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A B S T R A C T

The mixed convection flow in a plane channel with adiabatic boundaries is examined. The boundaries have an
externally prescribed relative velocity defining a Couette-like setup for the flow. A stationary flow regime is
maintained with a constant velocity difference between the boundaries, considered as thermally insulated. The
effect of viscous dissipation induces a heat source in the flow domain and, hence, a temperature gradient. The
nonuniform temperature distribution causes, in turn, a buoyancy force and a combined forced and free flow
regime. Dual mixed convection flows occur for a given velocity difference. Their structure is analysed where,
in general, only one branch of the dual flows is compatible with the Oberbeck–Boussinesq approximation, for
realistic values of the Gebhart number. A linear stability analysis of the basic stationary flows with viscous
dissipation is carried out. The stability eigenvalue problem is solved numerically, leading to the determination
of the neutral stability curves and the critical values of the Péclet number, for different Gebhart numbers. An
analytical asymptotic solution in the special case of perturbations with infinite wavelength is also developed.
1. Introduction

The absence of a transition to hydrodynamic instability, through
linear perturbations, for the plane Couette flow is a cornerstone re-
sult of fluid mechanics. In fact, early discussions regarding the linear
stability of the plane Couette flow date back to papers such as that
by Rayleigh [1], while a rigorous proof was provided in more recent
times by Romanov [2]. The core assumption of this important achieve-
ment is that the fluid is considered isothermal so that no temperature
gradient effect may influence the local momentum balance of the fluid.
A thorough discussion of the hydrodynamic stability for the plane
Couette flow is provided, for instance, in the books by Drazin and
Reid [3] and by Schmid and Henningson [4]. Despite the theoretical
results of the linear stability analysis, transition to instability and
turbulence as a response to finite-amplitude perturbations is observed
in several experiments such as those reported by Bottin et al. [5] and
by Tillmark and Alfredsson [6]. Transition to instability was indeed
proved experimentally for Reynolds numbers around 300.

When a non-isothermal regime is considered, convection heat trans-
fer may cause the linear instability of the plane Couette flow at suffi-
ciently large Rayleigh numbers, where the Rayleigh number is propor-
tional to the temperature difference imposed between the hot lower
wall and the cold upper wall [7–9]. The thermal buoyancy force is the
cause of the motion by means of an upward heat flux imposed through
the temperature boundary conditions. Besides the boundary conditions,
a temperature gradient inside the fluid may be caused by the frictional
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heating. In fact, a viscous dissipation effect occurs due to the velocity
difference between the plane boundaries.

The effect of viscous dissipation may be the unique source of ther-
mal instability in those cases where there is no temperature difference
impressed on the fluid by means of the boundary conditions. In fact, the
temperature coupling term within the local momentum balance equa-
tion can be manifold. The most common coupling terms are the viscous
force, since the viscosity depends significantly on the local temperature,
and the buoyancy force, since the density depends significantly on the
local temperature. The variable viscosity, in connection with viscous
dissipation, has been envisaged as a cause of thermally-induced flow
instability by Joseph [10,11] and, more recently, by Barletta and
Nield [12]. The buoyancy force, as responsible of a viscous dissipa-
tion instability, has been also considered in several studies over the
last decades [13–18]. Obviously, the physics of the viscous dissipa-
tion effect suggests that both the temperature-dependence of the fluid
viscosity and the temperature-dependence of the fluid density may
contribute in some way to the momentum balance with a relative
importance that may vary from case to case. Such a view is virtually
compatible with the Oberbeck–Boussinesq model for buoyant flows, as
this approximate scheme may include also cases where the viscosity
or other fluid properties, such as the thermal diffusivity, undergoes
temperature changes [19–21]. The problem is that such an expanded
version of the Oberbeck–Boussinesq model is highly complicated by
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a significantly large number of governing parameters. Recently, some
early attempts to define the methods for the investigation of flows
with a large number of governing parameters have been made, based
on machine learning techniques [22]. We are guided by the principle
that understanding the basic nature of physical phenomena needs
a clear view of appropriate, though simplified, ontologies [23]. For
such reasons, the focus of the analysis presented in this paper will
be on the classical Oberbeck–Boussinesq approximation. The idea of
modelling the fluid viscosity as constant is appropriate as the focus
of the Oberbeck–Boussinesq approximation is on convection processes
where small temperature changes arise [24–26].

The aim of this paper is bringing a different view on the onset of
instability for the Couette flow. Indeed, the term Couette-like flow is
more appropriate as we will show that taking into account the effects
of viscous dissipation and of the buoyancy force yields a modification
of the Couette profile in the stationary basic flow conditions. The
arrangement of the Couette boundary conditions specifies adiabatic
walls subjected to a velocity difference, where adiabaticity ensures the
absence of an external thermal forcing. Non-isothermal flow occurs as
a consequence of viscous friction which is, in turn, a consequence of
the impressed velocity difference between the boundary walls. This
paper is intended as an extension to a Couette-like flow system of
the analysis carried out for a Poiseuille-like flow system in a recent
study [18]. The analysis of the transition to instability of the basic
flow with linear perturbations is carried out under conditions where
the viscous dissipation effect is likely to yield major effects, namely
the creeping flow of a fluid with a very large Prandtl number [14,18].

The main motivation for the analysis carried out in this paper is
the wide area of applications involving a very large Prandtl number
and creeping flows. Such applications range from chemical engineering
to geophysics. The design of polymeric materials processing and their
extrusion, as well as the design of fluid food processing, are typical
situations where the viscous dissipation effect may be important [27].
Geophysical systems displaying buoyant flows and natural convection
heat transfer with viscous dissipation have been considered by Kincaid
and Silver [28] and by van den Berg and Yuen [29]. A model of the
excess heat in the upper Earth mantle for the orogenetic evolution
explained via the viscous dissipation effect has been developed [28].
Furthermore, natural convection flows in the mantle have been studied
by van den Berg and Yuen [29] with a model involving the effects of
viscous dissipation, of the internal heating due to radioactive sources
and of the adiabatic compression/expansion work. All these applica-
tions are relative to extremely viscous fluids with the relatively low
velocities typical of creeping flows.

2. Viscous dissipation Buoyant flow

Following the classical Couette-like setup, we consider the Newto-
nian flow within a plane-parallel channel caused by the relative velocity
𝑈0 between the boundary walls at 𝑧 = 0 and 𝑧 = 𝐻 . Here, 𝑧 is the
ertical axis perpendicular to the walls and 𝐻 is the distance between
he channel boundaries (see Fig. 1). The width in both the horizontal

and 𝑦 directions is assumed as infinite. The uniform gravitational
cceleration 𝐠 is parallel to the 𝑧 axis, so that 𝐠 = −𝑔 𝐞̂𝑧, where 𝐞̂𝑧 is
he unit vector of the 𝑧 axis and 𝑔 is the modulus of 𝐠.

The boundary conditions prescribed at 𝑧 = 0,𝐻 correspond to
mpermeable and perfectly adiabatic walls with an imposed relative
elocity,

= 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 0,

𝑢 = 𝑈0 cos𝜑, 𝑣 = 𝑈0 sin𝜑, 𝑤 = 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 𝐻, (1)

where 𝐮 = (𝑢, 𝑣,𝑤) is the velocity field and 𝑇 is the temperature field,
while 𝑈0 is the velocity of the upper boundary wall in the direction
defined by the unit vector cos𝜑, sin𝜑, 0 , with 0 ≤ 𝜑 ≤ 𝜋∕2.
2

( )
2.1. Governing equations

Within the framework of the Oberbeck–Boussinesq approximation,
the governing equations are given by

𝛁 ⋅ 𝐮 = 0, (2a)
𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ 𝛁)𝐮 = −1
𝜌
𝛁𝑝 + 𝑔𝛽

(

𝑇 − 𝑇0
)

𝐞̂𝑧 + 𝜈∇2𝐮, (2b)

𝜕𝑇
𝜕𝑡

+ (𝐮 ⋅ 𝛁) 𝑇 = 𝛼∇2𝑇 + 𝜈
𝑐
𝛷, (2c)

where 𝜌, 𝛽, 𝜈, 𝛼 and 𝑐 are the fluid density, thermal expansion coeffi-
ient, kinematic viscosity, thermal diffusivity and specific heat of the
luid in the reference thermodynamic state with constant temperature
0. In Eqs. (2), 𝑡 is the time and 𝑝 is the local difference between
he pressure and the hydrostatic pressure. The dissipation function 𝛷,
mployed in Eq. (2c) denotes

= 1
2
𝛾𝑖𝑗𝛾𝑖𝑗 using 𝛾𝑖𝑗 =

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

, (3)

where Einstein’s notation for the implicit sum over repeated indices is
used, 𝛾𝑖𝑗 is the 𝑖𝑗 Cartesian component of shear rate tensor, while 𝑢𝑖
and 𝑥𝑖 denote the 𝑖th components of the velocity vector 𝐮 and of the
position vector 𝐱 = (𝑥, 𝑦, 𝑧), respectively.

2.2. Dimensionless formulation

A dimensionless formulation of Eqs. (1) and (2) can be achieved by
the scaling

𝐱
𝐻

=
(𝑥, 𝑦, 𝑧)

𝐻
→ (𝑥, 𝑦, 𝑧) = 𝐱, 𝑡

𝐻2∕𝛼
→ 𝑡,

𝐮
𝛼∕𝐻

=
(𝑢, 𝑣,𝑤)
𝛼∕𝐻

→ (𝑢, 𝑣,𝑤) = 𝐮, 𝑝
𝜌𝛼𝜈∕𝐻2

→ 𝑝,

𝑇 − 𝑇0
𝛥𝑇

→ 𝑇 , 𝛷
𝛼2∕𝐻4

→ 𝛷 using 𝛥𝑇 = 𝛼𝜈
𝑔𝛽𝐻3

. (4)

By employing Eq. (4), one can rewrite Eqs. (2) in a dimensionless form,
namely

𝛁 ⋅ 𝐮 = 0, (5a)
1
Pr

[ 𝜕𝐮
𝜕𝑡

+ (𝐮 ⋅ 𝛁)𝐮
]

= −𝛁𝑝 + 𝑇 𝐞̂𝑧 + ∇2𝐮, (5b)
𝜕𝑇
𝜕𝑡

+ (𝐮 ⋅ 𝛁) 𝑇 = ∇2𝑇 + Ge𝛷, (5c)

hile the dimensionless boundary conditions (1) are given by

= 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 0,

= Pe cos𝜑, 𝑣 = Pe sin𝜑, 𝑤 = 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 1. (6)

In Eqs. (5b), (5c) and (6), the Prandtl number, Pr, the Gebhart number,
Ge, and the Péclet number, Pe, are defined as

Pr = 𝜈
𝛼
, Ge =

𝑔𝛽𝐻
𝑐

, Pe =
𝑈0𝐻
𝛼

. (7)

. Dual adiabatic flows

Fully developed, parallel and stationary flows satisfying Eqs. (5) and
6) do exist with a horizontal velocity field

(

𝑢𝑏, 𝑣𝑏, 0
)

which depends
just on the vertical coordinate 𝑧. We introduced the subscript 𝑏 meant
to indicate the ‘‘basic solution’’. With these specifications, Eq. (5a) is
identically satisfied, while Eqs. (5b) and (5c) are simplified to

−
𝜕𝑝𝑏
𝜕𝑥

+
d2𝑢𝑏
d𝑧2

= 0, (8a)

−
𝜕𝑝𝑏
𝜕𝑦

+
d2𝑣𝑏
d𝑧2

= 0, (8b)

−
𝜕𝑝𝑏 + 𝑇 = 0, (8c)

𝜕𝑧 𝑏
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Fig. 1. A sketch of the flow system.
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𝑢𝑏
𝜕𝑇𝑏
𝜕𝑥

+ 𝑣𝑏
𝜕𝑇𝑏
𝜕𝑦

= ∇2𝑇𝑏 + Ge

[

(

d𝑢𝑏
d𝑧

)2
+
(

d𝑣𝑏
d𝑧

)2
]

. (8d)

tarting from the formulation of the boundary conditions (6), we have
efined an inclination angle 𝜑 between the upper wall velocity direc-
ion and the 𝑥 axis, so that the basic velocity

(

𝑢𝑏, 𝑣𝑏, 0
)

is everywhere
proportional to the unit vector (cos𝜑, sin𝜑, 0). If 𝜑 = 0, the basic
velocity is parallel to the 𝑥 axis, while with 𝜑 = 𝜋∕2 the basic velocity
is oriented along the 𝑦 axis. Oblique flows correspond to generic angles
0 < 𝜑 < 𝜋∕2. We emphasise that the Couette-like nature of these flows
is not influenced by the choice of 𝜑. In fact, whatever is the angle 𝜑,
the velocity distribution is parallel to a horizontal axis defined by the
unit vector (cos𝜑, sin𝜑, 0). Whether this axis coincides with the 𝑥 axis
or the 𝑦 axis does not alter the physics. The reason for introducing
this apparently useless complication with respect to the traditional
descriptions of the Couette flow, is due to our commitment to develop
a linear stability analysis of the basic flows. As it will become clearer
later on, the linear stability analysis requires consideration of every
possible horizontal orientations of the wave vector associated with the
perturbation mode. One can equivalently decide to consider an inclined
basic velocity and a wave vector parallel to the 𝑥 axis or a basic velocity
parallel to the 𝑥 axis and an inclined wave vector. We will follow
the former scheme. For a formal proof of the mentioned equivalence
between the two schemes, we refer the reader to Appendix.

It is easily verified that the basic solution satisfying Eqs. (8) and the
boundary conditions (6) is given by

𝑢𝑏 = Pe𝐹 (𝑧) cos𝜑, 𝑣𝑏 = Pe𝐹 (𝑧) sin𝜑,

𝑇𝑏 = Pe𝐴 (𝑥 cos𝜑 + 𝑦 sin𝜑) + Pe2 𝐺(𝑧),

𝛁𝑝𝑏 =
(

Pe𝐹 ′′(𝑧) cos𝜑, Pe𝐹 ′′(𝑧) sin𝜑, 𝑇𝑏
)

. (9)

Here, primes are used for the derivatives with respect to 𝑧. Equations
(6) and (8) are satisfied provided that functions 𝐹 (𝑧) and 𝐺(𝑧) are the
polynomials

𝐹 (𝑧) = 𝑧 + 𝐴
12

𝑧 (𝑧 − 1)(2𝑧 − 1),

𝐺(𝑧) = 𝑧2

1440
{

2𝐴𝑧
[

𝐴
(

6𝑧2 − 15𝑧 + 10
)

+ 120
]

− Ge
[

𝐴2 (12𝑧4 − 36𝑧3 + 40𝑧2 − 20𝑧 + 5
)

+ 120𝐴(𝑧 − 1)2 + 720
]}

, (10)

while the constant 𝐴 is equal either to 𝐴− or to 𝐴+, defined as

𝐴− = 12
15 −

√

5
(

45 − Ge2
)

Ge
, 𝐴+ = 12

15 +
√

5
(

45 − Ge2
)

Ge
. (11)

t is easily verified that 𝐹 ′′′(𝑧) = 𝐴. This result implies that the basic
emperature gradient in the horizontal 𝑥 and 𝑦 directions is independent
f 𝑧. Eqs. (9)–(11) describe horizontal flows where the velocity field is
nclined an angle 𝜑 to the 𝑥 axis. In fact, Eq. (10) yields

1
𝐹 (𝑧) d𝑧 = 1 , (12)
3

∫0 2
which means that the average dimensionless velocity in the flow direc-
tion is equal to Pe∕2, which is the mean velocity of the boundary walls.
In other words, in the reference frame where the mean velocity of the
boundary walls is zero, the average velocity of the fluid is zero and,
hence, also the flow rate is zero. In the absence of viscous dissipation,
such a constraint is characteristic of the Couette flow.

On account of Eq. (11), we may have 𝐴 = 𝐴− or 𝐴 = 𝐴+. As
a consequence, Eqs. (9) and (10) entail the existence of dual flows
corresponding to the same prescribed values of Pe and Ge. These dual
flows are allowed only with Ge ≤ 3

√

5 ≈ 6.70820. With Ge = 3
√

5,
𝐴− = 𝐴+ and the dual flows coincide. It must be mentioned that
this maximum Gebhart number is an extremely large value for any
real-world system.

By employing Eq. (9), one can infer that function 𝐹 (𝑧) yields the
basic velocity profile with the Péclet number being an overall constant
factor. Similarly, with the feature 𝐺(0) = 0 displayed by Eq. (10),
the function 𝐺(𝑧) yields (up to an overall factor Pe2) the temperature
difference between a given position 𝑧 and the bottom boundary, 𝑧 = 0,
in the basic state for fixed 𝑥 and 𝑦. With these considerations in mind,
one may view the plots of 𝐹 (𝑧) and 𝐺(𝑧) as representations of the
velocity and temperature distributions on a transverse, 𝑥 cos𝜑+𝑦 sin𝜑 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, cross-section of the channel. An interesting characteristic is
that both 𝐹 (𝑧) and 𝐺(𝑧) depend on a single parameter, Ge.

Figs. 2 and 3 show some plots of 𝐹 (𝑧) and 𝐺(𝑧) with different
Gebhart numbers, relative to either the 𝐴− branch or the 𝐴+ branch.

he flow conditions in the two solution branches are utterly different
ither with respect to the velocity or to the temperature profiles. Fig. 2,
elative to the 𝐴− branch, displays just slight changes from the linear
elocity profile of the isothermal Couette flow. Values such as Ge = 1
r 2 are very large for most applications except for geophysical or
strophysical systems. The influence of an increasing Gebhart number
n the 𝐴− branch is more marked for the temperature profiles 𝐺(𝑧).
ig. 3 shows a much more significant influence of the Gebhart number
n examining the velocity and temperature profiles for the 𝐴+ branch.
ere, the similarity to the Couette linear profile is almost absent for
ll the considered Gebhart numbers. Such velocity profiles describe a
idirectional flow with 𝐹 (𝑧) changing from positive to negative across
he channel cross-section.

We mention that taking Ge = 0 means switching off the effect of
iscous dissipation as it comes out from Eq. (5c). This limiting case
ields a linear Couette velocity profile with a uniform temperature
istribution as displayed by the black lines in Fig. 2. With regard to
he behaviour for small Gebhart numbers, the 𝐴− branch shows the
symptotic expressions

= 𝐴− = 2Ge + 
(

Ge3
)

,

(𝑧) = 𝑧 + Ge
6

𝑧 (𝑧 − 1)(2𝑧 − 1) + 
(

Ge3
)

,
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𝐺

Fig. 2. Plots of 𝐹 (𝑧) and 𝐺(𝑧) for the 𝐴 = 𝐴− branch with different values of Ge.
Fig. 3. Plots of 𝐹 (𝑧) and 𝐺(𝑧) for the 𝐴 = 𝐴+ branch with different values of Ge.
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𝐺(𝑧) = Ge
6

𝑧2 (2𝑧 − 3)

+ Ge2

180
𝑧2

[

𝑧
(

6𝑧2 − 45𝑧 + 70
)

− 30
]

+ 
(

Ge3
)

. (13)

A direct consequence of Eqs. (9) and (13) is that the 𝐴− branch solution
attained with Ge → 0 yields the isothermal Couette flow,

𝑢𝑏 = Pe 𝑧 cos𝜑, 𝑣𝑏 = Pe 𝑧 sin𝜑, 𝑤𝑏 = 0, 𝑇𝑏 = 0, 𝛁𝑝𝑏 = 0. (14)

On the contrary, the 𝐴+ branch displays a singular behaviour in the
limit Ge → 0. In fact,

𝐴 = 𝐴+ = 360
Ge

− 2Ge + 
(

Ge3
)

,

𝐹 (𝑧) =
30 𝑧 (𝑧 − 1)(2𝑧 − 1)

Ge
+ 𝑧 − Ge

6
𝑧 (𝑧 − 1)(2𝑧 − 1) + 

(

Ge3
)

,

(𝑧) =
180 𝑧3

(

6𝑧2 − 15𝑧 + 10
)

Ge2
−

30 𝑧2
(

36𝑧4 − 108𝑧3 + 120𝑧2 − 62𝑧 + 15
)

Ge

− 2 𝑧2
(

6𝑧3 − 20𝑧 + 15
)

+ Ge 𝑧2
6

(

72𝑧4 − 216𝑧3 + 240𝑧2 − 122𝑧 + 27
)

− Ge2𝑧2 (

6𝑧3 − 45𝑧2 + 70𝑧 − 30
)

+ 
(

Ge3
)

. (15)
4

180
Eq. (15) shows that the 𝐴+ solution branch blows up when Ge → 0.
n other words, we reach the reasonable conclusion that, by switching
ff the effect of viscous dissipation or, equivalently, by setting Ge =
, there is a unique possible solution: the isothermal Couette flow
14). The singular behaviour of the 𝐴+ branch entails an extremely
arked influence of small values of Ge on the velocity and temperature

radients in the 𝑧 direction. For instance, by lowering Ge from 10−3 to
0−6, one gets an amplification of the maximum temperature difference
cross the range 0 ≤ 𝑧 ≤ 1 of one million times. We mention that
uch small values of Ge are not unlikely in laboratory experiments. This
cenario is quite similar to that discussed in Barletta et al. [30] with
eference to Poiseuille-like adiabatic flows with viscous dissipation in
n adiabatic channel. Following that discussion, we share the same con-
lusion: the 𝐴+ solution branch is incompatible with the assumptions
ehind the Oberbeck–Boussinesq approximation except for extremely
arge values of Ge. Therefore, exactly as in the analysis presented
y Barletta et al. [18], our investigation of linear instability will be
ocussed on the 𝐴− branch.

For the sake of completeness, Fig. 4 provides an illustration of
hat happens when Ge is close to its maximum value allowed for

he existence of the basic solution (9)–(11), i.e. Ge = 3
√

5. If the
two branches, 𝐴 and 𝐴 , coincide at the maximum Gebhart number,
− +
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they become very similar both for the velocity profile and for the
temperature profile when Ge is slightly smaller than the maximum.

4. Onset of the instability

The discussion provided in Section 3 drove the focus of this study
to the branch 𝐴−. The features of this branch, as gathered analytically
from Eqs. (9)–(11) and graphically from Fig. 2, include a Couette-like
shape of the velocity profile, with small departures from the linear
trend, and a wide vertical range where 𝜕𝑇𝑏∕𝜕𝑧 < 0. The latter feature
suggests a potential thermal instability of the flow. If and when such
potentially unstable temperature distribution actually leads to the onset
of a convective instability is the aim of the forthcoming investigation.

4.1. Small-amplitude perturbations

According to the usual modal analysis of the linear instability, we
perturb the basic state with small-amplitude wavelike disturbances

⎛
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⎠
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⎛

⎜
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⎞
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⎛

⎜

⎜

⎝

𝐔(𝑧)
𝑃 (𝑧)
𝛩(𝑧)

⎞

⎟

⎟

⎠

𝑒𝑖 𝑘 𝑥 𝑒𝜆 𝑡, (16)

where 𝜀 ≪ 1 is a small positive perturbation parameter, 𝑘 is the
wavenumber and 𝜆 is a complex parameter. The real part of such a com-
plex variable, 𝜆𝑟, yields the temporal growth rate while its imaginary
art is −𝜔, where 𝜔 is the angular frequency of the wave. The physical
eaning of 𝜆𝑟 arises when the stable or unstable behaviour of the
isturbance must be assessed. The linear instability occurs when 𝜆𝑟 > 0,

while 𝜆𝑟 = 0 defines the neutral stability condition. The neutral stability
is the parametric threshold condition for the onset of the instability.

We note that Eq. (16) defines plane wave disturbances travelling
along the horizontal 𝑥 direction. There is no lack of generality in this
assumption as the basic flow direction is parallel to the 𝑥 cos𝜑+ 𝑦 sin𝜑
axis, with an arbitrary angle 𝜑 within the range 0 ≤ 𝜑 ≤ 𝜋∕2. Hence,
the 𝑥 direction is arbitrary, relatively to the direction of the basic
flow. By varying the angle, one can span all possible oblique modes
of perturbation ranging from 𝜑 = 0, for the transverse modes, to
𝜑 = 𝜋∕2, for the longitudinal modes. The Cartesian components of 𝐔(𝑧)
are denoted as 𝑈 (𝑧), 𝑉 (𝑧) and 𝑊 (𝑧). By employing the basic solution,
Eqs. (9) and (10), and by substituting Eq. (16) into Eqs. (5) and (6), we
obtain

𝑊 ′ + 𝑖𝑘𝑈 = 0, (17a)
1 [

𝜆𝑈 + 𝑖𝑘Pe𝐹 (𝑧)𝑈 cos𝜑 + Pe𝐹 ′(𝑧)𝑊 cos𝜑
]

5

Pr w
= −𝑖𝑘 𝑃 + 𝑈 ′′ − 𝑘2 𝑈, (17b)
1
Pr

[

𝜆𝑉 + 𝑖𝑘Pe𝐹 (𝑧)𝑉 cos𝜑 + Pe𝐹 ′(𝑧)𝑊 sin𝜑
]

= 𝑉 ′′ − 𝑘2 𝑉 , (17c)

1
Pr

[𝜆𝑊 + 𝑖𝑘Pe𝐹 (𝑧)𝑊 cos𝜑] = −𝑃 ′ + 𝛩 +𝑊 ′′ − 𝑘2 𝑊 , (17d)
𝜆𝛩 + 𝑖𝑘Pe𝐹 (𝑧)𝛩 cos𝜑 + Pe𝐴 (𝑈 cos𝜑 + 𝑉 sin𝜑) + Pe2 𝐺′(𝑧)𝑊 = 𝛩′′ − 𝑘2 𝛩

+ 2Ge Pe 𝐹 ′(𝑧)
[(

𝑈 ′ + 𝑖𝑘𝑊
)

cos𝜑 + 𝑉 ′ sin𝜑
]

, (17e)

ith the boundary conditions

= 0, 𝛩′ = 0 for 𝑧 = 0, 1. (18)

.2. Creeping flow

Eqs. (17) and (18) yield a system of homogeneous ordinary differen-
ial equations with homogeneous boundary conditions, i.e., the stability
igenvalue problem. A reasonable approximation is the assumption that
he Prandtl number of the fluid is very large so that the dynamics
f the perturbations is that of a creeping buoyant flow [18]. In fact,
very large Prandtl number identifies a very viscous fluid with a

mall thermal diffusivity. Both these features, large viscosity and small
hermal diffusivity, are present when the flow internal heating due to
iscous dissipation is significant.

Mathematically, one takes the limit Pr → ∞ with Pe ∼  (1) in
qs. (17b)–(17d). Thus, Eq. (17c) simplifies to 𝑉 ′′ − 𝑘2 𝑉 = 0. Since
q. (18) prescribes 𝑉 = 0 at 𝑧 = 0, 1, the only possible solution
s 𝑉 (𝑧) = 0 for every 𝑧. Owing to the relation linking 𝑈 and 𝑊 ′,

Eq. (17a), one can rearrange Eqs. (17b), (17d) and (17e) in order to
attain a reformulation of the stability eigenvalue problem using only
the eigenfunctions 𝑊 and 𝛩, namely

𝑊 ′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘2 𝛩 = 0, (19a)

𝛩′′ −
[

𝑘2 + 𝜆 + 𝑖𝑘Pe𝐹 (𝑧) cos𝜑
]

𝛩 +
2𝑖GePe𝐹 ′(𝑧) cos𝜑

𝑘
(

𝑊 ′′ + 𝑘2 𝑊
)

−
𝑖Pe𝐴 cos𝜑

𝑘
𝑊 ′ − Pe2 𝐺′(𝑧)𝑊 = 0, (19b)

= 0, 𝑊 ′ = 0, 𝛩′ = 0 for 𝑧 = 0, 1. (19c)

ith the aim of determining the neutral stability condition, the real
art of 𝜆 is set to zero so that 𝜆 = −𝑖𝜔.

.3. Infinite wavelength perturbations

An asymptotic solution of Eqs. (19) can be sought for very small
avenumbers. A convenient reformulation of Eqs. (19) is obtained by
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Fig. 5. Domain of existence (grey region) of a neutral stability condition, Pe = Pe0,
ith 𝐴 = 𝐴− and 𝑘 → 0.

efining

̂ = 𝑘𝛩, (20)

o that one may write
′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘 𝛩̂ = 0, (21a)

̂ ′′ −
[

𝑘2 − 𝑖𝜔 + 𝑖𝑘Pe𝐹 (𝑧) cos𝜑
]

𝛩̂ + 2𝑖GePe𝐹 ′(𝑧)
(

𝑊 ′′ + 𝑘2 𝑊
)

cos𝜑

− 𝑖Pe𝐴𝑊 ′ cos𝜑 − 𝑘Pe2 𝐺′(𝑧)𝑊 = 0, (21b)

𝑊 = 0, 𝑊 ′ = 0, 𝛩̂′ = 0 for 𝑧 = 0, 1. (21c)

We now consider the series expansions

𝑊 (𝑧) = 𝑊0(𝑧) +𝑊1(𝑧) 𝑘 +𝑊2(𝑧) 𝑘2 + 
(

𝑘3
)

,

𝛩̂(𝑧) = 𝛩̂0(𝑧) + 𝛩̂1(𝑧) 𝑘 + 𝛩̂2(𝑧) 𝑘2 + 
(

𝑘3
)

,

Pe = Pe0 + Pe1 𝑘 + Pe2 𝑘2 + 
(

𝑘3
)

,

𝜔 = 𝜔0 + 𝜔1 𝑘 + 𝜔2 𝑘
2 + 

(

𝑘3
)

, (22)

we substitute them into Eqs. (21) and separately solve the differential
problems to every order 𝑘𝑛 with 𝑛 = 0, 1, 2,… . To order 𝑘0, we just
obtain

𝑊0(𝑧) = 0, 𝛩̂0(𝑧) = 1, 𝜔0 = 0. (23)

We note that 𝛩̂0(𝑧) could have been set equal to any real or complex
constant. In fact, choosing 𝛩̂0(𝑧) = 1 is just the simplest way to break
the scale invariance for the solution of a homogeneous boundary value
problem by imposing the constraint 𝛩̂(0) = 1. Hence, for every 𝑛 > 0,
one has the extra boundary condition 𝛩̂𝑛(0) = 0. On account of Eq. (23),
the boundary value problem to order 𝑘1 can be written as

𝑊 ′′′′
1 − 1 = 0, (24a)

𝛩̂′′
1 + 𝑖

[

𝜔1 − Pe0 𝐹 (𝑧) cos𝜑
]

+ 2𝑖GePe0 𝐹 ′(𝑧)𝑊 ′′
1 cos𝜑

− 𝑖Pe0 𝐴𝑊 ′
1 cos𝜑 = 0, (24b)

𝑊1(0) = 0, 𝑊 ′
1 (0) = 0, 𝛩̂1(0) = 0, 𝛩̂′

1(0) = 0,

𝑊1(1) = 0, 𝑊 ′
1 (1) = 0. (24c)

The solution can be easily found though we omit here the expressions
of 𝑊1(𝑧) and 𝛩̂1(𝑧) for the sake of brevity. We just mention that the
boundary condition 𝛩̂′

1(1) = 0 is not needed to determine the unique
6

solution of Eqs. (24), but imposing such an extra condition allows one
Fig. 6. Plots of Pe0 versus 𝜑, with 𝐴 = 𝐴−. The solid grey lines are from Ge = 0.5
o Ge = 5 in steps of 0.5. The dashed line is for Ge = 5.47464, the dotted line is for
e = 5.99306 and the solid black line is for Ge = 3

√

5.

to write

𝜔1 =
Pe0 (180 − 𝐴Ge) cos𝜑

360
, (25)

with Pe0 yet undetermined. On account of Eq. (23), the boundary value
problem to order 𝑘2 is given by

𝑊 ′′′′
2 − 𝛩̂1 = 0, (26a)

𝛩̂′′
2 − 1 + 𝑖𝜔2 − 𝑖Pe1 𝐹 (𝑧) cos𝜑 + 𝑖

[

𝜔1 − Pe0 𝐹 (𝑧) cos𝜑
]

𝛩̂1

+ 2𝑖GePe1 𝐹 ′(𝑧)𝑊 ′′
1 cos𝜑 + 2𝑖GePe0 𝐹 ′(𝑧)𝑊 ′′

2 cos𝜑
− 𝑖Pe1 𝐴𝑊 ′

1 cos𝜑 − 𝑖Pe0 𝐴𝑊 ′
2 cos𝜑 − Pe20 𝐺

′(𝑧)𝑊1 = 0, (26b)

2(0) = 0, 𝑊 ′
2 (0) = 0, 𝛩̂2(0) = 0, 𝛩̂′

2(0) = 0,
𝑊2(1) = 0, 𝑊 ′

2 (1) = 0. (26c)

Again, we omit the explicit expressions of 𝑊2(𝑧) and 𝛩̂2(𝑧) for the
unique solution of Eqs. (26). We only stress that the extra boundary
condition, 𝛩̂′

2(1) = 0, not involved in the boundary value problem (26)
yields an explicit and unique expression for a positive Pe0,

Pe0 = 720
√

154
{

2𝐴 (𝐴 + 66)Ge2 cos (2𝜑)

− 220 [(𝐴 − 81)𝐴 + 1512] cos (2𝜑) + 55440 (Ge − 6)

𝐴
[

2 (𝐴 + 66)Ge2 + 77𝐴Ge + 220 (9 − 2𝐴)
]

}−1∕2
. (27)

t must be stressed that Pe0 has a very important physical meaning. As
matter of fact, Pe0 yields the neutral threshold for linear instability
ith perturbation normal modes having 𝑘 → 0.

Eq. (27), which holds both for 𝐴 = 𝐴− and 𝐴 = 𝐴+, gives a
eal positive value of Pe0 only for values of Ge and 𝜑 such that the
xpression in curly brackets on the right hand side is non-negative.
owever, this condition does not hold for every possible pair (Ge, 𝜑).

Fig. 5 shows the domains of existence for Pe0, evaluated through
q. (27), by considering either the branch 𝐴 = 𝐴− or the branch
= 𝐴+. An interesting fact is that, by setting 𝐴 = 𝐴−, Pe0 exists for

ongitudinal modes (𝜑 = 𝜋∕2) within the whole range 0 < Ge ≤ 3
√

5.
For every other value of 𝜑, there is always a minimum Ge below which
Pe0 does not exist. Some plots of Pe0 versus 𝜑, also relative to the choice
𝐴 = 𝐴−, are reported in Fig. 6 for different values of Ge. In this figure,
there are grey lines relative to Ge from 0.5 to 5 in steps of 0.5, while the
line of maximum Ge is drawn as a black line. There are also a dotted
line and a dashed line corresponding to a couple of special values of
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Table 1
Comparison for the 𝐴− branch between the values of Pe0, obtained by the analytical
expression (27), and the neutral stability value of Pe with 𝑘 = 0.1 computed numerically
by the shooting method.
Ge Pe0 (𝜑 = 𝜋∕2) Pe (𝑘 = 0.1, 𝜑 = 𝜋∕2) Pe0 (𝜑 = 0) Pe (𝑘 = 0.1, 𝜑 = 0)

0.1 183.638 183.670 – –
0.2 130.083 130.106 – –
0.5 82.6889 82.7033 – –
0.8 65.6755 65.6869 – –
1 58.9108 58.9211 – –
2 42.1479 42.1552 – –
4 30.1012 30.1061 – –
6 24.1831 24.1861 24.0109 24.0554
3
√

5 22.3114 22.3123 11.7021 11.7142

Ge. The dotted line, for Ge = 5.99306, identifies a special case where
Pe0 is independent of 𝜑 and has the value 24.2005. The dashed line is
relative to Ge = 5.47464, which is the value of Ge bounding from below
he range where Pe0 exists for transverse modes (𝜑 = 0). From Fig. 6,

one may infer that the transverse modes are the most unstable among
the modes with infinite wavelength if 5.99306 < Ge ≤ 3

√

5. A different
scenario exists when 0 < Ge < 5.99306 as the longitudinal modes turn
out to be the most unstable.

5. Discussion of the results

The neutral stability condition for the normal modes with infinite
wavelength could be found through an analytical solution by employing
a power series expansion with respect to the wavenumber 𝑘. Extending
the scope to perturbation modes with a finite wavelength implies a
numerical solution of Eqs. (19).

5.1. Numerical method

The analysis carried out in Section 4.2 highlighted that Eqs. (19)
yields an eigenvalue problem. With either 𝐴 = 𝐴− or 𝐴 = 𝐴+, one may
consider (𝑘, 𝜑,Ge) as input parameters and obtain (Pe, 𝜔) as the eigen-
alues. The strategy is that defined by the shooting method [31,32].
he first step is setting up a numerical solver for the boundary value
roblem
′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘2 𝛩 = 0, (28a)

′′ −
[

𝑘2 − 𝑖𝜔 + 𝑖𝑘Pe𝐹 (𝑧) cos𝜑
]

𝛩 +
2𝑖GePe𝐹 ′(𝑧) cos𝜑

𝑘
(

𝑊 ′′ + 𝑘2 𝑊
)

−
𝑖Pe𝐴 cos𝜑

𝑘
𝑊 ′ − Pe2 𝐺′(𝑧)𝑊 = 0, (28b)

𝑊 (0) = 0, 𝑊 ′(0) = 0, 𝛩(0) = 1, 𝛩′(0) = 0, (28c)

𝑊 (1) = 0, 𝑊 ′(1) = 0. (28d)

The difference between Eqs. (19) and Eqs. (28) is that, in Eqs. (28), we
set 𝜆 = −𝑖𝜔, we do not impose the homogeneous boundary condition
𝛩′(1) = 0, but we enforce the inhomogeneous boundary condition
𝛩(0) = 1 instead, which is not present in Eqs. (19). The latter inho-
mogeneous condition is legitimate as Eqs. (19) are scale invariant: if
(𝑊 ,𝛩) is a solution, also (𝐶𝑊 ,𝐶𝛩) is a solution, for every complex
constant 𝐶. Thus, fixing 𝛩(0) = 1 means picking up a single non–
trivial solution (𝑊 ,𝛩) among an equivalence class of possible solutions.
The constant 1 can be replaced by any other complex number without
affecting the solution of the eigenvalue problem (19). This argument
is just the same as that reported in Section 4.3 with reference to the
eigenvalue problem (21). Eqs. (28) can be solved, with 𝐴 = 𝐴−
or 𝐴 = 𝐴+, for every fixed set of parameters (𝑘, 𝜑,Ge,Pe, 𝜔). The
numerical solution is accomplished by the software toolMathematica (©
Wolfram Research, Inc.) via the built-in function NDSolve. Eventually,
the condition 𝛩′(1) = 0 excluded from Eqs. (28), but defining the
eigenvalue problem (19), is employed to determine the eigenvalues
7

c

Fig. 7. Neutral stability curve in the (𝑘,) plane for longitudinal modes with 𝐴 = 𝐴−
and Ge → 0.

Pe, 𝜔) for every input data (𝑘, 𝜑,Ge). In fact, such a homogeneous
ondition yields two constraints, Re[𝛩′(1)] = 0 and Im[𝛩′(1)] = 0, with
e and Im the real and imaginary parts. Thus, this condition leads to

the determination of the two real parameters (Pe, 𝜔). The solution of
he target constraints, Re[𝛩′(1)] = 0 and Im[𝛩′(1)] = 0, is accomplished

by using the function FindRoot of Mathematica. By employing the
analytical solution found in Section 4.3, one can initialise the root
finding algorithm for the evaluation of (Pe, 𝜔) by starting with 𝑘 → 0,
for all cases where Pe0 is defined, and gradually increasing 𝑘. Eqs. (22)
nd (23) imply that, in the limit 𝑘 → 0, 𝜔 is zero.

By exploring the domain of all possible input parameters (𝑘, 𝜑,Ge),
ne may carry out the linear stability analysis. A convenient represen-
ation of the results is displayed in the two-dimensional space (𝑘,Pe),
y drawing the neutral stability curve relative to a given pair (𝜑,Ge).
raphically, such a curve yields the condition of linear instability as

hat where Pe exceeds its minimum evaluated along the neutral sta-
ility curve. This condition of minimum Pe defines the critical values,
𝑘𝑐 ,Pe𝑐 , 𝜔𝑐 ), for the onset of the instability [3,31–33].

A validation of the numerical solver is reported in Table 1 where the
data for Pe obtained from the analytical expression (27) are compared
with those computed numerically by the shooting method for 𝑘 = 0.1.
An excellent agreement is found if one considers that the values of Pe0
and the neutral stability values of Pe evaluated numerically are relative
to slightly different wavenumbers (𝑘 = 0 and 𝑘 = 0.1). The data for
transverse modes with Ge ≤ 4 are not reported in Table 1 as Pe0 is
undefined when Ge < 5.47464 as specified in Section 4.3.

5.2. The regime of small Gebhart number

One can investigate the asymptotic solution of the eigenvalue prob-
lem (19) in the limit of small values of Ge. By setting 𝐴 = 𝐴−, one can
detect the behaviour at the lowest order in Ge from Eq. (13). Hence,
for very small Gebhart numbers, Eqs. (19) can be approximated as

𝑊 ′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘2 𝛩 = 0, (29a)

𝛩′′ −
[

𝑘2 − 𝑖𝜔 + 𝑖𝑘Pe 𝑧 cos𝜑
]

𝛩 +
2𝑖GePe cos𝜑

𝑘
(

𝑊 ′′ + 𝑘2 𝑊
)

−
2𝑖GePe cos𝜑

𝑘
𝑊 ′ + GePe2 𝑧(1 − 𝑧)𝑊 = 0, (29b)

= 0, 𝑊 ′ = 0, 𝛩′ = 0 for 𝑧 = 0, 1. (29c)

he first consideration is that the limit Ge → 0 can be taken by taking,
ontextually, also the limit Pe → ∞ (see the discussion of this point
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Fig. 8. Neutral stability curves (solid lines) in the (𝑘,Pe) plane for longitudinal modes
with 𝐴 = 𝐴− and Ge ranging from 0.5 to its maximum value 3

√

5. The dashed lines
display, for Ge = 0.5, 1 and 2, the neutral stability data evaluated with the asymptotic
solution for Ge ≪ 1.

in Barletta et al. [18]). This double limit is well-defined provided that
one considers

 = Pe
√

Ge ∼  (1) . (30)

Thus, Eqs. (29) can be rewritten as

𝑊 ′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘2 𝛩 = 0, (31a)

𝛩′′ −

[

𝑘2 − 𝑖𝜔 + 𝑖𝑘 
√

Ge
𝑧 cos𝜑

]

𝛩 +
2𝑖
√

Ge cos𝜑
𝑘

(

𝑊 ′′ + 𝑘2 𝑊
)

−
2𝑖
√

Ge cos𝜑
𝑘

𝑊 ′ +2 𝑧(1 − 𝑧)𝑊 = 0, (31b)

𝑊 = 0, 𝑊 ′ = 0, 𝛩′ = 0 for 𝑧 = 0, 1. (31c)

There are two possible outcomes for the limit Ge → 0 which depend
on the inclination angle 𝜑. If cos𝜑 ≠ 0 or, equivalently, if 𝜑 ≠ 𝜋∕2, the
limit Ge → 0 with  ∼  (1) yields a dominant term in Eq. (31b), of
order Ge−1∕2, so that this equation can be satisfied only with 𝛩 = 0.
By substituting 𝛩 = 0 in Eq. (31a), the unique solution of Eqs. (31a)
and (31c) is 𝑊 = 0. In other words, there are no perturbation modes
leading to a neutral stability condition with 𝜑 ≠ 𝜋∕2. On the other
hand, if 𝜑 = 𝜋∕2, there exists a limiting formulation of Eqs. (31) for
Ge → 0,

𝑊 ′′′′ − 2 𝑘2 𝑊 ′′ + 𝑘4 𝑊 − 𝑘2 𝛩 = 0, (32a)

𝛩′′ −
(

𝑘2 − 𝑖𝜔
)

𝛩 +2 𝑧(1 − 𝑧)𝑊 = 0, (32b)

𝑊 = 0, 𝑊 ′ = 0, 𝛩′ = 0 for 𝑧 = 0, 1, (32c)

which admits non–trivial solutions.
The eigenvalue problem (32) may be solved numerically to deter-

mine the neutral stability curve for the longitudinal modes (𝜑 = 𝜋∕2) in
the (𝑘,) plane. Such a curve is depicted in Fig. 7. The first comment is
that the neutral stability curve represents  as a monotonic increasing
function of 𝑘, so that the critical value of  is

𝑐 = 0 = lim
Ge→0

Pe0
√

Ge = 4
√

210 ≈ 57.9655, (33)

where the limit in Eq. (33) has been evaluated by using Eq. (27). The
role of Eq. (33) is compelling as it provides an analytical expression
that can be used to approximate the critical value of Pe for the most
unstable modes, viz. the longitudinal modes, at small values of the
8

Gebhart number,

Pe𝑐 = Pe0 ≈ 4
√

210
Ge

. (34)

Another important feature of the numerical solution of Eqs. (32) is
that, along the neutral stability curve, 𝜔 = 0. In fact, this result is
a characteristic trait of longitudinal modes at both small and large
Gebhart numbers.

5.3. The most unstable perturbation modes

The determination of the most unstable modes or, equivalently, the
determination of the angle 𝜑 that yields the lowest value of Pe𝑐 for
a given Gebhart number is a primary step in the stability analysis. In
Section 5.2, we have concluded that, for the asymptotic condition Ge ≪
1, the longitudinal modes lead the transition to linear instability with
Pe𝑐 evaluated analytically through Eq. (34). The oblique or transverse
modes, having 𝜑 ≠ 𝜋∕2, do not yield any asymptotic condition of
neutral stability in this asymptotic case. In practice, such a behaviour
means that Pe𝑐 for oblique or transverse modes tends to infinity much
faster than for the longitudinal modes when Ge → 0. Thus, we figure
out a scenario where, for small Gebhart numbers, the selected modes
at the onset of the linear instability are longitudinal. In particular, the
transition is activated by longitudinal modes with infinite wavelength,
i.e. Pe𝑐 = Pe0.

As illustrated in Fig. 8, the critical value of Pe for longitudinal
modes, relative to 𝐴 = 𝐴−, coincides with Pe0 whatever is the pre-
scribed Gebhart number. In fact, all the neutral stability curves show
Pe as a monotonic increasing function of 𝑘. By inspecting Fig. 8, the
neutral stability data reported in Fig. 7 for the limiting case Ge ≪ 1 turn
out to determine, through the scaling Pe = ∕

√

Ge, the neutral stability
condition with a rough accuracy for Ge = 2 (the maximum relative
discrepancy is 2.8%), a fair accuracy for Ge = 1 (the maximum relative
discrepancy is 1.6%) and an even better accuracy for Ge = 0.5 (the

aximum relative discrepancy is 0.86%). Hence, for practical purposes,
he asymptotic solution with Ge ≪ 1 can be safely employed for all
ases with Ge ≤ 0.5.

As already highlighted in Section 4.3, for infinite wavelength (𝑘 →
), the longitudinal modes are not the most unstable when extremely
arge Gebhart numbers are considered and, in particular, when Ge >
.99306. Fig. 9 provides a comparison of longitudinal and transverse
odes beyond the quite specific condition 𝑘 → 0. This figure suggests

hat the behaviour conceived for the modes with infinite wavelength
ndeed holds in general. Indeed, Fig. 9 shows that the lowest minimum
f the neutral stability curves for either longitudinal or transverse
odes, for a given Gebhart number, is always at 𝑘 → 0. This means

hat the leading critical condition for the onset of the linear instability
s that already discussed in Section 4.3. Linear instability is triggered
y transverse modes if 5.99306 < Ge ≤ 3

√

5, while it is started by
longitudinal modes if 0 < Ge < 5.99306. Exploring Gebhart numbers
elow Ge = 0.5 means just widening the gap between the neutral

stability curve for longitudinal modes and that for transverse modes.
Thus, one recovers the expected trend where the neutral stability
threshold for transverse modes tends to an infinite Pe when Ge → 0
more rapidly than 1∕

√

Ge, as anticipated with the analysis carried out
in Section 5.2.

The intermediate conditions where 0 < 𝜑 < 𝜋∕2 can be inspected
n an efficient way by tracking the change of Pe versus 𝜑 with a given
ebhart number and wavenumber. Fig. 10 displays a major result as

t suggests that the transition to linear instability is always driven by
he 𝑘 = 0 modes: either transverse at the extremely large Gebhart
umbers close to the maximum, Ge = 3

√

5, or longitudinal when the
Gebhart number is smaller than the threshold detected in Section 4.3,
namely for Ge < 5.99306. In fact, we recall that Ge = 5.99306 yields
the special case where Pe0 is independent of 𝜑, so that the onset of
instability is triggered by any infinite wavelength modes whatever is
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Fig. 9. Neutral stability curves in the (𝑘,Pe) plane with 𝐴 = 𝐴− for longitudinal modes (dark grey lines) and transverse modes (light grey lines).
their orientation in the horizontal plane. Then, we can take it as a
general result that the critical Péclet number, Pe𝑐 , for the initiation
9

of the instability does always coincide with Pe0 for either 𝜑 = 0 or
𝜑 = 𝜋∕2 depending on the Gebhart number. Another feature displayed
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Fig. 10. Neutral stability values of Pe versus 𝜑 with 𝐴 = 𝐴− for oblique modes at different wavenumbers. The black dots denote the minimum values of Pe for the transition to
linear instability.
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Fig. 11. Neutral stability curves in the (𝑘,Pe) plane for Ge = 6.5 (grey lines) and Ge = 3
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Table 2
Thermophysical properties of unused engine oil at an average
temperature of 300K [34].

kinematic viscosity, 𝜈 [m2∕s] 5.50 × 10−4

thermal diffusivity, 𝛼 [m2∕s] 8.53 × 10−8

specific heat, 𝑐 [J∕(kgK)] 1 910
thermal expansion coefficient, 𝛽 [1∕K] 7 × 10−4

Prandtl number 6 450

by Fig. 10 is that the neutral stability value of Pe may depend non-
monotonically on 𝜑 for a few cases as, for instance 𝑘 = 2 with either
Ge = 4 or 6.

5.4. Close to the maximum Gebhart number

We have stressed that the maximum possible Gebhart number, 3
√

5,
s an extremely large value for most common applications, possibly also
t large spatial scales such as those pertaining to geophysical systems.
his said, it may be a matter of completeness in the stability analysis
onsidering also the comparison between cases on the 𝐴− branch and
he 𝐴+ branch envisaged in Fig. 4. An illustration of the transition to
inear instability close to Ge = 3

√

5 is displayed in Fig. 11. Besides
the expected similarity of the neutral stability curves for 𝐴 = 𝐴− and
𝐴 = 𝐴+, an important result is that the transition to instability is driven
by transverse modes with an infinite wavelength. Furthermore, the
branch 𝐴 = 𝐴+ turns out to be more unstable than the branch 𝐴 = 𝐴−.
Longitudinal modes are not involved in the initiation of the instability
and they show up an uneven behaviour on comparing the two branches
𝐴 = 𝐴− and 𝐴 = 𝐴+. In fact, the branch 𝐴 = 𝐴+ of longitudinal modes
hows up a minimum condition for the Péclet number Pe𝑐 = 23.1290
ith 𝑘𝑐 = 1.07691. Among the cases reported in Fig. 11, the latter is the
nly one where the neutral stability curve involves a Péclet number not
onotonically increasing with 𝑘.

.5. A thought experiment

The analysis carried out so far is entirely based on dimensionless
uantities, but it may be interesting to check for possible applications
r even conceivable experimental validations of the results in some
pecific cases.

We assumed from the beginning of the stability analysis that the
11

luid is to be considered as extremely viscous and with a low thermal n
diffusivity so that its Prandtl number can reasonably be considered
as very large, consistently with the creeping flow assumption. An
example can be an unused engine oil whose properties at an average
temperature of 300K are reported in Table 2. Let us assume that a
Couette experimental setup is designed with a distance 𝐻 = 1 cm
between the walls in relative motion. Then, by employing the data
reported in Table 2, the Gebhart number turns out to be extremely
small,

Ge = 3.60 × 10−8. (35)

With such a small Gebhart number, the basic velocity profile is practi-
cally indistinguishable from the isothermal linear profile for the Cou-
ette flow. Furthermore, we can consistently employ Eq. (34), deduced
for Ge ≪ 1, in order to evaluate the critical Péclet number leading to
the linear instability of the basic flow,

Pe𝑐 = Pe0 ≈ 4
√

210
Ge

= 306 000. (36)

As the transition to instability predicted by our study occurs by
ongitudinal perturbation modes with infinite wavelength superposed
o the basic flow, the qualitative overall flow pattern changes from the
traight parallel streamlines of the basic flow to the mutually oblique
traight streamlines of the perturbed flow. We might also recall that, as
he transition to instability occurs by the longitudinal modes (𝜑 = 𝜋∕2),
he streamwise direction of the basic flow is the 𝑦 axis.

Finally, by employing Table 2, one can determine the critical
eynolds number for the linear instability of the Couette flow,

e𝑐 =
Pe𝑐
Pr

= 47.4. (37)

Interestingly enough, this small critical Reynolds number might be
compared with those obtained for the isothermal Couette flow on
evaluating the threshold for the nonlinear hydrodynamic stability via
the energy method [35–37].

Let us employ the definition of the dimensional scale for the tem-
perature, Eq. (4), and the expression of the dimensionless temperature
distribution in the basic state given by Eqs. (9)–(11). Then, one may
estimate that, with Ge = 3.60 × 10−8, Pe = Pe𝑐 = 306 000 and 𝐴 =
𝐴−, the temperature gap between the lower and the upper wall at a
iven streamwise cross-section, 𝑦 = constant, is 3.8K. Moreover, the
treamwise basic temperature gradient, 1.5 × 10−4 K∕m, is definitely

egligible. Over such a temperature range, the standard formulation
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Fig. 12. Streamlines (solid) and isotherms (dashed) for the secondary flow obtained
for decreasing wavenumbers 𝑘 = 2, 1, 0.5, 0 with parametric values along the neutral
stability curve, Fig. 7, relative to the asymptotic regime of small Ge described in
Section 5.2.

of the problem based on the Oberbeck–Boussinesq approximation may
be considered as consistent.

5.6. Further physical considerations

The onset of thermal instability examined in our analysis is caused
by the interplay between the viscous dissipation effect and the buoy-
ancy force modelled within the Boussinesq approximation. The viscous
dissipation, or frictional heating, is the source of a basic stationary
12
temperature gradient with both a nonzero streamwise component and
a nonzero vertical component. The buoyancy force then is the cause of
the secondary flow for the transition to instability.

In order to illustrate the features of such a secondary flow, we
consider the asymptotic case of a small Gebhart number discussed in
Section 5.2. In particular, as 𝑘𝑐 = 0, we show the streamlines and the
isotherms for three decreasing values of 𝑘 along the neutral stability
curve displayed in Fig. 7. As 𝑘 decreases, the horizontal width of the
convection cells becomes larger and larger tending to infinity when
𝑘 → 𝑘𝑐 = 0. In this limit, the streamlines of the secondary flow tend to
become horizontal straight lines. In fact, Fig. 12 illustrates the change
of the cellular patterns associated with decreasing wavenumbers 𝑘 = 2,
𝑘 = 1, 𝑘 = 0.5 and 𝑘 = 0 for neutral stability conditions corresponding to
the small-Ge asymptotic solution. As expected, the streamlines for the
case 𝑘 = 0 are straight lines, thus depicting an infinite width convection
cell. No isotherms are drawn in the frame for 𝑘 = 0. In fact, as suggested
by the frame for 𝑘 = 0.5, when 𝑘 decreases, the secondary flow tends to
display approximately vertical isotherms. This behaviour implies that
the secondary flow temperature depends almost only on the horizontal
coordinate 𝑥 through the 𝑒𝑖𝑘𝑥 factor, as shown by Eq. (16). Such a factor
tends to 1 in the limit 𝑘 → 0 and, hence, also the dependence on 𝑥 is
lost.

6. Conclusions

The stationary parallel flows in a horizontal plane channel with
adiabatic rigid walls have been studied. The viscous dissipation effect
caused by the imposed relative velocity between the boundary walls
has been taken into account in the local energy balance. The flow
description adopted and, in particular, the temperature coupling in
the local momentum balance has been modelled according to the
Oberbeck–Boussinesq approximation. As a result, the basic flows turned
out to be non-isothermal displaying Couette-like velocity profiles. It has
been shown that there exist dual flow branches corresponding to given
values of the Péclet number, Pe, and of the Gebhart number, Ge. The
dual flows coincide when Ge = 3

√

5. No stationary parallel flows exist
when Ge > 3

√

5. It has been pointed out that only one of these dual flow
ranches, denoted as the 𝐴− branch, is compatible with the Oberbeck–
oussinesq approximation for realistic, i.e. sufficiently small, Gebhart
umbers.

A linear stability analysis focussed on the 𝐴− branch has been
arried out in a creeping flow regime where the Prandtl number has
een considered infinite. Arbitrarily oriented wavelike perturbations
ave been regarded, ranging from the longitudinal modes propagating
n a direction perpendicular to the basic flow direction to the transverse
odes, whose direction of propagation is parallel to the basic flow
irection. All intermediate inclinations, namely the oblique modes,
ave been also considered. The main conclusions drawn from such an
nalysis can be outlined as follows:

• A numerical solution of the stability eigenvalue problem has
been obtained, based on the shooting method. The objective has
been the determination of the neutral stability curves in the
(𝑘,Pe) plane. Hence, it has been shown that, in every case, the
smallest neutrally stable Péclet number, i.e. the critical value of
Pe, corresponds to the limit 𝑘 → 0 (infinite wavelength).

• The initiation of the instability occurs when the Péclet number
becomes larger than its critical value, which depends on the
Gebhart number. The most unstable perturbation modes have
an infinite wavelength. They are either longitudinal modes, for
Ge < 5.99306, or transverse modes, for 5.99306 < Ge ≤ 3

√

5.
The case Ge = 5.99306 is special as the transition to instability
is independent of the mode orientation, i.e. longitudinal, oblique
and transverse modes are equivalent.

• An analytical solution of the stability eigenvalue problem has
been obtained for the asymptotic case where the wavenumber, 𝑘,
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is vanishingly small and, as a consequence, the wavelength tends
to infinity. Thus, in every case, the determination of the critical
Péclet number is analytical.

• The regime of small Gebhart numbers has been explored by an
asymptotic solution. This regime is typical of flows on a labo-
ratory scale, while cases where the Gebhart number is of the
order of unity can only be pertinent for the study of geophysical
or astrophysical systems [28,38]. As for the analogous case of
Poiseuille-like flows [18], the Ge ≪ 1 asymptotic solution reveals
that the neutral stability Péclet number for longitudinal modes
scales with Ge−1∕2. As expected from the proof by Romanov [2],
the basic flows turn out to be stable at any Péclet number when
Ge → 0.

• Based on the Ge ≪ 1 asymptotic solution, an experimental setup
has been proposed for a possible validation of the results relative
to flows having a vertical width compatible with the size of a
laboratory equipment.

here are several opportunities for future developments of the re-
ults obtained in this paper. The extension of the classical Oberbeck–
oussinesq approximation for convective flows to cases where the fluid
iscosity undergoes a sensible temperature change may be important.
nother possible improvement in the model adopted is relaxing the
ssumption of creeping flow for the perturbation dynamics or, equiv-
lently, extending the study to cases with a finite Prandtl number.
he nonlinearity of the transition to instability is another important

ssue. Its analysis could disclose the emergence of a possible subcritical
nstability and provide an effective comparison with the energy method
esults for the hydrodynamic stability threshold.
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ppendix. An alternative formulation of the stability analysis

The analysis showing that the basic flow expressed by Eq. (9)
eads to the perturbation governing Eqs. (17) can be reformulated by
ssuming that the basic flow is directed along the 𝑥 axis and that the
eneral perturbation mode has a wave vector (𝑘𝑥, 𝑘𝑦, 0) inclined to the
axis.

In order to prove this statement, we start by replacing Eq. (6) with

= 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 0,

𝑢 = Pe, 𝑣 = 0, 𝑤 = 0, 𝜕𝑇
𝜕𝑧

= 0 for 𝑧 = 1. (A.1)

Accordingly, we need to rewrite Eq. (9) as

𝑢𝑏 = Pe𝐹 (𝑧), 𝑣𝑏 = 0, 𝑇𝑏 = Pe𝐴𝑥 + Pe2 𝐺(𝑧), (A.2)

𝛁𝑝𝑏 =
(

Pe𝐹 ′′(𝑧), 0, 𝑇𝑏
)

.

We modify Eq. (16) by introducing the wave vector (𝑘𝑥, 𝑘𝑦, 0),

⎛

⎜

⎜

𝐮
𝑝
⎞

⎟

⎟

=
⎛

⎜

⎜

𝐮𝑏
𝑝𝑏
⎞

⎟

⎟

+ 𝜀
⎛

⎜

⎜

𝐔̃(𝑧)
𝑃 (𝑧)

⎞

⎟

⎟

𝑒𝑖
(

𝑘𝑥 𝑥+𝑘𝑦 𝑦
)

𝑒𝜆 𝑡, (A.3)
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⎝𝑇 ⎠ ⎝𝑇𝑏⎠ ⎝𝛩(𝑧)⎠
with 𝐔̃ =
(

𝑈̃ , 𝑉 , 𝑊̃
)

. Then, Eqs. (17) are to be replaced by

𝑊̃ ′ + 𝑖
(

𝑘𝑥 𝑈̃ + 𝑘𝑦𝑉
)

= 0, (A.4a)
1
Pr

[

𝜆 𝑈̃ + 𝑖𝑘𝑥 Pe𝐹 (𝑧) 𝑈̃ + Pe𝐹 ′(𝑧) 𝑊̃
]

= −𝑖𝑘𝑥 𝑃 + 𝑈̃ ′′ − 𝑘2 𝑈̃ , (A.4b)

1
Pr

[

𝜆𝑉 + 𝑖𝑘𝑥 Pe𝐹 (𝑧)𝑉
]

= −𝑖𝑘𝑦 𝑃 + 𝑉 ′′ − 𝑘2 𝑉 , (A.4c)

1
Pr

[

𝜆 𝑊̃ + 𝑖𝑘𝑥 Pe𝐹 (𝑧) 𝑊̃
]

= −𝑃 ′ + 𝛩 + 𝑊̃ ′′ − 𝑘2 𝑊̃ , (A.4d)

𝛩 + 𝑖𝑘𝑥 Pe𝐹 (𝑧)𝛩 + Pe𝐴 𝑈̃ + Pe2 𝐺′(𝑧) 𝑊̃

= 𝛩′′ − 𝑘2 𝛩 + 2Ge Pe 𝐹 ′(𝑧)
(

𝑈̃ ′ + 𝑖𝑘𝑥 𝑊̃
)

, (A.4e)

where 𝑘2 = 𝑘2𝑥 + 𝑘2𝑦. We now define functions 𝑈 (𝑧), 𝑉 (𝑧) and 𝑊 (𝑧) so
hat

𝑈 = 𝑘𝑥 𝑈̃ + 𝑘𝑦 𝑉 , 𝑘 𝑉 = 𝑘𝑦 𝑈̃ − 𝑘𝑥 𝑉 , 𝑊 = 𝑊̃ . (A.5)

We can now rewrite Eqs. (A.4) by substituting Eq. (A.5) into Eq. (A.4a),
into the combination of 𝑘𝑥 times Eq. (A.4b) plus 𝑘𝑦 times Eq. (A.4c),
into the combination of 𝑘𝑦 times Eq. (A.4b) minus 𝑘𝑥 times Eq. (A.4c),
into Eq. (A.4d) and into 𝑘 times Eq. (A.4e). The resulting system of
differential equations is

𝑊 ′ + 𝑖𝑘𝑈 = 0, (A.6a)
1
Pr

[

𝜆 𝑘𝑈 + 𝑖𝑘𝑥 𝑘Pe𝐹 (𝑧)𝑈 + 𝑘𝑥 Pe𝐹 ′(𝑧)𝑊
]

= −𝑖𝑘2 𝑃 + 𝑘𝑈 ′′ − 𝑘3 𝑈, (A.6b)
1
Pr

[

𝜆 𝑘𝑉 + 𝑖𝑘𝑥 𝑘Pe𝐹 (𝑧)𝑉 + 𝑘𝑦 Pe𝐹 ′(𝑧)𝑊
]

= 𝑘𝑉 ′′ − 𝑘3 𝑉 , (A.6c)

1
Pr

[

𝜆𝑊 + 𝑖𝑘𝑥 Pe𝐹 (𝑧)𝑊
]

= −𝑃 ′ + 𝛩 +𝑊 ′′ − 𝑘2 𝑊 , (A.6d)

𝑘𝛩 + 𝑖𝑘𝑥 𝑘Pe𝐹 (𝑧)𝛩 + Pe𝐴
(

𝑘𝑥 𝑈 + 𝑘𝑦 𝑉
)

+ 𝑘Pe2 𝐺′(𝑧)𝑊

= 𝑘𝛩′′ − 𝑘3 𝛩 + 2Ge Pe 𝐹 ′(𝑧)
(

𝑘𝑥 𝑈
′ + 𝑘𝑦 𝑉

′ + 𝑖𝑘𝑥 𝑘𝑊
)

. (A.6e)

et us define the inclination angle 𝜑 as

𝑥 = 𝑘 cos𝜑, 𝑘𝑦 = 𝑘 sin𝜑. (A.7)

e substitute Eq. (A.7) into Eqs. (A.6). Then, we divide Eqs. (A.6b),
A.6c) and (A.6e) by 𝑘 and we finally obtain Eqs. (17). We conclude
hat the formulation based on Eqs. (A.1)–(A.3) is completely equivalent
o that employed in Sections 2–4 as it leads to the same eigenvalue
roblem for the stability analysis.
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