
Sunny-as2: Enhancing SUNNY for Algorithm Selection (Extended Abstract) ∗

Tong Liu1 , Roberto Amadini2 , Maurizio Gabbrielli2 , Jacopo Mauro3

1Meituan, Beijing, China
2Department of Computer Science and Engineering, University of Bologna, Italy

3Department of Mathematics and Computer Science, University of Southern Denmark, Denmark
lteu@icloud.com, {roberto.amadini,maurizio.gabbrielli}@unibo.it, mauro@imada.sdu.dk

Abstract
SUNNY is a k-nearest neighbors based Algorithm
Selection (AS) approach that schedules and runs a
number of solvers for a given unforeseen problem.
In this work we present sunny-as2, an enhance-
ment of SUNNY for generic AS scenarios that ad-
vances the original approach with wrapper-based
feature selection, neighborhood-size configuration
and a greedy approach to speed-up the training
phase. Empirical evidence shows that sunny-as2
is competitive w.r.t. state-of-the-art AS approaches.

1 Introduction
A meta-algorithmic way to face the disparate nature of com-
binatorial problems and speed-up their resolution is to use a
portfolio of different algorithms (or solvers) to be selected on
different problem instances. The task of identifying suitable
algorithm(s) for specific instances of a problem is known as
per-instance Algorithm Selection (AS).

The SUNNY [Amadini et al., 2014] portfolio approach
was originally developed for Constraint Programming (CP).
Given an unforeseen CP problem instance i, SUNNY re-
trieves the k-nearest neighbors of i and then selects the best
solver(s) for these k instances, by assigning to them a time
slot proportional to the number of solved instances. Finally,
the selected solvers are sorted by average solving time and
then executed on i.

Afterwards, SUNNY has been extended to handle generic
AS scenarios (sunny-as) without much luck: the default con-
figuration of SUNNY did not generalize well outside the CP
field. The extensions detailed in [Liu et al., 2021] signif-
icantly improve sunny-as thanks to the synergistic use of
wrapper-based feature selection, neighborhood-size configu-
ration and a greedy approach to speed-up the training phase.
The empirical evaluations in [Liu et al., 2021] show that this
new version, called sunny-as2, outperforms sunny-as as
well as other state-of-the-art AS methods.

2 Preliminaries
Every AS problem instance is embedded in a given context
or scenario. Formally, we can define an AS scenario as a

∗The full version was published in the JAIR [Liu et al., 2021].

triple (I,A,m) where: I is a set of instances; A is a set
(or portfolio) of algorithms (or solvers) with |A| > 1; and
m : I × A → R is a performance metric that we assume
w.l.o.g. to be minimized. An (algorithm) selector s is a to-
tal mapping s : I → A that aims to return the best algo-
rithm A ∈ A, according to m, for any instance i ∈ I. The
AS problem consists in determining a selector s minimizing∑
i∈I

m(i, s(i)). This definition can be easily extended to se-

lectors that, like SUNNY, schedule more than one solver.
What makes hard AS is that the performance metricm on I

is only partially known. The goal is hence to define a selector
able to estimate the value of m for the instances i ∈ I where
m(i, A) is unknown. A common practice is to partition I into
a training set Itr, used to build a selector s, and a test set Its
used to evaluate the performance of s.

A further complication arises from the (NP-)hardness of
the instances in I. Typically a timeout τ is set and m is pos-
sibly extended with criteria to penalize a selector not finding
any solution before τ occurs. A common practice is to use the
Penalized Average Runtime (PAR) score with penalty λ > 1,
penalizing unsolved instances with τ × λ. One drawback of
PAR is that the values of τ and m can greatly change across
different AS scenarios, thus making the absolute value of
PAR hardly indicative for heterogeneous scenarios. In these
cases relative metrics are better [Amadini et al., 2022].

In the AS competitions 2015 and 2017 [Lindauer et al.,
2019] the closed gap score is used to measure how much a
selector improves the single best solver (SBS) of the scenario
w.r.t. the virtual best solver (VBS) with m = PAR10. The
SBS is the best individual solver available, and its scenario
performance is mSBS = min{

∑
i∈Im(i, A) | A ∈ A}. The

VBS is a virtual selector always picking the best solver for
a given instance, and its scenario performance is mVBS =∑

i∈I min{m(i, A) | A ∈ A}. The closed gap for a selector
s is mSBS−ms

mSBS−mVBS
with ms =

∑
i∈Im(i, s(i)). A good selector

has ms close to mVBS, hence the closed gap close to 1. If
instead ms is near to mSBS the closed gap tends to 0 or less.

AS scenarios typically characterize each instance i ∈ I
with a corresponding feature vector F(i) ∈ Rn, so the al-
gorithm selection for i is actually performed according to
F(i). The feature selection (FS) process allows one to con-
sider smaller feature vectors F ′(i) ∈ Rm, derived from F(i)
by projecting m ≤ n of its features. The goal is reducing

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5752

x1 x2 x3 x4 x5
A1 τ τ 3 τ 278
A2 τ 593 τ τ τ
A3 τ τ 36 1452 τ
A4 τ τ τ 122 60

Table 1: Runtime (in seconds). τ means the solver timeout.

the search space for fitting a model, diminishing the noise of
misleading features and improving the prediction accuracy.

FS approaches can be classified in filters, wrappers. Filter
methods select the features regardless of the model, trying to
suppress the least interesting ones. These methods are effi-
cient and robust to overfitting. In contrast, wrappers evaluate
subsets of features possibly detecting interactions. They can
be more accurate than filters, but also more exposed to over-
fitting and can have a much higher computational cost.1

2.1 SUNNY
The SUNNY portfolio approach was firstly introduced by
Amadini et al. [2014]. SUNNY relies on a number of as-
sumptions: (i) a small portfolio is usually enough to achieve
a good performance; (ii) solvers either solve a problem quite
quickly, or cannot solve it in reasonable time; (iii) solvers per-
form similarly on similar instances; (iv) a too heavy training
phase is often an unnecessary burden.

Given a test instance x ∈ Its, SUNNY produces a sequen-
tial schedule σ = [(A1, t1), . . . , (An, tn)] where the algo-
rithm Ai ∈ A runs for ti seconds on x and

∑n
i=1 ti = τ .

The schedule is obtained as follows. First, SUNNY em-
ploys k-NN to select from Itr the subset Ik of the k in-
stances closest to the feature vector F(x) according to the
Euclidean distance. Then, it uses three heuristics to com-
pute σ: (i) Hsel, for selecting the most effective algorithms
{A1, . . . , An} ⊆ A in Ik; (ii) Hall, for allocating to each
Ai ∈ A a certain runtime ti ∈ [0, τ] for i = 1, . . . , n; (iii)
Hsch, for scheduling the sequential execution of the algo-
rithms according to their performance in Ik.

The heuristics Hsel, Hall, and Hsch are based on the per-
formance metric, and depend on the application domain. E.g.,
for CSPs Hsel selects the smallest set of solvers S ⊆ A that
“solves” the most instances in Ik, breaking ties with runtime;
Hall allocates to each Ai ∈ S a time ti proportional to the in-
stances that S solves in Ik, by using a special backup solver
covering the instances of Ik not solvable by any solver; fi-
nally, Hsch sorts the solvers by increasing solving time in Ik.

Example 1 Let x be a CSP, A = {A1, A2, A3, A4} a port-
folio, A3 the backup solver, τ = 1800s the timeout, Ik =
{x1, ..., x5} the k = 5 neighbors of x, and the runtime
of solver Ai on problem xj defined as in Tab. 1. In this
case, the smallest set of solvers that solve most instances
in Ik are {A1, A2, A3}, {A1, A2, A4}, and {A2, A3, A4}.
The heuristic Hsel selects S = {A1, A2, A4} because these
solvers are faster in solving the instances in Ik. Since A1

and A4 solve 2 instances, A2 solves 1 instance and x1 is not
solved by any solver, the time window [0, τ] is partitioned

1Embedded methods integrating feature selection into the learn-
ing algorithm also exist.

in 2 + 2 + 1 + 1 = 6 slots: 2 assigned to A1 and A4, 1
slot to A2, and 1 to the backup solver A3. Finally, Hsch

sorts in ascending order the solvers by average solving time
in Ik. The final schedule produced by SUNNY is, therefore,
σ = [(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

SUNNY aims to avoid overfitting w.r.t. the performance of
the solvers in the selected neighborhood, i.e., it tries to not
be too tied to the strong assumption that the runtimes in the
neighborhood faithfully reflect the runtime on the instance to
solve. Clearly, the design choices of SUNNY have pros and
cons. For example, the schedule in Example 1 cannot solve
the instance x2 although x2 is actually in the neighborhood.

The sunny-as [Amadini et al., 2015] tool implements
SUNNY algorithm to handle generic AS scenarios of ASlib
library [Bischl et al., 2016]. In its optional pre-processing
phase, sunny-as can perform only filter-based feature selec-
tion and select a pre-solver to be run for a short time. At
runtime, it produces the schedule of solvers by following the
approach explained above. The AS challenge 2015 [Lindauer
et al., 2019] underlined some issues of sunny-as, especially
in SAT scenarios. One reason is that sunny-as does not
learn any parameter according to the input AS scenario, but it
only uses default values (e.g., the neighborhood size is set to
square root of its training set, rounded to the nearest integer).

3 sunny-as2
sunny-as2 is the evolution of sunny-as and its preliminary
prototype attended the 2017 AS competition.2 It introduces
an integrated approach where features and k-value of the un-
derlying k-NN are co-learned during the training step. In par-
ticular, wrapper-based FS is performed. This makes sunny-
as2 “less lazy” than the original SUNNY, which only scaled
the features in [−1, 1] without performing any actual training.

To improve the configuration accuracy and robustness, and
to assess the quality of a parameters setting, sunny-as2 uses
nested cross-validation [Loughrey and Cunningham, 2005].
The original dataset is split into five folds thus obtaining five
pairs (T1, S1) . . . , (T5, S5) where the Ti are the outer train-
ing sets and the Si are the (outer) test sets, for i = 1, . . . , 5.
For each Ti we then perform an inner 10-fold CV to get a
suitable parameter setting. We split each Ti into further ten
sub-folds T ′i,1, . . . , T

′
i,10, and in turn for j = 1, . . . , 10 we

use a sub-fold T ′i,j as validation set to assess the parameter
setting computed with the inner training set, which is the
union of the other nine sub-folds

⋃
k 6=j T

′
i,k. We then se-

lect, among the 5 configurations obtained, the one for which
SUNNY achieves the best PAR10 score on the correspond-
ing validation set. The selected configuration is used to run
SUNNY on the paired test set Si.

Before explaining how sunny-as2 learns features and k-
value, we first describe greedy-SUNNY, the “greedy vari-
ant” of SUNNY introduced to speed-up the solvers’ selection.
SUNNY computes the smallest portfolio that maximizes the
number of solved instances in a neighborhoodN . The worst-
case time complexity is O(2m), where m is the number of

2The 2017 AS competition was named OASC challenge, while
the 2015 AS competition was called ICON challenge.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5753

available solvers. greedy-SUNNY instead starts from S = ∅
and adds to S one solver at a time by selecting the one solving
the most instances in N . These instances are then removed
from N and the process is repeated until |S| = λ or N = ∅,
where λ is an external threshold.3 According to empirical
experiments, it is reasonable to set a small value for λ (e.g.,
3) as also suggested by the experiments in [Lindauer et al.,
2016]. If λ is a constant, the worst-case time complexity of
greedy-SUNNY is O(m · |N |).

3.1 Selecting Features and Neighborhood Size
sunny-as2 uses greedy-SUNNY to learn the features and/or
the k-value for a given AS scenario. The user can choose
among three different flavors, namely:

1. sunny-as2-k. All the features are used and only k-
configuration is performed by varying k in the range
[1,maxK] where maxK is a user-defined parameter.

2. sunny-as2-f. The k-value is fixed to its default and FS
is performed. Starting from F = ∅, the feature decreas-
ing the most the PAR10 is added, until PAR10 increases
or |F | = maxF where maxF is a user-defined parame-
ter.

3. sunny-as2-fk. The k-value and the features are con-
figured together by running sunny-as2-f with different
values of k in [1,maxK].

Algorithm 1 shows through pseudo-code how sunny-as2-
fk selects the features and the k-value. LEARNFK takes
as input the available algorithms A, the maximum sched-
ule size λ for greedy-SUNNY, the set of training instances
I, the maximum neighborhood size maxK, the original set
of features F , and the upper bound maxF on the maximum
number of features to be selected. It returns the learned
value bestK ∈ [1,maxK] for the neighborhood size and the
learned set of features bestF ⊆ F having |bestF | ≤ maxF .

After the i-th iteration of the outer for loop (Lines 7–17)
the current set of features currFeat consists of exactly i fea-
tures. Each time currFeat is set, the inner for loop is exe-
cuted n times to evaluate different values of k on dataset I.
The evaluation is performed by GETSCORE, which returns the
score (the higher, the better) of a particular SUNNY setting.
By default, GETSCORE relies on greedy-SUNNY instead of
the original SUNNY to have a faster solver selection.

At the end of the outer for loop, if adding a new feature
could not improve the score of the previous iteration (i.e.,
with |currFeat|−1 features) the learning process halts. Oth-
erwise, both the features and the k-value are updated and a
new iteration begins, until the score cannot be further im-
proved or the maximum number of features maxF is reached.

If d = min(maxF, |F|), n = min(maxK, |I|) and the
worst-case time complexity of GETSCORE is γ, then the over-
all worst-case time complexity of LEARNFK is O(d2nγ).

From LEARNFK one can easily deduct the algorithms for
learning either the k-value (for sunny-as2-k) or the selected
features (for sunny-as2-f): in the first case, the outer for loop

3As one can expect, greedy-SUNNY does not guarantee that S
is the minimal set of solvers solving the most instances of N .

Algorithm 1 Configuration procedure of sunny-as2-fk.
1: function LEARNFK(A, λ, I, maxK, F , maxF)
2: bestF ← ∅
3: bestK ← 1
4: bestScore← −∞
5: while |bestF | < maxF do
6: currScore← −∞
7: for f ∈ F do
8: currFeat← bestF ∪ {f}
9: for k ← 1, . . . ,maxK do

10: s← GETSCORE(A, λ, I, k, currFeat)
11: if s > currScore then
12: currScore← s
13: currFeat← f
14: currK ← k
15: end if
16: end for
17: end for
18: if currScore ≤ bestScore then
19: break . Cannot improve best score
20: end if
21: bestScore← currScore
22: bestF ← bestF ∪ {currFeat}
23: bestK ← currK
24: F = F − {currFeat}
25: end while
26: return bestF , bestK
27: end function

is omitted because features do not vary; in the second case,
the inner loop is skipped because the value of k is constant.

4 Experiments
In this section we report part of the experiments we con-
ducted over several configurations of sunny-as2. We omit
here the sensitivity evaluations of the parameters that sunny-
as2 cannot learn, i.e., the split modes for cross-validation and
the limits on the numbers of features, training instances, and
schedule size. Also, we skip the analysis on the performance
variability of sunny-as2 and other insights on SUNNY. All
this information can be found in [Liu et al., 2021].

In the following we will show how SUNNY can benefit
from learning the k-value and/or the features, how greedy-
SUNNY can improve the original SUNNY, and some com-
parisons of sunny-as2 against other AS approaches.4

We first compared sunny-as2-f, sunny-as2-k, and
sunny-as2-fk against the original version of sunny-as on
12 ASlib scenarios. Tab. 2 shows the average closed gap of
each approach. Interestingly, there is not a dominant config-
uration. As also shown in Lindauer et al. [2016], a proper k-
configuration is crucial for SUNNY—indeed, sunny-as2-k
achieves the peak performance in 7 scenarios out of 12. How-
ever, sunny-as2-fk has the best average performance across

4All the experiments were run on Linux machines with Intel
Corei5 3.30GHz processors and 8 GB of RAM. We used a time cap
of 24 hours for learning the parameters. All the ASlib scenarios are
publicly available at https://github.com/coseal/aslib data

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5754

https://github.com/coseal/aslib_data

Approach Caren Mira Magnus Monty Quill Bado Svea Sora ASP CPMP GRAPHS TSP Average
sunny-as −0.0517 −0.1289 0.6343 0.4291 0.6976 0.7854 0.6458 0.1781 0.6674 0.7488 0.6968 −0.4457 0.4047
sunny-as2-f −0.0603 −0.1649 0.4425 0.4489 0.6854 0.7695 0.5783 0.2459 0.7717 0.7771 0.5663 −0.1058 0.4129
sunny-as2-k 0.1611 0.0276 0.6352 0.5830 0.7361 0.7976 0.6915 0.3591 0.7193 0.7273 0.6504 −0.8822 0.4338
sunny-as2-fk 0.0845 −0.1891 0.4458 0.5846 0.7139 0.7590 0.6643 0.3428 0.7454 0.7885 0.5614 −0.0343 0.4556

Table 2: Closed gap of sunny-as and sunny-as2 variants over different ASlib scenarios

Approach Caren Mira Magnus Monty Quill Bado Svea Sora All
sunny-as2 0.7855 0.0291 0.5833 0.8450 0.8414 0.9057 0.6077 0.4059 0.6255
sunny-as2-fk-OASC 0.9099 0.4320 0.5723 0.9102 0.5691 0.8444 0.6578 0.0084 0.6130
ASAP.v2 0.3238 0.5053 0.4979 0.8331 0.6981 0.7573 0.6765 0.2150 0.5634
AutoFolio 0.5995 0.0846 0.6707 0.6923 0.5165 0.8089 0.6585 0.3479 0.5474
*Zilla 0.6356 0.4761 0.4932 0.4194 0.8001 0.7322 0.5850 0.1754 0.5396
ASAP.v3 0.3276 0.5091 0.4963 0.7631 0.5797 0.8048 0.6881 0.0639 0.5291
sunny-as2-k-OASC 0.6440 −0.0137 0.4924 0.6318 0.8495 0.7441 0.5789 0.0021 0.4911
SUNNY-original 0.7687 −0.8996 0.5859 0.4025 0.7697 0.7687 0.4866 0.1899 0.3841
Random Forest 0.1952 0.4892 0.2037 −1.4422 −0.4737 0.7913 0.5966 0.0934 0.0567
AS-RF −1.0617 0.4947 −1.0521 −6.8992 −0.3280 0.8331 0.5853 −0.3700 −0.9747

Table 3: Closed gap of different AS approaches over the instances of the 2017 AS competition

all the scenarios. The main reason is arguably the poor per-
formance of sunny-as2-k in the TSP scenario. sunny-as is
clearly less promising than any other variant of sunny-as2,
but it is the best approach for GRAPHS. What we can con-
clude from Tab. 2 is that most of the performance improve-
ment is due to the selection of the right neighborhood size k.
However, feature selection also gives a positive contribution.

We recall that by default greedy-SUNNY is used to com-
pute k-value and/or features on the training sets. Then,
sunny-as2 sets the corresponding SUNNY parameters to the
computed values when it runs on the test sets. The rationale
is to speed-up the training time, so that for scenarios with a
high number of algorithms (e.g., Svea) can exceed 24 hours
of computation. Interestingly, we later realized that training
sunny-as2 with SUNNY instead of greedy-SUNNY does
not bring any substantial benefit. Surprisingly, in 8 scenarios
out of 12 the performance deteriorates. We also noted that the
peak performance in any scenario is achieved when SUNNY
is used for testing. Using greedy-SUNNY on an unforeseen
instance might therefore be useful in time-sensitive contexts
where exponential-time scheduling is not acceptable but, in
general, SUNNY provides a more precise scheduling.

Table 3 shows the hypothetical performance of the im-
proved sunny-as2 in the 2017 AS competition.5 In addition
to the original competitors (viz., *Zilla, ASAP, AS-RF and
the preliminary versions of sunny-as2 called sunny-as2-
fk-OASC and sunny-as2-k-OASC in Tab. 3) we added 3
more baselines: AutoFolio [Lindauer et al., 2015], the origi-
nal SUNNY approach [Amadini et al., 2014], and an off-the-
shelf Random Forest approach.

Tab. 3 shows that sunny-as2 has the highest average
closed gap, and it is the best approach in Bado and Sora sce-
narios. Unsurprisingly, its performance is quite close to the
one of sunny-as2-fk-OASC. ASAP.v2 does not attain the
best score in any scenario, but in general its performance is

5The submitted version was prototypical and slightly different.

robust and effective—this confirms what reported in [Gonard
et al., 2019]. AutoFolio is slightly behind ASAP.v2, never-
theless it achieves good results and it is the best approach for
the Magnus scenario. As sunny-as2, also AutoFolio suffers
in scenarios like Caren and Mira having a small number of
instances. *Zilla and ASAP.v3 also close more than 50% of
the gap between the SBS and the VBS. sunny-as2-k-OASC
is instead slightly below this threshold: the performance dif-
ference w.r.t. sunny-as2-fk-OASC denotes the importance
of a proper feature selection. The original SUNNY approach
is even worse: this confirms the effectiveness of the improve-
ments introduced by sunny-as2.

At the bottom of the table we find the AS approaches based
on Random Forest. However, it is crucial to highlight that
the chosen performance metric plays a fundamental role as
clearly shown in [Liu et al., 2021]. For example, replacing the
closed gap score with the one adopted in the MiniZinc Chal-
lenge [Stuckey et al., 2014] literally overturns the closed-gap
ranking. An in-depth discussion of this issue can be found in
Amadini et al. [2022].

5 Conclusions

We experimentally learned that wrapper-based feature selec-
tion and k-configuration are quite effective for SUNNY, and
perform better when integrated. Moreover, a sub-optimal
greedy approach for solver selection enables a more robust,
fast and effective training w.r.t. the schedule generation pro-
cedure of the original SUNNY approach. These three ingre-
dients significantly improved the SUNNY performance for
generic AS scenarios, making sunny-as2 a state-of-the-art
AS approach for runtime minimization.

A natural future direction for SUNNY is the study of alter-
native AI-driven solver selection mechanisms, and the exten-
sion of sunny-as2 to optimization problems, for which the
solution(s) quality must be taken into account.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5755

References
[Amadini et al., 2014] Roberto Amadini, Maurizio Gab-

brielli, and Jacopo Mauro. SUNNY: a Lazy Portfolio Ap-
proach for Constraint Solving. TPLP, 14(4-5):509–524,
2014.

[Amadini et al., 2015] Roberto Amadini, Fabio Biselli,
Maurizio Gabbrielli, Tong Liu, and Jacopo Mauro.
SUNNY for algorithm selection: a preliminary study.
In Proceedings of the 30th Italian Conference on Com-
putational Logic, Genova, Italy, July 1-3, 2015., pages
202–206, 2015.

[Amadini et al., 2022] Roberto Amadini, Maurizio Gab-
brielli, Tong Liu, and Jacopo Mauro. On the eval-
uation of (meta-)solver approaches. arXiv preprint
arXiv:2202.08613, 2022.

[Bischl et al., 2016] Bernd Bischl, Pascal Kerschke, Lars
Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre
Fréchette, Holger Hoos, Frank Hutter, Kevin Leyton-
Brown, Kevin Tierney, and Joaquin Vanschoren. Aslib:
A benchmark library for algorithm selection. Artificial In-
telligence, 237:41–58, 2016.

[Gonard et al., 2019] François Gonard, Marc Schoenauer,
and Michèle Sebag. Algorithm selector and prescheduler
in the icon challenge. In Bioinspired Heuristics for Opti-
mization, pages 203–219. Springer, 2019.

[Lindauer et al., 2015] Marius Lindauer, Holger Hoos,
Frank Hutter, and Torsten Schaub. Autofolio: An au-
tomatically configured algorithm selector. Journal of
Artificial Intelligence Research, 53:745–778, 2015.

[Lindauer et al., 2016] Marius Lindauer, Rolf-David
Bergdoll, and Frank Hutter. An Empirical Study of
Per-instance Algorithm Scheduling. In LION, volume
10079 of LNCS, pages 253–259. Springer, 2016.

[Lindauer et al., 2019] Marius Lindauer, Jan N. van Rijn,
and Lars Kotthoff. The algorithm selection competitions
2015 and 2017. Artificial Intelligence, 272:86–100, 2019.

[Liu et al., 2021] Tong Liu, Roberto Amadini, Maurizio
Gabbrielli, and Jacopo Mauro. sunny-as2: Enhancing
sunny for algorithm selection. Journal of Artificial Intelli-
gence Research, 72:329–376, 2021.

[Loughrey and Cunningham, 2005] John Loughrey and
Pádraig Cunningham. Overfitting in wrapper-based
feature subset selection: The harder you try the worse it
gets. In Research and development in intelligent systems
XXI, pages 33–43. Springer, 2005.

[Stuckey et al., 2014] Peter J. Stuckey, Thibaut Feydy, An-
dreas Schutt, Guido Tack, and Julien Fischer. The MiniZ-
inc Challenge 2008-2013. AI Magazine, 35(2):55–60,
2014.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Journal Track

5756

	Introduction
	Preliminaries
	SUNNY

	sunny-as2
	Selecting Features and Neighborhood Size

	Experiments
	Conclusions

