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Abstract 

In popular Baba-Engle-Kraft-Kroner (BEKK) and dynamic conditional correlation 
(DCC) multivariate generalized autoregressive conditional heteroskedasticity mod-
els, the large number of parameters and the requirement of positive definiteness 
of the covariance and correlation matrices pose some difficulties during the esti-
mation process. To avoid these issues, we propose two modifications to the BEKK 
and DCC models that employ two spherical parameterizations applied to the Cholesky 
decompositions of the covariance and correlation matrices. In their full specifica-
tions, the introduced Cholesky-BEKK and Cholesky-DCC models allow for a reduction 
in the number of parameters compared with their traditional counterparts. Moreover, 
the application of spherical transformation does not require the imposition of inequal-
ity constraints on the parameters during the estimation. An application to two crude 
oils, WTI and Brent, and the main exchange rate prices demonstrates that the Cholesky-
BEKK and Cholesky-DCC models can capture the dynamics of covariances and correla-
tions. In addition, the Kupiec test on different portfolio compositions confirms the satis-
factory performance of the proposed models.

Keywords: BEKK, Cholesky-GARCH, Crude oils, DCC, Exchange rates, Spherical 
parameterization

Introduction
Over the past three decades, multivariate modeling of volatility has gained significant 
interest from researchers. It is commonly understood that financial volatilities exhibit 
interdependent behavior across markets and over time. Therefore, most studies address 
this issue in a multivariate setting instead of working with separate univariate specifi-
cations. In particular, with multivariate generalized autoregressive conditional heter-
oskedasticity (MGARCH) models, researchers can study the relationships between the 
volatilities of different markets (see, e.g., Kearney and Patton 2000; Karolyi 1995) or the 
dynamics of the correlations over time (see, e.g., Bollerslev 1990; Longin and Solnik 
2001).

A general specification for the multivariate GARCH model was initially proposed 
by Bollerslev et  al. (1988), commonly known as the VEC model, in which the authors 
directly model the covariance matrix over time. However, owing to the large num-
ber of parameters, this model is not easily applicable beyond the bivariate case. Many 
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other specifications have been proposed (see, e.g., Kroner and Ng 1998; Vrontos et al. 
2003); however, the most commonly employed in financial applications are the Baba, 
Engle, Kraft, and Kroner (BEKK) and dynamic conditional correlation (DCC) models 
from Engle and Kroner (1995) and Engle (2002), respectively. The BEKK model can be 
considered as a particular case of the general VEC specification. By contrast, the DCC 
model is considered a nonlinear combination of univariate GARCH models. However, 
both models have two disadvantages. On the one hand, in their full specifications, they 
require a large number of parameters for estimation. On the other hand, they impose 
some restrictions on the parameters to guarantee the positive definiteness of the covari-
ance and correlation matrices.

In this study, we introduce two modifications to the BEKK and DCC models, employ-
ing two different spherical parameterizations of the covariance and correlation matrices, 
which can reduce the number of parameters and relax the restrictions that guarantee the 
requirement of positive definiteness of such matrices. Specifically, to extend the BEKK 
model we use the spherical parameterization of the covariance matrix by Pinheiro and 
Bates (1996), while to extend the DCC model we employ the spherical parameterization 
of the correlation matrix by Rapisarda et al. (2007) and Pourahmadi and Wang (2015). 
Both parameterizations are applied to the Cholesky factorization of the covariance or 
correlation matrix. Moreover, under simple and common assumptions, the spherical 
transformations are unique (i.e., they provide a one-to-one mapping from the covariance 
or correlation matrix to some angles and vice versa).

A similar approach, although limited to correlation matrices, has been initially intro-
duced by Pedeli et al. (2015), who applied a spherical parameterization of the Cholesky 
factor of the correlation matrices. The authors indicated that the angles derived from 
the transformation can be modeled in terms of covariates. Unfortunately, they did not 
propose a specific model in this regard. Moreover, in their application, they considered a 
time-invariant correlation matrix that is in line with the constant conditional correlation 
(CCC) model of Bollerslev (1990) and is considered a special case of the DCC model. By 
contrast, inspired by Bernardi and Catania (2018), we propose an updating equation for 
the angles that allows us to deal with time-varying correlation or covariance matrices. 
In the spirit of Pedeli et al. (2015), we call the proposed models the Cholesky-BEKK and 
Cholesky-DCC models.

Therefore, our contributions are twofold: (i) we extend the standard BEKK and DCC 
models by means of spherical transformations that, in their full specification, allow for 
a reduction in the number of parameters to be estimated compared with the standard 
models; and (ii) we propose an updating equation for time-varying angles to allow for 
dynamic conditional correlations or covariance matrices.

An application to crude oils and daily exchange rate prices shows the potential of the 
two proposed approaches and demonstrates that the Cholesky-BEKK and Cholesky-
DCC models can capture the dynamics of covariances and correlations. Moreover, the 
Kupiec test applied to three different portfolio combinations shows the satisfactory per-
formance of the Cholesky multivariate models.

The remainder of this paper is organized as follows. In "Multivariate GARCH models" 
section we review the BEKK and DCC models, while in "Spherical parameterization of 
covariance and correlation matrices" section we present the spherical parameterization 
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of the covariance and correlation matrices. "The proposed methodology" section intro-
duces the proposed methodologies, followed by a simulation study in "A simulation 
study" and "Application" sections presents the application to real data with the results. 
Finally, "Conclusions" section concludes the paper.

Multivariate GARCH models
We model the log returns time series with the following vector process, rt ∈ R

n,

where mt is a deterministic component (i.e., the conditional mean vector), and et is a 
white noise process following a multivariate normal distribution (i.e., et ∼ N (0,H t) , 
where H t is the covariance matrix at time t).

Usually, a deterministic term is specified as a function of the past, using a vector 
autoregressive (VAR) model. If we consider a VAR of order one, we can write

where c is a vector of constants and G is an n× n matrix of coefficients, n being the 
number of time series.

In the remainder of the discussion, we do not focus on the conditional mean vector 
but consider only the residuals, et , which enter into the definition of the multivariate 
GARCH models. The latter focuses on modeling the conditional covariance matrix H t 
or some of its derived quantities (e.g., the correlation matrix). Following Bauwens et al. 
(2006), we can distinguish three different approaches to building multivariate GARCH 
models: (i) direct generalizations of the univariate GARCH model by Bollerslev (1986), 
(ii) linear combinations of univariate GARCH models, and (iii) nonlinear combinations 
of univariate GARCH models. This study focuses on the BEKK and DCC specifications, 
which belong to the first and third groups, respectively.

The BEKK model

The BEKK model in its general form, proposed by Engle and Kroner (1995), can be writ-
ten as

where C ,A , and B are n× n parameter matrices and C is lower triangular. The full model 
includes 2n2 + n(n+ 1)/2 parameters and the covariances are positive definite by con-
struction. However, to guarantee an observationally equivalent structure, Engle and 
Kroner (1995) demonstrate that all elements of A and B and the diagonal elements of 
C must be positive. In addition, the authors show that covariance stationarity is guaran-
teed when all the eigenvalues of A+ B are less than one in modulus.

Because of the large number of parameters to be estimated, the disadvantage of this 
model is that it is only feasible for small values of n. Therefore, to allow for large cross-
sectional dimensions, it is common to restrict the model’s parameters as proposed by 
Ding and Engle (2001), who considered a scalar counterpart of (2):

(1)rt = mt + et ,

mt = c + Grt−1,

(2)H t = CC ′ + A(et−1e
′
t−1)A

′ + BH t−1B
′,
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Moreover, to reduce the number of parameters further, it is common to impose a vari-
ancetargeting approach on the specification. The conditional covariance matrix can be 
expressed in terms of the unconditional covariance matrix and other parameters. There-
fore, the scalar BEKK model with variance targeting becomes

where H̄ = 1
T

∑T
t=1 ete

T
t  is an unconditional covariance matrix estimated from the full 

sample. In (4), the number of parameters is reduced to two; however, we must impose 
the inequality constraints a+ b < 1 and a, b > 0 to guarantee positive definiteness and 
stationarity of the conditional covariances.

The scalar version of the model has the advantage of reducing the number of parameters; 
however, it has the limit of imposing the same dynamics on all elements of the covariance 
matrix.

The DCC model

The DCC model is a class of multivariate GARCH estimators introduced by Engle (2002) as 
a generalization of the CCC estimator proposed by Bollerslev (1990). The model focuses on 
the separate modeling of conditional variances and conditional correlation, assuming the 
following decomposition.

where Dt and Rt are the diagonal matrix of the standard deviations and the conditional 
correlation matrix of the return residuals, et , respectively.

According to Bauwens et al. (2006), the DCC model belongs to the group of nonlinear 
combinations of univariate GARCH models. Thus, it employs the univariate specification 
for conditional volatilities and conditional correlation decomposition as follows.

where ◦ is the Hadamard product and diag{ai} is a matrix with elements ai on the main 
diagonal.

With this approach, the DCC does not directly model the conditional correlation Rt , but 
rather the quantity Qt with the following updating scheme.

where A and B are symmetric parameter matrices, ǫt = D−1
t et are the standardized 

residuals, ι is an n-dimension vector of ones, and Q̄ is the unconditional covariance 
matrix of the standardized errors estimated as Q̄ = 1

T

∑T
t=1 ǫtǫ

T
t  . This full specification, 

initially proposed by Engle (2002), includes variance targeting. Moreover, to guarantee 
the positive semidefiniteness of the matrix Q , Ding and Engle (2001) show that A,B , and 
(ιι′ − A− B) must be positive semidefinite.

(3)H t = CC ′ + a(et−1e
′
t−1)+ bH t−1.

(4)H t = (1− a− b)H̄ + a(et−1e
′
t−1)+ bH t−1,

(5)H t = DtRtDt ,

(6)
D2

t = diag{ωi} + diag{αi} ◦ et−1e
′
t−1 + diag{βi} ◦D

2
t−1,

Rt = Q
∗− 1

2
t Qt Q

∗− 1
2

t , Q∗
t = diag(Qt),

(7)Qt = (ιι′ − A− B) ◦ Q̄ + A ◦ (ǫt−1ǫ
′
t−1)+ B ◦Qt−1,
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The DCC specification can be expressed in scalar form as

where the number of parameters to be estimated is reduced to two. Similar to the sca-
lar BEKK specification, the scalar DCC requires the imposition of inequality constraints 
a+ b < 1 and a, b > 0 to guarantee the positive definiteness and stationarity of the cor-
relation matrices.

The use of variance targeting in both models allows for a significant reduction in 
the number of parameters to be estimated. However, as reported by Caporin and 
McAleer (2012), the application of this approach to the DCC specification is counter-
intuitive because the sample correlation is not a consistent estimator of the long-run 
Qt owing to the correlation decomposition in (6). Therefore, we refer to this approach 
as approximate targeting.

Spherical parameterization of covariance and correlation matrices
As seen in the previous section, one of the main challenges in modeling the volatil-
ity of multivariate time series is to guarantee the positive definiteness of the covari-
ance matrix H t or the correlation matrix Rt , and simultaneously reduce the number 
of parameters to be estimated. Many authors have proposed several solutions to this 
issue, mainly by applying some parameterizations to those matrices. For example, 
Pinheiro and Bates (1996) introduced five different parameterizations for the covari-
ance matrix to ensure positive definiteness, of which the spherical one produced the 
best combination of performance and interpretability for the individual parameters. 
Later, Rebonato and Jackel (1999) applied a similar approach to the correlation matrix 
by employing spherical and spectral decompositions. The correlation approach has 
been further studied by other authors (see, e.g., Rapisarda et  al. 2007; Pourahmadi 
and Wang 2015).

In this study, we consider two spherical parameterizations, one for the covariance 
matrix and the other for the correlation matrix. In particular, because the BEKK spec-
ification directly models covariance matrices, we extend it using the spherical param-
eterization of the covariance matrix. On the contrary, as the DCC directly models the 
correlations, for such a model, we employ the spherical parameterization of the correla-
tions. Both transformations allow us to guarantee positive definiteness requirements and 
reduce the number of parameters. In the following sections, we first introduce the two 
parameterizations, and then demonstrate how to extend both models.

Spherical parameterization of the covariance matrix

Following Pinheiro and Bates (1996), we first apply Cholesky decomposition to the 
covariance matrix

where Lt is a lower triangular matrix. Then, we apply parameterization to the matrix Lt 
as follows.

(8)Qt = (1− a− b)Q̄ + a(ǫt−1ǫ
′
t−1)+ bQt−1,

(9)H t = LtL
′
t ,
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where θij,t are some angles.
Therefore, by omitting the time dependency, the matrix Lt can be parameterized as

To ensure the uniqueness of the parameterization we must constrain the angles

Thus, we can define the inverse of the parameterization

to obtain a lower triangular matrix of angles �t = (θij,t) , with n(n+ 1)/2 entries,

which is later employed in the updating function of the multivariate BEKK model.

Spherical parameterization of the correlation matrix

When considering the correlation matrix Rt , we can apply Cholesky decomposition to 
obtain

where Lt is a lower triangular matrix. Following Rapisarda et al. (2007), the entries of 
this matrix can be parameterized as

(10)lij,t =







θi1,t cos θi2,t , i = 1, . . . , n, j = 1

θi1,t cos θij+1,t
�j

k=2 sin θik ,t , i = 3, . . . , n, j = 2, . . . , i − 1

θi1,t
�j

k=2 sin θik ,t , i = 2, . . . , n, j = i

,

(11)





















θ11 cos θ12 0 0 · · · 0
θ21 cos θ22 θ21 sin θ22 0 · · · 0
θ31 cos θ32 θ31 sin θ32 cos θ33 θ31 sin θ32 sin θ33 · · · 0
θ41 cos θ42 θ41 sin θ42 cos θ43 θ41 sin θ42 sin θ43 cos θ44 · · · 0
...

...
... · · ·

...

θn1 cos θn2 θn1 sin θn2 cos θn3 θn1 sin θn2 sin θn3 cos θn4 · · · θn1
n
�

k=2

sinθnk





















.

(12)
θi1,t > 0, i = 1, . . . , n

θij,t ∈ (0,π), i = 2, . . . , n, j = 2, . . . , i.

(13)

θi1,t =
√

hii,t =

√

√

√

√

i
∑

k=1

l2ik ,t , i = 1, . . . , n

θi2,t = arccos

(

li1,t

θi1,t

)

, i = 1, . . . , n

θij,t = arccos

(

lij−1,t

θi1,t
∏j−1

k=2 sin θik ,t

)

, i = 3, . . . , n, j = 3, . . . , i

(14)�t =

















θ11,t 0 0 0 · · · 0
θ21,t θ22,t 0 0 · · · 0
θ31,t θ32,t θ33,t 0 · · · 0
θ41,t θ42,t θ43,t θ44,t · · · 0
...

...
...

... · · ·
...

θn1,t θn2,t θn3,t θn4,t · · · θnn,t

















,

Rt = LtL
′
t ,
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where θij,t are some angles in (0,π) . Similar to the parameterization of the covariance 
matrix, the restriction to the interval (0,π) ensures the uniqueness of the transformation.

By omitting the time dependency, the matrix Lt can be written as

Although the formula in (15) allows us to compute lij from the values of θij at each time, 
it is possible to describe the direct transformation from � = (θij) to R , which is a lower 
triangular matrix with zeros on the main diagonal and n(n− 1)/2 angles,

where cij = cos θij and sij = sin θij.
Moreover, the transformation from L to � = (θij) can be expressed as

and the matrix of angles becomes

The proposed methodology
The spherical transformations introduced in the previous sections have been employed 
in financial market applications to guarantee the positive definiteness of covariance or 
correlation matrices. Examples include Creal et  al. (2011) and Bernardi and Catania 
(2018), who employ the spherical transformation of the correlation matrix in the gener-
alized autoregressive score framework, and Zhang et al. (2015), who study a joint mean-
variance correlation model with covariates applied to longitudinal data. Finally, Pedeli 
et al. (2015) applied the spherical parameterization of the correlation matrix to extend 
the constant conditional correlation model of Bollerslev (1990).

(15)lij,t =















1, i, j = 1
cos θi1,t , i = 2, . . . , n

cos θij,t
�j−1

k=1 sin θik ,t , i = 3, . . . , n, j = 2, . . . , i − 1
�j−1

k=1 sin θik ,t , i = 2, . . . , n, j = i

,

(16)

















1 0 0 · · · 0
cos θ21 sin θ21 0 · · · 0
cos θ31 cos θ32 sin θ31 sin θ32 sin θ31 · · · 0
cos θ41 cos θ42 sin θ41 cos θ43 sin θ42 sin θ41 · · · 0

...
...

... · · ·
...

cos θn1 cos θn2 sin θn1 cos θn3 sin θn2 sin θn1 · · ·
�n−1

k=1 sin θnk

.

















(17)rij(θij) = ci1cj1 +

i−1
∑

k=2

cikcjk

k−1
∏

l=1

silsjl + cji

i−1
∏

l=1

silsjl , 1 ≤ i ≤ j ≤ n,

(18)

θi1,t = arccos(li1,t), 2 ≤ i ≤ n,

θij,t = arccos

(

lij,t
∏j−1

k=1 sin(θik ,t)

)

, 2 ≤ j < i ≤ n,

(19)�t =

















0 0 0 0 · · · 0
θ21,t 0 0 0 · · · 0
θ31,t θ32,t 0 0 · · · 0
θ41,t θ42,t θ43,t 0 · · · 0
...

...
...

... · · ·
...

θn1,t θn2,t θn3,t θn4,t · · · 0

















.
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In this section, inspired by Pedeli et  al. (2015), who assume a time-invariant corre-
lation matrix, we propose two extensions of the BEKK and DCC models by applying 
spherical parameterizations of the Cholesky decomposition of the covariance matrix 
H t and correlation matrix Rt , respectively. Therefore, we define Cholesky-BEKK (CH-
BEKK) as an extension of BEKK and Cholesky-DCC (CH-DCC) as an extension of DCC.

The Cholesky‑BEKK model

Departing from the BEKK specification in (2), which directly models the conditional 
covariance matrix, we employ the spherical parameterization of the lower triangular 
matrix from the Cholesky decomposition, as in (13). Thus, because parameterization 
ensures a unique relationship between the covariances and angles �t , instead of mod-
eling the covariances, we define an updating function for the angles.

Following Bernardi and Catania (2018), we assume an updating equation for the angles 
�t = (θij,t) as

where ◦ is the Hadamard product, �−1 is the inverse of the spherical parameterization 
of the covariance matrix computed as in Equation (13), H̄ is the sample covariance (i.e., 
H̄ = 1

T

∑T
t=1 ete

T
t  ), and u is a lower triangular matrix of ones.

Equation (20) includes a variance targeting approach for reducing the number of 
parameters to be estimated. The innovation component is driven by the forcing vari-
able �t−1 , which, in the spirit of Tse and Tsui (2002), is based on the spherical trans-
formation of the sample covariance matrix computed on the past h observations, 
�t−1 = �−1(H t−h:t−1) , with H t−h:t−1 being the sample correlation matrix of the obser-
vations (et−h, et−h+1, et−h+2, ..., et−1) . As stated by the authors, a necessary condition is 
to impose h = n , although applications have shown that a higher number is often neces-
sary to obtain a well-defined covariance or correlation matrix.

The Cholesky‑DCC model

Unlike the CH-BEKK model, for the CH-DCC we directly model the angles computed 
from the spherical transformation of the correlation matrix Rt derived from the decom-
position in (5). As in the classical DCC model, our proposed CH-DCC model requires 
specification of the univariate variance equations, as in (6). This allows us to apply the 
spherical transformation in (18) directly to the correlation matrix. Thus, we can model 
the angles from the parameterization similar to Equation (20).

where ◦ is the Hadamard product, �−1 is the inverse of the spherical parameterization of 
the correlation matrix computed as in Equation (18), R̄ is the sample correlation matrix 
(i.e., R̄ = 1

T

∑T
t=1 ǫtǫ

T
t  ), and u is a lower triangular matrix of ones with zeros on the 

main diagonal.
Similar to CH-BEKK, the forcing variable, which incorporates the new information, is 

based on the spherical transformation of the sample correlation matrix computed on the 

(20)�t = (u− A− B) ◦�−1(H̄)+ A ◦�t−1 + B ◦�t−1,

(21)�t = (u− A− B) ◦�−1(R̄)+ A ◦�t−1 + B ◦�t−1,
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past h observations, �t−1 = �−1(Rt−h:t−1) , with Rt−h:t−1 being the sample correlation 
matrix of the observations (ǫt−h, ǫt−h+1, ǫt−h+2, ..., ǫt−1).

Scalar CH‑BEKK and CH‑DCC models

Both CH-BEKK and CH-DCC directly model the angles derived from spherical param-
eterizations. Therefore, the numbers of parameters to be estimated are n(n+ 1) and 
n(n− 1) , respectively. However, for the CH-DCC model, we need to add 3n parameters 
to estimate the univariate GARCH models. To reduce the number of parameters fur-
ther, it is possible to employ a scalar version of Equation (21), thus imposing the same 
dynamic on all angles.

In scalar versions, Equations (20) and (21) become

where a and b are scalar parameters and, depending on the model specification, κ is the 
inverse of the spherical transformation of the sample covariance or correlation matrix, 
and �t−1 is the inverse of the spherical transformation of the sample covariance or cor-
relation matrix computed from the past h observations.

Parameter estimation

Table 1 compares the required number of parameters in a general representation for 
all discussed models, with or without variance targeting. The last three columns show 
the number of parameters for n = 3 , n = 10 , and n = 100 . The full models refer to 
equations (2), (7), (20), and (21). It is clear that in the case of full parameterizations, 
the proposed Cholesky models require fewer parameters to estimate than their tra-
ditional counterparts. However, this advantage disappears when considering scalar 

(22)�t = (1− a− b)κ + a�t−1 + b �t−1,

Table 1 Comparison of the number of parameters for the multivariate GARCH models. For DCC 
models, the number of parameters does not include the univariate GARCH parameters, i.e. 3n 

Model Targeting n assets n = 3 n = 10 n = 100

Scalar BEKK No n(n+ 1)/2+ 2 8 57 5052

Scalar DCC No n(n− 1)/2+ 2 5 47 4952

Scalar CH-BEKK No n(n+ 1)/2+ 2 8 57 5052

Scalar CH-DCC No n(n− 1)/2+ 2 5 47 4952

Full BEKK No n(n+ 1)/2+ 2n2 24 255 25050

Full DCC No n(n− 1)/2+ n(n+ 1) 15 155 24950

Full CH-BEKK No 3n(n+ 1)/2 18 165 15150

Full CH-DCC No 3n(n− 1)/2 9 135 14850

Scalar BEKK Yes 2 2 2 2

Scalar DCC Yes 2 2 2 2

Scalar CH-BEKK Yes 2 2 2 2

Scalar CH-DCC Yes 2 2 2 2

Full BEKK Yes 2n2 18 200 20000

Full DCC Yes n(n+ 1) 12 110 10100

Full CH-BEKK Yes n(n+ 1) 12 110 10100

Full CH-DCC Yes n(n− 1) 6 90 9900
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models, as they all present only two parameters to estimate, with the cost of having 
the same dynamics for all elements of the matrices.

The parameters for all the discussed models can be estimated by maximizing the 
log-likelihood. Assuming the normality of the residuals, et ∼ N (0,H t) , the log-likeli-
hood function can be written as

However, Engle (2002) shows that the parameters of the DCC model can be easily esti-
mated using a two-stage estimation, decomposing the log-likelihood function in (23) as

Equation (24) shows that the log-likelihood is composed of a volatility and a correlation 
term, L = Lv + Lc . The volatility term is jointly maximized by separately maximizing 
each univariate log-likelihood. Therefore, we initially estimate the univariate GARCH 
parameters in (6), ωi,αi,βi , by maximizing their log-likelihood functions. We then esti-
mate the multivariate parameters in the second stage by maximizing the correlation part 
of the log-likelihood. For all DCC models in our analysis, we employ the two-stage esti-
mation procedure.

It is important to note that, for the scalar BEKK and DCC models, we must per-
form a constrained estimation by imposing the inequalities a, b > 0 and a+ b < 1 to 
guarantee the positive definiteness and stationarity of the covariance or correlation 
matrices. In contrast, our proposed Cholesky version of the models does not require 
any restrictions to obtain the positive definiteness of the matrices; however, it would 
require some restrictions on the elements of the matrix B , that is, |bij| < 1 (or |b| < 1 
for the scalar case), to maintain the stationarity of the process. However, to ensure 
a one-to-one relationship of the spherical transformation, the angles θij,t must be 
bounded. Specifically, if we consider the transformation of the covariance, we impose 
the inequalities in (12). By contrast, considering the parameterization of the corre-
lation, all angles must lie within the range (0,π) . These constraints are imposed in 
the optimization process with the inclusion of penalization during the computation of 
the log-likelihood. Empirical tests show that this penalization constrains the angles to 
vary within the specified ranges, thus eliminating the need for the above stationarity 
constraints.

A simulation study
To test the proposed methodology, we perform a Monte Carlo simulation in which 
the structures of the correlations and covariances are known. In particular, as in Engle 
(2002), we simulate a multivariate model with three series and generated 1,000 obser-
vations for each series. We repeated this simulation process 200 times. The data-gen-
erating process is built based on Gaussian errors, as follows.

(23)L = −
1

2

T
∑

t=1

(

n log(2π)+ log |H t | + e′tH
−1
t et

)

.

(24)

L = −
1

2

T
∑

t=1

(

n log(2π)+ 2 log |Dt | + r ′tD
−1
t D−1

t rt − ǫ
′
tǫt + log |Rt | + ǫ

′
tR

−1
t ǫt

)

.
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The n(n− 1)/2 elements of the correlation matrix Rt are generated by applying the 
spherical transformation as in (17) to the following angles.

where ψij,t is a random angle within the range [0,π ] , obtained from a distribution pro-
portional to (sinψ)2k+n−j (Pourahmadi and Wang 2015) .

By knowing the structure of the correlations, we compare the estimated correlations, 
ρ̂ij,t , with the true correlations resulting from the considered covariance matrix Rt . To 
this extent, we use the mean absolute error given by

and we average the above measure over time t and over the 200 simulations.
The results of the Monte Carlo simulation with their standard deviations are presented 

in Table  2. The Cholesky models perform better than their standard counterparts, in 
particular both models with full specifications. Moreover, owing to the simulation struc-
ture, the DCC model approaches either the traditional or Cholesky models, outperform-
ing the BEKK models.

Application
In this section, we apply the proposed Cholesky model in its full and scalar specifica-
tions to financial data, specifically crude oil daily prices and exchange rates. Moreover, 
we perform a comparison with the traditional scalar BEKK and DCC specifications. 
The specific choice of crude oil is mainly to show the validity of our proposed approach. 
Nevertheless, the model can easily be applied to different types of data, including 

h1,t = 0.01+ 0.05r21,t−1 + 0.94h1,t−1,

h2,t = 0.5+ 0.2r21,t−1 + 0.5h1,t−1,

h3,t = 0.1+ 0.8r21,t−1 + 0.1h1,t−1,

ǫt ∼ N (0,Rt),

ri,t =
√

hi,tǫi,t , i ∈ {1, 2, 3}.

θij,t =(1− Aij − Bij)+ Aijψij,t + Bijθij,t−1, i = 2, 3, j = 1, ..., i − 1,

withA =





0 0 0
0.1 0 0
0.2 −0.3 0



, B =





0 0 0
−0.8 0 0
0.9 0.7 0



,

MAEt =
1

n2

n
∑

i=1

n
∑

j=1

|ρ̂ij,t − ρij,t |,

Table 2 Mean absolute error of correlation estimates

MAE SD

BEKK Scalar 0.1054 0.0084

CH-BEKK Scalar 0.0859 0.0139

CH-BEKK Full 0.0658 0.0076

DCC Scalar 0.0533 0.0022

CH-DCC Scalar 0.0521 0.0021

CH-DCC Full 0.0521 0.0024



Page 12 of 20Ballestra et al. Financial Innovation           (2025) 11:37 

Ta
bl

e 
3 

Su
m

m
ar

y 
st

at
is

tic
s 

of
 d

ai
ly

 lo
g 

re
tu

rn
s

Su
m

m
ar

y 
st

at
is

tic
s 

of
 th

e 
pe

rc
en

ta
ge

 lo
g 

re
tu

rn
s 

ov
er

 th
e 

pe
rio

d 
fr

om
 Ja

nu
ar

y 
20

00
 to

 F
eb

ru
ar

y 
20

22
. A

D
F 

is
 th

e 
Au

gm
en

te
d 

D
ic

ke
y-

Fu
lle

r t
es

t. 
A

RC
H

 re
fe

rs
 to

 th
e 

st
at

is
tic

 o
f t

he
 L

ag
ra

ng
e 

M
ul

tip
lie

r t
es

t f
or

 
au

to
re

gr
es

si
ve

 c
on

di
tio

na
l h

et
er

os
ce

da
st

ic
ity

 a
t 1

, 6
, a

nd
 1

2 
la

gs
. Q

(6
), 

Q
(1

2)
, Q

2
(6

), 
an

d 
Q
2
(1

2)
 a

re
 th

e 
Lj

un
g-

Bo
x 

st
at

is
tic

s 
fo

r s
er

ia
l c

or
re

la
tio

n 
of

 o
rd

er
s 

6 
an

d 
12

 in
 re

tu
rn

s 
an

d 
sq

ua
re

d 
re

tu
rn

s.

*,
 *

*,
 a

nd
 *

**
 in

di
ca

te
 th

e 
re

je
ct

io
n 

of
 th

e 
nu

ll 
hy

po
th

es
is

 o
f t

he
 te

st
s 

at
 th

e 
10

%
, 5

%
, a

nd
 1

%
 le

ve
ls

 o
f s

ig
ni

fic
an

ce
 re

sp
ec

tiv
el

y

W
TI

Br
en

t
AU

D
CA

D
EU

R
G

BP
JP

Y
M

XN
N

O
K

M
ea

n
0.

02
34

0.
02

58
−

 0
.0

01
8

−
 0

.0
02

4
−

 0
.0

01
5

0.
00

35
0.

00
19

0.
01

34
0.

00
19

M
ed

ia
n

0.
07

02
0.

05
45

−
 0

.0
29

0.
0

−
 0

.0
07

9
−

 0
.0

06
1

0.
0

−
 0

.0
13

9
−

 0
.0

13

M
ax

42
.5

83
2

41
.2

02
3

7.
64

44
3.

29
86

3.
17

71
8.

40
95

6.
21

51
8.

77
28

7.
53

85

M
in

−
 7

2.
02

73
−

 7
7.

26
84

−
 8

.2
21

8
−

 3
.7

66
5

−
 3

.7
18

8
−

 3
.0

42
7

−
 3

.7
83

1
−

 6
.5

35
2

−
 5

.6
12

4

St
d.

 d
ev

.
2.

91
34

2.
70

62
0.

79
74

0.
54

6
0.

60
01

0.
58

35
0.

61
25

0.
74

11
0.

76
91

Sk
ew

ne
ss

−
 2

.1
33

3
−

 3
.6

89
0.

45
25

0.
14

33
−

 0
.0

07
5

0.
90

26
−

 0
.0

31
1

0.
88

37
0.

38
68

Ex
ce

ss
 K

ur
to

si
s

88
.2

32
6

13
6.

42
51

11
.3

09
8

3.
04

14
1.

92
38

11
.4

14
4

5.
27

36
11

.9
67

5
4.

46
23

Ja
rq

ue
-B

er
a

18
41

22
9.

0*
**

44
04

45
3.

0*
**

30
37

5.
0*

**
22

02
.0

**
*

87
3.

0*
**

31
51

2.
0*

**
65

63
.0

**
*

34
53

1.
0*

**
48

40
.0

**
*

A
D

F
−

 1
2.

7*
**

−
 1

2.
9*

**
−

 1
3.

0*
**

−
 1

3.
0*

**
−

 7
6.

6*
**

−
 1

6.
4*

**
−

 2
1.

5*
**

−
 1

3.
3*

**
−

 1
3.

1*
**

A
RC

H
(1

)
55

4.
0*

**
39

7.
5*

**
45

3.
0*

**
28

8.
7*

**
90

.7
**

*
12

8.
1*

**
10

3.
2*

**
30

2.
1*

**
25

4.
3*

**

A
RC

H
(6

)
73

9.
5*

**
46

2.
3*

**
16

85
.7

**
*

98
6.

9*
**

35
9.

0*
**

21
8.

9*
**

33
4.

7*
**

11
30

.7
**

*
87

8.
4*

**

A
RC

H
(1

2)
80

3.
5*

**
59

4.
9*

**
18

93
.1

**
*

11
31

.3
**

*
48

1.
3*

**
26

6.
3*

**
46

1.
7*

**
11

55
.4

**
*

90
9.

8*
**

Q
(6

)
96

.5
**

*
16

.9
**

*
35

.1
**

*
15

.5
**

7.
7

12
.3

*
14

.9
**

10
.8

*
6.

7

Q
(1

2)
16

7.
2*

**
49

.3
**

*
48

.1
**

*
27

.6
**

*
18

.9
*

25
.7

**
39

.3
**

*
24

.8
**

15
.0

Q
2
(6

)
88

3.
3*

**
48

2.
1*

**
40

59
.6

**
*

21
89

.6
**

*
59

6.
8*

**
29

5.
5*

**
50

8.
3*

**
22

56
.3

**
*

17
11

.8
**

*

Q
2
(1

2)
11

92
.0

**
*

77
1.

8*
**

68
81

.8
**

*
40

76
.9

**
*

11
40

.6
**

*
43

9.
0*

**
87

4.
3*

**
29

03
.7

**
*

21
98

.6
**

*



Page 13 of 20Ballestra et al. Financial Innovation           (2025) 11:37  

applications where the analysis of volatility over time is the key objective and the deci-
sion-making process is influenced by risk factors, for instance cryptocurrencies mar-
kets, renewable energy markets (see, e.g., Kou et  al. 2023, 2024), and carbon markets 
(Kou et al. 2024). We also highlight that the proposed model is not constrained to daily 
data, but can be applied to higher or lower time frequencies, where the former are 

Fig. 1 Q-Q plot of the daily log returns over the period from January 2000 to February 2022

Fig. 2 Daily log returns over the period from January 2000 to February 2022
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characterized by high volatility due to noise in the time series, and the latter might show 
volatility clustering because of the varying economic cycles when considering monthly 
or annual data.

Data and summary statistics

We analyze the relationship between crude oil spot prices (WTI and Brent) and seven 
exchange rates to the US dollar, namely the Australian dollar (AUD), the Canadian dollar 
(CAD), the Euro (EUR), the Japanese yen (JPY), the Mexican peso (MXN), the Norwe-
gian crown (NOK), and the British pound (GBP). For all these quantities, we consider 
the daily price series from January 2000 to February 2022. The exchange rates are col-
lected from Thomson Reuters, whereas the oil price data (both Brent and WTI) are 
sourced from the US Energy Information Administration.

Table  3 reports a wide range of summary statistics for the percentage log-returns 
of oil prices and exchange rates. All series, especially the two oil series, show small 
means with high standard deviations. Only EUR exhibits low skewness, and all series 
have a large excess kurtosis, which indicates the presence of heavy tails, as is typical 
of financial time series. This aspect is also confirmed by the rejection of the Jarque-
Bera tests of normality at the 1% level of significance for all series. Moreover, the 
ARCH tests at 1, 6, and 12 lags reject the null hypothesis of homoskedasticity at the 
1% level of significance. Moreover, the Ljung-Box portmanteau tests on both returns 
and squared returns with lags of 6 and 12 show a high serial correlation for all series 
except for the EUR and NOK exchange rates.

Figure 1 shows the QQ-plots against the normal distribution, which indicates that 
all series have heavier tails than normal, whereas in Figure 2 we observe clear volatil-
ity clustering in all the time series. This behavior of large changes, which tend to fol-
low large changes, and small changes, which tend to follow small changes, is typical of 
financial time series.

Finally, Table 4 reports the results of a pairwise Granger causality test with one lag for 
all series (Granger 1969). Specifically, the past values of the series in columns have a sta-
tistically significant effect on the current values of the series in rows. For example, WTI 
Granger causes the Brent and JPY, MXN, and NOK series, whereas Brent is Granger 

Table 4 Granger causality matrix at first lag

The Null hypothesis for the Granger causality test is that the time series in the columns (_x suffix), do NOT Granger cause the 
time series in the rows (_y suffix).

*, ** and *** indicate the rejection of the null hypothesis at the 10%, 5% and 1% levels of significance respectively

WTI_x Brent_x AUD_x CAD_x EUR_x GBP_x JPY_x MXN_x NOK_x

WTI_y – 2.813* 4.588** 5.852** 0.798 0.209 4.708** 3.962** 0.897

Brent_y 295.938*** – 27.034*** 41.194*** 3.138* 8.195*** 5.603** 17.036*** 14.196***

AUD_y 1.757 0.377 – 5.643** 0.504 0.525 2.849* 26.834*** 0.74

CAD_y 0.002 0.035 0.017 – 3.595* 1.851 3.747* 2.759* 3.098*

EUR_y 0.146 0.579 0.025 1.176 – 0.418 1.983 1.003 0.904

GBP_y 1.929 3.7* 2.478 11.608*** 0.449 – 12.725*** 1.363 0.02

JPY_y 7.423*** 3.584* 15.806*** 12.516*** 2.012 0.013 – 0.84 10.382***

MXN_y 5.147** 0.574 1.079 5.595** 2.992* 0.507 0.002 – 1.831

NOK_y 4.264** 2.217 15.616*** 13.567*** 3.329* 0.635 0.091 10.38*** –
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Table 5 Univariate GARCH parameters

** and *** indicate 5% and 1% levels of significance respectively

AUD CAD EUR GBP JPY MXN NOK

WTI ω 0.1149∗∗∗ 0.1164∗∗∗ 0.1172∗∗∗ 0.1176∗∗∗ 0.1166∗∗∗ 0.1165∗∗∗ 0.1157***

α 0.0931∗∗∗ 0.0927∗∗∗ 0.0929∗∗∗ 0.0923∗∗∗ 0.0929∗∗∗ 0.0928∗∗∗ 0.0936∗∗∗

β 0.892∗∗∗ 0.892∗∗∗ 0.8916∗∗∗ 0.8921∗∗∗ 0.8918∗∗∗ 0.8919∗∗∗ 0.8914∗∗∗

Brent ω 0.0683∗∗∗ 0.0677∗∗∗ 0.0667∗∗∗ 0.0666∗∗∗ 0.0678∗∗∗ 0.0659∗∗∗ 0.0667***

α 0.0914∗∗∗ 0.0907∗∗∗ 0.0915∗∗∗ 0.0908∗∗∗ 0.0916∗∗∗ 0.0913∗∗∗ 0.0921∗∗∗

β 0.8996∗∗∗ 0.9004∗∗∗ 0.8999∗∗∗ 0.9006∗∗∗ 0.8996∗∗∗ 0.9003∗∗∗ 0.8994∗∗∗

Ex Rate ω 0.0049∗∗∗ 0.0018∗∗∗ 0.001∗∗ 0.0041∗∗∗ 0.0044∗∗∗ 0.0066∗∗∗ 0.0052∗∗∗

α 0.0544∗∗∗ 0.0454∗∗∗ 0.0345∗∗∗ 0.0581∗∗∗ 0.06∗∗∗ 0.0975∗∗∗ 0.0426∗∗∗

β 0.9367∗∗∗ 0.9483∗∗∗ 0.9629∗∗∗ 0.9307∗∗∗ 0.9295∗∗∗ 0.8922∗∗∗ 0.9483∗∗∗

Table 6 Multivariate GARCH parameters

*, ** and *** indicate 10%, 5% and 1% levels of significance respectively

AUD CAD EUR GBP JPY MXN NOK

BEKK Scalar a 0.0635∗∗∗ 0.062∗∗∗ 0.057∗∗∗ 0.0634∗∗∗ 0.0652∗∗∗ 0.0708∗∗∗ 0.0631∗∗∗

b 0.925∗∗∗ 0.927∗∗∗ 0.9338∗∗∗ 0.9242∗∗∗ 0.9215∗∗∗ 0.9161∗∗∗ 0.9244∗∗∗

L − 28743.77 − 26675.54 − 27677.23 − 27571.02 − 27883.67 − 28368.94 − 28872.94

DCC Scalar a 0.0073 0.0091∗ 0.009 0.0054 0.0278 0.0093 0.0061

b 0.9893∗∗∗ 0.987∗∗∗ 0.9858∗∗∗ 0.9913∗∗∗ 0.9097∗∗∗ 0.9843∗∗∗ 0.9908∗∗∗

L − 28590.35 − 26493.11 − 27511.67 − 27398.28 − 27742.62 − 28179.21 − 28704.94

CH-BEKK 
Scalar

a 0.6016∗∗∗ 0.5644∗∗∗ 0.5056∗∗∗ 0.5032∗∗∗ 0.5611∗∗∗ 0.7221∗∗∗ 0.6151∗∗∗

b 0.1322 0.1839 0.2635 0.2507∗ 0.1559 − 0.0418 0.0972

L − 29030.91 − 26944.63 − 27990.2 − 27896.62 − 28211.28 − 28762.32 − 29140.21

CH-DCC 
Scalar

a 0.005∗ 0.0073∗ 0.003∗ 0.0027 0.1407∗∗∗ 0.0702 0.1463

b 0.9915∗∗∗ 0.9879∗∗∗ 0.9951∗∗∗ 0.995∗∗∗ 0.4327∗∗∗ 0.7671∗∗∗ 0.5233∗

L − 28612.94 − 26514.76 − 27529.94 − 27408.28 − 27763.49 − 28204.5 − 28740.12

CH-BEKK Full a11 0.9129∗∗∗ 0.8956∗∗∗ 0.9065∗∗∗ 0.8859∗∗∗ 0.9∗∗∗ 0.9159∗∗∗ 0.8906∗∗∗

a21 0.8411∗∗∗ 0.8274∗∗∗ 0.8411∗∗∗ 0.8465∗∗∗ 0.8359∗∗∗ 0.8092∗∗∗ 0.826∗∗∗

a22 0.2264∗∗ 0.2293∗∗ 0.2289∗∗ 0.2214∗∗ 0.2286∗∗ 0.1961∗∗ 0.2244∗∗

a31 0.8881∗∗∗ 0.2106∗∗ 0.0808∗∗∗ 1.1643∗∗∗ 0.6563∗∗ 1.0727∗∗∗ 0.5367∗∗∗

a32 0.007∗∗ 0.0101∗∗ 0.0049∗ 0.0037∗∗∗ 0.1469 0.012 0.1471∗∗

a33 0.1065 0.1475 0.0011 − 0.0117 0.0698∗ 0.1705∗∗ 0.0754

b11 − 0.1686 − 0.1502 − 0.1624 − 0.1401 − 0.155 − 0.1785 − 0.142

b21 − 0.0729 − 0.0565 − 0.0674 − 0.0763 − 0.0623 − 0.0332 − 0.0509

b22 0.4184∗∗ 0.4228∗∗ 0.4112∗ 0.4303∗∗ 0.4214∗ 0.4923∗∗ 0.4194∗

b31 − 0.1402 0.7375∗∗∗ 0.9032∗∗∗ −0.6967∗∗∗ 0.0298 −0.3501∗∗∗ 0.2226

b32 0.9913∗∗∗ 0.987∗∗∗ 0.9943∗∗∗ 0.9956∗∗∗ 0.4361 0.9821∗∗∗ 0.6703∗∗∗

b33 −0.8853∗∗∗ −0.8314∗∗∗ 0.9966∗∗∗ 0.8219∗∗∗ 0.2512∗ −0.754∗∗∗ − 0.3308

L − 28789.88 − 26705.09 − 27713.54 − 27615.48 − 27980.99 − 28496.34 − 28940.55

CH-DCC Full a21 0.1458∗ 0.1509∗∗ 0.1466∗ 0.1473∗∗ 0.1434 0.1291∗ 0.149∗∗

a31 0.0079∗∗ 0.0123∗∗ 0.0048∗∗ 0.004∗∗ 0.147 0.0191 0.1273

a32 0.1008 0.0041∗∗ −0.0119∗∗∗ −0.0131∗ 0.0654 0.0936 0.0611

b21 0.5332∗∗ 0.5245∗∗∗ 0.5377∗∗ 0.5348∗∗∗ 0.5518∗ 0.5938∗∗ 0.5256∗∗

b31 0.9902∗∗∗ 0.9847∗∗∗ 0.9944∗∗∗ 0.9949∗∗∗ 0.3991 0.9702∗∗∗ 0.7245∗∗∗

b32 −0.9309∗∗∗ 0.9919∗∗∗ 0.795∗∗∗ 0.8615∗∗∗ 0.2399 −0.8668∗∗ − 0.2326

L − 28599.08 − 26499.97 − 27516.66 − 27398.26 − 27756.73 − 28182.3 − 28722.0
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caused by all series. A similar pattern is observed for the second and third lags, although 
we did not tabulate the results to save space.

The results of the Granger causality test suggest that a VAR specification can be used 
to model the returns series. Moreover, the results of the preliminary analysis indicate 
that the GARCH specification is a good candidate for the modeling of conditional 
volatility.

Results

We apply the proposed Cholesky models, in both full and scalar settings, as well as the 
scalar BEKK and DCC models to different combinations of time series. Specifically, in 
each test, we include three time series: the two crude oils and one of the exchange rates. 
Thus, we obtain seven combinations of time series for the application.

For the multivariate DCC models, which include a two-stage estimation, we report the 
univariate GARCH parameters, ωi,αi , and βi , for each combination of series in Table 5. 
Each column represents one combination of oils and one exchange rate. For example, 
the first column AUD includes the results of the univariate GARCH for the WTI, Brent, 
and AUD time series.

Table 6 reports the multivariate GARCH parameters a and b for the scalar models, and 
the single elements of the matrices A and B for the full models, which are described in 
(14) and (19). For the DCC models, the values refer to the second stage of estimation. In 
the Cholesky models, the innovation components �t−1 from equations (20) and (21) are 
based on the past 21 observations, which correspond to one month of data using returns 
from business days.

An initial analysis of the log-likelihood values shows that the performance of the full 
Cholesky models is comparable to that of the corresponding standard scalar models. 
Specifically, the full log-likelihood of the CH-DCC is − 28599.08, which is very close 
to the value of −  28590.35 from the scalar DCC model. We note a similar behavior 
for the BEKK specifications. In contrast, the scalar CH-BEKK and CH-DCC models 
underperform compared to their traditional counterparts, with values of − 29030.91 
and − 28612.94, respectively. This behavior, which is observable in all combinations of 
time series, does not allow us to directly discriminate one model from another. More-
over, because we observe that all log-likelihood values of the BEKK models are always 
lower than those of the DCC models, we tend to prefer the DCC specification over 
the BEKK one. However, Caporin and McAleer (2012) demonstrated that the BEKK 
model is theoretically more robust than the DCC model and should be preferred in 
applications. Owing to these ambiguities, we perform further tests to assess the per-
formance of the proposed models.

Considering that the true values of the covariances are unknown, it is not possible 
to directly assess the variance–covariance output of the models. Therefore, following 
Engle (2002), we compute the 95% Value-at-Risk for three portfolios to evaluate model 
performance. The portfolios are (i) an equal weights portfolio, (ii) a mixed portfolio 
with 90% weight on the WTI and 5% weight on both the Brent and the exchange rate 
series, and (iii) a long/short portfolio with 200% weight on the WTI and two equal 
short positions on the Brent and the exchange rate with − 50% weight. To compare 
the three portfolios and the different models, we apply the Kupiec test (Kupiec 1995).
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We compute the Value-at-Risk estimate for the process et for the i-th portfolio at 
time t with a coverage level α as

(25)VaRit(α) = z(α) ·
√

w′
iH twi,

Table 7 Kupiec test for different portfolios and different combinations of oils and exchange rate. 
VaR at 95%. p values in brackets

Model Equal weights Mix Long/Short

AUD BEKK 4.733 (0.03) 3.694 (0.055) 2.581 (0.108)

CH-BEKK Scalar 3.455 (0.063) 5.601 (0.018) 6.546 (0.011)

CH-BEKK Full 0.846 (0.358) 0.538 (0.463) 0.846 (0.358)

DCC 0.964 (0.326) 0.133 (0.716) 0.372 (0.542)

CH-DCC Scalar 1.09 (0.297) 0.092 (0.762) 0.237 (0.626)

CH-DCC Full 0.372 (0.542) 0.237 (0.626) 0.301 (0.583)

CAD BEKK 3.941 (0.047) 3.002 (0.083) 2.581 (0.108)

CH-BEKK Scalar 3.002 (0.083) 5.601 (0.018) 7.219 (0.007)

CH-BEKK Full 0.372 (0.542) 0.058 (0.809) 0.736 (0.391)

DCC 0.633 (0.426) 0.181 (0.67) 0.964 (0.326)

CH-DCC Scalar 0.633 (0.426) 0.133 (0.716) 0.736 (0.391)

CH-DCC Full 0.452 (0.502) 0.133 (0.716) 0.237 (0.626)

EUR BEKK 1.223 (0.269) 2.787 (0.095) 2.012 (0.156)

CH-BEKK Scalar 4.461 (0.035) 4.733 (0.03) 7.569 (0.006)

CH-BEKK Full 0.133 (0.716) 0.372 (0.542) 0.452 (0.502)

DCC 0.014 (0.905) 0.237 (0.626) 0.452 (0.502)

CH-DCC Scalar 0.004 (0.949) 0.301 (0.583) 0.372 (0.542)

CH-DCC Full 0.058 (0.809) 0.181 (0.67) 0.301 (0.583)

GBP BEKK 3.455 (0.063) 5.304 (0.021) 2.194 (0.139)

CH-BEKK Scalar 3.694 (0.055) 7.219 (0.007) 9.448 (0.002)

CH-BEKK Full 0.237 (0.626) 0.181 (0.67) 0.964 (0.326)

DCC 0.301 (0.583) 0.372 (0.542) 0.452 (0.502)

CH-DCC Scalar 0.133 (0.716) 0.372 (0.542) 0.633 (0.426)

CH-DCC Full 0.133 (0.716) 0.301 (0.583) 0.058 (0.809)

JPY BEKK 2.383 (0.123) 4.197 (0.04) 4.733 (0.03)

CH-BEKK Scalar 5.304 (0.021) 6.223 (0.013) 9.851 (0.002)

CH-BEKK Full 0.237 (0.626) 0.181 (0.67) 0.964 (0.326)

DCC 0.003 (0.954) 0.452 (0.502) 0.372 (0.542)

CH-DCC Scalar 0.004 (0.949) 0.372 (0.542) 0.181 (0.67)

CH-DCC Full 0.016 (0.901) 0.301 (0.583) 0.133 (0.716)

MXN BEKK 4.461 (0.035) 3.694 (0.055) 2.581 (0.108)

CH-BEKK Scalar 6.546 (0.011) 5.014 (0.025) 7.569 (0.006)

CH-BEKK Full 0.736 (0.391) 0.301 (0.583) 1.515 (0.218)

DCC 0.538 (0.463) 0.452 (0.502) 0.237 (0.626)

CH-DCC Scalar 0.846 (0.358) 0.452 (0.502) 0.736 (0.391)

CH-DCC Full 0.372 (0.542) 0.452 (0.502) 0.372 (0.542)

NOK BEKK 1.672 (0.196) 3.694 (0.055) 2.581 (0.108)

CH-BEKK Scalar 3.002 (0.083) 4.461 (0.035) 5.601 (0.018)

CH-BEKK Full 0.058 (0.809) 0.181 (0.67) 0.237 (0.626)

DCC 0.032 (0.857) 0.058 (0.809) 0.133 (0.716)

CH-DCC Scalar 0.014 (0.905) 0.032 (0.857) 0.014 (0.905)

CH-DCC Full 0.0 (0.998) 0.032 (0.857) 0.014 (0.905)



Page 18 of 20Ballestra et al. Financial Innovation           (2025) 11:37 

where z(α) is the value of the inverse of the CDF of the standard normal distribution at 
level α and wi is the vector containing the i-th portfolio weights.

We then define an indicator function as

and compute the Coverage Ratio as

where T is the length of the time series.
Finally, we apply the likelihood ratio test statistic of Kupiec (1995), which we com-

pute as

where γi =
∑T

t Iit . LRi follows a X 2(1) distribution. A similar approach has been applied 
by Bauwens et al. (2006) and Creal et al. (2011).

Results of the 95% Value-at-Risk tests on the portfolios are shown in Table 7. The 
reported values are the statistics of Kupiec to test the null hypothesis H0 : CRi = α of 
a correct coverage. The p values are reported in parentheses.

We observe that for almost all portfolios and all combinations of time series, the 
Cholesky models perform better than the traditional ones; in particular, the full models 
have better coverage, that is, the p-values are higher overall. The only exception is the 
scalar CH-BEKK model, which reports the worst performance because it always rejects 
the null hypothesis. Moreover, considering the mixed portfolio, the standard DCC 
model presents good results that are sometimes better than those of the proposed mod-
els. However, we can affirm that the Kupiec test shows the satisfactory performance of 
the Cholesky models, particularly in their full specifications.

Conclusions
Generally, multivariate GARCH models are subject to two problems. On the one hand, 
the requirement of the positive definiteness of the covariance matrix poses some diffi-
culties. On the other hand, the number of parameters to estimate in the full specification 
of the models increases drastically with the inclusion of additional time series.

To overcome the requirement of positive definiteness, we proposed two extensions of 
the BEKK and DCC models by applying two spherical transformations to the Cholesky 
factorization of the covariance and correlation matrices. With the application of the 
parameterization of the covariance matrix, we introduce the Cholesky-BEKK model. In 
contrast, by employing the parameterization of the correlation matrix, we introduce the 
Cholesky-DCC model. These transformations allow us to define the updating functions 
of the models without constraints on the parameters. Moreover, they permit a reduc-
tion in the total number of parameters to be estimated when considering the full speci-
fication because, by construction, both transformations result in triangular matrices 

Iit =

{

1 if e′twi < VaRit(α)

0 if e′twi ≥ VaRit(α),

(26)CRi =
1

T

T
∑

t

Iit ,

(27)LRi = 2
{

log[CR
γi
i (1− CRi)

T−γi ] − log[αγi(1− α)T−γi ]
}

,
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of angles. Thus, fewer parameters are required to be estimated when maximizing the 
log-likelihood.

Moreover, we applied the proposed full and scalar models to WTI and Brent crude 
oil returns, along with different exchange rate returns, and compared their results with 
those of the standard BEKK and DCC models. The application shows that the proposed 
models can capture the dynamics of covariances and correlations. Moreover, we per-
formed the Kupiec test on the Value-at-Risk of three portfolio combinations and confirm 
the satisfactory performance of the Cholesky models in their full specification.

Finally, we observe that the proposed models, when applied to any time series, could 
be useful for practitioners and policymakers as they might be able to estimate and pre-
dict the conditional volatility of the time series without imposing the positive definite-
ness of the covariance or correlation matrices. In this way, they can control or mitigate 
risky positions or enforce regulations to avoid potential misconduct in markets, such as 
advisors or brokers recommending unsuitable products to their clients, which can be 
dangerous when markets are under pressure.
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