we notice that it converges to zero in L1(I), since

‖(χ(a−ε,a)(ρε ∗ µ̃)) ∗ (KH)‖L1(I) ≤
∫ b

a

∫
R
χ(a−ε,a)(y)(ρε ∗ |µ̃|)(y) χ(−∞,x)(y)

Γ(s)|x− y|1−s dydx

=
∫ a

a−ε

∫ b

a
(ρε ∗ |µ̃|)(y) 1

Γ(s)(x− y)1−s dxdy

= 1
Γ(s+ 1)

∫ a

a−ε
(ρε ∗ |µ̃|)(y) ((b− y)s − (a− y)s) dy

≤ (b− a+ ε)s
Γ(s+ 1)

∫ a

a−ε

∫ y+ε

y−ε
ρε(z − y) d|µ̃|(z) dy

= (b− a+ ε)s
Γ(s+ 1)

∫ a+ε

a−2ε

∫ z+ε

z−ε
ρε(z − y) dy d|µ̃|(z)

= (b− a+ ε)s
Γ(s+ 1) |µ̃|((a− 2ε, a+ ε))

= (b− a+ ε)s
Γ(s+ 1) |µ|((a, a+ ε))→ 0

as ε→ 0. Hence, up to passing to another subsequence, we obtain that

Isa+[ρεk ∗ µ̃](x) = (ρεk ∗ Isa+[µ̃])(x)− ((χ(a−εk,a)(ρεk ∗ µ̃)) ∗ (KH))(x)

→ Isa+[µ](x) for L 1-a.e. x ∈ I.

Hence, exploiting the lower semicontinuity of the distribution function (see [22, Exercise
1.1.1]) and (3.5), we get

L 1
({
x ∈ I : |Isa+[µ](x)| > t

})
≤ lim inf

k→∞
L 1

({
x ∈ I : |Isa+[ρεk ∗ µ̃](x)| > t

})

≤ Cs

(
|µ|(I)
t

) 1
1−s

,

and this ends the proof. �

We notice that, as a byproduct of the proof of [7, Theorem 3.3], formula (2.20) has
been extended to the case of Sobolev functions. Now, we generalize this relation to the
case of BV functions, and, by doing so, we also immediately prove the inclusion of BV (I)
in W s,1

RL,a+(I).

Theorem 3.4. Let u ∈ BV (I). Then, for all s ∈ (0, 1), we have u ∈ W s,1
RL,a+(I) with

Ds
a+[u](x) = I1−s

a+ [Du](x) + 1
Γ (1− s)

u(a+)
(x− a)s . (3.6)



RIEMANN-LIOUVILLE FRACTIONAL SOBOLEV SPACES 24

In particular, we have BV (I) ↪→ W s,1
RL,a+(I) for all s ∈ (0, 1), with

‖u‖W s,1
RL,a+(I) ≤ max

{
1 + (b− a)−s

Γ(2− s) ,
2(b− a)1−s

Γ(2− s)

}
‖u‖BV (I). (3.7)

In addition,

Ds
a+[u]L 1 ⇀ Du+ u(a+)δa as s→ 1− in M(I). (3.8)

Proof. By Remark 2.12, we obtain immediately that I1−s
a+ [u] ∈ L1(I), since u ∈ L1(I). Let

us now assume that u ∈ AC(I). For all x ∈ (a, b), formula (2.20) yields

d

dx
I1−s
a+ [u](x) = I1−s

a+ [u′](x) + 1
Γ (1− s)

u(a)
(x− a)s .

Now, let u ∈ BV (I) and ũ be its zero extension to R given by (2.2). Let ρ ∈ C∞c ((−1, 1))
be a standard mollifier. It is well known that ρε ∗ ũ ∈ C∞(I) ∩ BV (I), so that ρε ∗ ũ ∈
W 1,1(I) ↪→ AC(I), in particular. Then, for any φ ∈ C1

c (I) we have
∫ b

a
I1−s
a+ [ρε ∗ ũ]φ′ dx = −

∫ b

a

(
I1−s
a+ [ρε ∗Dũ] + 1

Γ (1− s)
(ρε ∗ ũ)(a)
(x− a)s

)
φ dx.

By (2.11), we get
∫ b

a
I1−s
a+ [ρε ∗Dũ]φ dx =

∫ b

a
I1−s
b− [φ] (ρε ∗Dũ) dx.

Then, since Proposition 2.15 applies also to I1−s
b− (thanks to Remark 2.20), we have

I1−s
b− [φ] ∈ C0(I). Thanks to (2.5), we obtain

(ρε ∗Dũ)(x) = (ρε ∗ (Du I))(x) + u(a+)ρε(x− a)− u(b−)ρε(b− x).

Since I1−s
b− [φ] ∈ C0(I), we have

∫ b

a
I1−s
b− [φ](x)u(a+)ρε(x− a) dx→ u(a+)

2 I1−s
b− [φ](a) = u(a+)

2Γ(1− s)

∫ b

a

φ(x)
(x− a)sdx

and ∫ b

a
I1−s
b− [φ](x)u(b−)ρε(b− x) dx→ u(b−)

2 I1−s
b− [φ](b) = 0,

since
∫ 1
−1 ρdx = 1 and ρ is even, and

|I1−s
b− [φ](x)| ≤ ‖φ‖L

∞(I)

Γ(1− s)

∫ b

x

1
(t− x)s dt = ‖φ‖L

∞(I)

Γ(2− s) (b− x)1−s → 0 as x→ b− .
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Then, Fubini’s theorem implies that∫ b

a
I1−s
b− [φ](x)(ρε ∗ (Du I))(x) dx =

∫ b

a

∫ b

a
I1−s
b− [φ](x)ρε(x− y) dDu(y) dx

=
∫ b

a

∫ b

a
I1−s
b− [φ](x)ρε(y − x) dx dDu(y)

→
∫ b

a
I1−s
b− [φ](y) dDu(y),

where in the last step we employed well known convergence properties of mollifications of
continuous functions. All in all, we get∫ b

a
I1−s
b− [φ] (ρε ∗Dũ) dx =

∫ b

a
I1−s
b− [φ] (ρε ∗ (Du I)) dx+

+
∫ b

a
I1−s
b− [φ](x) (u(a+)ρε(x− a)− u(b−)ρε(b− x)) dx

→
∫ b

a
I1−s
b− [φ] dDu+ u(a+)

2 I1−s
b− [φ](a)

=
∫ b

a
φ(x)

(
I1−s
a+ [Du](x) + 1

Γ (1− s)
u(a+)

2(x− a)s

)
dx.

where the last equality follows from (3.2) and the definition of I1−s
b− . On the other hand,

we also obtain ∫ b

a
I1−s
a+ [ρε ∗ ũ]φ′ dx =

∫ b

a
(ρε ∗ ũ) I1−s

b− [φ′] dx

→
∫ b

a
u I1−s

b− [φ′] dx =
∫ b

a
I1−s
a+ [u]φ′ dx,

by (2.11) and Lebesgue’s dominated convergence theorem, since I1−s
b− [φ′] ∈ L1(I) and

‖ρε ∗ ũ‖L∞(I) ≤ ‖u‖L∞(I) ≤ Ca,b‖u‖BV (I),

by (2.1). Now, since (ρε ∗ ũ)(a)→ u(a+)
2 by (2.4), we get∫ b

a
I1−s
a+ [u](x)φ′(x) dx = lim

ε→0

∫ b

a
I1−s
a+ [ρε ∗ ũ](x)φ′(x) dx

= − lim
ε→0

∫ b

a
I1−s
b− [φ](x) (ρε ∗Dũ)(x) + 1

Γ (1− s)
(ρε ∗ ũ)(a)
(x− a)s φ(x) dx

= −
∫ b

a
φ(x)

(
I1−s
a+ [Du](x) + 1

Γ (1− s)
u(a+)

2(x− a)s

)
dx+

− 1
Γ (1− s)

∫ b

a

u(a+)
2(x− a)sφ(x) dx

= −
∫ b

a

(
I1−s
a+ [Du](x) + 1

Γ (1− s)
u(a+)

(x− a)s

)
φ(x) dx,
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which yields (3.6). Thus, Ds
a+u ∈ L1(I), with∥∥∥Ds

a+u
∥∥∥
L1(I)

≤ (b− a)1−s

Γ(2− s) (|Du|(I) + |u(a+)|)

by (3.1). Then, thanks to (2.1) and (2.3), we get

‖u‖W s,1
RL,a+(I) = ‖u‖L1(I) +

∥∥∥Ds
a+u

∥∥∥
L1(I)

≤ ‖u‖L1(I) + (b− a)1−s

Γ(2− s) (|Du|(I) + |u(a+)|)

≤ ‖u‖L1(I) + (b− a)1−s

Γ(2− s)

(
|Du|(I) + 1

b− a
‖u‖L1(I) + |Du|(I)

)

=
(

1 + (b− a)−s
Γ(2− s)

)
‖u‖L1(I) + 2(b− a)1−s

Γ(2− s) |Du|(I),

which easily implies (3.7) and the continuity of the embedding BV (I) ↪→ W s,1
RL,a+(I).

To prove the second part of the claim, we choose φ ∈ C1(I) and exploit (3.2) and (3.6)
in order to obtain∫ b

a
Ds
a+[u](x)φ(x)dx =

∫ b

a
I1−s
a+ [Du](x)φ(x)dx+ u(a+)

Γ(1− s)

∫ b

a

φ(x)
(x− a)sdx

=
∫ b

a
I1−s
b− [φ](x)dDu(x)+

+ u(a+)
Γ(2− s)

(
φ(b)(b− a)1−s −

∫ b

a
φ′(x)(x− a)1−sdx

)
.

Therefore, by Lemma 2.22 and Lebesgue’s dominated convergence theorem, we get

lim
s→1−

∫ b

a
Ds
a+[u](x)φ(x)dx =

∫ b

a
φ(x)dDu(x) + u(a+)φ(a).

Then, the claim plainly follows by the density of C1(I) in C(I) with respect to the
supremum norm. �

Lemma 3.5. Let s ∈ (0, 1). If u ∈ W s,1(I), then Ds
a+[u] is well defined, belongs to L1(I)

and Ds
a+[u](x) = MDs

a+[u](x) for L 1-a.e. x ∈ I.

Proof. If u ∈ W s,1(I) ∩ AC(I), the computations already done in (2.22) hold true.
Otherwise, if u ∈ W s,1(I), we exploit the density of C1

c (I) in W s,1(I) (Remark 2.9),
which means that there exists a sequence un in C1

c (I) such that ‖un − u‖W s,1(I) → 0 as
n→ +∞. Now, we prove that

Ds
a+[un](x) = 1

Γ(1− s)
un(x)

(x− a)s + s

Γ(1− s)

∫ x

a

un(x)− un(t)
(x− t)s+1 dt (3.9)

converges in L1(I) and, up to a subsequence, pointwise L 1-a.e. in I to Ds
a+[u](x).

For the second term in the right hand side of (3.9), we proceed as follows: we set

fn(x) :=
∫ x

a

un(x)− un(t)− u(x) + u(t)
(x− t)s+1 dt.
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The sequence fn converges to 0 in L1(I). Indeed∫ b

a
|fn(x)|dx ≤ [un − u]W s,1(I) ≤ ‖un − u‖W s,1(I) → 0 as n→ +∞.

Therefore, up to a subsequence, fn converges pointwise L 1-a.e. to 0 in I, so that

lim
n→+∞

∫ x

a

un(x)− un(t)
(x− t)s+1 dt =

∫ x

a

u(x)− u(t)
(x− t)s+1 dt

for L 1-a.e. x ∈ I. Conversely, for the first term in the right hand side of (3.9), up to
a subsequence, we have convergence L 1-a.e. in I thanks to the convergence of un to
u in W s,1(I) and hence in L1(I), which implies pointwise convergence L 1-a.e., up to a
subsequence.

For the L1 convergence, we argue as follows: employing the fractional Hardy inequality,
Lemma 2.10, with p = 1, we get∫ b

a

|un(x)− u(x)|
(x− a)s dx ≤

∫ b

a

|un(x)− u(x)|
|δI(x)|s dx ≤ C ‖un − u‖W s,1(I) → 0 as n→ +∞.

To conclude, we notice that, for any φ ∈ C1
c (I) it holds that∫ b

a

MDs
a+[un](x)φ(x)dx =

∫ b

a
Ds
a+[un](x)φ(x)dx

= −
∫ b

a
I1−s
a+ [un](x)φ′(x)dx→ −

∫ b

a
I1−s
a+ [u](x)φ′(x)dx,

since un → u in L1(I) and I1−s
a+ is continuous from L1(I) to L1(I). On the other hand,

we have just proved that MDs
a+[un]→ MDs

a+[u] in L1(I), and so we conclude∫ b

a

MDs
a+[u](x)φ(x)dx = −

∫ b

a
I1−s
a+ [u](x)φ′(x)dx,

and this implies u ∈ W s,1
RL,a+(I) with MDs

a+[u](x) = Ds
a+[u](x) for a.e. x ∈ I. �

Remark 3.6. We notice that Hölder’s inequality cannot be exploited in order to estimate
the term ∫ b

a

|un(x)− u(x)|
(x− a)s dx

in the proof of Lemma 3.5, so that we need to employ the fractional Hardy inequality of
Lemma 2.10. Indeed, since un− u ∈ W s,1(I), the fractional Sobolev embedding Theorem
(see e.g. [16, Theorem 6.7.]) implies that un − u ∈ Lq(I) for any q ∈

[
1, 1

1−s

]
.

Therefore, we get∫ b

a

|un(x)− u(x)|
(x− a)s dx ≤

(∫ b

a
|un − u|qdx

)1/q (∫ b

a

dx

(x− a)sq′
)1/q′

.

Now, q ≤ 1
1−s implies sq′ ≥ 1, and so∫ b

a

dx

(x− a)sq′ = +∞,
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and thus this estimate is not useful.

Proposition 3.7. For all s ∈ (0, 1) the embedding W s,1(I) ↪→ W s,1
RL,a+(I) is continuous.

Proof. Since u ∈ L1(I), in particular, we have I1−s
a+ [u] ∈ L1(I) by Remark 2.12.

Thanks to Lemma 3.5, we have that the left Riemann-Liouville fractional derivative of
u coincides with the Marchaud one, and so

Ds
a+[u](x) = 1

Γ(1− s)
u(x)

(x− a)s + s

Γ(1− s)

∫ x

a

u(x)− u(t)
(x− t)s+1 dt for L 1-a.e x ∈ I.

For the second term on the right hand side, it holds that∫ b

a

∣∣∣∣∣
∫ x

a

u(x)− u(t)
(x− t)s+1 dt

∣∣∣∣∣ dx ≤ [u]W s,1(I). (3.10)

While for the first term, using Lemma 2.10 with p = 1, we have∫ b

a

|u(x)|
(x− a)sdx ≤

∫ b

a

|u(x)|
|δI(x)|sdx ≤ C ‖u‖W s,1(I) (3.11)

for some C = C(s, a, b) > 0.
All in all, using (3.1), (3.10) and (3.11), we obtain that there exists a positive constant

C = C(s, a, b) such that
‖u‖W s,1

RL,a+(I) ≤ C ‖u‖W s,1(I) .

�

We notice that, thanks to the continuous embedding BV (I) ↪→ W s,1(I) (see for in-
stance [27, Proposition 1.2.1]), Proposition 3.7 actually implies the continuous embedding
BV (I) ↪→ W s,1

RL,a+(I), also given by Theorem 3.4. However, the proofs of these two results
exploit different techniques, both of them interesting in their own way.

Remark 3.8. We notice that Proposition 3.7 does not hold for unbounded intervals.
Indeed, the function u(x) := 1

x2 belongs toW 1,1((1,+∞)), therefore u ∈ W 1/2,1((1,+∞)),
but we have

I
1/2
1+ [u](x) = 1√

π

 log(x) + 2 log
(
1 +

√
x−1
x

)
2x3/2 +

√
x− 1
x

 /∈ L1((1,+∞)).

This example shows also that the continuity of the fractional integral in Lp for 1 ≤ p ≤ 2
fails for unbounded intervals.

Actually, we can prove that the inclusion of Proposition 3.7 is strict.

Proposition 3.9. For all s ∈ (0, 1) the space W s,1
RL,a+(I) strictly contains W s,1(I), and

so it strictly contains BV (I).
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Proof. We claim that the function

u(x) := (x− a)s−1

Γ(s)

belongs to W s,1
RL,a+(I) \ W s,1(I). By Example 2.27, we know that u ∈ L1(I) and that

I1−s
a+ [u](x) = 1 for all x ∈ I, so that I1−s

a+ [u] ∈ W 1,1(I), which implies that u ∈ W s,1
RL,a+(I),

by definition. Then, we need to prove that the Gagliardo-Slobodeckij seminorm of u is
infinite. We see that

Γ(s)[u]W s,1(I) :=
∫ b

a

∫ b

a

|(x− a)s−1 − (y − a)s−1|
|x− y|s+1 dx dy =

x = a+ (b− a)x
y = a+ (b− a)y


=
∫ 1

0

∫ 1

0

|xs−1 − ys−1|
|x− y|s+1 dx dy = [x = yz] =

∫ 1

0

∫ 1
y

0

|zs−1 − 1|ys−1

|z − 1|s+1ys+1y dz dy

=
∫ ∞

0

∫ min{1, 1
z}

0

|zs−1 − 1|
|z − 1|s+1y

dy dz = +∞

since 1/y /∈ L1((0, δ)), for any δ > 0. Finally, we recall that W s,1(I) contains BV (I) and
this ends the proof. �

Remark 3.10. In particular, we see that, for all s ∈ (0, 1), all the inclusions

BV (I) ↪→ W s,1(I) ↪→ W s,1
RL,a+(I)

are strict: indeed, if we consider

vσ(x) := (x− a)σ−1

for some σ ∈ (s, 1), then, arguing as in the proof of Proposition 3.9, it is easy to see that
vσ ∈ W s,1(I) \BV (I).

Now, we recall the fact that W s,1(I) is a real interpolation space; namely,

W s,1(I) = (L1(I),W 1,1(I))s,1.

More generally, we have that, for s ∈ (0, 1), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, it holds that

(Lp(I),W 1,p(I))s,q = Bs
p,q(I),

where Bs
p,q(I) denotes the Besov space; in particular, if p = q we have Bs

p,p(I) = W s,p(I).
In light of this observation, we can extend Proposition 3.7 in the following way.

Corollary 3.11. For 0 < s < r < 1, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, we have that the
embedding Br

p,q(I) ↪→ W s,1
RL,a+(I) is continuous.

Proof. Using [28, Proposition 1.4], we have that, for r, s, p, q as given in our claim, the
Besov space Br

p,q(I) is continuously embedded in Bs
1,1(I) = W s,1(I), which is continuously

embedded in W s,1
RL,a+(I) thanks to Proposition 3.7, and this proves the claim. �
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Remark 3.12. Unfortunately, Corollary 3.11 does not cover the case r = s for any
choice of p and q. Therefore, in the particular case p = q we are unable to conclude that
Proposition 3.7 extends to W s,p(I) for any p > 1. Indeed, in [29] the authors prove that
for 1 ≤ q < p ≤ ∞ and s > 0, s /∈ N, we have W s,p(I) 6⊆ W s,q(I).

Now, we extend Proposition 3.7 to the case p > 1.

Proposition 3.13. Let p ∈ [1,∞) and s ∈
(
0, 1

p

)
. Then it holds that

W r,p(I) ↪→ W s,p
RL,a+(I), (3.12)

for all r ∈
[
s+ 1

p′
, 1
)
, where p′ denotes the Hölder conjugate of p.

Proof. First of all, setting σ := s + 1
p′
, we notice that, since s < 1

p
, we have s < σ < 1.

Moreover, since W r,p(I) ↪→ W σ,p(I) for any r ∈ (σ, 1) (see e.g. [16, Proposition 2.1.]), we
reduce ourselves to prove that W σ,p(I) ↪→ W s,p

RL,a+(I).
Now, the case p = 1 follows immediately from Corollary 3.11 with q = p.
Then, let p > 1 and u ∈ W σ,p(I). By [28, Proposition 1.4] we have u ∈ W s,1(I), and

so, using Proposition 3.7 and Lemma 3.5, it follows that u ∈ W s,1
RL,a+(I) with Ds

a+[u](x) =
MDs

a+[u](x) for L 1-a.e. x ∈ I.
To conclude, it is sufficient to estimate the Lp(I)-norm of

Ds
a+[u](x) = MDs

a+[u](x) = 1
Γ(1− s)

u(x)
(x− a)s + s

Γ(1− s)

∫ x

a

u(x)− u(t)
(x− t)s+1 dt. (3.13)

Since sp < 1 and σ > s, using Lemma 2.10 and [16, Proposition 2.1], for the first term in
the right-hand side of (3.13) it holds that∫ b

a

|u(x)|p
(x− a)spdx ≤ C ‖u‖pW s,p(I) ≤ C ‖u‖pWσ,p(I) , (3.14)

for some constant C > 0.
As for the second term in the right-hand side of (3.13), we exploit Hölder’s inequality

to get ∫ b

a

∣∣∣∣∣
∫ x

a

u(x)− u(t)
(x− t)s+1 dt

∣∣∣∣∣
p

dx ≤
∫ b

a

∫ x

a

|u(x)− u(t)|p
(x− t)sp+p dt(x− a)p−1 dx

≤ (b− a)p−1
∫ b

a

∫ b

a

|u(x)− u(t)|p
|x− t|sp+p dt dx.

Therefore, since sp+ p = σp+ 1, we have∫ b

a

∣∣∣∣∣
∫ x

a

u(x)− u(t)
(x− t)s+1 dt

∣∣∣∣∣
p

dx ≤ (b− a)p−1[u]pWσ,p(I). (3.15)

By combining (3.14) and (3.15), we immediately obtain∥∥∥Ds
a+[u]

∥∥∥
Lp(I)

≤ max{(b− a)
1
p′ , C} ‖u‖Wσ,p(I) ,

and this concludes the proof. �
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Remark 3.14. It is interesting to notice that some inequalities of Poincaré type hold
true in the fractional context, for which we refer for instance to [5, Chapter 17]. However,
in general it is not possible to retrieve the classical Poincaré inequality by estimating the
Lp norm of the difference between u and its average with the Lp norm of its Riemann-
Liouville derivative. Indeed, let us consider the function u(x) := (x − a)s−1 for some
s ∈ (0, 1). By Example 2.27, we have u ∈ Lp(I) for all 1 ≤ p < 1

1−s , and

I1−s
a+ [u](x) = Γ(s) and Ds

a+[u](x) = 0 for all x ∈ I.

Therefore, u ∈ W s,p
RL,a+(I) for all p ∈

[
1, 1

1−s

)
. Thus, being u not constant, we cannot

hope for any sort of Poincaré inequality of the type∫ b

a
|u− uI |p dx ≤ C

∫ b

a
|Ds

a+[u]|p dx,

where
uI := 1

b− a

∫ b

a
u(x) dx = 1

s
(b− a)s−1.

4. The space BV s
RL,a+(I)

In analogy with the previous definition of left Riemann-Liouville fractional Sobolev
spaces, we introduce now the natural extension to the BV framework.

Definition 4.1. Let s ∈ (0, 1). We define the space of functions with left Riemann-
Liouville fractional bounded variation as

BV s
RL,a+ (I) :=

{
u ∈ L1 (I) : I1−s

a+ [u] ∈ BV (I)
}
.

From the definition, it follows immediately that u belongs to BV s
RL,a+ (I) if and only if

there exists a measure µs ∈M(I) satisfying∫ b

a
I1−s
a+ [u](x)φ′(x) dx = −

∫ b

a
φ(x) dµs(x)

for any φ ∈ C1
c (I), and we call Dsa+[u] = DI1−s

a+ [u] := µs the left Riemann-Liouville
distributional s-fractional derivative. In order to avoid any ambiguity, we denote with
Ds
a+[u] the density of the absolutely continuous part ofDsa+[u] with respect to the Lebesgue

measure L 1.
It is not difficult to see that the space BV s

RL,a+(I), endowed with the norm

‖u‖BV sRL,a+(I) := ‖u‖L1(I) +
∥∥∥I1−s
a+ [u]

∥∥∥
BV (I)

,

is a Banach space.
Arguing analogously as in Lemma 2.35, we derive a duality relation between the left

Riemann-Liouville weak s-fractional derivative and the right Caputo s-fractional deriva-
tive.
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Corollary 4.2. A function u ∈ L1(I) belongs to BV s
RL,a+(I) if and only if there exists

µs ∈M(I) such that ∫ b

a
u(x) CDs

b−[φ](x) dx =
∫ b

a
φ(x) dµs(x)

for every φ ∈ C1
c (I). In that case, we have Dsa+[u] = µs.

It is natural to ask what we can say about the decomposition of the measure Dsa+[u]
for a function u ∈ BV s

RL,a+(I). We start with the following result.

Proposition 4.3. Let u ∈ L1(I) and s ∈ (0, 1). Then u ∈ W s,1
RL,a+(I) if and only if u ∈

BV s
RL,a+(I) and Dsa+[u]� L 1. In particular, the embedding W s,1

RL,a+(I) ↪→ BV s
RL,a+(I) is

continuous, and Dsa+[u] = Ds
a+[u]L 1 for any u ∈ W s,1

RL,a+(I). In addition, if u ∈ BV (I),
then

Dsa+[u] =
(
I1−s
a+ [Du] + 1

Γ (1− s)
u(a+)

(· − a)s

)
L 1.

Proof. If u ∈ W s,1
RL,a+(I), Lemma 2.35 implies that∫ b

a
u(x) CDs

b−[φ](x) dx =
∫ b

a
φ(x)Ds

a+[u](x) dx

for every φ ∈ C1
c (I). Thus, Corollary 4.2 implies that u ∈ BV s

RL,a+(I) with

Dsa+[u] = Ds
a+[u]L 1.

This immediately implies that the embedding W s,1
RL,a+(I) ↪→ BV s

RL,a+(I) is continuous.
On the other hand, if u ∈ BV s

RL,a+(I) and Dsa+[u]� L 1, then I1−s
a+ [u] belongs to W 1,1(I),

and so u ∈ W s,1
RL,a+(I). By Theorem 3.4, if u ∈ BV (I), then u ∈ W s,1

RL,a+(I), and the
representation formula is a trivial consequence of (3.6). �

In the spirit of Lemma 2.33, we can obtain a version of the Fundamental Theorem of
Calculus for functions in BV s

RL,a+(I).

Lemma 4.4. Let s ∈ (0, 1) and u ∈ BV s
RL,a+(I). Then, for L 1-a.e. x ∈ I, we also have

u(x) = Ds
a+[Isa+[u]](x) = Isa+[Dsa+[u]](x) + I1−s

a+ [u](a+)
Γ(s) (x− a)s−1. (4.1)

In addition, if u ∈ BV s
RL,a+(I)∩Isa+(L1(I)), then u ∈ W s,1

RL,a+(I)∩Isa+(L1(I)), I1−s
a+ [u](a+) =

0 and (2.31) holds.

Proof. The first equality in (4.1) follows immediately from (2.29). The second one can be
proved as (2.30). Indeed, if u ∈ BV s

RL,a+(I), then I1−s
a+ [u] ∈ BV (I) with weak derivative
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Dsa+[u]. Therefore, by [4, Theorem 3.28], for L 1-a.e. x ∈ I, we get

I1−s
a+ [u](x) =

∫ x

a
dDsa+[u](t) + I1−s

a+ [u](a+)

= I1−s
a+ [Isa+[Dsa+[u]]](x) + I1−s

a+

[
I1−s
a+ [u](a+)

Γ(s) (· − a)s−1
]

(x)

by (2.23). We notice thatDsa+[u] ∈M(I), and so, by Proposition 3.1, Isa+[Dsa+[u]] ∈ L1(I).
Thus, it is enough to apply D1−s

a+ to both sides of the equation and use (2.29) to obtain
(4.1). Finally, if u ∈ BV s

RL,a+(I) ∩ Isa+(L1(I)), then, by Lemma 2.32 with p = 1, we have
u ∈ W s,1

RL,a+(I), I1−s
a+ [u](a+) = 0, and so it satisfies the hypotheses for (2.31). This ends

the proof. �

Remark 4.5. As a trivial consequence of Proposition 4.3, we see that, if u ∈ W s,p
RL,a+(I)

for some p ≥ 1, and s ∈ (0, 1), then u ∈ BV s
RL,a+(I), and Dsa+[u] � L 1, with density

given by the left Riemann-Liouville weak s-fractional derivative.

We show that the inclusion of W s,1
RL,a+(I) into BV s

RL,a+(I) is strict, by constructing an
example of a function u such that the measure Dsa+[u] is not absolutely continuous with
respect L 1.

Example 4.6 (BV s
RL,a+(I) \W s,1

RL,a+(I) 6= ∅). Let s ∈ (0, 1), J = (c, d) with c, d ∈ R such
that a < c < d < b. We define the following function

u(x) :=


0 if a < x ≤ c,

(x− c)s−1

Γ(s) if c < x ≤ d,

0 if d < x < b.

Now, we compute I1−s
a+ [u](x). Clearly, when x ∈ (a, c), I1−s

a+ [u](x) = 0. On the other hand,
for x ∈ J by (2.23) we obtain

I1−s
a+ [u](x) = 1

Γ(s)Γ(1− s)

∫ x

c
(t− c)s−1(x− t)−s dt = 1.

Therefore, for any x ∈ I, we have

I1−s
a+ [u](x) =


0 if x ∈ (a, c]
1 if x ∈ (c, d]

1
Γ(s)Γ(1− s)

∫ d

c
(t− c)s−1(x− t)−sdt if x ∈ (d, b).

In other words, we have

I1−s
a+ [u](x) = χJ(x) + f(x)χ(d,b)(x) for L 1-a.e. x ∈ I,
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where
f(x) := 1

Γ(s)Γ(1− s)

∫ d

c
(t− c)s−1(x− t)−sdt.

It is not difficult to see that

f(d) = 1
Γ(s)Γ(1− s)β(s, 1− s) = 1,

and f ∈ C([d, b)) ∩ C∞((d, b)) ∩W 1,1((d, b)). Hence, we deduce that

Dsa+[u] = δc − δd + f ′χ(d,b)L
1 + f(d)δd = δc + f ′L 1 (d, b)

so that I1−s
a+ [u] ∈ BV (I) \W 1,1(I). Thus, u ∈ BV s

RL,a+(I) \W s,1
RL,a+(I).

Proposition 4.7. Let s ∈ (0, 1). Then, the inclusion W s,1
RL,a+(I) ↪→ BV s

RL,a+(I) is strict.

Proof. It is an immediate consequence of Proposition 4.3 and Example 4.6. �

Thanks to Example 4.6, we see that, given u ∈ BV s
RL,a+(I) \W s,1

RL,a+(I), the measure
Dsa+[u] can have a jump part. It is natural to ask whether it admits also a Cantor
part, in general. To this purpose, we exhibit an example of u ∈ BV s

RL,a+(I) such that
I1−s
a+ [u] ∈ BV (I) \ SBV (I), where SBV (I) is the space of special functions of bounded
variation, for which (Du)c = 0.

Example 4.8. Consider the classical ternary Cantor function C(x), and let I = (0, 1). It
is well known that C ∈ C0,αC (I)∩BV (I), where αC := log3 2, and DC is a singular mea-
sure without atoms which means that DC = (DC)c; in particular, up to a multiplicative
constant, DC = HαC , see e.g. [4, Example 3.34].

Now, since C(0) = 0, we can use Proposition 2.18 to conclude that C is representable
as the (1 − s)-fractional integral of a function in C0,αC+s−1

0 (I), provided s ∈ (1 − αC , 1).
This implies that there exists u ∈ C0,αC+s−1

0 (I) such that I1−s
0+ [u](x) = C(x), and so

u ∈ BV s
RL,0+(I), with Ds0+[u] = DC = (DC)c.

5. Action of the fractional integral on Sobolev functions

Now we analyze regularizing properties of the fractional integral when it acts on func-
tions in the Sobolev spaceW 1,p(I) for some p ≥ 1. We start with the following statement.

Proposition 5.1. Let 1 ≤ p < ∞ and s ∈ (0, 1) such that sp < 1. Then I1−s
a+ is a

continuous operator from W 1,p(I) into W 1,p(I), with

‖I1−s
a+ [u]‖W 1,p(I) ≤

(b− a)1−s

Γ(1− s)

 1
1− s + max

{
1, 1
b− a

} 1
(1− sp)

1
p

 ‖u‖W 1,p(I) (5.1)

for all u ∈ W 1,p(I). In addition, I1−s
a+ is a continuous operator from W 1,p

a (I) into W 1,p(I)
for all s ∈ (0, 1) and p ∈ [1,∞], with

‖I1−s
a+ [u]‖W 1,p(I) ≤

(b− a)1−s

Γ(2− s) ‖u‖W
1,p(I) for all u ∈ W 1,p

a (I). (5.2)
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Proof. Thanks to Proposition 2.15 and Remark 2.16, I1−s
a+ [u] ∈ Lp(I), and∥∥∥I1−s

a+ [u]
∥∥∥
Lp(I)

≤ (b− a)1−s

Γ(2− s) ‖u‖Lp(I) . (5.3)

Now, we prove that Ds
a+[u] ∈ Lp(I). Recalling Remark 2.5, we have u ∈ W 1,p(I) ↪→

BV (I); hence, using Theorem 3.4, for all s ∈ (0, 1) we get

Ds
a+[u](x) = u(a)

Γ(1− s)
1

(x− a)s + I1−s
a+ [u′](x), (5.4)

where u′ denotes the weak derivative of u. Therefore, again by Proposition 2.15 and
Remark 2.16 we get

‖Ds
a+[u]‖Lp(I) ≤

|u(a)|
Γ(1− s)

(∫ b

a

dx

(x− a)sp

) 1
p

+ (b− a)1−s

Γ(2− s) ‖u
′‖Lp(I) .

Now, since sp < 1, the first term in the right hand side is finite, and we obtain
∥∥∥Ds

a+[u]
∥∥∥
Lp(I)

≤ (b− a)
1
p
−s

(1− sp)
1
pΓ(1− s)

|u(a)|+ (b− a)1−s

Γ(2− s) ‖u
′‖Lp(I) . (5.5)

Thus, summing up (5.3) and (5.5), and exploiting Remark 2.5, we deduce (5.1). Finally,
if u ∈ W 1,p

a (I), we have u(a) = 0, so that (5.4) reduces to Ds
a+[u] = I1−s

a+ [u′]. Therefore,
Proposition 2.15 and Remark 2.16 imply

‖I1−s
a+ [u]‖W 1,p(I) = ‖I1−s

a+ [u]‖Lp(I) + ‖I1−s
a+ [u′]‖Lp(I) ≤

(b− a)1−s

Γ(2− s)
(
‖u‖Lp(I) + ‖u′‖Lp(I)

)
.

This concludes the proof. �

Corollary 5.2. Let 1 ≤ p ≤ q < ∞ and r, s ∈ (0, 1) such that sp < 1 and r > s + 1
p′
,

where p′ denotes the Hölder conjugate of p. Then we have

W r,q
RL,a+(I) ↪→ W s,p

RL,a+(I).

Proof. Since W r,q
RL,a+(I) ↪→ W r,p

RL,a+(I), we are left to prove that I1−s
a+ [u] ∈ W 1,p(I) for

u ∈ W r,p
RL,a+(I). We notice that, thanks to Lemma 2.19,

I1−s
a+ [u](x) = Ir−sa+ [I1−r

a+ [u]](x) = I1−γ
a+ [v](x),

where v := I1−r
a+ [u] and γ := 1 − r + s. Thanks to Proposition 5.1, since v ∈ W 1,p(I) we

have I1−γ
a+ [v] ∈ W 1,p(I) provided γp < 1, and this condition holds since r > s+ 1

p′
. �

Remark 5.3. We notice that Proposition 5.1 covers the case p =∞ if and only if u(a) = 0.
On the other hand, if u(a) 6= 0 we have neither continuous embedding, nor inclusion.
Indeed, let us consider I := (0, 1) and u(x) := cos(x) ∈ W 1,∞(I). By Theorem 3.4, we
see that

Ds
0+[u](x) = 1

Γ(1− s)

(
1
xs
−
∫ x

0

sin(t)
(x− t)s dt

)
.
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We notice that x−s is not bounded when x is close to 0, while it is easy to see that∣∣∣∣∣
∫ x

0

sin(t)
(x− t)s dt

∣∣∣∣∣ ≤
∫ x

0

| sin(t)|
(x− t)s dt ≤

∫ x

0

1
(x− t)s dt = x1−s

1− s ≤
1

1− s.

Thus, we conclude that Ds
0+[u] /∈ L∞(I).

Remark 5.4. We notice that the continuous embedding given by Corollary 5.2 can be
obtained as a byproduct of [25, Theorem 31], which shows that the embedding is compact.

Now, we show that the fractional integral actually improves the (weak) differentiability
of a Sobolev function. To this purpose, we start with a simple remark.

Remark 5.5. Depending on the summability of a Sobolev function u we notice that
I1−s
a+ [u] enjoys different improvements in regularity. In particular, we distinguish the case
p = 1 and the case p > 1.

(1) Case p = 1
If u ∈ W 1,1(I), using Sobolev Embedding Theorem u ∈ Lq(I) for any 1 ≤ q ≤
∞, and so, thanks to Proposition 2.15, I1−s

a+ [u] ∈
⋂

q>1/s
C0,s− 1

q (I).

(2) Case p > 1
If u ∈ W 1,p(I), again by Sobolev Embedding Theorem, we have u ∈ C0,1− 1

p (I).
Using Proposition 2.18, for any u ∈ C

0,1− 1
p

a (I), we have
• I1−s

a+ [u] ∈ C
0,2−s− 1

p
a (I) if s+ 1

p
> 1,

• I1−s
a+ [u] ∈ H1,1

a (I) if s+ 1
p

= 1,

• I1−s
a+ [u] ∈ C

1,1−s− 1
p

a (I) if s+ 1
p
< 1.

In the third case, it follows that Ds
a+[u] ∈ C0,1−s− 1

p (I).

Now, we are able to prove that when we apply the fractional integral I1−s
a+ to a function

in W 1,p(I) for some p > 1, we gain more differentiability. This means that the function
I1−s
a+ [u] belongs to a higher order fractional Sobolev space.

Proposition 5.6. Let p > 1 and s ∈
(
0,min

{
1
p
, p−1

2p

})
. For all u ∈ W 1,p

a (I), we have
I1−s
a+ [u] ∈ W s+1,p(I).

Proof. We notice that the conditions sp < 1 and s + 1
p
< 1 are satisfied, and so, by

Proposition 5.1 and Remark 5.5, we get I1−s
a+ [u] ∈ W 1,p(I) ∩ C

1,1−s− 1
p

a (I).
Now, we prove that Ds

a+[u] ∈ W s,p(I). Namely, we have to prove that∫ b

a

∫ b

a

|Ds
a+[u](x)−Ds

a+[u](y)|p
|x− y|sp+1 dxdy <∞.

Now, we use the Hölder continuity of Ds
a+[u] to say that

|Ds
a+[u](x)−Ds

a+[u](y)|p ≤ C|x− y|p−sp−1,
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for some C > 0 and for any x, y ∈ I.
Therefore, we have∫ b

a

∫ b

a

|Ds
a+[u](x)−Ds

a+[u](y)|p
|x− y|sp+1 dxdy ≤ C

∫ b

a

∫ b

a

1
|x− y|2sp−p+2dxdy,

where the integral on the right hand side converges since s < p−1
2p . �

Corollary 5.7. Let p > 1, s ∈
(
0,min

{
1
p
, p−1

2p

})
and u ∈ W 1,p

a (I). Then we have

u ∈ W s,r
RL,a+(I) for all r ∈

[
1, p

1− sp

]
.

Proof. By Proposition 5.6, we have I1−s
a+ [u] ∈ W s+1,p(I), so that Ds

a+[u] ∈ W s,p(I). Hence,
thanks to the fractional Sobolev Embedding, since sp < 1, we have Ds

a+[u] ∈ Lr(I) for all
r ∈

[
1, p

1−sp

]
. Therefore, I1−s

a+ [u] belongs to W 1,r(I) for all r ∈
[
1, p

1−sp

]
, and this proves

the claim. �

6. Sobolev-type embedding theorems for W s,p
RL,a+(I) and BV s

RL,a+(I)

In this section we show a result analogous to the Sobolev embedding Theorem for
Riemann-Liouville fractional Sobolev spaces. To the knowledge of the authors, this is an
original result in this setting, which improves [8, Proposition 7]. We refer the reader e.g.
[1, Chapter 4] for the classical Sobolev embedding Theorem for Sobolev spaces of integer
order or [16, Theorem 6.7] for Sobolev spaces of fractional order.

Theorem 6.1 (Riemann-Liouville fractional Sobolev embedding). Let s ∈ (0, 1), 1 ≤ p ≤
∞ and u ∈ W s,p

RL,a+(I). We have the following cases:

(1) if p = 1, then u ∈ L
1

1−s ,∞(I), and in particular u ∈ Lr(I) for any r ∈
[
1, 1

1−s

)
,

(2) if p > 1 and u ∈ W s,p
RL,a+(I) ∩ Isa+(L1(I)), then

(a) if 1 < p < 1
s
, u ∈ Lr(I) for any r ∈

[
1, p

1−sp

]
,

(b) if sp = 1, u ∈ Lr(I) for any r ∈ [1,∞),
(c) if sp > 1, u ∈ C0,β(I) for any β ∈

[
0, s− 1

p

]
.

Proof. If u ∈ W s,1
RL,a+(I), by Lemma 2.33 we have

u(x) = Isa+[Ds
a+[u]](x) + I1−s

a+ [u](a)
Γ(s) (x− a)s−1 for L 1-a.e. x ∈ I.

It is clear that (·−a)s−1 ∈ L
1

1−s ,∞(I), while Lemma 2.13 implies Isa+[Ds
a+[u]] ∈ L

1
1−s ,∞(I),

since Ds
a+[u] ∈ L1(I). Then, it is enough to apply Lemma 2.2 to obtain point (1). Then,

for p > 1 we use the additional assumption u ∈ Isa+(L1(I)) together with Lemma 2.33 to
obtain the improved representation formula

u(x) = Isa+[Ds
a+[u]](x) for L 1-a.e. x ∈ I.
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In addition, Ds
a+[u] ∈ Lp(I) since u ∈ W s,p

RL,a+(I). Therefore, the result follows directly
from points 3, 4 and 5 of Proposition 2.15. �

Remark 6.2. If we remove the L1-representability assumption for the case p > 1 in
Theorem 6.1, we still obtain an improvement in summability if and only if 1 < p < 1

1−s

and s ∈
(

1
2 , 1

)
. Indeed, if u ∈ W s,p

RL,a+(I) \ Isa+(L1(I)) for some p > 1, we clearly have
u ∈ W s,1

RL,a+(I)\Isa+(L1(I)), so that u ∈ Lr(I) for any r ∈
[
1, 1

1−s

)
. On the other hand, the

term (x− a)s−1 in the representation formula (2.30) prevents us from obtaining a better
result, since (· − a)s−1 ∈ Lr(I) if and only if 1 ≤ r < 1

1−s . Thus, we gain summability if
and only if 1 < p < 1

1−s . Let us now consider separately the cases sp < 1 and sp ≥ 1.
If 1 < p < 1

s
, we obtain an improvement in summability if and only if

(
p, 1

1−s

)
⊇ (p, 1

s
).

Then, it is enough to notice that
1

1− s >
1
s

if and only if 1
2 < s < 1.

On the other hand, in the case sp ≥ 1, we have
1
s
≤ p <

1
1− s,

so that it must be again s ∈
(

1
2 , 1

)
.

In addition, we can prove a similar results for functions with left Riemann-Liouville
s-fractional bounded variation, which can be seen as the (one dimensional) “Riemann-
Liouville version” of [14, Theorem 3.8].

Theorem 6.3. If u ∈ BV s
RL,a+(I), then u ∈ L

1
1−s ,∞(I), and in particular u ∈ Lr(I) for

all r ∈
[
1, 1

1−s

)
.

Proof. By Lemma 4.4, any u ∈ BV s
RL,a+(I) satisfies

u(x) = Isa+[Dsa+[u]](x) + I1−s
a+ [u](a+)

Γ(s) (x− a)s−1 for L 1-a.e. x ∈ I.

It is immediate to check that (· − a)s−1 ∈ L
1

1−s ,∞(I), while Lemma 3.3 implies

Isa+[Dsa+[u]] ∈ L
1

1−s ,∞(I),

since Dsa+[u] ∈M(I). Then, it is enough to apply Lemma 2.2 to conclude the proof. �

We notice here that the embedding in Theorem 6.1 is sharp. The continuity of the
fractional integral Isa+ from Lp(I) into Lr(I), with 1 < p < 1

s
and 1 ≤ r ≤ p

1−sp has been
proved by Hardy and Littlewood in [24, Theorem 4], but in the limiting cases p = 1 and
p = 1

s
the continuity fails, as shown by the following examples.
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Example 6.4. Let s ∈ (0, 1), 1 < β ≤ 2− s, I = (0, 1) and

f(x) =


1

x| log(x)|β if 0 < x ≤ 1
2

0 if 1
2 < x < 1.

Let u := Is0+[f ]. Clearly, u ∈ Is0+(L1(I)) = Is0+(L1(I)) ∩ W s,1
RL,0+(I) since f ∈ L1(I).

However, for all x ∈ (0, 1/2), we have

u(x) = 1
Γ(s)

∫ x

0

dt

t| log(t)|β(x− t)1−s >
xs−1

Γ(s)

∫ x

0

dt

t| log(t)|β = 1
Γ(s)(β − 1)x

s−1| log(x)|1−β,

so that ∫ 1

0
|u(x)|

1
1−sdx ≥

∫ 1
2

0
|u(x)|

1
1−sdx > c(β, s)

∫ 1/2

0

dx

x| log(x)|
β−1
1−s

= +∞,

since β − 1
1− s ≤ 1. Thus, u /∈ L

1
1−s (I).

Example 6.5. Let s ∈ (0, 1), I := (0, 1) and

f(x) =


0 if 0 < x < 1

2 ,
1

(1− x)s| log(1− x)| if 1
2 ≤ x < 1.

Now let u := Is0+[f ]; since f ∈ L1/s(I), by Lemma 2.28 we have u ∈ Is0+(L1/s(I)) ↪→
W

s,1/s
RL,0+(I) ∩ Is0+(L1(I)). Now, we notice that

lim
x→1−

u(x) = 1
Γ(s)

∫ 1

1/2

dt

(1− t)| log(1− t)| = +∞,

which implies that u /∈ L∞(I).

7. Higher order fractional derivatives

In this section, we point out that some of the results presented in the paper can be
extended to higher order fractional derivatives.

Definition 7.1. Let k ∈ N, s ∈ (k − 1, k) and u be such that the fractional integrals
Ik−sa+ [u] and Ik−sb− [u] are sufficiently smooth. We define the Riemann-Liouville s-fractional
derivatives of u as

Ds
a+[u](x) := dk

dxk
Ik−sa+ [u](x).

Ds
b−[u](x) := (−1)k d

k

dxk
Ik−sb− [u](x).
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We observe that Ik−sa+ and Ik−sb− are the left and right fractional integral operators,
respectively, as defined in (2.6) and (2.7), since k−s ∈ (0, 1) for all k ∈ N and s ∈ (k−1, k).
From this definition, for u ∈ Ck(I), we immediately obtain a definition for higher order
Caputo fractional derivatives:

CDs
a+[u](x) := 1

Γ(k − s)

∫ x

a

u(k)(t)
(x− t)s−k+1dt = Ds

a+[u](x)−
k−1∑
j=0

u(j)(a)
Γ(j − s+ 1)(x− a)j−s,

and

CDs
b−[u](x) := (−1)k

Γ(k − s)

∫ b

x

u(k)(t)
(t− x)s−k+1dt = Ds

b−[u](x)−
k−1∑
j=0

(−1)j u(j)(b)
Γ(j − s+ 1)(b− x)j−s.

These higher order fractional derivatives allow to define, for p ≥ 1, k ∈ N and s ∈ (k−1, k),
higher order left Riemann-Liouville fractional Sobolev spaces

W s,p
RL,a+(I) :=

{
u ∈ W k−1,p(I) : Ik−sa+ [u] ∈ W k,p(I)

}
.

Proposition 7.2 (Continuity of the fractional integral in higher order Sobolev spaces).
If k ≥ 2, 1 ≤ p < ∞ and s ∈

(
k − 1, k − 1 + 1

p

)
, then the fractional integral Ik−sa+ is a

continuous operator from W k,p(I)∩W k−1,p
a (I) into W k,p(I). Moreover, for k ≥ 1 and for

all s ∈ (k − 1, k), Ik−sa+ is a continuous operator
(1) from W k,p

a (I) into W k,p(I) for all p ∈ [1,∞],
(2) from W k,1

a (I) into W k, 1
1−k+s ,∞(I), and so into W k,r(I), for all r ∈

[
1, 1

1−k+s

)
,

(3) from W k,p
a (I) into W k,r(I) for all p ∈

(
1, 1

k−s

)
and r ∈

[
1, p

1−(k−s)p

]
,

(4) from W k,p
a (I) into Ck,k−s− 1

p (I) for all p ∈
(

1
k−s ,∞

)
,

(5) from W
k, 1
k−s

a (I) into W k,r(I) for all r ∈ [1,∞),
(6) from W k,∞

a (I) into Ck,k−s(I),
where W k, 1

1−k+s ,∞(I) :=
{
u ∈ W k,1(I) ∩W k−1,∞(I) : u(k) ∈ L

1
1−k+s ,∞(I)

}
.

Proof. We recall that W k,p(I) ↪→ ACk−1(I), for all 1 ≤ p ≤ ∞ and k ∈ N, where
u ∈ ACk−1(I) if u ∈ Ck−1(I) and u(k−1) ∈ AC(I). Hence, we see that the following
representation formula obtained via iterated integrations by parts holds:

Ik−sa+ [u](x) = 1
Γ(k − s)

(
cs,k,k

∫ x

a
u(k)(t)(x− t)2k−s−1dt+

k−1∑
i=0

cs,k,iu
(i)(a)(x− a)k−s+i

)
,

where

cs,k,h :=

1 if h = 0,(∏h−1
l=0 (k − s+ l)

)−1
if h ≥ 1.

Therefore, it is not difficult to check that Ik−sa+ [u] admits weak derivatives in Lp(I) up
to order k if u vanishes in a with all its derivatives up to order k − 2. Indeed, if u ∈
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W k,p(I) ∩W k−1,p
a (I), for all j ∈ {0, . . . , k} we have

(Ik−sa+ [u])(j)(x) = dj,k,s
Γ(k − s)

∫ x

a
u(k)(t)(x− t)2k−s−1−jdt+ ej,k,s

Γ(k − s)u
(k−1)(a)(x− a)2k−s−1−j,

(7.1)
where

dj,k,s = cs,k,k
Πj
i=0(2k − s− i)

2k − s and ej,k,s = cs,k,k−1
Πj
i=0(2k − s− i)

2k − s .

It is clear that the second term belongs to Lp(I) for all j ∈ {0, . . . , k} if and only if
s < k − 1 + 1

p
. As for the first term, we notice that

1
Γ(k − s)

∣∣∣∣∫ x

a
u(k)(t)(x− t)2k−s−1−jdt

∣∣∣∣ ≤ 1
Γ(k − s)(b− a)k−j

∫ x

a

|u(k)(t)|
(x− t)1−k+sdt

= (b− a)k−jIk−sa+ [|u(k)|](x),

so that Proposition 2.15 and Remark 2.16 imply

1
Γ(k − s)

(∫ b

a

∣∣∣∣∫ x

a
u(k)(t)(x− t)2k−s−1−jdt

∣∣∣∣p dx
) 1
p

≤ (b− a)k−j
∥∥∥Ik−sa+ [|u(k)|]

∥∥∥
Lp(I)

≤ (b− a)k−j (b− a)k−s
Γ(k + 1− s)‖u

(k)‖Lp(I).

Therefore, (Ik−sa+ [u])(j) ∈ Lp(I) for all j ∈ {0, . . . , k}, 1 ≤ p <∞ and s ∈
(
k − 1, k − 1 + 1

p

)
.

Thus, for all u ∈ W k,p(I) ∩W k−1,p
a (I) we get

‖Ik−sa+ [u]‖Wk,p(I) ≤ Ck,s,p,a,b
(
‖u(k)‖Lp(I) + |u(k−1)(a)|

)
≤ C̃‖u‖Wk,p(I),

thanks to Remark 2.5, since u(k−1) ∈ W 1,p(I). Furthermore, if k ≥ 1 and u ∈ W k,p
a (I), we

have u(k−1)(a) = 0, so that (7.1) reduces to

(Ik−sa+ [u])(j)(x) = dj,k,s
Γ(k − s)

∫ x

a
u(k)(t)(x− t)2k−s−1−jdt, (7.2)

for all j ∈ {0, . . . , k}. In particular, if j ∈ {0, . . . , k− 1}, then (x− t)2k−s−1−j is bounded
for all x, t ∈ (a, b) and s ∈ (k − 1, k); so that Ik−sa+ [u] ∈ Ck−1(I), with

‖Ik−sa+ [u]‖Wk−1,∞(I) ≤ C‖u(k)‖L1(I) ≤ C̃‖u‖Wk,p(I)

for all p ∈ [1,∞] and u ∈ W k,p
a (I). On the other hand, if j = k, (7.2) yields

(Ik−sa+ [u])(k) = dk,k,sI
k−s
a+ [u(k)],

so that we can apply Proposition 2.15 to u(k) replacing s with k − s ∈ (0, 1) in order
to conclude the continuity of Ik−sa+ from W k,p

a (I) into suitable Sobolev or Hölder spaces,
depending on the values of k, s, p. �
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Remark 7.3. The first part of Proposition 7.2 in the case k = 1 is covered by Proposition
5.1, where a homogeneous initial condition is not necessary to prove the continuity of the
(1− s)-fractional integral from W 1,p(I) to W 1,p(I).

Remark 7.4. Using the same counterexample of Remark 5.3 in the case k = 1, we see
that, in the case p =∞, homogeneous conditions in the initial point for all the derivatives
up to order k − 1 are necessary in order to show that Ik−sa+ [u] ∈ W k,∞(I).

The introduction of higher order Riemann-Liouville fractional Sobolev spaces allows us
to prove the following proposition involving the space

BH(I) :=
{
u ∈ W 1,1(I) |u′ ∈ BV (I)

}
,

which is known in the literature as the space of functions with bounded Hessian in I. Orig-
inally introduced in [15], BH is the natural setting for second order variational problems
with linear growth (see e.g. [12] for applications in image analysis). For our purposes,
we consider the subspace BHa(I); that is, the space of functions u ∈ BH(I) such that
u(a) = 0, which is well defined, since u ∈ AC(I), being a Sobolev function.

Proposition 7.5. Let u ∈ BHa(I), then u ∈ W s,1
RL,a+(I) for all s ∈ (1, 2).

Proof. By definition, u ∈ W 1,1(I) and u′ ∈ BV (I). Therefore, thanks to Theorem 3.4, we
have u′ ∈ W σ,1

RL,a+(I) for all σ ∈ (0, 1), and so I1−σ
a+ [u′] = CDσ

a+[u] ∈ W 1,1(I). Now, since
u(a) = 0, we have CDσ

a+[u](x) = Dσ
a+[u](x) for all x ∈ I by (2.20), since u ∈ W 1,1(I)

implies the existence of a representative of u in AC(I). This implies that I1−σ
a+ [u] ∈ W 2,1(I)

for all σ ∈ (0, 1). Now, if we set σ := s− 1 for s ∈ (1, 2), the claim plainly follows. �

8. Open Problems

As noticed in Remark 3.12, we are not able to prove (or disprove) that for s ∈ (0, 1)
and p > 1 the inclusion

W s,p(I) ↪→ W s,p
RL,a+(I) (8.1)

holds.
In addition, Proposition 3.13 does not cover the case r ∈

[
s, s+ 1

p′

)
. In any case, we

think that, in order to prove the inclusion in (8.1), the condition sp < 1 is essential.
Indeed, if sp < 1, thanks to Remark 2.9, the set C1

c (I) is dense in W s,p(I). Therefore,
firstly one should be able to prove an analogous of Lemma 3.5 for functions in W s,p(I),
and once proved that

Ds
a+[u](x) = 1

Γ(1− s)
u(x)

(x− a)s + s

Γ(1− s)

∫ x

a

u(x)− u(t)
(x− t)s+1 dt for L 1-a.e. x ∈ I,

one could estimate the Lp norm of the first term in the right-hand side thanks to the
fractional Hardy inequality (Lemma 2.10). However, it is not yet clear to us how to
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handle the second term. Indeed, thanks to Hölder’s inequality, a slightly rough estimate
yields∫ b

a

∣∣∣∣∣
∫ x

a

u(x)− u(t)
(x− t)s+1 dt

∣∣∣∣∣
p

dx ≤ (b− a)p−1
∫ b

a

∫ x

a

|u(x)− u(t)|p
|x− t|sp+p dt dx = (b− a)p−1 (S1 + S2) ,

where

S1 :=
∫ b

a

∫
I1(x)

|u(x)− u(t)|p
|x− t|sp+p dt dx, I1(x) := {t ∈ (a, b) : |x− t| > 1},

and
S2 :=

∫ b

a

∫
I2(x)

|u(x)− u(t)|p
|x− t|sp+p dt dx, I2(x) := {t ∈ (a, b) : |x− t| ≤ 1}.

As for S1, we see that

S1 ≤
∫ b

a

∫
I1(x)

|u(x)− u(t)|p
|x− t|sp+1 dt dx ≤ [u]pW s,p(I).

However, we are not able to prove (or disprove) the existence of a constant C = C(s, p, I) >
0 such that an estimate of the form

S2 ≤ C[u]pW s,p(I),

or its weaker formulation
S2 ≤ C ‖u‖pW s,p(I) ,

holds true.
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