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Introduction

Over the past three decades, multivariate modeling of volatility has gained significant
interest from researchers. It is commonly understood that financial volatilities exhibit
interdependent behavior across markets and over time. Therefore, most studies address
this issue in a multivariate setting instead of working with separate univariate specifi-
cations. In particular, with multivariate generalized autoregressive conditional heter-
oskedasticity (MGARCH) models, researchers can study the relationships between the
volatilities of different markets (see, e.g., Kearney and Patton 2000; Karolyi 1995) or the
dynamics of the correlations over time (see, e.g., Bollerslev 1990; Longin and Solnik
2001).

A general specification for the multivariate GARCH model was initially proposed
by Bollerslev et al. (1988), commonly known as the VEC model, in which the authors
directly model the covariance matrix over time. However, owing to the large num-
ber of parameters, this model is not easily applicable beyond the bivariate case. Many
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other specifications have been proposed (see, e.g., Kroner and Ng 1998; Vrontos et al.
2003); however, the most commonly employed in financial applications are the Baba,
Engle, Kraft, and Kroner (BEKK) and dynamic conditional correlation (DCC) models
from Engle and Kroner (1995) and Engle (2002), respectively. The BEKK model can be
considered as a particular case of the general VEC specification. By contrast, the DCC
model is considered a nonlinear combination of univariate GARCH models. However,
both models have two disadvantages. On the one hand, in their full specifications, they
require a large number of parameters for estimation. On the other hand, they impose
some restrictions on the parameters to guarantee the positive definiteness of the covari-
ance and correlation matrices.

In this study, we introduce two modifications to the BEKK and DCC models, employ-
ing two different spherical parameterizations of the covariance and correlation matrices,
which can reduce the number of parameters and relax the restrictions that guarantee the
requirement of positive definiteness of such matrices. Specifically, to extend the BEKK
model we use the spherical parameterization of the covariance matrix by Pinheiro and
Bates (1996), while to extend the DCC model we employ the spherical parameterization
of the correlation matrix by Rapisarda et al. (2007) and Pourahmadi and Wang (2015).
Both parameterizations are applied to the Cholesky factorization of the covariance or
correlation matrix. Moreover, under simple and common assumptions, the spherical
transformations are unique (i.e., they provide a one-to-one mapping from the covariance
or correlation matrix to some angles and vice versa).

A similar approach, although limited to correlation matrices, has been initially intro-
duced by Pedeli et al. (2015), who applied a spherical parameterization of the Cholesky
factor of the correlation matrices. The authors indicated that the angles derived from
the transformation can be modeled in terms of covariates. Unfortunately, they did not
propose a specific model in this regard. Moreover, in their application, they considered a
time-invariant correlation matrix that is in line with the constant conditional correlation
(CCC) model of Bollerslev (1990) and is considered a special case of the DCC model. By
contrast, inspired by Bernardi and Catania (2018), we propose an updating equation for
the angles that allows us to deal with time-varying correlation or covariance matrices.
In the spirit of Pedeli et al. (2015), we call the proposed models the Cholesky-BEKK and
Cholesky-DCC models.

Therefore, our contributions are twofold: (i) we extend the standard BEKK and DCC
models by means of spherical transformations that, in their full specification, allow for
a reduction in the number of parameters to be estimated compared with the standard
models; and (ii) we propose an updating equation for time-varying angles to allow for
dynamic conditional correlations or covariance matrices.

An application to crude oils and daily exchange rate prices shows the potential of the
two proposed approaches and demonstrates that the Cholesky-BEKK and Cholesky-
DCC models can capture the dynamics of covariances and correlations. Moreover, the
Kupiec test applied to three different portfolio combinations shows the satisfactory per-
formance of the Cholesky multivariate models.

The remainder of this paper is organized as follows. In "Multivariate GARCH models"
section we review the BEKK and DCC models, while in "Spherical parameterization of

covariance and correlation matrices" section we present the spherical parameterization
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of the covariance and correlation matrices. "The proposed methodology" section intro-
duces the proposed methodologies, followed by a simulation study in "A simulation
study” and "Application” sections presents the application to real data with the results.
Finally, "Conclusions" section concludes the paper.

Multivariate GARCH models
We model the log returns time series with the following vector process, r; € R”,

ry =m; + ey, (1)

where m; is a deterministic component (i.e., the conditional mean vector), and e; is a
white noise process following a multivariate normal distribution (i.e., e; ~ AN (0, H}),
where H, is the covariance matrix at time ).

Usually, a deterministic term is specified as a function of the past, using a vector
autoregressive (VAR) model. If we consider a VAR of order one, we can write

my = ¢ + Gry_y,

where c is a vector of constants and G is an # X n matrix of coefficients, n being the
number of time series.

In the remainder of the discussion, we do not focus on the conditional mean vector
but consider only the residuals, e;, which enter into the definition of the multivariate
GARCH models. The latter focuses on modeling the conditional covariance matrix H;
or some of its derived quantities (e.g., the correlation matrix). Following Bauwens et al.
(2006), we can distinguish three different approaches to building multivariate GARCH
models: (i) direct generalizations of the univariate GARCH model by Bollerslev (1986),
(ii) linear combinations of univariate GARCH models, and (iii) nonlinear combinations
of univariate GARCH models. This study focuses on the BEKK and DCC specifications,
which belong to the first and third groups, respectively.

The BEKK model
The BEKK model in its general form, proposed by Engle and Kroner (1995), can be writ-
ten as

H;=CC'+A(e;—1e;_))A' + BH,_1B, 2)

where C, A, and B are n x n parameter matrices and C is lower triangular. The full model
includes 2n? + n(n + 1)/2 parameters and the covariances are positive definite by con-
struction. However, to guarantee an observationally equivalent structure, Engle and
Kroner (1995) demonstrate that all elements of A and B and the diagonal elements of
C must be positive. In addition, the authors show that covariance stationarity is guaran-
teed when all the eigenvalues of A + B are less than one in modulus.

Because of the large number of parameters to be estimated, the disadvantage of this
model is that it is only feasible for small values of n. Therefore, to allow for large cross-
sectional dimensions, it is common to restrict the model’s parameters as proposed by
Ding and Engle (2001), who considered a scalar counterpart of (2):
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Ht = CC/ + a(etfle;,l) + thfl. (3)

Moreover, to reduce the number of parameters further, it is common to impose a vari-
ancetargeting approach on the specification. The conditional covariance matrix can be
expressed in terms of the unconditional covariance matrix and other parameters. There-
fore, the scalar BEKK model with variance targeting becomes

H;,=(1—a—DbH +a(e;_1€,_;) + bH;_1, (4)

where H = % Zthl ece! is an unconditional covariance matrix estimated from the full
sample. In (4), the number of parameters is reduced to two; however, we must impose
the inequality constraints @ + b < 1 and a4, b > 0 to guarantee positive definiteness and
stationarity of the conditional covariances.

The scalar version of the model has the advantage of reducing the number of parameters;
however, it has the limit of imposing the same dynamics on all elements of the covariance

matrix.

The DCC model

The DCC model is a class of multivariate GARCH estimators introduced by Engle (2002) as
a generalization of the CCC estimator proposed by Bollerslev (1990). The model focuses on
the separate modeling of conditional variances and conditional correlation, assuming the
following decomposition.

H, = D,R,D,, (5)

where D; and R; are the diagonal matrix of the standard deviations and the conditional
correlation matrix of the return residuals, e;, respectively.

According to Bauwens et al. (2006), the DCC model belongs to the group of nonlinear
combinations of univariate GARCH models. Thus, it employs the univariate specification
for conditional volatilities and conditional correlation decomposition as follows.

D? = diaglw;} + diagla;} o e,_1€,_; + diag{p;} o D,

el el (6)
R, = Qt th ¢ :, ? = diag(Qt);

where o is the Hadamard product and diag{a;} is a matrix with elements a; on the main
diagonal.

With this approach, the DCC does not directly model the conditional correlation R;, but
rather the quantity Q; with the following updating scheme.

Q=W-A-B)oQ+Ao (1€, ;) +BoQ,_4, 7)

where A and B are symmetric parameter matrices, €; = D, let are the standardized
residuals, ¢ is an n-dimension vector of ones, and Q is the unconditional covariance
matrix of the standardized errors estimated as Q = % Zle €:e!. This full specification,
initially proposed by Engle (2002), includes variance targeting. Moreover, to guarantee
the positive semidefiniteness of the matrix Q, Ding and Engle (2001) show that A, B, and
(1 — A — B) must be positive semidefinite.
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The DCC specification can be expressed in scalar form as
Q =(1—a-bQ+ale1€,_1) +bQ 4, (8)

where the number of parameters to be estimated is reduced to two. Similar to the sca-
lar BEKK specification, the scalar DCC requires the imposition of inequality constraints
a+b < 1landa,b > 0 to guarantee the positive definiteness and stationarity of the cor-
relation matrices.

The use of variance targeting in both models allows for a significant reduction in
the number of parameters to be estimated. However, as reported by Caporin and
McAleer (2012), the application of this approach to the DCC specification is counter-
intuitive because the sample correlation is not a consistent estimator of the long-run
Q; owing to the correlation decomposition in (6). Therefore, we refer to this approach
as approximate targeting.

Spherical parameterization of covariance and correlation matrices

As seen in the previous section, one of the main challenges in modeling the volatil-
ity of multivariate time series is to guarantee the positive definiteness of the covari-
ance matrix H; or the correlation matrix R;, and simultaneously reduce the number
of parameters to be estimated. Many authors have proposed several solutions to this
issue, mainly by applying some parameterizations to those matrices. For example,
Pinheiro and Bates (1996) introduced five different parameterizations for the covari-
ance matrix to ensure positive definiteness, of which the spherical one produced the
best combination of performance and interpretability for the individual parameters.
Later, Rebonato and Jackel (1999) applied a similar approach to the correlation matrix
by employing spherical and spectral decompositions. The correlation approach has
been further studied by other authors (see, e.g., Rapisarda et al. 2007; Pourahmadi
and Wang 2015).

In this study, we consider two spherical parameterizations, one for the covariance
matrix and the other for the correlation matrix. In particular, because the BEKK spec-
ification directly models covariance matrices, we extend it using the spherical param-
eterization of the covariance matrix. On the contrary, as the DCC directly models the
correlations, for such a model, we employ the spherical parameterization of the correla-
tions. Both transformations allow us to guarantee positive definiteness requirements and
reduce the number of parameters. In the following sections, we first introduce the two
parameterizations, and then demonstrate how to extend both models.

Spherical parameterization of the covariance matrix
Following Pinheiro and Bates (1996), we first apply Cholesky decomposition to the

covariance matrix
H; = LL;, 9)

where L; is a lower triangular matrix. Then, we apply parameterization to the matrix L;
as follows.
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9,’1,73 COS@,’ZV,;, i = 1, A 7B ] =1
ljg = Q OinecosOjpie [y sinbins, i=3,...,m j=2,...,i-1, (10)
O [Ty sinOuys, i=2,...,m j=1i

where 0;; ; are some angles.
Therefore, by omitting the time dependency, the matrix L; can be parameterized as

011 cosBip O 0 0
921 Ccos 922 921 sin 922 0 -+ 0
031 cos 032 031 sin O3 cos B33 631 sin B3y sin O3 -0
941 CoS 942 941 sin 942 CoS 943 941 sin 942 sin 943 COoS 944 -+ 0 (11)
n
01 €08 B2 0,11 sin Oyyp OSB3 Oy1 Sin 6,9 Sin O3 COS Oy -+ Oy1 [ ] sinbi
k=2
To ensure the uniqueness of the parameterization we must constrain the angles
0i1:>0, i=1,...,n
Oje € (O,m), i=2...,m =2 i (12)
Thus, we can define the inverse of the parameterization
i
Oine =V hiiy = Zlizk,t’ i=1,...,n
k=1
lil,t . 13
0j2,s = arccos , i=1,...,n (13)
Oi1,¢
Lij—1 , . )
0ij,c = arccos —— |, = 3,...mj=3,...,i
O, [ [j—y Sin Oigcz
to obtain a lower triangular matrix of angles @; = (8;;¢), with n(n + 1)/2 entries,
61,0 0 0 0
021t G220 O -0
031t 032, 033, O -0
O: = | a1 Ouzs Oazy Onay -+ O ) (14)
9n1,t 9n2,t 9n3,t 9n4,t Tt ‘gnn,t

which is later employed in the updating function of the multivariate BEKK model.

Spherical parameterization of the correlation matrix
When considering the correlation matrix R;, we can apply Cholesky decomposition to
obtain

R; = L:L;,

where L; is a lower triangular matrix. Following Rapisarda et al. (2007), the entries of
this matrix can be parameterized as

Page 6 of 20
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L, ij=1
cosOi:, i=2,...,n
lit =\ cosby, [ sinus i=3...,mj=2...,i-1’ (15)

-1 . . .
[Tl sinbus i=2,...,n j=i

where 0t are some angles in (0, ). Similar to the parameterization of the covariance
matrix, the restriction to the interval (0, 77 ) ensures the uniqueness of the transformation.
By omitting the time dependency, the matrix L; can be written as

1 0 0 0
cos 01 sin 61 0 0
cos 031 cos O3y sin 031 sin 63 sin 631 0
Cc0s 041 €OS 040 8in 041 COS0O438inbyo sinbyy - -+ 0 (16)
cos B, cos B,y sinb,; cosb,3sinb,ysinb, --- H,’Z;} sin 60,

Although the formula in (15) allows us to compute /;; from the values of 6;; at each time,
it is possible to describe the direct transformation from ® = (6;) to R, which is a lower
triangular matrix with zeros on the main diagonal and n(n — 1)/2 angles,

i-1 k-1 i1
rij () = circjr + Z CikCjk H susji + ¢ji Hsilsjlr l<i<j=mn (17)
k=2 1=1 1=1

where ¢;; = cosf;;and s;; = sin §;;.
Moreover, the transformation from L to @ = (;) can be expressed as

0i1,c = arccos(li,e), 2<i<mn,
»
0, = arccos <]1l]t), 2<j<i=<mn, (18)
k=1 Sin(eik,t)
and the matrix of angles becomes
0 0 0 0o ---0
621 O 0 0o ---0
031t 632, 0 O --- 0
O = | Oa1¢ Oazy a3, O -+ 0 (19)
Gnl,t 6n2,t 9n3,t 9n4,t -0

The proposed methodology

The spherical transformations introduced in the previous sections have been employed
in financial market applications to guarantee the positive definiteness of covariance or
correlation matrices. Examples include Creal et al. (2011) and Bernardi and Catania
(2018), who employ the spherical transformation of the correlation matrix in the gener-
alized autoregressive score framework, and Zhang et al. (2015), who study a joint mean-
variance correlation model with covariates applied to longitudinal data. Finally, Pedeli
et al. (2015) applied the spherical parameterization of the correlation matrix to extend
the constant conditional correlation model of Bollerslev (1990).
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In this section, inspired by Pedeli et al. (2015), who assume a time-invariant corre-
lation matrix, we propose two extensions of the BEKK and DCC models by applying
spherical parameterizations of the Cholesky decomposition of the covariance matrix
H; and correlation matrix Ry, respectively. Therefore, we define Cholesky-BEKK (CH-
BEKK) as an extension of BEKK and Cholesky-DCC (CH-DCC) as an extension of DCC.

The Cholesky-BEKK model
Departing from the BEKK specification in (2), which directly models the conditional
covariance matrix, we employ the spherical parameterization of the lower triangular
matrix from the Cholesky decomposition, as in (13). Thus, because parameterization
ensures a unique relationship between the covariances and angles @y, instead of mod-
eling the covariances, we define an updating function for the angles.

Following Bernardi and Catania (2018), we assume an updating equation for the angles
0, = (elj,t) as

O, =w—A—B oA 'H)+AcE,_1+BoB®,, (20)

where o is the Hadamard product, A~! is the inverse of the spherical parameterization
of the covariance matrix computed as in Equation (13), H is the sample covariance (i.e.,
H= % Zthl ecel'), and u is a lower triangular matrix of ones.

Equation (20) includes a variance targeting approach for reducing the number of
parameters to be estimated. The innovation component is driven by the forcing vari-
able E;_1, which, in the spirit of Tse and Tsui (2002), is based on the spherical trans-
formation of the sample covariance matrix computed on the past 4 observations,
E; 1= A"Y(H;_j4_1), with H;_j.,_; being the sample correlation matrix of the obser-
vations (€;_j, €;_j11,€;_j12, - €:—1). As stated by the authors, a necessary condition is
to impose &1 = u, although applications have shown that a higher number is often neces-
sary to obtain a well-defined covariance or correlation matrix.

The Cholesky-DCC model

Unlike the CH-BEKK model, for the CH-DCC we directly model the angles computed
from the spherical transformation of the correlation matrix R; derived from the decom-
position in (5). As in the classical DCC model, our proposed CH-DCC model requires
specification of the univariate variance equations, as in (6). This allows us to apply the
spherical transformation in (18) directly to the correlation matrix. Thus, we can model
the angles from the parameterization similar to Equation (20).

O, =u—A—B oA 'R +AcE,_1+BoO,_, (21)

where o is the Hadamard product, A ™! is the inverse of the spherical parameterization of
the correlation matrix computed as in Equation (18), R is the sample correlation matrix
(i.e., R= % Zthl etetT ), and u is a lower triangular matrix of ones with zeros on the
main diagonal.

Similar to CH-BEKK, the forcing variable, which incorporates the new information, is
based on the spherical transformation of the sample correlation matrix computed on the
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past /1 observations, E;_1 = A" (R,_j.;_1), with R;_j;_; being the sample correlation
matrix of the observations (€;_j, €;_j, 11, €;_j12s s €4—1)-

Scalar CH-BEKK and CH-DCC models

Both CH-BEKK and CH-DCC directly model the angles derived from spherical param-
eterizations. Therefore, the numbers of parameters to be estimated are n(n + 1) and
n(n — 1), respectively. However, for the CH-DCC model, we need to add 3n parameters
to estimate the univariate GARCH models. To reduce the number of parameters fur-
ther, it is possible to employ a scalar version of Equation (21), thus imposing the same
dynamic on all angles.

In scalar versions, Equations (20) and (21) become

®t = (l—a—b)lC +6lEt_1 +b®t_1, (22)

where a and b are scalar parameters and, depending on the model specification, k is the
inverse of the spherical transformation of the sample covariance or correlation matrix,
and E;_1 is the inverse of the spherical transformation of the sample covariance or cor-
relation matrix computed from the past / observations.

Parameter estimation

Table 1 compares the required number of parameters in a general representation for
all discussed models, with or without variance targeting. The last three columns show
the number of parameters for n = 3, n = 10, and » = 100. The full models refer to
equations (2), (7), (20), and (21). It is clear that in the case of full parameterizations,
the proposed Cholesky models require fewer parameters to estimate than their tra-
ditional counterparts. However, this advantage disappears when considering scalar

Table 1 Comparison of the number of parameters for the multivariate GARCH models. For DCC
models, the number of parameters does not include the univariate GARCH parameters, i.e. 3n

Model Targeting n assets n=3 n=10 n =100
Scalar BEKK No n(n+1)/2+2 8 57 5052
Scalar DCC No nn—="1)/2+2 5 47 4952
Scalar CH-BEKK No nin+1)/2+2 8 57 5052
Scalar CH-DCC No nin—1)/2+2 5 47 4952
Full BEKK No n(n+1)/2 4 2n? 24 255 25050
Full DCC No nn—"1/24+nn+1) 15 155 24950
Full CH-BEKK No 3n(n+1)/2 18 165 15150
Full CH-DCC No 3n(n—1)/2 9 135 14850
Scalar BEKK Yes 2 2 2 2
Scalar DCC Yes 2 2 2 2
Scalar CH-BEKK Yes 2 2 2 2
Scalar CH-DCC Yes 2 2 2 2
Full BEKK Yes on? 18 200 20000
Full DCC Yes nin+1) 12 110 10100
Full CH-BEKK Yes nn+1) 12 110 10100

Full CH-DCC Yes nn—1) 6 90 9900
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models, as they all present only two parameters to estimate, with the cost of having
the same dynamics for all elements of the matrices.

The parameters for all the discussed models can be estimated by maximizing the
log-likelihood. Assuming the normality of the residuals, e; ~ A (0, H;), the log-likeli-
hood function can be written as

L=— Z (n log(2m) + log |H | + eéH;let). (23)

t=1

N =

However, Engle (2002) shows that the parameters of the DCC model can be easily esti-
mated using a two-stage estimation, decomposing the log-likelihood function in (23) as

L= —% Z (n log(27) 4 2log |D;| + r,D;'D; 'r, — €,€;, + log |R,| + e;Rt_let).

- (24)
Equation (24) shows that the log-likelihood is composed of a volatility and a correlation
term, £ = L, + L. The volatility term is jointly maximized by separately maximizing
each univariate log-likelihood. Therefore, we initially estimate the univariate GARCH
parameters in (6), w;, «;, B;, by maximizing their log-likelihood functions. We then esti-
mate the multivariate parameters in the second stage by maximizing the correlation part
of the log-likelihood. For all DCC models in our analysis, we employ the two-stage esti-
mation procedure.

It is important to note that, for the scalar BEKK and DCC models, we must per-
form a constrained estimation by imposing the inequalities a,b > 0anda+b < 1 to
guarantee the positive definiteness and stationarity of the covariance or correlation
matrices. In contrast, our proposed Cholesky version of the models does not require
any restrictions to obtain the positive definiteness of the matrices; however, it would
require some restrictions on the elements of the matrix B, that is, |b;;| < 1 (or|b| < 1
for the scalar case), to maintain the stationarity of the process. However, to ensure
a one-to-one relationship of the spherical transformation, the angles 6;; must be
bounded. Specifically, if we consider the transformation of the covariance, we impose
the inequalities in (12). By contrast, considering the parameterization of the corre-
lation, all angles must lie within the range (0, 7). These constraints are imposed in
the optimization process with the inclusion of penalization during the computation of
the log-likelihood. Empirical tests show that this penalization constrains the angles to
vary within the specified ranges, thus eliminating the need for the above stationarity

constraints.

A simulation study

To test the proposed methodology, we perform a Monte Carlo simulation in which
the structures of the correlations and covariances are known. In particular, as in Engle
(2002), we simulate a multivariate model with three series and generated 1,000 obser-
vations for each series. We repeated this simulation process 200 times. The data-gen-
erating process is built based on Gaussian errors, as follows.
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hi; = 0.01+0.05r7,_; +0.94h1,_1,
o =05+ 02r], 1 +0.5h1,1,
h3p = 0.1+ 087, ; +0.1h1, 1,

e ~ N(O,Ry),

rie = Vhigei, i €{1,2,3).

The n(n — 1)/2 elements of the correlation matrix R; are generated by applying the
spherical transformation as in (17) to the following angles.

O =(1 — Ay — By) + Ayije + Bijtije—1, i=23,j=1,.,i—1,

0 0 O 0 00O
withA=101 0 O0),B=|—-08 0 0 |,
02 -030 09 070

where ;i is a random angle within the range [0, 7], obtained from a distribution pro-
portional to (sin y)2%*"~/ (Pourahmadi and Wang 2015) .

By knowing the structure of the correlations, we compare the estimated correlations,
ﬁij,[, with the true correlations resulting from the considered covariance matrix R; . To

this extent, we use the mean absolute error given by

1 n n A
MAE; = — > > 1hije = pijels
i=1 j=1

and we average the above measure over time ¢ and over the 200 simulations.

The results of the Monte Carlo simulation with their standard deviations are presented
in Table 2. The Cholesky models perform better than their standard counterparts, in
particular both models with full specifications. Moreover, owing to the simulation struc-
ture, the DCC model approaches either the traditional or Cholesky models, outperform-
ing the BEKK models.

Application

In this section, we apply the proposed Cholesky model in its full and scalar specifica-
tions to financial data, specifically crude oil daily prices and exchange rates. Moreover,
we perform a comparison with the traditional scalar BEKK and DCC specifications.
The specific choice of crude oil is mainly to show the validity of our proposed approach.
Nevertheless, the model can easily be applied to different types of data, including

Table 2 Mean absolute error of correlation estimates

MAE SD
BEKK Scalar 0.1054 0.0084
CH-BEKK Scalar 0.0859 0.0139
CH-BEKK Full 0.0658 0.0076
DCC Scalar 0.0533 0.0022
CH-DCC Scalar 0.0521 0.0021

CH-DCC Full 0.0521 0.0024
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Fig. 1 Q-Q plot of the daily log returns over the period from January 2000 to February 2022

wri

58 05 s
$ LY .08 o8
] |

bbb Ltdbon s oo
|

% 5

A & s o g S

Date Date

=

Y

A

Date

S

A S

Date Date

MXN NOK

8
6
4
2
0

-2
-

'
!
i:@

-6

B T B T S O

Date Date

Date

Fig. 2 Daily log returns over the period from January 2000 to February 2022

applications where the analysis of volatility over time is the key objective and the deci-
sion-making process is influenced by risk factors, for instance cryptocurrencies mar-
kets, renewable energy markets (see, e.g., Kou et al. 2023, 2024), and carbon markets
(Kou et al. 2024). We also highlight that the proposed model is not constrained to daily
data, but can be applied to higher or lower time frequencies, where the former are
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characterized by high volatility due to noise in the time series, and the latter might show
volatility clustering because of the varying economic cycles when considering monthly
or annual data.

Data and summary statistics

We analyze the relationship between crude oil spot prices (WTI and Brent) and seven
exchange rates to the US dollar, namely the Australian dollar (AUD), the Canadian dollar
(CAD), the Euro (EUR), the Japanese yen (JPY), the Mexican peso (MXN), the Norwe-
gian crown (NOK), and the British pound (GBP). For all these quantities, we consider
the daily price series from January 2000 to February 2022. The exchange rates are col-
lected from Thomson Reuters, whereas the oil price data (both Brent and WTI) are
sourced from the US Energy Information Administration.

Table 3 reports a wide range of summary statistics for the percentage log-returns
of oil prices and exchange rates. All series, especially the two oil series, show small
means with high standard deviations. Only EUR exhibits low skewness, and all series
have a large excess kurtosis, which indicates the presence of heavy tails, as is typical
of financial time series. This aspect is also confirmed by the rejection of the Jarque-
Bera tests of normality at the 1% level of significance for all series. Moreover, the
ARCH tests at 1, 6, and 12 lags reject the null hypothesis of homoskedasticity at the
1% level of significance. Moreover, the Ljung-Box portmanteau tests on both returns
and squared returns with lags of 6 and 12 show a high serial correlation for all series
except for the EUR and NOK exchange rates.

Figure 1 shows the QQ-plots against the normal distribution, which indicates that
all series have heavier tails than normal, whereas in Figure 2 we observe clear volatil-
ity clustering in all the time series. This behavior of large changes, which tend to fol-
low large changes, and small changes, which tend to follow small changes, is typical of
financial time series.

Finally, Table 4 reports the results of a pairwise Granger causality test with one lag for
all series (Granger 1969). Specifically, the past values of the series in columns have a sta-
tistically significant effect on the current values of the series in rows. For example, WTI
Granger causes the Brent and JPY, MXN, and NOK series, whereas Brent is Granger

Table 4 Granger causality matrix at first lag

WTI_x Brent_x AUD_x CAD_x EUR_ x GBP_x JPY_x MXN_x NOK_x

WTLy - 2.813* 4.588%* 5.852%* 0.798  0.209 4.708** 3.962%* 0.897
Brent_y 295.938*** - 27.034%¥% - 41.194%%%  3138*  8.195%* 5603** 17.036***  14.196***
AUD_y 1.757 0377 - 5.643** 0504 0525 2.849% 26.834***  0.74
CAD_y 0.002 0.035 0.017 - 3.595%  1.851 3.747* 2.759* 3.098*
EURLy 0.146 0.579 0.025 1.176 - 0418 1.983 1.003 0.904
GBP_y  1.929 3.7* 2478 11.608*** 0449 - 12.725%%% 1363 0.02
JPY_y 7423%** 3.584* 15.806™** 12516*** 2012  0.013 - 0.84 10.382%**
MXN_y  5.147%* 0.574 1.079 5.595%* 2.992% 0507 0.002 - 1.831
NOK_y  4.264** 2.217 15.616™* 13567*** 3.329* 0.635 0.091 10.38%**

The Null hypothesis for the Granger causality test is that the time series in the columns (_x suffix), do NOT Granger cause the
time series in the rows (_y suffix).

*,** and *** indicate the rejection of the null hypothesis at the 10%, 5% and 1% levels of significance respectively



Ballestra et al. Financial Innovation

(2025) 11:37

Table 5 Univariate GARCH parameters

AUD CAD EUR GBP JPY MXN NOK
WTI o 0.1149%  01164** 011727 01176%*  0.1166™*  0.1165™* 01157
a 0.0931% 00927  0.0929%**  00923**  0.0929™** 00928 (0.0936***
B 0.892%* 0.892%%* 0.8916™*  0.8921%*  08918**  (8919** (8914**
Brent ® 00683 00677 00667  00666** 00678 00659 00667
o 00914 00907  0.0915** 00908  00916™* 00913 (00921***
B 0.8996™**  0.9004***  0.8999**  09006™*  0.8996™*  0.9003*** (0.8994***
ExRate o 00049 00018**  0.001** 0.0041%  0.0044**  0.0066*** 0.0052%**
a 0.0544%  00454***  00345"*  00581%*  006** 0.0975%*  0.0426***
B 09367 0.9483**  09620%*  09307**  09205™*  (08922%** (9483%**
** and *** indicate 5% and 1% levels of significance respectively
Table 6 Multivariate GARCH parameters
AUD CAD EUR GBP JPY MXN NOK
BEKK Scalar a 00635 0062** 0057 00634  00652°* 00708 0.0631***
b 0.925%% 0927 0.9338%*  09242%  09215%*  0.9161% 0.9244%*
L —2874377 —2667554 —27677.23 —27571.02 —2788367 — 2836894 — 2887294
DCCScalar  a 0.0073 0.0091* 0.009 0.0054 0.0278 0.0093 0.0061
b 0.9893***  0987**  09858™* 09913  0.9097**  09843*** (09908***
L —2859035 —26493.11 —27511.67 —2739828 —2774262 —2817921 — 2870494
CH-BEKK a 06016  0.5644**  05056™* 05032 05611  07221™* 06151
Scalar b 0.1322 0.1839 0.2635 0.2507* 0.1559  —00418 0.0972
L —2903091 —2694463 —279902 —27896.62 —2821128 —28762.32 — 2914021
CH-DCC a 0.005* 0.0073* 0.003* 00027  0.1407% 0.0702 0.1463
Scalar b 0.9915% 09879  09951*%  (00995**  (04327**  (7671***  (5233*
L —2861294 —2651476 —2752994 —2740828 —2776349 —282045 —28740.12
CH-BEKK Full - ay; 09129 0.8956**  0.9065™*  (0.8859™** 0.9%*  0.9159% 0.8906***
a1 084119 0.8274**  08411™* 08465  0.8359%* 08092  0.826™**
axn 02264 022093*  02289%  02214%  02286*  0.1961**  0.2244**
a3 0.8881% 02106  00808**  1.1643"*  06563**  10727*** 05367
as 0007*  0.0101** 0.0049* 00037 0.1469 0012 0.14771%*
as3 0.1065 0.1475 00011 —=00117 00698* 01705 00754
b —01686 —01502 —0.1624  —0.1401 —0155 —01785 —0.142
by —00729 —-00565 —00674 —00763 —00623 —00332 —00509
b 04184 04228** 04112%  04303** 04214* 04923  04194*
b3 —0.1402  07375%*%  09032** —0.6967** 00298 —03501*** 02226
b3a 0.9913% 0987  09943***  (.9956*** 04361  09821%* (06703**
b3z —0.8853%% 08314  09966**  (0.8219%* 02512%  —0.754**  —03308
L —28789.88 —2670509 —2771354 —2761548 —2798099 — 2849634 — 2894055
CH-DCCFull  a 0.1458*  0.1509** 0.1466*  0.1473** 0.1434 0.1291*  0.149**
a3 00079 00123**  0.0048** 0.004** 0.147 00191 0.1273
as 01008  0.0041™* —00119"*  —00131* 0.0654 0.0936 00611
by 0.5332%  0.5245%F (05377  (.5348%%* 0.5518*  05938™ 05256
b3 0.9902%  0.9847***  0.9944***  (.9949%** 03991  09702%  (0.7245%*
by —09309%* 09919  (0795%* (08615 02399 —08668** —0.2326
L —2859908 —2649997 —2751666 —2739826 —2775673 —281823 —287220

*,** and *** indicate 10%, 5% and 1% levels of significance respectively
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caused by all series. A similar pattern is observed for the second and third lags, although
we did not tabulate the results to save space.

The results of the Granger causality test suggest that a VAR specification can be used
to model the returns series. Moreover, the results of the preliminary analysis indicate
that the GARCH specification is a good candidate for the modeling of conditional
volatility.

Results

We apply the proposed Cholesky models, in both full and scalar settings, as well as the
scalar BEKK and DCC models to different combinations of time series. Specifically, in
each test, we include three time series: the two crude oils and one of the exchange rates.
Thus, we obtain seven combinations of time series for the application.

For the multivariate DCC models, which include a two-stage estimation, we report the
univariate GARCH parameters, w;, o;, and §;, for each combination of series in Table 5.
Each column represents one combination of oils and one exchange rate. For example,
the first column AUD includes the results of the univariate GARCH for the WTI, Brent,
and AUD time series.

Table 6 reports the multivariate GARCH parameters a and b for the scalar models, and
the single elements of the matrices A and B for the full models, which are described in
(14) and (19). For the DCC models, the values refer to the second stage of estimation. In
the Cholesky models, the innovation components Z;_; from equations (20) and (21) are
based on the past 21 observations, which correspond to one month of data using returns
from business days.

An initial analysis of the log-likelihood values shows that the performance of the full
Cholesky models is comparable to that of the corresponding standard scalar models.
Specifically, the full log-likelihood of the CH-DCC is — 28599.08, which is very close
to the value of — 28590.35 from the scalar DCC model. We note a similar behavior
for the BEKK specifications. In contrast, the scalar CH-BEKK and CH-DCC models
underperform compared to their traditional counterparts, with values of — 29030.91
and — 28612.94, respectively. This behavior, which is observable in all combinations of
time series, does not allow us to directly discriminate one model from another. More-
over, because we observe that all log-likelihood values of the BEKK models are always
lower than those of the DCC models, we tend to prefer the DCC specification over
the BEKK one. However, Caporin and McAleer (2012) demonstrated that the BEKK
model is theoretically more robust than the DCC model and should be preferred in
applications. Owing to these ambiguities, we perform further tests to assess the per-
formance of the proposed models.

Considering that the true values of the covariances are unknown, it is not possible
to directly assess the variance—covariance output of the models. Therefore, following
Engle (2002), we compute the 95% Value-at-Risk for three portfolios to evaluate model
performance. The portfolios are (i) an equal weights portfolio, (ii) a mixed portfolio
with 90% weight on the WTI and 5% weight on both the Brent and the exchange rate
series, and (iii) a long/short portfolio with 200% weight on the WTI and two equal
short positions on the Brent and the exchange rate with — 50% weight. To compare
the three portfolios and the different models, we apply the Kupiec test (Kupiec 1995).
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We compute the Value-at-Risk estimate for the process e; for the i-th portfolio at
time t with a coverage level « as

VaR;; (a) = z(w) - \/WiHw;,

Table 7 Kupiec test for different portfolios and different combinations of oils and exchange rate.
VaR at 95%. p values in brackets

(2025) 11:37

(25)

Model Equal weights Mix Long/Short
AUD BEKK 4.733 (0.03) 3.694 (0.055) 2.581(0.108)
CH-BEKK Scalar 3455 (0.063) 5.601 (0.018) 6.546 (0.011)
CH-BEKK Full 0.846 (0.358) 0.538 (0.463) 0.846 (0.358)
DCC 0.964 (0.326) 0.133(0.716) 0.372(0.542)
CH-DCC Scalar 1.09 (0.297) 0.092 (0.762) 0.237 (0.626)
CH-DCC Full 0.372 (0.542) 0.237 (0.626) 0.301 (0.583)
CAD BEKK 3.941(0.047) 3.002 (0.083) 2.581(0.108)
CH-BEKK Scalar 3.002 (0.083) 5.601 (0.018) 9 (0.007)
CH-BEKK Full 0.372 (0.542) 0.058 (0.809) 0.736 (0.391)
DCC 0.633 (0.426) 0.181 (0.67) 0.964 (0.326)
CH-DCC Scalar 0.633 (0.426) 0.133(0.716) 0.736 (0.391)
CH-DCC Full 0452 (0.502) 0.133(0.716) 0.237 (0.626)
EUR BEKK 1.223(0.269) 2.787 (0.095) 2.012(0.156)
CH-BEKK Scalar 4461 (0.035) 4.733(0.03) 7.569 (0.006)
CH-BEKK Full 0.133(0.716) 0372 (0.542) 0452 (0.502)
DCC 0.014 (0.905) 0.237 (0.626) 0452 (0.502)
CH-DCC Scalar 0.004 (0.949) 0.301 (0.583) 0.372(0.542)
CH-DCC Full 0.058 (0.809) 0.181 (0.67) 0.301 (0.583)
GBP BEKK 3455 (0.063) 5.304 (0.021) 2.194(0.139)
CH-BEKK Scalar 3.694 (0.055) 7.219 (0.007) 9.448 (0.002)
CH-BEKK Full 0.237 (0.626) 0.181 (0.67) 0.964 (0.326)
DCC 0.301 (0.583) 0.372(0.542) 0452 (0.502)
CH-DCC Scalar 0.133(0.716) 0.372 (0.542) 0.633 (0.426)
CH-DCC Full 3(0.716) 0.301 (0.583) 0.058 (0.809)
JPY BEKK 2383 ( 23) 97 (0.04) 4,733 (0.03)
CH-BEKK Scalar 5.304 (0.021) 6.223 (0.013) 9.851(0.002)
CH-BEKK Full 0.237 (0.626) 81(0.67) 0.964 (0.326)
DCC 0.003 (0.954) 0452 (0.502) 0.372 (0.542)
CH-DCC Scalar 0.004 (0.949) 0.372(0.542) 81(0.67)
CH-DCC Full 0.016 (0.901) 0.301 (0.583) 33(0.716)
MXN BEKK 4461 (0.035) 3.694 (0.055) 2.581(0.108)
CH-BEKK Scalar 6.546 (0.011) 4(0.025) 7.569 (0.006)
CH-BEKK Full 0.736 (0.391) 0.301 (0.583) 5(0.218)
DCC 0.538 (0.463) 0452 (0.502) 0.237 (0.626)
CH-DCC Scalar 0.846 (0.358) 0452 (0.502) 0.736 (0.391)
CH-DCC Full 0372 (0.542) 0452 (0.502) 0372 (0.542)
NOK BEKK 1.672 (0.196) 3.694 (0.055) 2.581(0.108)
CH-BEKK Scalar 3.002 (0.083) 4.461 (0.035) 5.601(0.018)
CH-BEKK Full 0.058 (0.809) 0.181(0.67) 0.237 (0.626)
DCC 0.032 (0.857) 0.058 (0.809) 0.133(0.716)
CH-DCC Scalar 0.014 (0.905) 0.032(0.857) 0.014 (0.905)
CH-DCC Full 0.0 (0.998) 0.032(0.857) 0.014 (0.905)
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where z(«) is the value of the inverse of the CDF of the standard normal distribution at
level o and w; is the vector containing the i-th portfolio weights.
We then define an indicator function as

~J 1 ifewi < VaRi(o)
“Tlo ifew; > VaRy(a),

and compute the Coverage Ratio as

T
1
CRi = — ;hb (26)

where T 'is the length of the time series.
Finally, we apply the likelihood ratio test statistic of Kupiec (1995), which we com-
pute as

LR; = 2{1og[CR,Y"(1 — CR)T77] — log[a”i(1 — a)T*Vf]}, (27)

where y; = ZtT I;. LR; follows a X'2(1) distribution. A similar approach has been applied
by Bauwens et al. (2006) and Creal et al. (2011).

Results of the 95% Value-at-Risk tests on the portfolios are shown in Table 7. The
reported values are the statistics of Kupiec to test the null hypothesis Hy : CR; = « of
a correct coverage. The p values are reported in parentheses.

We observe that for almost all portfolios and all combinations of time series, the
Cholesky models perform better than the traditional ones; in particular, the full models
have better coverage, that is, the p-values are higher overall. The only exception is the
scalar CH-BEKK model, which reports the worst performance because it always rejects
the null hypothesis. Moreover, considering the mixed portfolio, the standard DCC
model presents good results that are sometimes better than those of the proposed mod-
els. However, we can affirm that the Kupiec test shows the satisfactory performance of
the Cholesky models, particularly in their full specifications.

Conclusions

Generally, multivariate GARCH models are subject to two problems. On the one hand,
the requirement of the positive definiteness of the covariance matrix poses some diffi-
culties. On the other hand, the number of parameters to estimate in the full specification
of the models increases drastically with the inclusion of additional time series.

To overcome the requirement of positive definiteness, we proposed two extensions of
the BEKK and DCC models by applying two spherical transformations to the Cholesky
factorization of the covariance and correlation matrices. With the application of the
parameterization of the covariance matrix, we introduce the Cholesky-BEKK model. In
contrast, by employing the parameterization of the correlation matrix, we introduce the
Cholesky-DCC model. These transformations allow us to define the updating functions
of the models without constraints on the parameters. Moreover, they permit a reduc-
tion in the total number of parameters to be estimated when considering the full speci-

fication because, by construction, both transformations result in triangular matrices
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of angles. Thus, fewer parameters are required to be estimated when maximizing the
log-likelihood.

Moreover, we applied the proposed full and scalar models to WTI and Brent crude
oil returns, along with different exchange rate returns, and compared their results with
those of the standard BEKK and DCC models. The application shows that the proposed
models can capture the dynamics of covariances and correlations. Moreover, we per-
formed the Kupiec test on the Value-at-Risk of three portfolio combinations and confirm
the satisfactory performance of the Cholesky models in their full specification.

Finally, we observe that the proposed models, when applied to any time series, could
be useful for practitioners and policymakers as they might be able to estimate and pre-
dict the conditional volatility of the time series without imposing the positive definite-
ness of the covariance or correlation matrices. In this way, they can control or mitigate
risky positions or enforce regulations to avoid potential misconduct in markets, such as
advisors or brokers recommending unsuitable products to their clients, which can be

dangerous when markets are under pressure.

Abbreviations

AUD Australian dollar

BEKK Baba, engle, kraft, and kroner
CAD Canadian dollar

CCccC Constant conditional correlation

CH-BEKK  Cholesky-BEKK
CH-DCC Cholesky-DCC

DCC Dynamic conditional correlation

EUR Euro

GARCH Generalized autoregressive conditional heteroskedasticity
GBP British pound

JPY Japanese yen

MGARCH  Multivariate generalized autoregressive conditional heteroskedasticity
MXN Mexican peso

NOK Norwegian crown

WTI West Texas instrument

VAR Vector autoregressive

VaR Value-at-risk

VEC Operator that transforms a matrix into vector
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