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Bounding the order of a verbal subgroup
in a residually finite group

Eloisa Detomi, Marta Morigi, and Pavel Shumyatsky

Abstract. Let w be a group-word. Given a group G, we denote
by w(G) the verbal subgroup corresponding to the word w, that
is, the subgroup generated by the set Gw of all w-values in G. The
word w is called concise in a class of groups X if w(G) is finite
whenever Gw is finite for a group G ∈ X . It is a long-standing
problem whether every word is concise in the class of residually
finite groups. In this paper we examine several families of group-
words and show that all words in those families are concise in
residually finite groups.

1. Introduction

Let w = w(x1, . . . , xk) be a group-word. Given a group G, we
denote by w(G) the verbal subgroup corresponding to the word w,
that is, the subgroup generated by the set Gw of all values w(g1, . . . , gk),
where g1, . . . , gk are elements of G. The word w is called concise if w(G)
is finite whenever the set of w-values in G is finite. More generally,
the word w is called concise in a class of groups X if w(G) is finite
whenever the set of w-values in G is finite for a group G ∈ X . In the
sixties Hall raised the problem whether all words are concise, but in
1989 S. Ivanov [16] (see also [21, p. 439]) solved the problem in the
negative. On the other hand, the problem for residually finite groups
remains open (cf. Segal [24, p. 15] or Jaikin-Zapirain [17]). In recent
years several new positive results with respect to this problem were
obtained (see [1, 13, 10, 6, 7, 8]).

A word w is boundedly concise in a class of groups X if for every
integer m there exists a number ν = ν(X , w,m) such that whenever
|Gw| ≤ m for a group G ∈ X it always follows that |w(G)| ≤ ν. In [9]
it is shown that every word which is concise in the class of all groups is
actually boundedly concise. It was conjectured in [10] that every word
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which is concise in the class of residually finite groups is boundedly
concise.

We showed in [6] that words implying virtual nilpotency are bound-
edly concise in the class of residually finite groups. Recall that a word w
is said to imply virtual nilpotency if every finitely generated metabelian
group G where w is a law, that is w(G) = 1, has a nilpotent subgroup of
finite index. Such words admit several important characterizations (see
[2, 3, 11]). Moreover, if w is a word implying virtual nilpotency, then
for a large class of groups G, including all finitely generated residually
finite groups, w(G) = 1 implies that G is nilpotent-by-finite [3].

Our first result in this paper is the following theorem.

Theorem 1.1. Let u = u(x1, . . . , xk) and v = v(y1, . . . , yr) be words
implying virtual nilpotency. Then the word [u, v] is concise in the class
of residually finite groups.

Unfortunately, the proof of Theorem 1.1 sheds no light on the ques-
tion whether the word [u, v] is boundedly concise in the class of residu-
ally finite groups. With regard to this question, the situation remains
absolutely unclear. One purpose of this paper is to show that for some
particular words v, the word [u, v] is indeed boundedly concise in resid-
ually finite groups. It is easy to see that the word v = [yd11 , . . . , y

dr
r ],

where d1, . . . , dr are positive integers, implies virtual nilpotency (see
Section 5).

Theorem 1.2. Let u = u(x1, . . . , xk) be a word implying virtual
nilpotency and let v = [yd11 , . . . , y

dr
r ] for some positive integers d1, . . . , dr.

Then the word [u, v] is boundedly concise in the class of residually finite
groups.

The proofs of both above results rely on Zelmanov’s positive solu-
tion of the restricted Burnside problem [26, 27].

The techniques employed in the proofs of Theorems 1.1 and 1.2
might be helpful for establishing conciseness of some other words. In
particular, we show how the techniques can be applied in the treatment
of certain words related to ‘weakly rational’ ones. Following [13] we
say that a group word w is weakly rational if for every finite group
G and for every positive integer e relatively prime with the order of
G, the set Gw is closed under taking eth powers of its elements. It is
not difficult to see that weakly rational words are boundedly concise in
residually finite groups (see [13]). Here we will prove:

Theorem 1.3. Let v = v(x1, . . . , xk) be a weakly rational word and
set vi = v(xi,1, . . . , xi.k) for i = 1, . . . , n. Then the word w = [v1, . . . , vn]
is boundedly concise in the class of residually finite groups.
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Thus, Theorem 1.3 provides a sufficient condition for γn(v(G)) to
have bounded order. Throughout, we write γn = γn(x1, . . . , xn) for the
lower central word [x1, . . . , xn] and γn(G) for the corresponding verbal
subgroup of a group G. Of course γn(G) is the nth term of lower central
series of G.

It is easy to see that the problem on conciseness of words in residu-
ally finite groups is equivalent to the same problem in profinite groups.
On the other hand, in the case of profinite groups there are interesting
modifications of the very concept of conciseness of words, allowing the
set Gw to be infinite (see [5] and [4]).

2. Preliminaries

Throughout the paper we denote by G′ the commutator subgroup
of a group G and by 〈M〉 the subgroup generated by a subset M ⊆ G.
We use the expression “(a, b, . . . )-bounded” to mean that a quantity
is bounded by a certain number depending only on the parameters
a, b, . . . . In this section we collect some preliminary results which will
be needed for the proofs of the main theorems.

A proof of the following lemma can for example be found in [6].

Lemma 2.1. [6, Lemma 4] Let v be a word and G a group such
that the set of v-values in G is finite with at most m elements. Then
the order of the commutator subgroup v(G)′ is m-bounded.

We will now quote a lemma from [6] that provides a valuable tech-
nical tool for bounding the order of verbal subgroups. It played an
important role in proofs of several results on conciseness of words in
residually finite groups.

Lemma 2.2. [6, Lemma 10] Let w = w(x1, x2, . . . , xk) be a word
and let p be a prime. Let G be a nilpotent group of class c generated
by k elements a1, a2, . . . , ak. Denote by X the set of all conjugates in
G of elements of the form w(ai1, a

i
2, . . . , a

i
k), where i ranges over the set

of all integers not divisible by p, and assume that |X| ≤ m for some
integer m. Then |〈X〉| is (c,m)-bounded.

As mentioned in the introduction, a group word w is weakly rational
if for every finite group G and g ∈ Gw, the power ge belongs to Gw

whenever e is relatively prime to |G|. By [13, Lemma 1], the word w
is weakly rational if and only if for every finite group G and g ∈ Gw,
the power ge belongs to Gw whenever e is relatively prime to |g|. As
usual, F (G) denotes the Fitting subgroup of a group G.
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Corollary 2.3. Let G be a finite group with at most m values of
the word [u, v], where u and v are words on disjoint sets of variables.
Assume that v is weakly rational. Let a ∈ Gu and b ∈ Gv ∩ F (G) and
suppose that the subgroup 〈ba, b〉 is nilpotent of class at most c. Then
the order of the element [a, b] is (c,m)-bounded.

Proof. First, consider the case where F (G) is a p-group for some
prime p. Let ν(x1, x2) be the word x−11 x2 and set H = 〈ba, b〉. Since
v is a weakly rational word, for every integer i relatively prime to p
the element bi is again a v-value. Therefore, all elements of the form
b−iabi = [a, bi] are [u, v]-values whenever i is relatively prime to p. The
same holds for all conjugates of [a, bi]. So, the set X of all conjugates
in H of elements of the form ν(bia, bi), with (i, p) = 1, contains at
most m elements. Thus, we deduce from Lemma 2.2 that there is a
(c,m)-bounded number B such that the order of [a, b] is at most B.

We will now deal with the case where F (G) is not necessarily a p-
group. Let p1, . . . , ps be the prime divisors of the order of F (G). Since
the case where s = 1 was already dealt with, we assume that s ≥ 2.
For each j = 1, . . . , s let Nj denote the Hall p′j-subgroup of F (G). The
result obtained in the case where F (G) is a p-group implies that for any
j the image of [a, b] in G/Nj has order at most B. Since the intersection
of the subgroups Nj is trivial, we deduce that the order of [a, b] is at
most B!, which is (c,m)-bounded. The proof is complete. �

3. Proof of Theorem 1.1

The main tools employed in the proof of Theorem 1.1 are P. Hall’s
theorem stating that finitely generated abelian-by-nilpotent groups are
residually finite [14], and a classical result of Turner-Smith that ev-
ery word is concise in the class of groups all of whose quotients are
residually finite [25]. It follows that every word is concise in the class
of virtually abelian-by-nilpotent groups (see also [24, Theorem 2.3.1]).
Recall that if X is a class of groups, then a virtually-X group is a group
having an X -subgroup of finite index.

We will also use a theorem of Burns and Medvedev stating that if
a word w implies virtual nilpotency and G is a finite group in which
w is a law, then G has a normal nilpotent subgroup N such that the
nilpotency class of N and the exponent of G/N are bounded in terms
of w only [3, Theorem A].

Lemma 3.1. Let u = u(x1, . . . , xk) and v = v(y1, . . . , yr) be words
implying virtual nilpotency. Assume G is a d-generated finite group in
which the word w = [u, v] is a law. Then G has two normal subgroups
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N and M , with M ≤ N , such that N has (w, d)-bounded index, N/M
is nilpotent of w-bounded class, and M is abelian.

Proof. Set M = u(G)∩v(G) and note that M is abelian. As u is a
word implying virtual nilpotency and it is a law in the quotientG/u(G),
the theorem of Burns and Medvedev [3, Theorem A] says that G/u(G)
has a normal nilpotent subgroup N1/u(G) such that the nilpotency
class of N1/u(G) and the exponent of G/N1 are bounded in terms of
u only. The solution of the restricted Burnside problem [26, 27] now
tells us that G/N1 has (u, d)-bounded order. Similarly, there exists
a normal nilpotent subgroup N2/v(G) such that the nilpotency class
of N2/v(G) and the order of G/N2 are bounded in terms of v and d
only. It follows that G/M , being a subdirect product of G/u(G) and
G/v(G), has a normal nilpotent subgroup N of (w, d)-bounded index
and which is nilpotent of w-bounded class. �

Proof of Theorem 1.1. Assume that G is a residually finite
group in which the word w = [u, v] takes only finitely many, say m,
values. We want to show that w(G) is finite.

Without loss of generality we may assume that G is finitely gener-
ated, namely by at most m(k+ r) elements, where k+ r is the number
of variables appearing in w. As Gw is finite and G is residually fi-
nite, there exists a normal subgroup K of finite index in G such that
K ∩Gw = 1. In particular, K is finitely generated, say by d elements,
and w(K) = 1.

Let K̄ be any finite image of K. By Lemma 3.1, K̄ has two normal
subgroups N and M , with M ≤ N , such that N has (w, d)-bounded
index, N/M is nilpotent of w-bounded class, and M is abelian. Since
the bounds here do not depend on the choice of K̄, it follows that K
is virtually abelian-by-nilpotent.

This proves that G is virtually abelian-by-nilpotent. As mentioned
above, combining the results of P. Hall [14] and Turner-Smith [25],
we conclude that w(G) is finite. Hence [u, v] is concise in the class of
residually finite groups. �

4. Virtually (abelian-by-nilpotent) groups

Following the lines of [9, Appendix] and [6, Section 6] we will es-
tablish the following proposition.

Proposition 4.1. Let c, t be positive integers and let X be the class
of groups having a normal subgroup N of finite index at most t which is
abelian-by-(nilpotent of class at most c), i.e. γc+1(N) is abelian. Then
every word is boundedly concise in the class X .
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The proof of the above proposition uses the concept of ultraprod-
ucts. The details concerning this construction can be found, for exam-
ple, in [9].

If w is a word and S is a subset of w(G), we say that w has width
k over S, where k is a natural number, if every element of S can be
expressed as the product of at most k elements in Gw ∪G−1w .

Proposition 4.2. Let X be a class of groups with the property that
if G = {Gi}i∈N is a family of groups in X and U is an ultrafilter over
N, then the ultraproduct GU is again in X . Assume also that the word
w is concise in X . Then the word w is boundedly concise in X .

Proof. We need to prove that there exists a function f : N → N
such that if G is a group in X with |Gw| ≤ m, then |w(G)| ≤ f(m). By
way of contradiction, assume that there is a family {Gi}i∈N of groups in
X such that |(Gi)w| ≤ m for all i but nevertheless limi→∞ |w(Gi)| =∞.
Let us fix an arbitrary positive integer k. According to Lemma A.7 in
[9], if i is big enough, there is a subset Si of w(Gi) such that |Si| ≥ k
and w has width less than k over Si. We complete the sequence {Si}i∈N
by choosing the first terms equal to 1. So, in particular, the width of w
can be uniformly bounded over all the subsets Si. Now, if G =

∏
i∈N Gi

and S =
∏

i∈N Si, we have

Gw =
∏
i∈N

(Gi)w

and Lemma A.6 in [9] yields that

S ⊆ w(G).

Consider now a non-principal ultrafilter U over N, and let Q = GU
be the corresponding ultraproduct. By assumption Q is in X . Let S,
Gw, w(G) be the images of S, Gw and w(G) in Q, respectively. Then

Gw = Qw and S ⊆ w(G) = w(Q). Moreover

(1) |Gw| = sup
J∈U

(
min
i∈J
|(Gi)w|

)
≤ m,

and

(2) |S| = sup
J∈U

(
min
i∈J
|Si|
)
≥ k,

(see Lemma A.5 in [9]), thus |Qw| ≤ m and |w(Q)| ≥ k. Since k is
arbitrary, we conclude that the verbal subgroup w(Q) is infinite. This
is a contradiction, since Q ∈ X and w is concise in X . �

The next lemma shows that under the hypotheses of Proposition
4.1 the class X is closed under taking ultraproducts of its members.
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Lemma 4.3. Let X be as in Proposition 4.1. If G = {Gi}i∈N
is a family of groups in X and U is an ultrafilter over N, then the
ultraproduct GU is again in X .

Proof. For each i ∈ N let Ni be a normal subgroup of Gi of finite
index at most t such that γc+1(Ni) is abelian. Then N =

∏
i∈N Ni is a

normal subgroup of the Cartesian product
∏

i∈N Gi. Since γc+1(N), is
abelian, so is its image γc+1(N̄) in the ultraproduct GU .

It remains to prove that N̄ has index at most t in GU . This amounts
to proving that the order of the quotient group GU/N̄ is at most t. But
GU/N̄ is isomorphic to the ultraproduct modulo U of the family of
groups {Gi/Ni}i∈I , thus

(3) |GU/N̄ | = sup
J∈U

(
min
i∈J
|Gi/Ni|

)
≤ t,

(see Lemma A.5 (2) in [9]) and the result follows. �

The proof of Proposition 4.1 will now be short.

Proof of Proposition 4.1. Let w be a word. We have already
noted that every word w is concise in the class of virtually (abelian-by-
nilpotent) groups. In particular, w is concise in the class X . In view
of Lemma 4.3 and Proposition 4.2, we conclude that w is boundedly
concise in X . �

5. On bounded conciseness of some words

In the first part of this section we will prove a special case of The-
orem 1.2, namely that the word w = [u, γr] is boundedly concise in the
class of residually finite groups. Recall that here u = u(x1, . . . , xk) is a
word implying virtual nilpotency and γr = [y1, . . . , yr].

We start with the following lemma.

Lemma 5.1. Let e, r be positive integers. Let G be a finite group
and set H = γr(G). Suppose that all γr-values of G have order dividing
e and He contains no nontrivial γr-values. Then H has e-bounded
exponent.

Proof. Note that He centralizes H = γr(G), because if a ∈ Gγr

and b ∈ He then [a, b] ∈ Gγr+1 ∩He ≤ Gγr ∩He = 1. This means that
He is central in H and so H/Z(H) has exponent dividing e. A theorem
of Mann [18] states that if B is a finite group such that B/Z(B) has
exponent e, then the exponent ofB′ is bounded by a function depending
on e only. Hence H ′ has e-bounded exponent. Since H is generated
by elements of order dividing e, it follows that also H has e-bounded
exponent, as claimed. �



8 ELOISA DETOMI, MARTA MORIGI, AND PAVEL SHUMYATSKY

In the sequel we will require the fact that the words [. . . [xn1
1 , x2]

n2 , . . . , xk]
nk

are weakly rational for any integers n1, n2, . . . , nk (see [13]). In partic-
ular, the lower central words γk = [x1, x2, . . . , xk] and their powers γqk
are weakly rational.

Proposition 5.2. The word w = [u, γr] is boundedly concise in
residually finite groups.

Proof. It suffices to prove that if G is a finite group with only m
values of w, then w(G) has bounded order. Without loss of generality
we may assume that G is generated by a (w,m)-bounded number of
elements. Using Lemma 2.1, we may pass to the quotient G/w(G)′ and
assume that w(G) is abelian.

Set H = γr(G). By Theorem 1.2 in [19], there exists an integer
k = k(w,m) depending only on w and m, such that each element of H
is a product of at most k values of the word γr. Let a ∈ Hu and b ∈ H.
Writing b as a product of at most k values of the word γr and using
the usual commutator identities we see that each commutator [a, b] is
a product of at most k values of the word w. Therefore the word [u, x]
takes only (w,m)-boundedly many values in H. In the other notation,
|H[u,x]| is (w,m)-bounded.

As the word u implies virtual nilpotency, it is easy to see that the
same holds for the word [u, x]. In view of [6, Theorem 2] we deduce
that [u, x] is boundedly concise in the class of residually finite groups.
So the corresponding verbal subgroup in H has (w,m)-bounded order.
Passing to the quotient over this subgroup we assume, without loss of
generality, that [u, x] is a law in H. Hence there exists two (w,m)-
bounded integers e and c such that He is nilpotent of class c.

Choose a γr-value y and a u-value z in G. Since ye belongs to He,
the subgroup 〈yez, ye〉 is nilpotent of class at most c. Taking into ac-
count that [z, y] and all its conjugates are w-values and using the usual
commutator identities we derive that [z, ye] is a product of at most e ele-
ments from Gw. Therefore the word [u, γer ] takes only (w,m)-boundedly
many values in G. Recall that the word γer is weakly rational. Thus,
we apply Corollary 2.3 with the word [u, γer ] and deduce that [z, ye] has
order bounded by an integer, say t, which depends only on m and c.

We now consider the special case where y ∈ Gγr ∩ He. Then the
subgroup 〈yz, y〉 is contained in He and therefore is nilpotent of class
at most c. Thus, as above, apply Corollary 2.3 and we deduce that the
order of [z, y] is bounded by a number (we can assume that this is the
same number t as above) depending only on m and c.

Recall that w(G) is an abelian m-generated subgroup. The sub-
group generated by the elements of order at most t of w(G) has order
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at most tm. Passing to the quotient over this subgroup, we are reduced
to the case where every γr-value lying in He, and every eth power of a
γr-value, commutes with u(G).

Summarizing, now C = CG(u(G)) contains every γr-value lying in
He and every e-th power of a γr-value. We deduce from Lemma 5.1
that the image of H = γr(G) in G/C has e-bounded exponent.

Let N = u(G) ∩ H. As Z(N) ≥ N ∩ C, it follows that N/Z(N)
has e-bounded exponent. By the already mentioned result of Mann
[18], N ′ has e-bounded exponent. Since N ′∩w(G) has (e,m)-bounded
order, we can pass to the quotient group over N ′ and assume that
N is abelian. Arguing as in Lemma 3.1, we deduce that G/N has
a nilpotent subgroup of (w,m)-bounded index and w-bounded class,
since G/N is a subdirect product of G/u(G) and G/γr(G). Therefore,
for some (w,m)-bounded integers j and c0, the group G belongs to the
class X of groups having a normal subgroup of finite index at most
j which is abelian-by-(nilpotent of class at most c0). Now we deduce
from Proposition 4.1 that the order of w(G) is bounded by an integer
that depends only on w and m. �

Now we will prove Theorem 1.2, which states that if u = u(x1, . . . , xk)
is a word implying virtual nilpotency and v = [yd11 , . . . , y

dr
r ], for some

positive integers d1, . . . , dr, then the word [u, v] is boundedly concise in
residually finite groups. Note that the word [yd11 , . . . , y

dr
r ] implies vir-

tual nilpotency. Indeed, if G is a finitely generated metabelian group
and [gd11 , . . . , g

dr
r ] = 1 for every gi ∈ G, then the subgroup H = Ge gen-

erated by all eth powers in G, where e = l.c.m(d1, . . . , dr), has finite
index and it is nilpotent of class at most r − 1.

Proof of Theorem 1.2. Set w = [u, v]. As usual, it suffices
to prove that if G is finite group with only m values of the word
w, then w(G) has bounded order. Here and in the rest of the proof
bounded will always mean (w,m)-bounded. Without loss of general-
ity we may assume that G is generated by boundedly many elements.
Using Lemma 2.1, we may further assume that w(G) is abelian.

Let e = l.c.m(d1, . . . , dr) and let H = Ge be the subgroup generated
by all eth powers in G. By the solution of the Restricted Burnside
Problem, the index of H in G is bounded and hence H is generated
by a bounded number of elements. The main result in [20] shows that
there exists an integer t = t(w,m), depending only on w and m, such
that each element of H can be written as a product of at most t eth
powers. Consider the word w0 = [u, γr] in H and let h1, . . . , hk+r ∈ H.
Writing each hk+1, . . . , hk+r as a product of at most t eth powers and
using the usual commutator identities we can write w0(h1, . . . , hk+r) as
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a product of (w,m)-boundedly many elements of the form

[u(b1, . . . , bk), γr(b
e
k+1, . . . , b

e
k+r)]

where bj ∈ G. Since e = l.c.m(d1, . . . , dr), each of these elements is
a w-value. Hence w0(h1, . . . , hk+r) is a product of boundedly many
w-values. So w0 has only boundedly many values in H. Since, by
Proposition 5.2, w0 is boundedly concise, w0(H) has bounded order.
Passing to the quotient over w0(H), without loss of generality we can
assume that w0 is a law in H. Hence, u(H)∩γr(H) is abelian. As H is
generated by boundedly many elements and u is a word implying virtual
nilpotency, H/u(H) has a normal nilpotent subgroup of bounded index
and bounded nilpotency class. Clearly H/γr(H) has nilpotency class at
most r−1. Hence H/(u(H)∩γr(H)) has a normal nilpotent subgroup of
bounded index and bounded nilpotency class. Taking into account that
the index of H in G is bounded, we conclude that, for some bounded
integers l and c, the group G belongs to the class X of groups having
a normal subgroup N of finite index at most l which is abelian-by-
(nilpotent of class at most c). The theorem follows from Proposition
4.1. �

Recall that multilinear commutator words, also known as outer-
commutator words, are the ones obtained by nesting commutators and
using each variable only once. For example, [[x1, x2], [x3, x4, x5], x6] is a
multilinear commutator word while the 3-Engel word [x, y, y, y] is not.

Remark 5.3. Some arguments employed in this section can be used
to obtain a result of independent interest: the word w(xe1, . . . , x

e
k) is

boundedly concise in the class of residually finite groups whenever w is
a multilinear commutator word.

Indeed, letG be a finite group with onlym values of w̃ = w(xe1, . . . , x
e
k).

We need to show that w̃(G) has bounded order. Without loss of gen-
erality we may assume that G can be generated by (w,m)-boundedly
many elements. Using Lemma 2.1, we may further assume that w̃(G)
is abelian.

Let H = Ge be the subgroup generated by all eth powers in G.
By the solution of the Restricted Burnside Problem, the index of H in
G is (w̃,m)-bounded and hence H is generated by a (w̃,m)-bounded
number of elements. The main result in [20] shows that each element
of H is a product of (w̃,m)-boundedly many eth powers. Writing
each of the elements h1, . . . , hk ∈ H as a product of (w̃,m)-boundedly
many eth powers and using the usual commutator identities we can
write w(h1, . . . , hk) as a product of (w̃,m)-boundedly many w-values.
So w has only (w̃,m)-boundedly many values in H. Since multilinear
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commutator words are boundedly concise (see [9]), w(H) has (w̃,m)-
bounded order. Hence also the order of w̃(G) is (w̃,m)-bounded, as
claimed.

It would be interesting to see if this can be extended to words of
the form w(xe11 , . . . , x

ek
k ), where w is a multilinear commutator word

and the exponents e1, . . . , ek are not necessarily equal.

6. Proof of Theorem 1.3

Set [x, 0y] = x, [x, 1y] = [x, y] = x−1y−1xy and [x, i+1y] = [[x, iy], y]
for i ≥ 1. The word [x, ny] is called the nth Engel word. An element
g of a group G is called a (left) Engel element if for any x ∈ G there
exists n = n(g, x) ≥ 1 such that [x, ng] = 1. If n here does not depend
on x, then g is a (left) n-Engel element.

The next result is a well-known theorem due to Baer (see [15,
Satz III.6.15]).

Lemma 6.1. Let G be a finite group generated by Engel elements.
Then G is nilpotent.

A well-known theorem of Gruenberg says that a soluble group gen-
erated by finitely many Engel elements is nilpotent [12]. The following
lemma shows that the nilpotency class of the group is bounded in terms
of the relevant parameters.

Lemma 6.2. [23, Lemma 4.1] Let G be a group generated by d
elements which are n-Engel. Suppose that G is soluble with derived
length s. Then G is nilpotent with (d, n, s)-bounded class.

Let v = v(x1, . . . , xk) be a weakly rational word and consider the
word w = [v1, . . . , vn] where vi = v(xi,1, . . . , xi.k), for i = 1, . . . , n. We
will now prove that w is boundedly in concise the class of residually
finite groups. Obviously, for any group G we have w(G) = γn(v(G)).

Proof of Theorem 1.3. As usual, it is sufficient to prove that,
given a finite group G such that Gw contains only m elements, w(G) has
(w,m)-bounded order. Without loss of generality, we can also assume
that w(G) is abelian (see Lemma 2.1).

Let x ∈ G and y ∈ Gv. Note that, since [a−1, b] = [b, a]a
−1

=

[ba
−1
, a], the element

[x, y, y] = [y−xy, y] = [y−xy, y] = [yy
−xy

, yxy]

is a [v1, v2]-value. Thus

[x, ny] = [[x, y, y], n−2y] ∈ Gw.
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Moreover, as w(G) is abelian, whenever x ∈ w(G) we have

[xi, ny] = [x, ny]i.

So [x,n y]i ∈ Gw for every integer i. As |Gw| ≤ m, it follows that the
elements of the form [x, ny], with x ∈ w(G) and y ∈ Gv, have order at
most m.

Since w(G) is abelian and m-generated, the order of the subgroup
of w(G) generated by the elements of order at most m is at most
mm. Passing to the quotient over this subgroup we may assume that
[x, ny] = 1 for all x ∈ w(G) and y ∈ Gv. Taking into account that
w(G) = γn(v(G)) we deduce that every y ∈ Gv is a 2n-Engel element
in v(G). It follows from Lemma 6.1 that v(G) is nilpotent.

Write w = [u, v], where u = [v1, . . . , vn−1], and choose a nontrivial
w-value [x, y], where x is a u-value and y is a v-value. Our next claim
is that H = 〈yx, y〉 is nilpotent of n-bounded class. Note that the
quotient group v(G)/w(G) is nilpotent of class at most n. Since w(G)
is abelian, we deduce that v(G) is soluble with derived length at most
n+1. As H is generated by two 2n-Engel elements, by applying Lemma
6.2, we obtain that H is nilpotent with n-bounded class, as claimed.

Since v is a weakly rational word and v(G) is nilpotent, we are in
a position to apply Corollary 2.3 and deduce that the order of [x, y] is
bounded by some number f depending only on m and n. Thus, w(G)
is an abelian subgroup generated by at most m elements of (w,m)-
bounded order. We conclude that the order of w(G) is (w,m)-bounded.
This establishes the theorem. �

Acknowledgments. The authors thank the referee for his/her help-
ful suggestions. The first and second authors are members of GNSAGA
(Indam). The third author was partially supported by FAPDF and
CNPq.

References

[1] C. Acciarri and P. Shumyatsky, On words that are concise in residually finite
groups. J. Pure Appl. Algebra 218 (2014), 130–134.

[2] S. Black, Which words spell ”almost nilpotent?”. J. Algebra 221 (1999), 47–
496.

[3] R.G. Burns and Y. Medvedev, Group laws implying virtual nilpotence. J. Aust.
Math. Soc. 74 (2003), 295–312.

[4] E. Detomi, B. Klopsch and P. Shumyatsky, Strong conciseness in profinite
groups. J. Lond. Math. Soc. (2), 102 (2020), 977-993, doi:10.1112/jlms.12342.

[5] E. Detomi, M. Morigi and P. Shumyatsky, On conciseness of words in profinite
groups. J. Pure Appl. Algebra 220 (2016), 3010-3015.



BOUNDING THE ORDER OF A VERBAL SUBGROUP 13

[6] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in
residually finite groups. Bulletin of Mathematical Sciences 9 (2019) 1950012
(19 pages).

[7] E. Detomi, M. Morigi and P. Shumyatsky, On bounded conciseness of Engel-
like words in residually finite groups. J. Algebra 521 (2019), 1–15.

[8] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in
residually finite groups. Part II, Groups Geom. Dyn., 14 (2020), 991-1005.

[9] G. A. Fernández-Alcober and M. Morigi, Outer commutator words are uni-
formly concise. J. London Math. Soc. 82 (2010), 581–595.

[10] G. A. Fernández-Alcober and P. Shumyatsky, On bounded conciseness of words
in residually finite groups. J. Algebra 500 (2018), 19–29.

[11] J.R.J Groves, Varieties of soluble groups and a dichotomy of P. Hall. Bull.
Austral. Math. Soc. 5 (1971), 391–410.

[12] K W. Gruenberg, Two theorems on Engel groups. Proc. Camb. Philos. Soc.
49 (1953), 377–380.

[13] R. Guralnick and P. Shumyatsky, On rational and concise word. J. Algebra 429
(2015), 213–217.

[14] P. Hall, On the finiteness of certain soluble groups. Proc. London Math. Soc.
(3) 9 (1959), 595–622.

[15] B. Huppert, Endliche Gruppen. I. Springer-Verlag, Berlin-New York 1967.
[16] S. V. Ivanov, P. Hall’s conjecture on the finiteness of verbal subgroups. Izv.

Vyssh. Ucheb. Zaved. 325 (1989), 60–70.
[17] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups.

Rev. Mat. Iberoam. 168 (2008), 393–412.
[18] A. Mann, The exponent of central factors and commutator groups. J. Group

Theory 10 (2007), 435–436.
[19] N. Nikolov and D. Segal, On finitely generated profinite groups. I. Strong

completeness and uniform bounds. Ann. Math. 165 (2007), 171–238.
[20] N. Nikolov and D. Segal, Powers in finite groups. Groups Geom. Dyn. 5 (2011),

501–507.
[21] A. Yu. Ol’shanskii, Geometry of Defining Relations in Groups. Mathematics

and its applications 70 (Soviet Series), Kluwer Academic Publishers, Dor-
drecht, 1991.

[22] D.J.S. Robinson, A course in the theory of groups. Second edition. Graduate
Texts in Mathematics, 80 Springer-Verlag, New York, 1996.

[23] P. Shumyatsky and D. Sanção da Silveira, On finite groups with automor-
phisms whose fixed points are Engel. Arch. Math. 106 (2016), 209–218.

[24] D. Segal, Words: notes on verbal width in groups. LMS Lecture Notes 361,
Cambridge Univ. Press, Cambridge, 2009.

[25] R. F. Turner-Smith, Finiteness conditions for verbal subgroups. J. Lond. Math.
Soc. 41 (1966), 166–176.

[26] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd
exponent. Math. USSR-Izv. 36 (1991), 41–60.

[27] E. I. Zelmanov, Solution of the restricted Burnside problem for 2-groups. Math.
USSR-Sb. 72 (1992), 543–565.



14 ELOISA DETOMI, MARTA MORIGI, AND PAVEL SHUMYATSKY

Dipartimento di Ingegneria dell’Informazione, Università di Padova,
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