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Abstract
In the context of sequential treatment comparisons, the acquisition of covari-
ate information about the statistical units is crucial for the validity of the trial.
Furthermore, balancing the assignments among covariates is of primary impor-
tance, since the potential imbalance of the covariate distributions across the
groups can severely undermine the statistical analysis. For this reason, several
covariate-adaptive randomization procedures have been suggested in the liter-
ature, but most of them only apply to categorical factors. In this paper we
propose a new class of rules, called the Efficient Covariate-Adaptive Design,
which is high-order balanced regardless of the number of factors and their na-
ture (qualitative and/or quantitative), also accounting for every order covariate
effects and interactions. The suggested procedure performs very well, is flexi-
ble and simple to implement. The advantages of our proposal are also analyzed
via simulations and its finite sample properties are compared with those of
other well-known rules, by also including the redesign of a real clinical trial.

Keywords: Biased Coin Design, Markov chains, Minimization Methods, Stratified
Randomization.
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1 Introduction
From Fisher around 1930, randomization has been the fundamental tool to evaluate
the effects of two treatments, say A and B, that must be compared. Randomization
is now the gold standard for clinical experiments and its popularity is growing in ev-
ery applied field, since a random allocation to the different arms is recommended to
build a solid base for inference and make the treatment groups comparable (at least
asymptotically) with respect to unknown covariates, also mitigating the accidental
bias due to unknown confounders and the selection bias induced by the investigators.
At the same time, from the inferential viewpoint balance is universally optimal un-
der the linear homoscedastic model assumptions (see for a review Baldi Antognini
and Giovagnoli (2015)). To obtain a valid compromise between balance and random-
ness, Efron (1971) introduced his well-known Biased Coin Design (BCD), namely a
sequential allocation rule favoring at each step the under-represented treatment. By
selecting the difference Dn between the assignments to A and B as the imbalance
measure after n allocations, Efron’s rule randomizes the (n+ 1)th patient to A with
probability hE(Dn), where

hE(x) = 1/2− sgn(x) (ρ− 1/2) with ρ ∈ (1/2; 1).

The peculiarities of this proposal are that hE(·) is decreasing with hE(x) = hE(θx)
for any θ > 0. Under Efron’s coin, {Dn}n∈N is an irreducible and positive recurrent
Markov chain and so it is bounded in probability, namely Dn = Op(1). This guar-
antees the highest order of convergence with respect to the other BCDs proposed by
Wei (1978), Atkinson (1982) and Smith (1984a,b), that are based on continuous ran-
domization functions - in place of hE(·) - applied to imbalance measures re-scaled
by n (like, e.g., n−1Dn), under which Dn = Op(

√
n).

However, in the large majority of comparative trials, patients’ heterogeneity is
taken into account by including covariates/prognostic factors in the design phase as
well as in the analysis and one of the fundamental goals consists in generating com-
parable groups with respect to the chosen set of covariates. Although sometimes
vague in practice, the concept of covariate balance should provide treatment arms as
much as possible homogeneous in terms of the covariate distribution. This enhances
the credibility of the analysis, making it more robust against model misspecification,
since a significant degree of covariate imbalance could severely undermine the infer-
ential efficiency about the treatment effects. This demand is particularly cogent for
sequential experiments, where keeping a reasonable degree of balance at any time
could allow to stop the experiment under an excellent inferential setting. Even if bal-
ance is commonly considered desirable from several viewpoints, its mathematical
justification is strictly related to the linear homoscedastic model. Indeed, suppose that
for each statistical unit we observe a p-dim vector Z = (Z1, . . . , Zp)

t of covariates
assumed to be random but measurable before the treatment assignments. Suppose
that n allocations of either treatment A or B have been made to patients with inde-
pendent and identically distributed covariates Z1, . . . ,Zn ∼ L(z), where L denotes
their common p-variate (joint) probability distribution/density function. Moreover,
assume that the outcomes Yn = (Y1, . . . , Yn)

t follow (at least approximately) the
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linear model:

E(Yn) = δnµA + (1n − δn)µB + Fnβ, var(Yn) = σ2In, (1)

where In and 1n denote the n−dim identity matrix and the n-dim (column) vector of
ones, δn = (δ1, . . . , δn)

t is the allocation, with δi = 1 if the ith subject is assigned to
A and 0 otherwise, β is a q-dim vector of covariate effects, Fn = [f(Z)t] with f(·)
a known q-dim vector function (usually f(Z) = Z, but it may also include higher
order terms or interactions among the covariates so that, in general, q ≥ p) and σ2

is the common variance. Since model (1) does not account for treatment-covariate
interaction, it is customary to regard β as a nuisance parameter and the inferential
goal lies in estimating µ = (µA; µB)

t or µA − µB as precisely as possible. Let

f̄n = n−1Ft
n1n and An = n−1Ft

nFn, if Pn =

(
1 f̄ tn
f̄n An

)
is non-singular, from the

optimal design theory the design efficiency for estimating µ with respect to both A
and D-optimality is 1 − n−1ℓn, where ℓn = n−1bt

nP
−1
n bn represents the loss of

estimation precision induced by the covariate imbalance after n assignments, while
bt
n = (Dn; (2δn − 1n)

tFn) is the so-called imbalance vector. Thus, the estimation
efficiency depends on the design only through the loss and it is maximized when ℓn =
0. The same conclusion holds when the inferential interest lies in estimating/testing
the treatment difference µA − µB ; indeed, the design efficiency is still 1 − n−1ℓn
and the power of the Wald statistic for testing H0 : µA = µB vs H1 : µA ̸= µB is
maximized when ℓn = 0 (see Appendix A.1).

Several allocation rules have been suggested for balancing the treatments among
the set of covariates of interest, while preserving a randomization component in
the assignments. Following Rosenberger and Lachin (2002), these procedures fall
into the class of Covariate-Adaptive (CA) randomization, since the allocation prob-
ability at each step depends on the assignments and the covariates of previous
subjects and on the current patient’s profile. Inspired by Wynn’s algorithm for the
sequential construction of D-optimal designs, Atkinson (1982) introduced his DA-
BCD by assuming that the probability of assigning A to the (n + 1)th unit with
profile zn+1 is a continuous and decreasing function of the imbalance measure
n−1 (1; f(zn+1)

t)P−1
n bn (see Begg and Iglewicz (1980) and Smith (1984a,b)).

Even if it accounts for any type of covariates, the DA-BCD is quite complex and the-
oretical results are available only for categorical factors, where the stratum imbalance
process is of order Op(

√
n) (Baldi Antognini and Zagoraiou, 2017).

In the presence of solely categorical covariates, stratified randomization and
marginal procedures were introduced to achieve stratum and marginal balance, re-
spectively. The former generates a separate randomization sequence within each
stratum, so each subject is randomized according to the evolution of the allocations
of his/her profile. If employed via Efron’s coin, the stratum imbalance process is
still bounded in probability (Baldi Antognini and Zagoraiou, 2011), guaranteeing a
higher order of convergence with respect to the DA-BCD. However, stratified meth-
ods are less efficient in the presence of a large number of factors/levels; in such a case,
marginal procedures are particularly effective, since they are intended to achieve the
less restrictive requirement of marginal balance (Taves, 1974; Pocock and Simon,
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1975; Wei, 1978; Heritier et al, 2005). When a subject is ready to be randomized,
a weighted sum of all marginal imbalances corresponding to his/her profile is com-
puted, then the allocation is forced to the under-represented treatment (for instance,
by using Efron’s coin as in Pocock and Simon (1975)). By combining marginal pro-
cedures and stratified randomization, Hu and Hu (2012) proposed a family of CA
rules under which the allocations are randomized according to hE(·) applied to an
overall imbalance measure that weighs the roles of the global, marginal and stra-
tum imbalances. Under restrictive and hard to check conditions on the weights, the
stratum imbalance process is shown to be bounded in probability.

A critical aspect of stratified randomization, marginal procedures and Hu and
Hu’s rule is that they can only be applied to categorical covariates, so quantitative fac-
tors must be discretized. Besides the potential bias induced by the subjective choice
of the thresholds, discretization generally induces a consistent loss of precision, es-
pecially when the covariate distribution is unknown (Atkinson, 2002). As also stated
by Ciolino et al (2011) “attempts should be made to balance known prognostic con-
tinuous covariates at the design phase”. The literature about CA rules for continuous
covariates is quite limited, even more so for the mixed scenario of qualitative and
quantitative factors, and most of the existing works assess the performance of the
proposed procedures only by simulations. One of the few exceptions is the reran-
domization (RR) suggested by Morgan and Rubin (2012) for continuous or binary
covariates: by assuming the Mahalanobis distance as the imbalance measure, RR
repeatedly randomizes the units via complete randomization until the imbalance is
lower than a prefixed threshold. Although introduced in the context of causal in-
ference for non-sequential experiments (with all units immediately available before
randomization), RR has been later generalized in a group sequential fashion (Zhou
et al, 2018).

The aim of this paper is to introduce a new class of CA randomization rules,
the Efficient Covariate-Adaptive DEsign (ECADE), to cope with imbalances in the
allocations of two competing treatments that i) can be applied to qualitative and/or
quantitative factors, ii) is high-order balanced, that ensures excellent performance in
terms of inferential precision and iii) is simple to implement and performs very well
even in the presence of a large number of covariates. In particular, the ECADE is
based on the sequential minimization of a suitably chosen weighted Euclidean norm
of the imbalance vector. We theoretically prove that the underlined imbalance pro-
cess is a Markov chain bounded in probability and preserves the order of Op(1),
regardless of the nature of the chosen covariates. This guarantees that the loss of es-
timation efficiency as well as the Mahalanobis distance (which are asymptotically
equivalent) tend to zero asymptotically, independently of the number of considered
factors. According to the choice of the weights and the allocation function, interest-
ing cases of the ECADE are investigated and already existing designs are retrieved
as special cases, which also allows to simplify some strict conditions in Hu and Hu
(2012). Furthermore, we perform a simulation study and we redesign a real clinical
trial to stress the validity of our theoretical results and to compare the finite sample
properties of the ECADE with those of other well-known CA procedures. Starting
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from some preliminaries in Section 2, Section 3 introduces the ECADE and its the-
oretical properties. Section 4 deals with the finite sample comparisons between CA
rules taking also into account the group sequential RR and Section 5 reports the re-
design of a real study. Section 6 discusses some practical implications while all the
proofs can be found in the Appendix.

Throughout the paper, Jn is the n−dim exchange matrix (with 1 on the anti-
diagonal and 0 elsewhere), while 0n is the n-dim vector of zeros. Given a n-dim
vector x and a n-dim matrix W symmetric and positive-definite, ∥x∥W =

√
xtWx

is the weighted Euclidean norm of x with respect to W; if W = In we simply let
∥x∥ be the Euclidean norm, while ∥x∥∞ = maxi=1,...,n |xi| is the infinity norm.
Moreover, let E be an event and Ec its complement, I{E} is the indicator function
of E, ⊗ is the Kronecker product, while e1, e2, . . . are the canonical basis.

2 Covariate balance and imbalance measures
Even if the concept of covariate balance is sometimes vague, from an inferential
viewpoint its meaning, as well as its implications, are linked on the model assump-
tions. Let nA =

∑n
i=1 δi and nB = n − nA be the assignments to A and B after n

steps, then bt
n = (Dn; (nAf̄

A
n − nB f̄

B
n )t), where f̄An and f̄Bn are the vectors of the

sample means of f(Z) in the two groups, and

ℓn = n−1∥bn∥2P−1
n

= n−1∥nAf̄
A
n −nB f̄

B
n ∥2

A
−1
n
+

[
Dn − (nAf̄

A
n − nB f̄

B
n )tA−1

n f̄n
]2

n
(
1− ∥̄fn∥2

A
−1
n

) .

(2)
Ideally, ℓn = 0 for any sample size n, but this requirement is extremely stringent,
especially when p is large, since it involves the finite sample distributions of the co-
variates through the random entry of the subjects, as well as the random allocations of
the treatments. Indeed, besides the global balance Dn, the form of the imbalance vec-
tor depends on both the nature of the covariates and the model assumptions via f(·).
For quantitative factors, if f(Z) = Z then nAf̄

A
n − nB f̄

B
n simply denotes the vector

of the difference between the covariate sums in the two groups; while in the presence
of interactions, it also accounts for the difference between the cross-products in the
treatment arms. As regards qualitative factors, when f(Z) = Z, nAf̄

A
n − nB f̄

B
n is

the vector of the marginal imbalances of the covariates at each of the non-reference
categories; while in the presence of interactions nAf̄

A
n − nB f̄

B
n also accounts for

the stratum imbalances. The mixed case, namely when some covariates are qualita-
tive and other quantitative, could be naturally encompassed by combining the two
previously discussed scenarios.

A design which is covariate-balanced, namely such that

bn = 0q+1 ⇔ Dn = 0 and f̄An = f̄Bn , (3)

is optimal for model (1) and it is still optimal for the linear model that accounts for
treatment-covariate interactions (Baldi Antognini and Zagoraiou, 2011, 2012). For
quantitative factors, when f(Z) = Z condition (3) corresponds to the equality of



Springer Nature 2021 LATEX template

6 The ECADE for high-order balancing of covariates

the sample covariate means in the two groups and, if we also consider first-order
interactions, it means equal covariances in the treatment arms. Condition (3) leads
to the equality of all the empirical moments as the model complexity grows. For
categorical factors, with no interactions among covariates condition (3) states that
A and B are equally replicated at every level of each blocking factor (the marginal
balance LA

n (Zk) = LB
n (Zk) for k = 1, . . . , p); while if the model is full (namely with

main effects and interactions of all orders), A and B should be equally replicated also
within every stratum, leading to LA

n (Z) = LB
n (Z).

Remark 1 Assuming E [f(Z)] = µf < ∞ and E
[
f(Z)f(Z)t

]
= limn→∞An = A non-

singular, from the strong law of large numbers

lim
n→∞

Pn = P =

(
1 µt

f
µf A

)
a.s. (4)

regardless of the chosen design. When f(Z) = Z, An is the sample second moment matrix
of the covariates; thus, (4) holds withA = V + µfµ

t
f , whereV = var(Z) .

Even if the loss plays a primary role, other scalar measures of overall covariate
imbalance have been proposed in the literature. These indicators usually combine
the observed imbalances in all the considered factors by taking into account their
specific relevance in the trial, the nature of the covariates (categorical/quantitative)
and, eventually, their dependence structure. For instance, in the case of qualitative
covariates Hu and Hu (2012) assumed a weighted mean of the global imbalance, the
marginal imbalances and the stratum one. Whereas in the context of RR for causal
inference, Morgan and Rubin (2012) chose the Mahalanobis distance between the
covariate means in the two groups as the overall measure of covariate imbalance,
namely Mn = (̄fAn − f̄Bn )tvar(̄fAn − f̄Bn )−1(̄fAn − f̄Bn ) = n−1nAnB ∥̄fAn − f̄Bn ∥2

A
−1
n

.

Remark 2 As in the original framework of Morgan and Rubin (2012), by assuming that all units
and their covariates are immediately available before randomization and setting in advance
nA = nB , if f(Z) = Z then Mn corresponds to a simplified version of the loss. Indeed, in
a finite set up with a prefixed n, by centering the covariates we obtain f̄n = 0q so that, from
(2), ℓn = n−1[D2

n + ∥nA f̄An − nB f̄Bn ∥2
A

−1
n

] and thus ℓn = Mn when Dn = 0. The same
holds asymptotically, where ℓn is equivalent to Mn provided that Dn vanishes as n grows;
indeed, for centered covariates µf = 0q and, from (4), ∥bn∥2P−1

n
could be approximated by

D2
n + ∥nA f̄An − nB f̄Bn ∥2V−1 (if V is singular, V−1 can be replaced by its pseudo-inverse),

so that ℓn ≈ n4−1∥̄fAn − f̄Bn ∥2V−1 . Moreover, ℓn and Mn could be asymptotically equivalent
also in a sequential framework (see Theorem 1).

3 The Efficient Covariate-Adaptive Design
If a design is covariate-balanced then every measure of imbalance vanishes. Whereas,
for a properly chosen imbalance measure it is possible to implement a sequen-
tial strategy that is nearly balanced for every sample size, guaranteeing a high
order of convergence. In particular, we introduce a new class of CA rules, called
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the Efficient Covariate-Adaptive Design, based on the sequential minimization of
∥bn∥2W, where W is a symmetric and positive-definite weight matrix. Let ℑn be the
sigma-algebra generated by the first n assignments δn and covariates Z1, . . . ,Zn

(with ℑ0 the trivial sigma-field). When the (n + 1)th subject with profile zn+1

is ready to be randomized, we calculate the potential imbalances ∥b(A)
n+1∥2W and

∥b(B)
n+1∥2W corresponding to an allocation to A or B, respectively. Since b

(A)
n+1 =

bn+(1; f(zn+1)
t)t and b

(B)
n+1 = bn−(1; f(zn+1)

t)t, then ∥b(A)
n+1∥2W−∥b(B)

n+1∥2W =
4(1; f(zn+1)

t)Wbn and the ECADE randomizes this subject according to

Pr(δn+1 = 1 | ℑn,Zn+1 = zn+1) = h
(
(1; f(zn+1)

t)Wbn

)
, (5)

where h : R −→ (0, 1) is a decreasing and symmetric function, with h(x) = 1 −
h(−x), and it is strictly decreasing at 0.

Remark 3 Since W is symmetric and positive-definite, then ∥bn∥2W is a vector norm and
therefore ∥bn∥2W = 0 if and only if bn = 0q+1 (while the less stringent requirement of
W positive-semidefinite induces only a semi-norm, so ∥bn∥2W could vanish also when bn ̸=
0q+1).

The ECADE is extremely flexible. Besides extending Efron’s allocation func-
tion, h(·) can be appropriately set to meet the desired degree of randomness of the
specific clinical study. For instance, h(x) could be modeled as a function of the cdf
of a normal distribution as we will discuss in Section 5. Moreover, W can be cho-
sen according to specific demands on the desired imbalance measure (related for
instance to the relevance of the considered factors and their dependence structure).
Clearly, the adopted weighted matrix naturally induces a corresponding overall im-
balance. For instance, by letting W = Iq+1, the ECADE sequentially minimizes the
Euclidean norm of bn, which essentially corresponds to the proposal of Begg and
Iglewicz (1980) for binary factors. When the covariate distribution is a-priori known,
by settingW = P−1 the imbalance measure coincides with the one in Smith (1984a).
Moreover, the ECADE can also accommodate the case in which the weights could
change step by step (namely, assumingW :=Wn), as the following Example shows.

Example 1 By letting W = P−1
n+1, the ensuing imbalance measure is proportional to the

difference among the potential losses induced by assigning the (n+ 1)th subject to A and B,
respectively. Indeed, ℓ(A)

n+1 − ℓ
(B)
n+1 = 4(n+ 1)−1(1; f(zn+1)

t)P−1
n+1bn since, from (2),

ℓ
(A)
n+1 =(n+ 1)−1

{
bt
nP−1

n+1bn + 2(1; f(zn+1)
t)P−1

n+1bn + (1; f(zn+1)
t)P−1

n+1(1; f(zn+1)
t)t

}
,

ℓ
(B)
n+1 =(n+ 1)−1

{
bt
nP−1

n+1bn − 2(1; f(zn+1)
t)P−1

n+1bn + (1; f(zn+1)
t)P−1

n+1(1; f(zn+1)
t)t

}
.

Although apparently similar to Atkinson’s rule (for which W = P−1
n ), the ECADE is struc-

turally different since i) the DA-BCD does not employ the knowledge of the covariate profile
zn+1 of the (n+1)th unit to update Pn and ii) the ECADE randomizes the assignments based
on (1; f(zn+1)

t)P−1
n+1bn, thus the scaling constant n−1 in Atkinson’s imbalance measure
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has no role. For these reasons, the ECADE guarantees a faster convergence to balance with
respect to the DA-BCD, as we will show theoretically and via simulations.

We now explore the probabilistic properties underlining the ECADE, showing
in particular that {bn}n∈N is a Markov process bounded in probability with bn =
Op(1), which implies that both ℓn and Mn vanish asymptotically. To derive the the-
oretical properties of our proposal, the cases of qualitative and quantitative covariates
are treated separately. The extension to the mixed scenario is straightforward.

3.1 Properties of the ECADE for qualitative covariates
To derive the theoretical properties of the ECADE in the case of qualitative factors,
we consider a vectorized notation for the strata. In particular, assuming sk levels for
the kth covariate, the combination of each level of every covariate generates s =∏p

k=1 sk different strata (denoted by j = 1, . . . , s). At step i, let xi = (xi1, . . . , xis)
t

denote the stratum-indicator vector, where xi = ej if and only if the ith unit belongs
to stratum j. Let p = (p1, . . . , ps)

t be the probability distribution over the strata,
where we assume pj > 0 for every j = 1, . . . , s (otherwise a given stratum could be
excluded) and set P = diag(p). After n steps, Nnj =

∑n
i=1 xij and p̂nj = n−1Nnj

denote the number and the percentage of subjects within the jth stratum, respectively,
while Dnj = 2

∑n
i=1 δixij − Nnj is the corresponding imbalance; also, let Dn =

(Dn1, . . . , Dns)
t, p̂n = (p̂n1, . . . , p̂ns)

t and P̂n = diag(p̂n). For any specification
of f(Z), there exists a unique {0; 1}-matrix H̃ such that E[f(Z)] = H̃p; let Ht =
(1s; H̃

t), then H is a (q + 1) × s matrix with full (row) rank, so bn = HDn,
(1; f(zn+1)

t)t = Hxn+1 and Pn = HP̂nH
t.

Example 2 Let Z = (Z1, Z2) binary with levels {zi0, zi1} for Zi (i = 1, 2), generating s = 4
strata. By considering (z10, z20) as the first stratum, (z10, z21) as the second one, (z11, z20),
as the third one and (z11, z21) as the fourth stratum, then Dn = (Dn1, Dn2, Dn3, Dn4)

t and

i) if f(Z) = Z (namely q = 2), then bt
n = (Dn, Dn(z11), Dn(z21)) and H̃ =

(
0 0 1 1
0 1 0 1

)
,

ii) if f(Z) = (Z1, Z2, Z1 · Z2)
t, then bt

n = (Dn, Dn(z11), Dn(z21), Dn(z11, z21)) and

H̃ =

 0 0 1 1
0 1 0 1
0 0 0 1

 ,

where Dn(z11) =
∑n

i=1(2δi − 1)I{Z1i = z11} and Dn(z21) =
∑n

i=1(2δi − 1)I{Z2i =
z21} denote the marginal imbalances at the non-reference categories z11 and z21, while
Dn(z11, z22) = Dn4 =

∑n
i=1(2δi − 1)I{Z1i = z11, Z2i = z21} is the corresponding

stratum imbalance.

When the (n + 1)th unit falling into the jth stratum is ready to be randomized,
allocation rule (5) is h(etjH

tWHDn), namely it depends on the jth component of
HtWHDn.
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Proposition 1 Under the ECADE, D0 = 0s and Dn+1 = Dn + (2δn+1 − 1)xn+1 a.s. for
every n, so {Dn}n∈N is a Markov chain on Zs with transition probability

Pr(Dn+1 = y′ | Dn = y) =

{
pjh(e

t
jH

tWHy), y′ = y + ej

pj [1− h(etjH
tWHy)], y′ = y − ej ,

(6)

for j = 1, . . . , s. Thus, {Dn}n∈N is irreducible and periodic, with period 2.
Moreover, b0 = 0q+1 and bn+1 = bn + (2δn+1 − 1)Hxn+1 a.s. for every n; thus,

{bn}n∈N is a Markov chain on B = {y ∈ Zq+1 : y = Hx, with x ∈ Zs} with transition
probability

Pr(bn+1 = y′ | bn = y) =

{
pjh(e

t
jH

tWy), y′ = y +Hej

pj [1− h(etjH
tWy)], y′ = y −Hej ,

for j = 1, . . . , s; thus, {bn}n∈N is irreducible and periodic, with period 2.

The main properties of the ECADE are given in the following Theorem.

Theorem 1 For qualitative covariates, under the ECADE the irreducible Markov chain
{Dn}n∈N is bounded in probability and thus Dn = Op(1); therefore, bn = Op(1) and
∥bn∥2W = Op(1), while the loss ℓn and the Mahalanobis distance Mn are asymptotically
equivalent with an order of convergence op(1).

The proof can be found in Appendix A.2.
As shown in Example 1, the ECADE withW = P−1

n+1 sequentially minimizes ℓn.
In such a case HtWHDn = [Ht[HP̂n+1H

t]−1HP̂n+1]P̂
−1
n+1Dn, namely it is sim-

ply a projection of P̂−1
n+1Dn = (Dn1/p̂n+1,1, . . . , Dns/p̂n+1,s)

t. Moreover, when
the linear model is full H is non singular and Ht[HP̂n+1H

t]−1HP̂n+1 = Is for ev-
ery n; thus, adopting ECADE with the allocation function hE , both choices W =
P−1
n+1 and W = P−1

n correspond to the same stratified randomization performed via
Efron’s BCD, since hE(e

t
jP̂

−1
n+1Dn) = hE(e

t
jP̂

−1
n Dn) = hE(e

t
jDn). In this set-

ting, at each stratum {Dnj}n∈N is an irreducible and bounded in probability Markov
chain on Z (j = 1, . . . , s) and, from (2), ℓn = n−1Dt

nH
t[HP̂nH

t]−1HDn =
n−1Dt

nP̂
−1
n Dn =

∑s
j=1 D

2
nj/Nnj = op(1).

The next result provides the condition under which the imbalance vector and the
stratum imbalance are still bounded in probability even if the weight matrix changes
at each step of the sequential procedure.

Theorem 2 Let {Wn}n∈N be a sequence of symmetric and positive-definite matrices such
that limn→∞Wn = W a.s. (with W symmetric and positive-definite). Thus, Dn = Op(1)
and bn = Op(1), so that ∥bn∥2W = Op(1), while ℓn and Mn are both op(1).

The proof is reported in Appendix A.3.

Remark 4 Hu and Hu (2012)’s procedure randomizes the assignments through hE(·) by using
as imbalance measure a weighted average of the global, marginal and stratum imbalances for
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each profile. Thus, their procedure can be derived as a special case of the ECADE by settingW
such that HtWH = U, where U is defined in equation (6.2) of Hu and Hu (2012), provided
that U is positive-definite. Clearly, this condition is not generally satisfied by any possible
choice of their weights. For instance, taking into account the case of two binary covariates as
in Section 3 in Hu and Hu (2012), U is a block centrosymmetric matrix of the form U =
I2 ⊗U1 + J2 ⊗U2, with

U1 =

(
1 w0 + wm1

w0 + wm1 1

)
, and U2 =

(
w0 + wm2 w0

w0 w0 + wm2

)
,

where w0 is the weight of the global balance, while wm1 and wm2 are the marginal weights
of the two covariates. From the properties of centrosymmetric matrices, U is positive-definite
if and only if the two matrices U1 ± J2U2 are both positive-definite, namely if and only
if (1 − w0)

2 > (wm1 − wm2)
2 and 1 > w0 + wm1 + wm2. Since the stratum weight

ws = 1−w0+wm1+wm2, a necessary condition is that ws > 0 and, assuming wm1 = wm2

as in Corollary 3.1 in Hu and Hu (2012), ws > 0 is also sufficient to guarantee the positive-
definiteness ofU. Thus, our Theorem 1 relaxes the quite restrictive conditions (B) of Theorem
3.1 and (B’) of Corollary 3.1 (and so (C) of Theorem 3.2 and (C’) of Corollary 3.2) in Hu
and Hu (2012). Essentially, with more than six covariates, condition (C) implies that ws → 1,
namely Hu and Hu’s rule corresponds to a stratified randomization performed via Efron’s BCD.

3.2 Properties of the ECADE for quantitative and mixed
covariates

Let now Z be a vector of quantitative covariate and assume that the (joint) density
L(z) is defined on Rp. The following Theorem shows that {bn}n∈N is bounded in
probability.

Theorem 3 For quantitative covariates, under the ECADE {bn}n∈N is a Markov chain on
Z×Rq with

b0 = 0q+1 and bn+1 = bn + (2δn+1 − 1)(1; f(Zn+1)
t)t a.s. for every n. (7)

Moreover, if limx→∞ h(x) = e ∈ (0, 1/2), then {bn}n∈N is bounded in probability, so that
bn = Op(1) and therefore ∥bn∥2W = Op(1), while ℓn = op(1) and Mn = op(1). This
result still holds even if W is replaced by a sequence {Wn}n∈N of symmetric and positive-
definite matrices, provided that limn→∞Wn =W a.s.

For the proof see Appendix A.4.
From Theorem 3, we need to impose a mild restriction of the codomain of the

allocation function to guarantee the boundedness in probability of the imbalance
vector. While hE directly guarantees boundedness, a general allocation function h
can be suitably rescaled to satisfy this additional condition by setting, for instance,
he(x) = e+ (1− 2e)[1− h(x)].

Moreover, Theorem 3 could be naturally extended to the case of mixed covariates,
where p1 qualitative factors are combined with p2 quantitative ones (with p1 + p2 =
p). In such a case, {bn}n∈N is a Markov chain on Z1+q1 ×Rq2 , where q1 and q2 are
the transformed dimensions via f(·) of the two blocks of covariates (with q1+q2 = q).
Clearly, the transition in (7) still holds, so that {bn}n∈N is bounded in probability.
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4 Finite sample properties and comparisons
In this section, an extensive simulation study is performed to illustrate the properties
of the ECADE with W = P−1

n+1 aimed at minimizing the loss (ECADEℓ), also com-
pared with other CA rules. Adopting model (1), we denote by ME the model with
only the main effects, namely with f(Z) = Z, while MI accounts for first order
interactions. We stress that every categorical covariate with k levels is represented
by a vector of k − 1 dummies. The procedures are compared in terms of the simu-
lated averages of ℓn and Mn in the case of qualitative covariates (Section 4.1) and
quantitative/mixed factors (Section 4.2), while Section 4.3 points out the impact of
the discretization of quantitative covariates. In all the scenarios, we perform 10000
Monte Carlo replications of the trial. For consistency in the comparisons, in this
section the simulations of the ECADE have been run by setting h = hE ; since a value
ρ ∈ [0.8, 0.95] has been suggested for covariate adaptive randomization (Weir and
Lees, 2003; Hu and Hu, 2012; Ma and Hu, 2013), in what follows we adopt ρ = 0.85.

4.1 Simulation results for qualitative covariates
The ECADE is compared to Atkinson’s DA-BCD (DA), the minimization method of
Pocock and Simon (1975) (PS), the Covariate Adaptive BCD (CABCD) suggested
in Baldi Antognini and Zagoraiou (2011) with allocation function F (x) = (x5 +
1)−1 for x ≥ 1, and the CA rule of Hu and Hu (2012) (HH). In the case of binary
factors, we also consider the group sequential RR proposed by Zhou et al (2018):
as suggested in their Supplementary Material, we set the total expected number of
rerandomizations equal to 2000, while each group contains 50 experimental units.
Concerning HH, as in Section 4.3 of Hu and Hu (2012) we fix w0 = ws = 1/3
and equal marginal weights. We assume Z1, . . . , Zp independent, each of them with
equiprobable levels, inducing the uniform distribution p = s−11s over the strata.

The first study concerns n = 400 and p = 3 covariates Z = (Z1, Z2, Z3)
t, one

binary and the others with three levels, generating s = 18 strata. The behavior of the
simulated averages of ℓn and Mn is displayed in Figure 1 under models ME and MI .

For both ℓn and Mn, the ECADEℓ represents the best choice, regardless of
the chosen model. HH rule always guarantees good performances, although its loss
is higher than the one of the ECADEℓ. Given the small number of covariates, the
CABCD performs quite good and under MI it is the second best procedure for
n ≥ 150. Atkinson’s rule presents a quite stable behavior: from around n = 100,
its expected loss is very close to the corresponding theoretical value (q + 1)/5. As
expected, PS performs very well under ME , whereas its performance deteriorates
dramatically when the model complexity increases (the values of the expected loss
are more than ten times higher than those of the ECADEℓ under MI , with n = 400).
As discussed in Theorem 1, the Mahalanobis distance is asymptotically equivalent to
the loss, so Mn confirms the same conclusions of ℓn.

Let us now consider the case of p = 10 binary covariates, inducing 1024 strata.
Figure 2 shows the simulated averages of ℓn and Mn under models ME and MI with
n = 1000. Due to the large number of strata, the CABCD presents the worst perfor-
mance with respect to the other CA rules: as expected, the stratified randomization
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hardly evolves with a very small number of subjects in each stratum. Moreover, the
inadequacy of PS in the presence of interactions among the covariates is confirmed
and the expected loss of the DA-BCD is quite large and does not vanish.

Figure 1: Simulated averages of ℓn and Mn for three categorical covariates under
models ME and MI .

Under ME , the expected loss of the ECADEℓ, PS and HH present a quite similar
behavior, but the ECADEℓ is still the best performing rule, showing values more than
three times smaller than those of HH. Under MI , the ECADEℓ results in a remarkable
gain in terms of ℓn. For n = 400, the expected loss of HH is more than five times
higher than that of the ECADEℓ and it goes up to ten times higher when n = 1000.
As regards RR, the peculiarity of the plots stems from its group sequential nature.
As discussed in the Supplementary Material of Zhou et al (2018), RR is known to
perform well as long as some continuous covariates are present; indeed, our results
show that RR may suffer from the presence of solely binary factors, especially either
for small sample sizes and/or as the model complexity grows.

4.2 The case of quantitative or mixed covariates
For quantitative factors, we take into account a trial with n = 600, where the
ECADEℓ is compared to the DA-BCD and the sequential RR. In addition, we
consider the kernel (KER) procedure introduced by Ma and Hu (2013), aimed at
minimizing the difference between the covariate densities in the treatment arms. By
using a kernel estimation method, the authors consider an imbalance measure which



Springer Nature 2021 LATEX template

The ECADE for high-order balancing of covariates 13

Figure 2: Simulated averages of ℓn and Mn for ten binary covariates under models
ME and MI .

is a weighted average of the estimated distributional imbalances and the assignments
are randomized via hE(·). Following the authors’ suggestion, we set equal weights
for each factor and the covariates are re-scaled at each step on the basis of previously
observed profiles, in order to have (asymptotically) the same unitary variance.

We first consider the case of p = 3 quantitative covariates Z = (Z1, Z2, Z3)
t, as-

sumed to be independent and normally distributed with means (3, 1, 2)t and standard
deviations (2, 0.5, 1.5)t. The behavior of the competing CA rules is shown in Figure
3. Also for quantitative factors, the ECADEℓ tends to be the best procedure, regard-
less of the model and the chosen imbalance measure and RR performs similarly. KER
has quite low values of the expected loss for ME , while under MI its performance
dramatically worsen. As expected, under DA-BCD the expected loss does not vanish.
Again, Mn essentially presents the same behavior of ℓn.

By combining the previously discussed scenarios, we now take into account six
covariates, three of them qualitative (one binary and the others having three levels)
and three normally distributed factors. The simulated averages of ℓn and Mn are
shown in Figure 4 with n = 800. The ECADEℓ is still the best procedure; the KER
presents low values of both ℓn and Mn for the empty model, while its performance
worsen in the presence of interactions among covariates. For the DA-BCD, similar
considerations of the case of three quantitative covariates still hold.
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Figure 3: Simulated averages of ℓn and Mn for p = 3 quantitative covariates under
models ME and MI .

Figure 4: Simulated averages of ℓn and Mn for p = 6 mixed covariates under models
ME and MI .
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4.2.1 The effect of model misspecification

The relationship between covariates and the response variable is generally unknown
in practice so it is important to assess the performance of our design in the case
of model misspecification. The misspecification is accounted for by not including
one or more covariates and/or not including one or more covariate effects. We run a
simulation study in which we also considered comparison with other procedures. We
first run the clinical trial adopting the true model and we compute ℓn and Mn. Then,
we simulate the same clinical trial adopting the misspecified model, which generates
a different allocation vector, say δMn so a different imbalance vector, say bM

n , at
the end of the trial. Then the loss under the misspecified model ℓMn is computed
adopting bM

n as n−1(bM
n )tP−1

n bM
n and the same principle is applied for computing

MM
n . We consider a clinical experiment including six covariates: three binary and

three continuous (with the same parameter specification of Section 4.2). In scenario
I, the true model is such that f(Z) = Z (i.e. p = 6), while the misspecified one
considers only four covariates: two binary and two continuous (so that p = 4). In
scenario II the true model includes the main effects for all the six covariates, first
order interactions among the three binary variables and quadratic effects for two of
the three quantitative factors, while the adopted misspecified model is the one with
f(Z) = Z. The results are reported in Figure 5.
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Figure 5: Simulated averages of ℓn, Mn, ℓMn and MM
n for Scenario I and II. The

behaviour of the considered procedures under the misspecified model is denoted by
the superscript M .
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As regards scenario I, the ECADE shows a milder inflation in the loss and Maha-
lanobis distance with respect to the other procedures, with values of ℓn and Mn that
tend to be close to those of the DA-BCD and Ker under a correct model specification.
In Scenario II, the case of a more severe misspecification, the differences between
ℓn and ℓMn (as well as between Mn and MM

n ) are more pronounced. However, the
ECADE guarantees better performances also in this experimental setting, with val-
ues of ℓM400 equal to around half of those under the DA design and to around 60% of
those under the Ker procedure, respectively. Finally, it is worth noticing that under
model misspecification, the loss and Mahalanobis distance of the Ker procedure are
increasing with n and do not seem to reach a limiting value even for n = 400.

4.3 The effect of categorizing quantitative covariates
Due to the lack of CA rules aimed at achieving balance among continuous covari-
ates, a common practice is to breakdown the factors into subcategories, which may
strongly affect the loss of inferential precision (Atkinson, 2002; Ciolino et al, 2011;
Ma and Hu, 2013). In particular, the impact of the discretization is related to the way
in which the covariates are categorized (namely, the chosen cut-offs) and the knowl-
edge of their generating distribution. In general, an inflated loss can be avoided only
when the covariate distribution is a-priori known, so it is customary to choose the
median for dichotomizing the factors.

To show the impact of the discretization of covariates in terms of loss, also com-
pared with CA rules that account naturally on mixed factors, we perform a simulation
study under the previously discussed scenario with p = 3 normal covariates (hav-
ing means and standard deviations given by (3, 1, 2)t and (2, 0.5, 1.5)t, respectively)
and, to account for non-symmetrical distributions, we also consider the left-truncated
normal with truncation in 1. These variables have been dichotomized by selecting the
correct median or an incorrect value (that is, 1.5·median) as the cut-off. In summary,
we consider the following experimental settings: normal distribution and correct me-
dian (N-c), normal distribution and incorrect median (N-inc), truncated normal and
correct median (TN-c) and truncated normal with incorrect median (TN-inc). We
wish to stress that, in the real practice, the covariate distribution is unknown (in terms
of both, symmetry and median), especially in the sequential recruitment where the
initial information is poor.

Table 1 reports the simulated averages of ℓn for n = 200 and 400 under ME and
model MF with f(Z1, Z2, Z3) = (Z1, Z2, Z3, Z1 ·Z2, Z1 ·Z3, Z2 ·Z3, Z1 ·Z2 ·Z3)

t,
where ECADEℓ(d) and DA(d) are implemented with the categorized factors, while
ECADEℓ and DA keep the continuity of the covariates. First of all, the effect of
non-symmetric distributions is extremely moderate, provided that the cut-offs ex-
actly coincide with the median. Under ME , the effect of an incorrect choice of the
threshold is notable and becomes even more remarkable when the distribution is not
symmetric (only Atkinson’s procedure is quite invariant). In general, adopting the
ECADEℓ and DA-BCD with the original quantitative factors induces a smaller loss
than those of the corresponding dichotomized versions and this effect is stronger as
the model complexity grows, where the impact of discretization becomes critical for
some CA rules. Under MF , excluding PS which is strongly inadequate in this case
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regardless of the nature of the covariates, the loss for the listed procedures is always
higher than the one achieved by the ECADEℓ even if the cut-offs are correctly cho-
sen. When the median is not correctly specified, the loss inflation highly grows. For
example, under the normal distribution with n = 400, the CABCD’s loss is 4.5 times
higher, while HH’s loss is four times bigger with respect to its value in N-c. If com-
pared to the ECADEℓ, for n = 400 and N-inc the loss of the CABCD and that of
HH are around 8 times bigger. In the case of TN-inc these values reach up to nearly
ten. Finally, note that the ECADEℓ(d) is still the best choice for discretized factors.
These results are even more pronounced when p increases, as well as when the dis-
cretization involves more than two categories, leading to multiple improper choices
of the cut-offs, as further simulations have shown (see also Lauzon et al (2020)).

Table 1: Simulated averages of ℓn for p = 3 factors under ME (no interactions)
and MF . For PS, CABCD, HH, DA(d) and ECADEℓ(d), the covariates have been
dichotomized.

ME MF

N-c N-inc N-c N-inc
ℓn 200 400 200 400 200 400 200 400

PS 0.08 0.04 0.15 0.08 4.14 4.01 4.10 4.11
CABCD 0.26 0.13 0.46 0.25 0.52 0.26 1.87 1.17
HH 0.14 0.07 0.22 0.11 0.58 0.28 1.74 1.13
DA(d) 0.83 0.82 0.83 0.82 1.71 1.66 2.09 1.90
DA 0.83 0.82 0.83 0.82 1.57 1.49 1.57 1.49
ECADEℓ(d) 0.07 0.04 0.10 0.05 0.34 0.17 1.23 0.75
ECADEℓ 0.07 0.04 0.07 0.04 0.28 0.14 0.28 0.14

TN-c TN-inc TN-c TN-inc
200 400 200 400 200 400 200 400

PS 0.09 0.04 0.28 0.14 4.12 3.99 3.36 3.61
CABCD 0.27 0.13 0.64 0.37 0.60 0.29 2.42 1.93
HH 0.14 0.07 0.34 0.18 0.65 0.32 2.37 2
DA(d) 0.83 0.81 0.86 0.82 1.70 1.64 2.26 2.12
DA 0.83 0.81 0.83 0.82 1.57 1.50 1.57 1.50
ECADEℓ(d) 0.08 0.04 0.17 0.08 0.38 0.19 1.90 1.53
ECADEℓ 0.08 0.04 0.08 0.04 0.28 0.14 0.39 0.19

Distribution of covariates and chosen cut-off: N-c (normal distribution and correct median); N-inc
(normal distribution and incorrect median); TN-c (truncated normal and correct median); TN-inc

(truncated normal with incorrect median).

5 Redesign of NIDA-CENIC-P1S1 clinical trial
This section is dedicated to the application of our proposed methodology to redesign
a real trial: we use the clinical data of National Institute on Drug Abuse (NIDA-
CENIC-P1S1) project (Donny et al, 2015), freely available at National Institute of
Health - NIDA Data Share Website - https://datashare.nida.nih.gov/. The aim of the
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study was to investigate the impact of nicotine using spectrum cigarettes (P1S1) and
to assess the relationship between very low nicotine cigarettes and cigarette/tobacco
use, nicotine/tobacco exposure and dependence along with other health-related be-
haviors. The original database consisted of baseline and demographic information of
n = 839 patients: we choose eleven covariates, five quantitative (three discrete and
two continuous) and six qualitative, that have few missing values and are regarded as
most likely to be associated with the research object. The qualitative covariates are
subdivided into dummy variables according to their different levels: this led to a total
of 34 covariates considered. The missing values are imputed by sampling from the
observed values. In what follows, in order to highlight the flexibility of the new pro-
posal, two different allocation functions h(·) for the ECADE minimizing the loss of
information are considered:

• Efron’s hE with ρ = 0.85, simply indicated with ECADEℓ

• he(x) = e + (1 − 2e)[1 − Φ(x)], where Φ(·) is the cdf of the standard normal
distribution, with e = 0.1 (ECADEℓ1) and e = 0.2 (ECADEℓ2).

Adopting ME , the performance of the ECADE are compared with those of the DA-
BCD and the Kernel (Ker) procedure with ρ = 0.85 by simulating 10000 replications.

The behavior of ℓn and Mn are shown in Figure 6, while Table 2 summarizes the
values of the imbalance measures along with their variability.

Table 2: Simulated averages of ℓn and Mn with their standard error (in brackets) for
NIDA-CENIC-P1S1 data.

ℓn Mn

ECADEℓ 2.42 (1.00) 2.31 (0.96)
ECADEℓ1 2.01 (0.87) 1.94 (0.84)
ECADEℓ2 3.06 (1.21) 2.97 (1.19)
DA 7.44 (1.79) 6.85 (1.69)
Ker 15.89 (5.88) 15.83 (5.87)

The results confirm the excellent ability of ECADEℓ to balance the experimental
groups: values of both ℓn and Mn are about one third of those of the DA-BCD (e.g.
2.42 vs 7.34) and about one seventh of the Kernel ones (e.g. 2.42 vs 15.89), which
seems to suffer the presence of a high number of covariates. It should be noted that the
improvement with respect to the other procedures is also evident for small/moderate
sample sizes and increases as the numbers of patients grows. For what concerns our
proposal, ECADEℓ1 enforces a higher balance also for smaller sample sizes, while
Efron’s allocation function shows an intermediate performance. Moreover, regardless
of the allocation function adopted, the new proposal shows the lowest variability in
the estimates.
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Figure 6: Simulated averages of ℓn and Mn for NIDA-CENIC-P1S1 data.

6 Conclusions
For valid comparisons, the sequential allocation of treatments should be randomized
with the aim of obtaining a trial as balanced as possible. Due to the recent applica-
tions of big data, clinical trials with biomarkers and medical genomic, the need of
procedures that are high-order balanced among a set of pre-specified covariates, of-
ten very numerous and of mixed nature, is growing. Nowadays, the most popular and
commonly implemented methods are stratification and marginal procedures. How-
ever, both of them (as well as Hu and Hu’s rule) can be applied solely to categorical
covariates, that implies an arbitrary discretization of quantitative factors. As pointed
out in Section 4.3, this discretization process could make balance unreliable, also
strongly damaging the inferential precision, especially when the covariate distribu-
tion is a-priori unknown. Therefore, HH rule, stratified and marginal procedures are
recommended only for truly qualitative factors. Alternative rules, such as Atkinson’s
DA-BCD and the design of Ma and Hu (2013), can deal with continuous covariates,
but do not guarantee a suitable degree of balance. Whereas, sequential RR performs
very good in the case of continuous factors, but it may suffer when all the covariates
are binary or when some of them are polythomic, since they must be dichotomized
(see Section 4.1 and the Supplementary Material of Zhou et al (2018)).

In this paper we propose a new family of covariate-adaptive randomization rules
minimizing a suitable weighted norm of the imbalance vector. We prove that the
ECADE is high-order balanced, regardless of both the number of chosen factors as
well as their nature, allowing to avoid discretization and the above-mentioned im-
plications. In particular, the ECADEℓ (minimizing the loss of inferential precision)
guarantees excellent performances with respect to all the other considered rules. Al-
though its strength lies in balancing quantitative or mixed covariates more efficiently,
the ECADE performs very well even in the presence of many categorical factors (or
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levels) as well as for interactions/higher order effects, in contrast to the behavior of
stratified randomization which cannot evolve properly in such situations. Moreover,
the ECADEℓ guarantees a substantial gain of estimation precision also with respect
to the DA-BCD and Pocock and Simon’s minimization method. Furthermore, even
if ECADEℓ has the same order of convergence to balance of Hu and Hu’s rule, the
former guarantees higher levels of balance regardless of the model and the chosen
imbalance measure for any sample size.

Despite the wide use of covariate adaptive designs and their implications in terms
of estimation precision (Baldi Antognini and Zagoraiou, 2017), concerns on the
validity of conventional inferential procedures have been raised by many authors.
Starting from Shao et al (2010), several papers discussed the theoretical properties of
hypothesis testing for CA randomization procedures for discrete/discretized covari-
ates. In particular, for CA designs with overall and marginal imbalances bounded in
probability, Ma et al (2015) showed that the usual tests for the linear model are always
correct in terms of type I error provided that the inferential analysis is performed by
including all the covariates used in the randomization process; otherwise these tests
become conservative when some factors are omitted in the analysis. It would be de-
sirable to extend such results in the presence of continuous and mixed covariates and
we hope that this paper will contribute to provide a basis for future developments in
this direction.

An interesting possible extension that we will consider as future research is the
case of several treatments. Obviously, the chosen optimality criteria should be based
on the contrasts instead of the main effects, leading to possible reformulation of the
imbalance vector. Thus, the ECADE could be generalized to the multi-arm case by
assigning each treatment proportionally to the corresponding gain in terms of the
predicted imbalance.

Appendix A Proofs

A.1 Optimality of balance for estimating/testing the treatment
difference µA − µB

For simplicity of notation in this Appendix we omit the subscript n. After n al-
locations, let γ̂ be the LSE of γ = (µA, µB ,β)

t and at = (1; −1; 0t
q), then

var(atγ̂) = σ2at(nM)−1a, where

M =
1

n

 nA 0 δtF
0 nB (1− δ)tF
Ftδ Ft(1− δ) FtF

 .

Let xt = 1tF and yt = (2δ − 1)tF, then nM =

(
diag (nA, nB) D

t

D nA

)
, with

D = 2−1 (x+ y | x− y). By letting T = diag (nA, nB) − Dt(nA)−1D, then
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at(nM)−1a = (1,−1)T−1

(
1
−1

)
, where

T =

(
nA − (4n)−1(x+ y)tA−1(x+ y) −(4n)−1(x+ y)tA−1(x− y)
−(4n)−1(x− y)tA−1(x+ y) nB − (4n)−1(x− y)tA−1(x− y)

)
.

After some algebra, detT = (n− xt(nA)−1x)(n− ℓ)/4, so that

at(nM)−1a =
n− xt(nA)−1x

(n− xt(nA)−1x)(n− ℓ)/4
=

4

n− ℓ
=

4

n

(
1− ℓ

n

)−1

. (A1)

Taking into account hypothesis testing, under well-known regularity conditions√
n(γ̂ − γ)

d−→ N(0q+2, σ
2M−1), so that

√
nat(γ̂ − γ)

d−→ N(0, σ2∥a∥2
M−1). As-

suming σ2 known, the classical Wald statistic is W = nγ̂ta[σ2∥a∥2
M−1 ]−1atγ̂ =

n(µ̂A − µ̂B)
2[σ∥a∥M−1 ]−2. Under H0, W

d−→ χ2
1, namely it converges to a

(central) χ2 with 1 degree of freedom (dof); whereas, under the alternative W con-
verges to a non-central χ2

1 with non-centrality parameter n(µA−µB)
2[σ∥a∥M−1 ]−2.

From (A1), atM−1a = 4 (1− ℓ/n)
−1, so the non-centrality parameter is equal to

(2σ)−2n(µA − µB)
2(1− ℓ/n). For fixed dof the non-central χ2 is stochastically in-

creasing in the non-centrality parameter. Thus, for every sample size the power is an
increasing function of it and is maximized when ℓ = 0.

A.2 Proof of Theorem 1
Following Theorem 4.5 of Meyn and Tweedie (1992), a Markov chain {Xn}n∈N
on a general state-space X is bounded in probability if i) Xn is a T-chain and ii)
Xn satisfies a positive drift condition, namely there exists a norm-like function V :
X −→ R+ such that, for some ε > 0 and a compact set C ∈ B(X) (where B(X) is
the Borel sigma algebra), we have

(D) ∆V (Xn) := E[V (Xn+1) | Xn]− V (Xn) ≤ −ε, Xn ∈ Cc.

Since a Markov chain on a countable state space is always a T-chain (Meyn
and Tweedie (1992), p. 548) in what follows we just need to show that condi-
tion (D) is satisfied by Dn and bn. Let C = HtWH, then C = (cij)i,j=1,...,s

is symmetric and positive-definite, since H is a full (row) rank matrix. Moreover,
by letting D̃n = HtWHDn, the linear transformation D̃n = CDn is an isomor-
phism and therefore the behavior of the Markov chain {Dn}n∈N is equivalent to
the one of {D̃n}n∈N (although defined in a proper transformed space) and their
roles in the proof could be naturally exchanged. We show that condition (D) holds
by setting V (Dn) = Dt

nCDn and C = {Dn : ∥CDn∥∞ ≤ κ}, where κ > 0.
Note that ∥CDn∥∞ is still a norm of the vector Dn, since C is invertible (namely
the corresponding linear transformation is injective). Due to the isomorphism, the
compact set could be analogously expressed by C = {D̃n : ∥D̃n∥∞ ≤ κ}, so
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Cc = {D̃n : maxj=1,...,s |D̃nj | > κ}. From (6),

∆V (Dn) =

s∑
j=1

E[V (Dn+1)− V (Dn) | Dn,xn+1 = ej ] Pr(xn+1 = ej), (A2)

where

E[V (Dn+1)− V (Dn) | Dn,xn+1 = ej ] =

Pr(δn+1 = 1 | Dn,xn+1 = ej)E[V (Dn+1)− V (Dn) | Dn,xn+1 = ej , δn+1 = 1]+

Pr(δn+1 = 0 | Dn,xn+1 = ej)E[V (Dn+1)− V (Dn) | Dn,xn+1 = ej , δn+1 = 0].

(A3)

Moreover,

E[V (Dn+1)− V (Dn) |Dn,xn+1 = ej , δn+1 = 1] =

=(Dn + ej)
tC(Dn + ej)−Dt

nCDn = cjj + 2etjCDn

and

E[V (Dn+1)− V (Dn) |Dn,xn+1 = ej , δn+1 = 0] =

=(Dn − ej)
tC(Dn − ej)−Dt

nCDn = cjj − 2etjCDn,

where cjj = etjCej > 0. Thus, recalling that D̃n = CDn, equation (A3) becomes

E[V (Dn+1)− V (Dn) | Dn,xn+1 = ej ] = h(etjD̃n)[cjj + 2etjD̃n]+

+[1− h(etjD̃n)][cjj − 2etjD̃n] = 4D̃nj

[
h(D̃nj)−

1

2

]
+ cjj .

(A4)

Therefore, from (A2) and (A4), ∆V (Dn) = 4
∑s

j=1 D̃nj [h(D̃nj) − 1/2]pj +∑s
j=1 cjjpj , where the first term is always non-positive since, if D̃nj ≥ 0 then

h(D̃nj) ≤ 1/2 and when D̃nj < 0 then h(D̃nj) > 1/2. Condition (D) is equivalent
to

s∑
j=1

|D̃nj |[h(−|D̃nj |)− 1/2]pj ≥ (ε+

s∑
j=1

cjjpj)/4. (A5)

By the definition of Cc, there exists at least one stratum j̃ such that |D̃nj̃ | > κ and
therefore

∑s
j=1 |D̃nj |[h(−|D̃nj |) − 1/2]pj ≥ κ[h(−|κ|) − 1/2]pj̃ , which is an in-

creasing function of κ since h(−|κ|) > 1/2 and pj̃ > 0. Thus, for every Dn ∈ Cc

condition (D) is verified, since the RHS of (A5) is bounded.
In addition, since bn = HDn, then bn = Op(1) as a bounded linear combination

of Dn; thus, from (2) and (4), ℓn = op(1), since ∥bn∥2P−1
n

is asymptotic equivalent
to ∥bn∥2P−1 = Op(1) (recalling that Pn − P = oa.s.(1)). At the same time bn =
Op(1), then nAf̄

A
n − nB f̄

B
n = Op(1) and n−1Dn = op(1); by letting πn = nA/n,
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then πn − 1/2 = op(1) and ∥nAf̄
A
n − nB f̄

B
n ∥2

A
−1
n

= Op(1), so that n−1∥nAf̄
A
n −

nB f̄
B
n ∥2

A
−1
n

= n∥πn̄f
A
n − (1 − πn)̄f

B
n ∥2

A
−1
n

= op(1). Since πn − 1/2 = op(1) and
An − A = oa.s.(1), then n∥πn̄f

A
n − (1 − πn)̄f

B
n ∥2

A
−1
n

is asymptotic equivalent to
4−1n∥̄fAn − f̄Bn ∥2

A−1 = op(1), namely Mn = op(1). Thus, under the ECADE, ℓn
is asymptotic equivalent to Mn. By the same arguments ℓn and Mn are asymptotic
equivalent for every CA rule under which πn − 1/2 = op(1).

A.3 Proof of Theorem 2
Let Cn = HtWnH, since Wn −→ W a.s., then Cn −→ C = HtWH a.s. from
Slutshy’s theorem. Consider the function W (Dn) = Dt

nCnDn = U(Dn)+V (Dn),
where U(Dn) = Dt

n(Cn − C)Dn, while V (·) and the compact set C are the same
as in the proof of Theorem 1 in Section A.2. Thus we show that condition (D) is
satisfied by ∆W (Dn) = E[W (Dn+1) − W (Dn) | Dn] = ∆U(Dn) + ∆V (Dn).
Since Cn −C = oa.s.(1), then ∆U(Dn) = E[Dt

n+1(Cn+1 −C)Dn+1 −Dt
n(Cn −

C)Dn | Dn] tends to be negligible for a sufficiently large n. Moreover, from
Section A.2, ∆V (Dn) satisfies condition (D); thus the Markov chain induced by
Wn is asymptotically equivalent to the one corresponding to W, and therefore
Dn = Op(1).

A.4 Proof of Theorem 3
Under the ECADE with quantitative factors bn+1 = bn+(2δn+1−1)(1; f(Zn+1)

t)t

a.s. for every n (with b0 = 0q+1) and therefore {bn}n∈N is Markov chain on X =
Z×Rq with one step transition kernel

P (x, A) = Pr(bn+1 ∈ A | bn = x)

=

∫
Pr(bn+1 ∈ A | bn = x,Zn+1 = z)L(z)dz

=

∫ {
h
(
(1; f(z)t)Wx

)
I{x+ (1; f(z)t)t ∈ A}+

+
[
1− h

(
(1; f(z)t)Wx

)]
I{x− (1; f(z)t)t ∈ A}

}
L(z)dz.

(A6)

Following Theorem 4.5 of Meyn and Tweedie (1992), we firstly show that
{bn}n∈N is a T-chain and then we prove that condition (D) is satisfied. As regards
the T-chain property, we need to show that there exists a sampling distribution a and
a substochastic transition kernel T (x, ·) such that for any A ∈ B(X), Kα(x, A) =∑∞

i=1 P
i(x, A)α(i) ≥ T (x, A), where T (·, A) is a lower semicontinuous (LSC)

function with T (x,X) > 0 for all x ∈ X. By taking α(1) = 1 and 0 otherwise, then
Kα(x, A) = P (x, A); if we set T (x, A) = e

∫
I{x+(1; f(z)t)t ∈ A}L(z)dz, then

P (x, A) ≥ T (x, A), recalling that h(x) ≥ e for any x ∈ R. Since the indicator func-
tion of any open set is LSC, T (x, A) is always LSC. Indeed, if A is an open subset
then
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lim
y→x

inf T (y, A) = e lim
y→x

inf

∫
I{y + (1; f(z)t)t ∈ A}L(z)dz

≥ e

∫
lim
y→x

inf I{y + (1; f(z)t)t ∈ A}L(z)dz

≥ e

∫
I{x+ (1; f(z)t)t ∈ A}L(z)dz = T (x, A).

(A7)

Moreover, (A7) holds even if A is not open; indeed, T (x, A) does not change since
the closure of A has zero Lebesgue measure. Finally notice that T (x,X) > 0 since
x+ (1; f(z)t)t ∈ Z×Rq a.s. Thus, {bn}n∈N is a T-chain.

We now show that condition (D) is satisfied by choosing V (bn) = bt
nWbn. The

one-step drift is

∆V (bn) = E[V (bn+1)− V (bn) | bn] = E [E[V (bn+1)− V (b) | bn = b,Zn+1 = z]]

=

∫
E[V (bn+1)− V (bn) | bn,Zn+1 = z]L(z)dz,

where the inner expectation is

E[V (bn+1)− V (bn) | bn,Zn+1 = z] =

E[V (bn+1)− V (bn) | bn,Zn+1 = z, δn+1 = 1]h((1; f(z)t)Wbn)+

E[V (bn+1)− V (bn) | bn,Zn+1 = z, δn+1 = 0][1− h((1; f(z)t)Wbn)].

Since E[V (bn+1) − V (bn) | bn,Zn+1 = z, δn+1 = 1] = 2(1; f(z)t)Wbn +
(1; f(z)t)W(1; f(z)t)t and E[V (bn+1) − V (bn) | bn,Zn+1 = z, δn+1 =
0] = −2(1; f(z)t)Wbn + (1; f(z)t)W(1; f(z)t)t, then E[V (bn+1) −
V (bn) | bn,Zn+1 = z] = 4(1; f(z)t)Wbn

[
h ((1; f(z)t)Wbn)− 1

2

]
+

(1; f(z)t)W(1; f(z)t)t, so that

∆V (bn) = 4

∫
(1; f(z)t)Wbn

[
h
(
(1; f(z)t)Wbn

)
− 1

2

]
L(z)dz+

+

∫
(1; f(z)t)W(1; f(z)t)tL(z)dz.

Notice that (1; f(z)t)Wbn [h ((1; f(z)
t)Wbn)− 1/2] ≤ 0, since

(1; f(z)t)Wbn [h ((1; f(z)
t)Wbn)− 1/2] = 0 if and only if (1; f(z)t)Wbn = 0

and it is negative otherwise. To verify condition (D), we need to show that, for a
compact set C, ∆V (bn) ≤ −ε, namely∫

|(1; f(z)t)Wbn|
[
h
(
−|(1; f(z)t)Wbn|

)
− 1

2

]
L(z)dz ≥

ε+
∫
(1; f(z)t)W(1; f(z)t)tL(z)dz

4
, on Cc.

(A8)
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Let Z∗ = {z : |(1; f(z)t)Wbn| > 0} ⊂ Rp, then Pr (z ∈ Z∗) > 0 and the LHS of
(A8) becomes∫

Z∗
|(1; f(z)t)Wbn|

[
h
(
−|(1; f(z)t)Wbn|

)
− 1

2

]
L(z)dz.

Let C = {bn : max |(1; f(z)t)Wbn| ≤ κ, z ∈ Z∗} be the compact set (in Z∗

the linear transformation (1; f(z)t)Wbn is injective and corresponds to an induced
norm of bn), for every bn ∈ Cc,∫
Z∗

|(1; f(z)t)Wbn|
[
h
(
−|(1; f(z)t)Wbn|

)
− 1

2

]
L(z)dz > κ

[
h(−|κ|)− 1

2

]
Pr (z ∈ Z∗);

so condition (D) is verified since κ
[
h(−|κ|)− 1

2

]
Pr (z ∈ Z∗) increases in κ, while

the RHS of (A8) is bounded. Finally, the last statement follows from Theorem 2.
Under the mixed scenario, through the usual factorization of the joint distribution

of mixed random variables, L(z) in (A6) will be substituted by the product of the
joint probability distribution of p1 qualitative covariates and the conditional density
function of the remaining p2 factors. Thus, the T-chain property is preserved and,
under the same choice of the function V and the compact set C, the positive drift
condition is also satisfied, so {bn}n∈N is bounded in probability.
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