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Abstract

The German Socio-Economic Panel (SOEP) serves a global research community by provid-

ing representative annual longitudinal data of respondents living in private households in

Germany. The dataset offers a valuable life course panorama, encompassing living condi-

tions, socioeconomic status, familial connections, personality traits, values, preferences,

health, and well-being. To amplify research opportunities further, we have extended the

SOEP Innovation Sample (SOEP-IS) by collecting genetic data from 2,598 participants,

yielding the first genotyped dataset for Germany based on a representative population sam-

ple (SOEP-G). The sample includes 107 full-sibling pairs, 501 parent-offspring pairs, and

152 triads, which overlap with the parent-offspring pairs. Leveraging the results from well-

powered genome-wide association studies, we created a repository comprising 66 poly-

genic indices (PGIs) in the SOEP-G sample. We show that the PGIs for height, BMI, and

educational attainment capture 22*24%, 12*13%, and 9% of the variance in the respec-

tive phenotypes. Using the PGIs for height and BMI, we demonstrate that the considerable

increase in average height and the decrease in average BMI in more recent birth cohorts

cannot be attributed to genetic shifts within the German population or to age effects alone.

These findings suggest an important role of improved environmental conditions in driving

these changes. Furthermore, we show that higher values in the PGIs for educational attain-

ment and the highest math class are associated with better self-rated health, illustrating

complex relationships between genetics, cognition, behavior, socio-economic status, and

health. In summary, the SOEP-G data and the PGI repository we created provide a valuable
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resource for studying individual differences, inequalities, life-course development, health,

and interactions between genetic predispositions and the environment.

Introduction—Why was this cohort set up?

Almost all human traits are partly heritable, including health outcomes, personality, and

behavioral tendencies [1, 2]. All properties that make us unique as individuals are to some

degree affected by random genetic variation within and between families. Moreover, genetic

and environmental causes of individual differences are interrelated. For example, environmen-

tal conditions can affect how genetic differences between individuals translate into differences

in socio-economic and health outcomes [3–5]. And, genetic differences among people mani-

fest in trait differences partly via environmental channels, for example, via genetically influ-

enced personal interests that lead to self-selection into specific environments and

reinforcement mechanisms consisting, for instance, of behaviors of parents, teachers, peers, or

colleagues [6, 7]. Importantly, the fact that genetic differences are linked to differences in

behavior and health does not imply simplistic biological determinism and puts no upper

bound on the relevance of the environment or the possibilities for intervention [8, 9].

The heritability [10, 11] of behavioral, psychological, and economic phenotypes (e.g., edu-

cational attainment, personality, risk preference) and health outcomes (e.g., cardiovascular dis-

ease, dementia) typically range between 30% and 70%, with, based on twin studies, an average

estimated heritability of 49% (SE = 0.004) across all traits [2]. Thus, a substantial amount of

variation in outcomes that epidemiologists and behavioral scientists study can be statistically

linked to genetic differences among people. Ignoring genetics would imply that a substantial

source of individual differences would remain unexamined, potentially leading to biased esti-

mations that could prompt wrong and possibly counterproductive conclusions [12].

Twin studies also suggest that environmental factors are important for social scientific out-

comes and a broad variety of diseases [2]. Thus, detailed information about living conditions,

attitudes, and behavior could inform health-related research questions. However, most medi-

cal research datasets only contain basic information about these factors, limiting the possibility

of fully understanding their importance for health outcomes [13].

While genetically informed study designs are already common in medical research and have

yielded numerous important insights into disease mechanisms [14, 15], genetic data in the

behavioral and social sciences is still relatively rare [16]. Nevertheless, integrating genetic data

into the research of the behavioral and social sciences (e.g., economics, psychology, sociology,

political science) opens up new possibilities to (i) control for genetic confounders that are other-

wise unknown and that may lead to biased empirical results, (ii) increase the statistical power of

empirical analyses by absorbing residual variance in multiple regression analyses, yielding

smaller standard errors of the estimated parameters, (iii) study the interactions of genetic factors

and environmental exposures, (iv) use random genetic differences among individuals to identify

causal pathways, and (v) better understand how social (dis)advantages are transmitted across

generations and how parents, peers, teachers, and policymakers can potentially alleviate or

amplify such (dis)advantages [16, 17]. Thus, integrating genetic data into the behavioral and

social sciences offers researchers new tools to study key questions to reach more robust infer-

ences based on their empirical analyses, as illustrated by several recent examples [18–20].

The genetic underpinnings of behavior, socio-economic outcomes, and health often over-

lap. For example, educational attainment has substantial genetic correlations with smoking
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(-0.3), lung cancer (-0.4), obesity (-0.2), Alzheimer’s disease (-0.3), and longevity (+0.6) [16,

21], illustrating the complex relationships between components of genetic variation, human

behavior, environmental conditions, and health outcomes.

These considerations motivated us to collect genetic data in the Innovation Sample of the

German Socio-Economic Panel Study (SOEP-IS), to contribute additional value to the already

existing and widely known interdisciplinary and longitudinal SOEP data set that is accessible

and frequently used by the global scientific community [22]. Adding genetic data to this sam-

ple opens many new research opportunities for the medical and social-science research

community.

SOEP-IS was started in 2011 as an addition to the SOEP-Core sample, which provides rep-

resentative annual data of private households in Germany since 1984 [23]. Similar to the

SOEP-Core sample, SOEP-IS is a valuable data resource for researchers who want to explore

long-time societal changes, relationships between early life events and later life outcomes;

interdependencies between the individual and the family or household; mechanisms of inter-

generational mobility and transmission; accumulation processes of resources; short- and long-

term effects of institutional change and policy reforms; and migration dynamics [23]. Besides

containing a set of basic questions identical to the SOEP-Core, the SOEP-IS longitudinal panel

survey incorporates innovative content that is purely user-designed, including measurements

that go beyond the scope of standardized questionnaire formats.

As a household study, the SOEP-IS typically contains data about all household members,

including many mother-father-child trios, parent-offspring duos, childhood development,

parenting practices, and family dynamics. Furthermore, due to the sampling method and lon-

gitudinal nature of the data, the available phenotypes in the SOEP-IS span all stages of life—

from the (pre-)natal stage, early childhood, adolescence, adulthood, all the way to retirement

and the end of life (see Fig 1). We refer to the genotyped subsample of the SOEP-IS as the

SOEP-G sample.

Already existing genotyped cohorts in Germany (e.g., BASE-II [24], DHS [25], HNRS [26],

KORA [27], SHIP [28]) focus on specific health outcomes or are limited in scope to specific

regions or age groups. Thus, as of now, SOEP-G is the only genotyped dataset that is based on a

representative sample of households in Germany, and that contains family data as well as a rich

array of longitudinal information about health, personality, family dynamics, living conditions,

attitudes, and socio-economic behaviors and outcomes. This makes the sample particularly

valuable to study long-term developments and the intergenerational transmission of inequalities

in health and well-being. Furthermore, the sample is ideally suited to study the impact of envi-

ronmental conditions unique to Germany, such as specific public policies and changes therein

or the potential consequences of German reunification. Fig 2 shows the geographic distribution

of genotyped households in the SOEP-G sample, illustrating the sample’s coverage of all Ger-

man states and metropolitan areas (e.g., Berlin, Hamburg, Munich, Ruhr region).

To enable the collection of genetic data in the SOEP-IS, we established a research consor-

tium of scientists from Germany (Max-Planck Institute for Human Development, German

Institute of Economic Research), the Netherlands (Vrije Universiteit Amsterdam), Switzerland

(University of Zurich, University of Basel), and the USA (University of Texas at Austin,

Columbia University). The consortium was spearheaded by Philipp Koellinger (Vrije Univer-

siteit Amsterdam) and Ralph Hertwig (Max-Planck Institute for Human Development). Koel-

linger’s team in Amsterdam developed and guided the data collection procedures, processed

the collected genetic data, and generated polygenic indices for public use.
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Fig 1. Life course perspective of the SOEP-IS sample.

https://doi.org/10.1371/journal.pone.0294896.g001

Fig 2. Geographic distribution of genotyped households in the SOEP-G sample. Note: Own illustration based on

spatial datasets from Reference [29] under data license Germany–attribution–Version 2.0 dl-de/by20 (https://www.

govdata.de/dl-de/by-2-0).

https://doi.org/10.1371/journal.pone.0294896.g002
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Materials and methods—Who is in the sample?

The sampling and interviewing methods, as well as the baseline characteristics of the sample,

were previously described in detail [22, 23]. In short, SOEP-IS is based on a random sample of

households in Germany. Annual computer-assisted personal interviews are conducted face-to-

face, and information is collected on the household- and individual levels (e.g., individual and

household incomes). The main survey instrument is a household questionnaire being

answered by the head of the household. In addition, there is an individual questionnaire that

each household member age 17 and older is supposed to answer. The obtained information

usually covers the current situation (e.g., family composition or satisfaction with life), but in

some contexts, it includes the past (e.g., job changes and employment biographies) and the

future (e.g., expected life satisfaction in 5 years, and the chance of re-employment).

The main guardian (the caretaker, usually the mother) is asked about their children youn-

ger than 17. If members of an originally sampled household leave the household, (e.g., because

of a divorce or children forming their own household), the original and the split household are

interviewed. The comprehensive tracing rules, covering all individuals who (even temporarily)

lived in SOEP households, represent a comparative advantage of SOEP compared to other

household panel surveys. They allow users to track household dynamics and their implications

at the household and individual levels. To maintain a reasonable sample size and to address

panel attrition, refreshment samples of the residential population of Germany were integrated

in 2012, 2013, 2014, and 2016.

The precondition for participation in the SOEP-G—as part of SOEP-IS 2019—was that the

person or child lives in a participating household. 6,576 people were originally invited to par-

ticipate in SOEP-IS 2019, 1,074 of whom were children. Not everyone takes part every year,

and there are always people who move away, die, or do not want to participate in the survey

anymore. Therefore, of the original sample, 4,283 persons who were at least 17 years old (i.e.,

persons of survey age), as well as 875 children and youths (<17 years of age) lived in a partici-

pating household in 2019. 2,598 individuals provided a valid genetic sample, including 215

children and teenagers. A requirement for an offspring of at most 17 years of age to participate

in collecting genetic data was that both guardians agreed. The valid genetic samples were sent

from the survey company Kantar GmbH to the Human Genomics Facility (HuGe-F) at the

Erasmus Medical Center in Rotterdam for analysis.

Despite attrition, the SOEP-G sample, when compared with census data (www.destatis.de),

is very similar to the German population in terms of age (Meancensus = 52 years vs.MeanSOEP-G

= 55 years), sex (51% Femalecensus vs. 54% FemaleSOEP-G), and region (20% East Germanycensus

vs. 19% East GermanySOEP-G). However, residents without German citizenship are under-rep-

resented in the SOEP-G sample (12% census vs. 4% SOEP-G).

Participants who agreed to donate DNA are similar to the overall SOEP-IS sample regard-

ing socio-demographics, subjective health ratings, and life satisfaction (see Table 1). However,

the comparison to the overall SOEP-core sample shows that the participants in the SOEP-IS

sample are overall socioeconomically better off than those in the core sample and potentially

the overall German population. Nonetheless, representativeness means that the survey covers

all groups of persons. Unequal participation rates are compensated for in descriptive figures

by weighting the cases; accordingly, weighting is unnecessary for analyses of subgroups with

different sampling probabilities and for multivariate analyses.

Parents were more hesitant to enroll their offspring (<17 years of age) than themselves to

collect genetic data. Compared to an overall consent rate of 58% (2,496 out of 4,282 valid inter-

views), only 26% of the eligible offspring participated in the collection of genetic data (228 out

of 875). Importantly, however, offspring for whom genetic data was collected closely resemble
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the overall sample of offspring in the sample in terms of age, sex, geographic location, and citi-

zenship, as well as parental characteristics (see Table 2).

Materials and methods—What has been measured?

Phenotypes

The SOEP-IS [22, 30] contains a set of core questions that are identical to about 44% of the

questions asked in the SOEP-Core survey [23], including variables such as age, gender, height,

weight, education, employment status, income, life satisfaction, personality, living conditions,

attitudes, preferences, and occupational classifications following the International Standard

Classification of Occupations (ISCO). In addition, the SOEP-IS contains a broad range of

short-term experiments and longer-term surveys that were not (yet) evaluated to be suitable to

the SOEP-Core survey (yet) because they pose a higher risk of refusal and panel attrition or

because they deal with very specific research issues. Every year, researchers can propose new

survey modules or experiments for inclusion in the SOEP-IS. The SOEP management team

and the SOEP survey committee then select which modules will be included in the next survey

wave [22]. The SOEP-IS innovation modules also act as a test bed for how respondents react.

Some particularly important and successful modules (e.g., risk preference) can later be inte-

grated into the much larger SOEP-Core survey, which collects data from *15,000 households

comprising *26,000 individuals per year, including *3,000 children and youths.

Health outcomes in the SOEP-IS are primarily measured by self-reporting doctor diagnoses

for various diseases, subjective evaluations of health and well-being, doctor visits, and the need

for care. Furthermore, dried blood samples were tested for SARS-CoV-2 antibodies and oral-

nasal swabs for viral RNA in a part of the SOEP-IS sample between Oct 2020 and Feb 2021,

Table 1. Descriptive statistics of the SOEP-G adult sample (� 17 years old).

Total (Core) Total (IS) Interview Consent Genotyped Polygenic Indices

Created

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age 44.1 17.9 53.7 19.1 54.7 18.4 55.1 19.1 55.4 19.0 55.2 19.0

Sex (% female) 50.1 50.0 52.8 49.9 53.1 49.9 53.8 49.9 54.0 49.9 54.6 49.8

East Germany (% yes) 18.4 38.7 20.0 40.0 20.1 40.1 19.5 39.6 19.4 39.5 19.7 39.8

German (% yes) 68.2 46.6 94.9 22.1 95.8 20.1 96.4 18.7 96.3 18.8 97.3 16.2

Partnered (% yes) 45.1 49.8 40.9 49.2 40.9 49.2 40.1 49.0 39.6 48.9 41.0 49.2

School degree: low (% yes) 48.0 50.0 37.9 48.5 37.9 48.5 39.7 48.9 39.6 48.9 37.8 48.5

School degree: high (% yes) 26.6 44.2 31.2 46.3 31.2 46.3 29.2 45.5 29.0 45.4 29.7 45.7

Employment (% yes) 58.1 49.3 53.3 49.9 53.3 49.9 50.9 50.0 50.9 50.0 51.3 50.0

Net Income 1807.1 1940.8 1959.1 1303.9 1959.1 1303.9 1922.4 1300.5 1914.7 1258.4 1925.3 1261.4

Subjective Health (1–5) 3.5 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0 3.3 1.0

Life Satisfaction (0–10) 7.4 1.8 7.5 1.7 7.5 1.7 7.6 1.7 7.6 1.7 7.6 1.7

Heavy drinking 2.2 14.7 4.4 20.5 4.4 20.5 4.5 20.8 4.6 20.9 4.5 20.7

Smoking (% yes) 16.3 37.0 24.2 42.9 24.3 42.9 24.1 42.8 23.6 42.5 23.9 42.7

Height (cm) 171.6 9.6 171.4 9.4 171.4 9.4 171.2 9.5 171.2 9.5 171.4 9.6

BMI 26.4 5.2 26.6 5.1 26.6 5.1 26.9 5.3 26.9 5.3 26.8 5.1

Observations 45,306 5,502 4,283 2,496 2,375 2,076

Note: The column names indicate: Total every individual in the given SOEP sample, Interview individuals who responded to 2019–2020 wave survey, Consent

individuals who gave consent for genotyping, Genotyped individuals successfully genotyped, Polygenic indices created individuals of European genetic ancestry who

passed quality control and whose polygenic indices were created.

https://doi.org/10.1371/journal.pone.0294896.t001

PLOS ONE SOEP-G

PLOS ONE | https://doi.org/10.1371/journal.pone.0294896 November 29, 2023 6 / 23

https://doi.org/10.1371/journal.pone.0294896.t001
https://doi.org/10.1371/journal.pone.0294896


providing opportunities to study factors influencing infections with SARS-CoV-2 and long-

term consequences [31].

Furthermore, the SOEP-IS allows users to add anonymized spatial information (e.g., federal

states, spatial planning regions, counties, municipalities, and postal codes, as well as GPS coor-

dinates) and can be linked to administrative records from the German Pension Insurance and

the Employer-Employee Study [23, 32].

An overview of the SOEP-IS survey content and examples of modules is provided in Box 1.

The complete questionnaire of the 2019 survey wave, the 2019 SOEP annual report, and a

description of all SOEP-IS modules from 2011–2018 are available online [33–35]. An online

companion for the entire data collection is available (http://companion-is.soep.de/).

Genetics

DNA was extracted from saliva samples that were collected using Isohelix IS SK-1S buccal

swabs with Dri-Capsules. Genotyping was performed using Illumina Infinium Global Screen-

ing Array-24 v3.0 BeadChips, yielding raw data for 2,598 individuals and 725,831 variants, of

which 688,618 were autosomal.

The genotype missingness rate was greater than 5% in 484 individuals. Further analyses

revealed that the high missingness rates for these individuals were largely driven by interviewer

effects, possibly due to not following the sample collection protocol accurately, including

incorrect use of (or entirely missing) DriCapsules that slow down the decay of DNA, low saliva

and DNA yield, or polluted samples (see sections 2 and 3 in S1 File).

Since we expect that the vast majority of analyses in the genotyped SOEP-IS data will rely

on polygenic indices (PGIs) [36] rather than single genetic variant analyses, we implemented

two different quality control (QC) pipelines, mild-QC and strict-QC, that are described in

detail in the S1 File. The mild-QC pipeline yields a higher sample size and both QC protocols

yield approximately equally predictive PGIs (see below and section 7 in S1 File). Depending on

the research questions investigators will address, either the mild-QC or the strict-QC data can

be used to maximize the statistical power of the analyses.

Table 2. Descriptive statistics of children and adolescents (<17 years old) in the SOEP-G sample.

Total Consent Genotyped Polygenic Indices Created

Mean SD Mean SD Mean SD Mean SD

Age 8.4 4.8 8.6 4.9 8.7 4.9 8.6 4.9

Sex (% female) 49.2 50.0 49.6 50.1 49.8 50.1 48.9 50.1

East Germany (% yes) 18.1 38.5 19.3 39.6 18.1 38.6 19.9 40.0

German (% yes) 96.0 19.6 96.5 18.4 96.3 19.0 99.4 7.5

Father Age at birth 34.2 5.4 34.2 5.4 34.2 5.4 34.2 5.5

Mother Age at birth 30.8 5.4 30.9 5.4 30.9 5.4 30.9 5.2

Father School degree: low (% yes) 30.3 46.1 30.5 46.2 30.5 46.2 27.2 44.7

Father School degree: high (% yes) 39.4 49.0 38.9 48.9 38.9 48.9 40.4 49.3

Mother School degree: low (% yes) 34.4 47.6 34.6 47.7 34.6 47.7 31.6 46.7

Mother School degree: high (% yes) 29.0 45.5 28.6 45.3 28.6 45.3 27.2 44.6

Father Net Income 2846.3 1522.1 2848.3 1528.2 2848.3 1528.2 2917.1 1599.8

Mother Net Income 1433.9 930.7 1426.6 930.9 1426.6 930.9 1425.4 925.8

Observations 1,074 228 215 176

Note: See Table 1‘s note for the column name definitions.

https://doi.org/10.1371/journal.pone.0294896.t002
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Box 1. Summary of SOEP-IS survey content by topics and
examples of modules.

1. Demography and Population

Country of origin, birth history

2. Work and Employment

Change of job, contractual working hours, employment status, evening and weekend

work, financial compensation for overtime, industry sector and occupational classifica-

tion, job search, leaving a job, maternity / parental leave, registered unemployed, self-

employment reasons, side jobs, supervisory position, use of professional skills, vacation

entitlement, work from home, work time regulations, workload

3. Income, Taxes, and Social Security

Asset balance, benefits and bonuses from employer, financial support received, individ-

ual gross / net income, inheritances, pension plans, social security, wage tax classifica-

tion, alimony, household income and expenses, investments, repayments of loans

4. Family and Social Networks

Circle of friends, family changes, family network, marital / partnership status, attitude

toward parental role, breastfeeding, childcare, language use, leisure and activities, par-

enting goals, parenting style, pregnancy, relationship to other parent or child

5. Health and Care

Alcohol consumption, health insurance, illness (self-reports of doctor diagnoses for

sleep disorder, thyroid disorder, diabetes, asthma, cardiac disease, cancer, apoplectic

stroke, migraine, high blood pressure, depression, dementia, joint disorder, chronic

back problems, burnout, hypercholesterolemia, or other illness), reduced ability to work,

sickness notifications to employer, smoking, state of health, stress and exhaustion, visits

to the doctor, satisfaction with availability of care, health of child, physical and mental

health of mother, nutrition, physical activity

6. Home, Amenities, and Contributions of Private Households

Childcare hours, leisure activities and costs, school attendance by child, change in resi-

dential situation, consumption, costs of housing, home ownership / rental, loans and

mortgages, birth of children, number of books in the household, persons in household

in need of care, pets, residential area, size and condition of home

7. Education and Qualification

Completed education and training, vocational training, educational aspirations for chil-

dren, school enrollment of children

8. Attitudes, Values, and Personality

Affective well-being, Big Five personality traits, depressive traits, goals in life, impulsivity

and patience, income justice, life satisfaction, lottery question, optimism/pessimism,
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In short, both pipelines filtered out 14 individuals whose reported sex did not match biolog-

ical sex derived from genotype data as this could be an indication of genotyping error. The

strict-QC pipeline excluded 260 individuals whose genotype missingness rate was more than

20% within any chromosome and 59 individuals with an excess number of heterozygote/

homozygote genotypes, which could indicate genotyping errors. The mild-QC pipeline

excluded only 36 individuals based on a per-chromosome missingness of more than 50% and

22 heterozygosity/homozygosity outliers. Using the mild-QC data, we identified 44 individuals

of non-European ancestries, 25 of whom were available in the strict-QC sample. Before impu-

tation, these individuals were excluded from the mild- and strict-QC samples.

We used the Haplotype Reference Consortium reference panel (r1.1) for imputation [37].

Imputation was completed for 2,497 individuals and 23,185,386 SNPs with imputation accu-

racy (R2; a measure of how much confidence there is in the imputed genotype probabilities)

greater than 0.1 in the mild-QC data, and 2,299 individuals and 22,201,548 SNPs with R2 > 0.1

in the strict-QC data. Approximately 66% of the imputed SNPs are rare with minor allele fre-

quencies (MAF) smaller than 0.01, and *24% of SNPs are common (MAF�0.05; 5,463,110 in

mild-QC, 5,463,110 in strict-QC). The average imputation accuracy in the mild-QC data is

0.664 and 0.695 in the strict-QC data. However, common SNPs (MAF�0.05) are much more

reliably imputed than rare SNPs, with an average imputation accuracy of 0.92 and 0.93 in the

mild- and strict-QC data, respectively.

Using the imputed SNPs, we identified an additional 37 (2) individuals of non-European

ancestries in the strict (mild) QC data on top of the 44 (25) individuals of non-European

political tendency and orientation, reciprocity, religious affiliation, risk preference in dif-

ferent domains, satisfaction with various aspects, social responsibility, trust and fairness,

wage justice, well-being aspects, worries, temperament of child

9. Time Use and Environmental Behavior

Time use for different activities, trip to work, use of transportation for different

purposes

10. Integration, Migration, Transnationalization

Applying for German citizenship, disadvantage / discrimination based on ethnic origins,

integration indicators, language skills, native language, regional attachment, sense of

home

11. Innovative Modules

Anxiety and depression, assessment of contextualized emotions, risk attitudes, confu-

sion, control strivings, dementia worry, determinants of ambiguity aversion, emotion

regulation, expected financial market earnings, future life events, grit and entrepreneur-

ship, happiness analyzer, impostor phenomenon, inattentional blindness, inequality atti-

tudes, job preferences, job tasks, justice sensitivity, lottery play, multilingualism,

narcissistic admiration and rivalry, ostracism, pension claims, perceived discrimination,

physical attractivenes, self-control, self-evaluation and overconfidence in different life

domains, sleep characteristics, smartphone usage, socio-economic effects of physical

activity, status confidence and anxiety, subjective social status, work time preferences
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ancestries excluded before imputation, respectively. Thus, *98% of the genotyped SOEP-IS

sample is of European ancestries (see section 4 in S1 File).

We constructed the first 20 principal components (PCs) of the genetic data for individuals

with European ancestries based on *160,000 approximately independent SNPs (r2<0.01)

with imputation accuracy�70% and MAF�0.01 (see section 5 in S1 File). We recommend

using these genetic PCs in analyses as control variables for population stratification [38].

Family relationship among genotyped participants

With the exemption of parent-offspring pairs, family relationships among the participants are

only surveyed via their relationship with the head of the household. For the genotyped partici-

pants in the SOEP-IS across the available waves from 1998 to 2019, there are 877 reported rela-

tionships for the 602 household heads. The majority (515) of these relationships are with their

spouse or partner, while 346 relationships are with their child (324 biological, 11 adopted or

biological, and 11 stepchildren). The remaining relationships of household heads are with

grandchildren (5), parents (4), a parent-in-law (1), a niece/nephew (3), a son/daughter-in-law

(1), and a half-sibling (1).

By using the reported relationships to the household head as well as directly reported par-

ent-child relationships, we inferred or found 609 parent-offspring, 142 full-sibling, and 17 sec-

ond-degree relative pairs in the SOEP-G sample. In S1 Table, we compared these reported

relationships to genetically inferred relationships obtained from KING [39]. We found that

19% of the pairs have inconsistencies between the reported and genetically inferred relation-

ships. The deviations were mainly due to the low genotyping quality of some individuals.

When considering only the individuals whose genotyping call rate was greater than 90% using

directly genotyped SNPs, 92% of the pairs in the SOEP-G have consistent self-reported and

genetic family relationships (see sections 3 and 6 of the S1 File for details). We found that most

of the remaining inconsistencies are due to self-reported full siblings who are likely to be only

half-siblings (13 out of 97 pairs). We also found 28 self-reported parent-child pairs that appear

to be non-biological from 437 pairs in total.

Furthermore, focusing on the individuals with a genotype call rate greater than 90%, we

identified 88 pairs whose family relationship information was unavailable in the survey data.

These pairs consist of 7 parent-offspring, 19 full-siblings, 33 second-degree relatives, and 29

third or fourth-degree relative pairs.

Overall, out of 2,497 individuals, we genetically identified 703 individuals with at least one

first-degree relative (parent-child or full sibling) and 728 individuals that have at least one relative

with at least third-degree of relatedness (first cousins or great-grandparent-child). 1,769 individ-

uals do not have close relatives based on the genetic data. Note that the related pairs reported

here are not mutually exclusive, and some individuals can be related to multiple people.

Polygenic indices

The effect sizes of individual single nucleotide polymorphisms (SNPs) on behavioral traits and

complex diseases are usually tiny [40] (R2 < 0.05%). Polygenic indices (PGI) aggregate the

effects of observed SNPs, weighting them by their estimated effect sizes from an independent

genome-wide association study (GWAS) sample [36]. The predictive accuracy of a PGI

depends on the GWAS sample size (+), the heritability of the trait (+), the number of causal

genetic variants that influence the trait (-), and the extent to which the genetic architecture of

the trait is similar across various environments and datasets (+) [41, 42]. Thanks to rapidly

growing GWAS sample sizes in the past few years, the accuracy of PGIs has increased greatly,

especially for individuals of European ancestries [16, 43]. PGIs are now beginning to capture a
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Table 3. Polygenic indices in the SOEP-G sample from single trait GWAS results.

Phenotype # SNPs GWAS N
Adventurousness [36, 44] 1,147,160 557,923

Age First Birth [36, 47] 996,620 169,901

Age First Menses (Women) [36, 48] 1,142,133 309,043

Alcohol Misuse [36, 49] 1,145,324 120,684

Alzheimer’s* [50] 1,115,709 455,258

Any Ischemic Stroke* [50] 850,822 446,696

Any Stroke* [50] 844,962 446,696

Atrial Fibrillation* [50] 850,822 1,030,836

Asthma [36] 1,159,334 418,164

Asthma/Eczema/Rhinitis [36, 51] 1,137,288 513,889

Attention Deficit Hyperactivity Disorder (ADHD) [36, 52] 1,083,048 57,386

Body Mass Index (BMI) [36, 53] 1,023,282 582,457

Breast Cancer* [50] 809,475 228,951

Cannabis Use [36, 54, 55] 1,087,000 156,756

Cardioembolic Stroke* [50] 844,996 446,696

Childhood Reading [36] 1,147,169 172,502

Chronic Kidney Disease* [50] 845,145 444,971

Cigarettes per Day [36, 56] 1,150,910 250,057

Cognitive Performance [36, 57] 1,148,362 222,914

Depression* [50] 835,515 500,199

Depressive Symptoms [36, 58] 1,138,362 619,272

Diastolic Blood Pressure* [50] 843,500 757,601

Drinks per Week [36, 56] 1,150,775 723,487

Educational Attainment [21, 36] 1,147,926 1,047,538

Ever Smoker [36, 56] 1,143,561 1,129,163

Externalizing* [50] 1,020,283 1,492,085

Extraversion [36, 59, 60] 1,113,746 73,906

Hay Fever [36] 1,159,334 403,179

HDL Cholesterol* [50] 847,159 187,167

Height [36, 61] 1,022,784 448,198

Highest Math [21, 36] 1,147,159 430,439

Insomnia* [50] 824,863 386,533

Large Artery Stroke* [50] 1,159,551 446,696

Left Out of Social Activity [36] 1,147,159 507,803

Life Satisfaction: Family [36] 1,159,202 141,864

Life Satisfaction: Friends [36] 1,159,184 138,807

Longevity* [50] 832,850 640,189

Migraine [36, 62] 1,146,834 421,013

Morning Person [36, 63] 1,123,260 362,840

Narcissism [36] 1,147,153 452,535

Nearsightedness [36, 62] 1,146,729 301,938

Neuroticism [36, 59, 64] 1,029,577 389,237

Number Ever Born (Women) [36, 47] 1,034,474 207,393

Openness [36, 59, 65] 987,746 72,308

Physical Activity [36, 66] 1,108,549 140,190

Religious Attendance [36] 1,159,336 383,466

Risk Tolerance [36, 44] 1,076,002 1,070,480

(Continued)
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substantial part of the heritability of many traits, making them valuable for research in many

scientific disciplines. For example, PGIs from the latest generation of GWAS analyses capture

*12% of the variation in years of schooling [21], *10% of general cognitive ability [21], and

up to 2% of various personality characteristics such as risk tolerance [44].

These PGIs are useful for follow-up analyses in samples much smaller than the original

GWAS [16]. For example, a sample of N = 1,000 yields >90% statistical power to detect an

association between a PGI and an outcome of interest if the PGI captures at least 1% of the

phenotypic variation (two-sided t-test with α = 0.05). An association between an outcome and

a PGI with R2 = 10% can even be detected in a sample of only N = 110 individuals with 90%

power.

We followed the methods used by Becker et al. 2021 [36] to create a repository of single-

and multi-trait polygenic indices for 66 social-scientific and health traits for individuals of

European ancestries in the SOEP-G sample. We used the largest currently available GWAS

samples to create these PGIs, including publicly available GWAS summary statistics and non-

publicly available GWAS results from 23andMe. We extended the list of 36 single-trait and 35

multi-trait PGIs in Becker et al. 2021 by including single-trait PGIs for 19 medical outcomes

with well-powered GWAS summary statistics. The single-trait PGIs were based on univariate

GWAS summary statistics (Table 3), whereas the multi-trait PGIs were based on multivariate

MTAG analyses that exploit genetic correlations between several traits to improve predictive

accuracy (S3 Table) [45].

Some of the PGIs that we created have corresponding phenotypes in the SOEP-G sample

(e.g., educational attainment, height, BMI, risk tolerance), while others capture genetic predis-

positions for phenotypes that are not observable or incompletely measured (e.g., longevity,

HDL cholesterol, blood pressure, and a variety of diseases including Alzheimer’s, schizophre-

nia, stroke, atrial fibrillation, and breast cancer). These PGIs are useful proxies for unobserved

traits and outcomes. For example, they can be used as control variables in studies that focus on

environmental processes, such as socio-economic factors that influence health [17], to detect

gene-environment interactions (e.g., heterogeneous responses to policy interventions) [5, 16],

or as exogenously given proxies that do not change over the life course (e.g., to study genetic

predisposition for health on labor market outcomes). Finally, the availability of genetic data

and PGIs from parents and their children offers exciting, new ways to disentangle genetic and

environmental channels of intergenerational transmission of health, behavior, and socioeco-

nomic outcomes [3, 46].

Table 3. (Continued)

Phenotype # SNPs GWAS N
Schizophrenia* [50] 829,801 105,318

Self-Rated Health [36] 1,144,515 911,102

Self-Rated Math Ability [21, 36] 1,147,159 564,692

Small Vessel Stroke* [50] 1,159,163 446,696

Subjective Well-Being [36, 67] 906,574 502,976

Systolic Blood Pressure* [50] 842,552 745,820

Triglycerides* [50] 847,159 177,861

Type 2 Diabetes* [50] 851,227 231,426

Notes: "# SNPs" is the number of SNPs that were used to construct the PGI.

“*” indicates PGIs for medical outcomes that were not originally included in Becker et al. 2021.

All 55 PGIs are constructed only for individuals of European ancestry (N = 2,495).

https://doi.org/10.1371/journal.pone.0294896.t003
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Results—What has been found?

The SOEP sample is currently used by more than 9,000 registered users from 54 countries

[34]. About 300–400 publications annually are based on SOEP data, including OECD reports

on international inequality development. Roughly 25% of these publications are in journals

listed in the (social) science citation index, and more than 100 publications are based on SOE-

P-IS data. The SOEP is also an integral database for official government reports in Germany.

Major research areas that include SOEP-based publications include life course development,

inequality, mobility, psychological outcomes and attitudes, migration, transition to a unified

Germany, and health. Thus, the SOEP data is widely used and provides an indispensable

empirical foundation to describe longitudinal developments and relationships, and a better

understanding of socioeconomic processes and behavior. It is a valuable resource to study

associations between behavior, socioeconomic status, and health [23].

The genetic data in the SOEP-IS sample (SOEP-G) is a new addition to this valuable

resource. We describe the first findings using the genetic data below.

Predictive accuracy of polygenic indices for height, BMI, and educational

attainment

Fig 3 shows the predictive accuracy of the PGIs for height and BMI in unrelated individuals

from the SOEP-G sample, both for the mild and the strict version of the QC of the genetic data

we carried out. We measure the predictive accuracy of the PGIs as the difference in the

explained variance (R2) before and after adding the PGI to a baseline regression that controls

for a second-degree polynomial in the year of birth, sex, and their interactions, genotype batch

indicators, and the top 20 genetic PCs. Since height and BMI were surveyed multiple times

across waves, we first residualized height and BMI for age, age2, sex, and their interactions

within each wave and took the mean for each individual; then, as covariates, we used only

genotype batch indicators and the top 20 genetic PCs. We obtained 95% confidence intervals

by bootstrapping the sample 2,000 times.

Using this approach, the PGIs explain 22*24% of the variance in height, 12*13% of the

variance in BMI, and 9% of the variance in educational attainment. Furthermore, the predictive

accuracy was very similar for different levels of QC, which implies that the low genotyping qual-

ity in a part of the sample does not substantially reduce the predictive accuracy of the PGIs.

Thus, researchers may to use the mild-QC version of the data for analyses using PGIs to take

advantage of its*10% larger sample size and the corresponding gains in statistical power.

Genetic and environmental correlations with height and BMI

We demonstrate the advantages of combining a representative population sample with genetic

data by analyzing birth year cohort trends in body height and BMI over time. Specifically, we

split the SOEP-G sample into PGI values below and above the median for height and BMI and

plotted the average residualized phenotypic values after adjusting for sex in both groups for

adults> = 20 years of age, binned into ten-year birth cohorts (Figs 4 and 5). Phenotypic values

are residualized by regressing each observed phenotypic value on sex dummies using OLS.

Each observation is assigned a residualized value representing the remaining variation in the

phenotype that cannot be predicted by sex. Residualized values are then averaged by individu-

als across survey waves. The solid lines corresponding to the left axis report the average resi-

dualized values for each bin.

In the non-residualized data, individuals with high PGI values for height are, on average,

5.2 cm taller than those with low PGI height values (95% CI: 3.4–7.1cm). Fig 4 shows this
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difference in average height by genetic predisposition is robust across birth year cohorts,

reflecting a stable influence of the height PGI. Consistent with the previous findings [68], Fig 4

also demonstrates that younger birth cohorts are, on average, substantially taller than older

birth cohorts. For example, individuals born in the 1923–1939 birth year cohort on average

(*84 years old in the 2019 survey wave) are on average 6.6 cm shorter than those born in

1980–1999 birth year cohort (on average, *31 years old in the 2019 survey wave). This gain in

Fig 3. Polygenic prediction in the SOEP-IS sample. Note: The bars report the prediction accuracy of polygenic

indices among unrelated individuals of European ancestries measured as incremental R2. The sample size of the strict

(mild) QC sample is 1,904 (2,094), 1,897 (2,086), and 1,857 (2,036) for height, BMI, and educational attainment,

respectively. The error bars indicate 95% bootstrapped confidence intervals with 2,000 replications.

https://doi.org/10.1371/journal.pone.0294896.g003

Fig 4. Body height by birth cohorts and PGI values. Note: Using the single-trait polygenic index (PGI) for body

height, we split the sample of adults (older than 20 years) into two parts at the median PGI value (High PGI N = 1,085;

Low PGI:N = 1,079). Self-reported height is residualized on sex and survey year before being averaged across survey

waves. Each individual is assigned to a decadal cohort. Individuals born before between 1923 and 1939 are all in the

1930s cohort, while individuals born after 1980 are all in the 1980 group. Individuals born between 1940–1949, 1950–

1959, 1960–1969, and 1970–1979 are labeled as 1940s, 1950s, 1960s, and 1970s respectively. We plotted the average

observed residual height for each decadal cohort by PGI bin, along with 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0294896.g004
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the average height of younger birth cohorts cannot be explained by observed genetic changes

in the population. As Fig 4 shows through the dashed lines corresponding with the right y-
axis, the average values of the (high and low) height PGI did not increase over time. Instead,

the younger birth cohorts exhibit a slightly smaller PGI value than the older birth cohorts, pos-

sibly due to sample selection and mortality effects among older participants [69]. To disentan-

gle potential age effects from birth cohort effects, S5 Table presents estimates from height

regressed on the standardized height PGI, birth cohort dummies, including five-year age bin

dummies. The results confirm a birth cohort effect on height that is separate from the genetic

influences on height and aging effects. This implies that the substantial gains in the average

height of the German population over time are partially due to improved environmental con-

ditions, such as better nutrition and health care [70–72].

A similar analysis for BMI (Fig 5) shows that individuals with an above-median PGI have,

on average, also a higher BMI (1.6 points higher for the High-PGI group in the non-residua-

lized results, 95% CI 1.04–2.17). The heritability and the predictive accuracy of the PGI are

lower for BMI than for height [2, 36]. Correspondingly, the average differences in BMI

between the low and the high PGI group are not statistically significant for all birth year

cohorts. Yet, similar to the analyses on height, we also observe birth cohort effects on BMI that

cannot be explained by observed genetic variation in the BMI PGI. Individuals born in the

youngest birth cohort (1980–1999, *31 years old) have an average BMI of 2.3 points lower

than those in the oldest birth cohort (1923–1939, *84 years old). The higher BMI in the older

birth cohorts is not due to observed genetic changes in the population over time. In fact, the

average PGI is slightly lower in the older birth cohorts than in the younger ones, possibly due

to sample selection and mortality effects among older participants [69]. S6 Table presents

regression results from a robustness check that also included 5-year age bins as control vari-

ables, again confirming birth cohort effects that cannot be explained alone by aging or

observed genetic variation. Thus, the higher BMI in the older birth cohorts is likely to be

Fig 5. Body mass index (BMI) by birth cohort and PGI values. Note: Using the single-trait polygenic index (PGI) for

BMI, we split the sample of adults (older than 20 years) into two parts at the median PGI value (High PGI:N = 683;

Low PGI:N = 775). Self-reported BMI is residualized for sex and survey year before being averaged across survey

waves. Each individual is assigned to a decadal cohort. Individuals born before between 1923 and 1939 are all in the

1930s cohort, while individuals born after 1980 are all in the 1980 group. Individuals born between 1940–1949, 1950–

1959, 1960–1969, and 1970–1979 are labeled as 1940s, 1950s, 1960s, and 1970s respectively. We plotted the average

observed residual BMI for each decadal cohort by PGI bin and 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0294896.g005
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caused by a combination of environmental effects such as differences in living conditions,

socio-economic effects [73], or nutrition [74] in addition to general effects from aging.

Polygenic indices as proxies for health

The broad set of PGIs we created is a valuable resource for research on inequalities in socioeco-

nomic and health outcomes. Previous research has demonstrated that the genetic architectures

of socioeconomic, behavioral, and health outcomes are often substantially overlapping [16, 40,

75]. This implies that PGIs for socio-economic or behavioral traits can also be proxies for

health outcomes.

This is demonstrated in Fig 6 which presents the effect size from regressions of self-rated

health on 28 single-trait PGIs (out of 55 tested single-trait PGIs overall) whose estimated stan-

dardized coefficients are greater than |±0.1| All regressions controlled for five-year age bins,

sex, and their interactions, and the first 20 genetic principal components. 18 PGIs are statisti-

cally distinguishable from zero after a Bonferonni correction for 55 tested hypotheses (marked

with *).
We find positive associations between self-rated health and PGIs for self-rated health, age at

first birth, educational attainment, subjective well-being, highest math class taken, religious

attendance, longevity, cognitive performance, physical activity, self-rated math ability, and age

at first menses. Furthermore, we find negative health correlations of the PGIs for externalizing,

depression, ADHD, number of children ever born, insomnia, neuroticism, smoking, and

being left out of social activities—all of which are PGIs for behavioral, social, or cognitive phe-

notypes. Moreover, the PGIs for BMI, high blood pressure, type 2 diabetes, large artery stroke,

triglycerides, and asthma all have the expected negative correlations with self-rated health.

Discussion

What are the main strengths and weaknesses?

Major strengths of the SOEP-G data include:

i. the sample selection, which yields the only currently genotyped sample that is representative

of the entire population in Germany;

ii. the longitudinal nature of the data with annual observations since 2011 (for a subset of indi-

viduals and phenotypes, annual observations even go back to 1998);

iii. the rich questionnaire content, including self-reported health outcomes and detailed infor-

mation on socio-economic status, living conditions, family dynamics, personality, prefer-

ences and attitudes is another major strength of the data;

iv. the possibility to use detailed geo-coding, standardized occupation codes, and links to

external databases such as the German Pension Insurance and the Employer-Employee

Study;

v. the broad set of state-of-the-art polygenic indices that we created, which lower the entry

barriers for researchers to use genetically informed study designs;

vi. the continuing annual collection of data that also allows researchers to integrate new sur-

vey modules, biomarkers, and experiments in the future by following the application pro-

cedures of the SOEP-IS management team [22];

vii. the household sampling procedure that collects data on all family members. The SOEP-G

sample contains 501 parent-offspring pairs, 152 parent-offspring trios, 107 full-siblings,
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and 12 second-degree relatives (including half-siblings) with matching self-reported and

genetically inferred relationships. This data structure enables genetically informed studies

on a wide range of research topics, including the intergenerational transmission of

inequalities in health and well-being, as well as studies that identify how environmental

factors such as parenting style influence the developmental trajectory of children and

youths;

viii. the availability of epigenetic data that in the near future will be added for a substantial

part of the SOEP-G sample, thus opening further research opportunities on the associa-

tions between social environment and physical health;

ix. the possibility to extend the collection of genetic data to all SOEP surveys, thus substan-

tially increasing the available sample size for genetically informed analyses.

Compared to other datasets that were included in the Polygenic Index (PGI) Repository of

the SSGAC [36], the SOEP-G is the only German sample, and it has the broadest coverage of

social scientific outcomes, many of which have been repeatedly collected over time. Although

the sample size of the SOEP-G is larger than several other studies included in the PGI Reposi-

tory (e.g. Dunedin, E-Risk, Texas Twins), we still caution that researchers using the data

should pay attention to statistical power in their analyses. In particular, the sample size may be

too limited for analyses of single genetic variants or sub-parts of the sample (e.g., specific age

groups or geographic areas). A further limitation is that a part of the sample (19%) did not

pass the strict quality control thresholds of genetic data that are usually employed in genetic

epidemiology (call rates> 95%). However, our mild-QC pipeline enables well-performing

PGIs in 2,495 individuals (96% of the successfully genotyped sample).

Fig 6. Associations between polygenic indices and self-rated health. Note: Analyses in the SOEP-G sample,

N = 2,060. Self-rated health is measured by a 5-point Likert scale where a 1 indicates poor health and a 5 indicates very

good health. Each self-rated health observation is regressed on five-year age-bin dummies, sex dummies, and the

interaction of sex and age-bin dummies. We take the estimated residual from the previous regression, compute the

average residual value for each individual, and regress each PGI along with 20 genetic principal components on these

residuals where each individual has one observation. The estimated standardized betas from each PGI are reported in

the figure. The figure represents 28 single-trait PGIs with an effect size greater than |±0.1|, out of 55 single-trait PGIs

overall. PGIs marked with an * are statistically distinguishable from zero after a Bonferonni correction. Error bars

represent a 95% confidence interval around the estimated beta for each PGI.

https://doi.org/10.1371/journal.pone.0294896.g006
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Another possible limitation is that the currently available health outcomes are limited in

detail and based on self-reports rather than detailed digital health records.

Future expansions of the collected health data, e.g., digital health records or extended health

surveys conducted by trained medical professionals, would further increase the utility of the

SOEP samples for epidemiological research. Furthermore, the resolution and completeness of

the collected genetic data could be improved further, e.g., by high-throughput sequencing

methods. We have stored residual DNA samples for this purpose. Access to those samples can

be requested via DIW Berlin.

Opportunities for future research

The genetic data we added to the SOEP-IS sample opens a broad range of opportunities for

future research. For example, social scientists and economists who are studying the effects of

environmental or policy changes on behavior or socio-economic outcomes can now use the

PGIs we constructed in the SOEP-IS to control for otherwise unobservable genetic confounds

(e.g., to estimate the returns to schooling) [12, 17] and to detect gene-environment interac-

tions (e.g., heterogeneous responses to policy interventions such as changes in tobacco taxes

on smoking behavior) [5, 16]. The PGIs can also be used as exogenously given proxies for out-

comes that do not change over the life course (e.g., to study genetic predisposition for health

on labor market outcomes) or as proxies for outcomes that are not observed in the SOEP-IS

data otherwise (e.g., blood pressure and triglycerides levels).

Furthermore, the family data structure in the SOEP-IS, in combination with PGIs, enables

new ways to study intergenerational transmission of inequalities in health and well-being as

well as studies that identify how environmental factors such as parenting style influence the

developmental trajectory of children [3, 76].
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