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A Vision-based Shared Autonomy Framework for
Deformable Linear Objects Manipulation

Davide Chiaravalli, Alessio Caporali, Anna Friz, Roberto Meattini and Gianluca Palli

Abstract—The manipulation of Deformable Linear Objects
(DLOs) is a critical process in which the introduction of au-
tomation and autonomous systems is still marginal. In this
paper, a novel teleoperation framework is proposed in which an
intuitive manipulation of DLOs is achieved by means of visual
aid. The proposed system could be deployed for manipulating
DLOs in hazardous scenarios or for simplifying robot teaching
tasks by allowing a faster demonstration time. Experiments
are performed involving several subjects and their feedback
is collected by means of a survey. The results show that the
proposed teleoperation framework simplifies DLOs manipulation
and reduces the task completion time by 20% on average.

Index Terms—Shared Autonomy, Teleoperation, Deformable
Linear Objects

I. INTRODUCTION

In the last decade, the introduction of automation in indus-
trial processes and plants and the improvement of vision sys-
tems have pushed researchers toward new directions, aiming at
developing advanced interaction capabilities and flexibility in
the control processes. Among them, great focus was given to
the modeling and manipulation of Deformable Linear Objects
(DLOs) because of their key role in many industrial scenarios
that cross several application fields such as automotive, do-
motic, or healthcare. To this purpose, several research projects
have been promoted with the objective of further increasing the
technological knowledge of these systems. The manipulation
of a DLO is performed by tracking the objects either exploiting
a mechanical deformation model [1] or continuously estimat-
ing its shape through a dedicated vision system [2]. Most
applications directly involve continuous interaction between
the manipulator and the DLO [3] with the purpose of imposing
a certain shape [4] or successfully performing insertion tasks
[2]. Given the complexity of the problem, several research
studies have addressed DLO manipulation with a task-oriented
strategy by either designing specific tools [5] or by directly
defining separate modules to handle the different operations
required [6]. Nonetheless, they lack the flexibility to allow
task generalization in different scenarios. To this purpose,
teleoperation still plays a central role for its capability to
merge together the intuivity and flexibility to changes of a
human operator, and the reactiveness and personalization of a
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robotic autonomous system. Moreover, it results as an effective
solution in kinesthetic teaching frameworks where the robotic
system is trained by directly transferring the human knowledge
of the task [7].

In this work, we present a novel teleoperation framework
able to allow intuitive manipulation of DLOs by means of an
industrial robotic manipulator equipped with a vision system
for DLO detection. The system aims to pose as an effective so-
lution both for hazardous scenarios where human intervention
is still required or for the definition of large datasets for robotic
teaching. The paper is organized as follows: Sec. II provides
an overview of the literature developed concerning both tele-
operation and DLOs perception; Sec. III describes the system
presenting the DLO detector and the teleoperation framework;
Sec. IV shows the experimental process with a discussion of
the results obtained; Sec. V draws the conclusions.

II. RELATED WORKS

A. Deformable Linear Objects Perception

The perception of DLOs has been commonly achieved by
means of 2D cameras or tactile sensors. Indeed, the application
of 3D cameras is usually constrained to specific scenarios and
accomplished by means of high-end devices which are capable
of sub-millimeter accuracy [8]. On the contrary, 2D cameras
are vastly employed for detecting and segmenting DLOs. The
common setups utilize simple color thresholding and back-
ground removal approaches [9]–[11] to achieve the perception
of the DLO. Alternatively, deep learning-based methods, e.g.
[12]–[14], have emerged to handle complex scenarios and
backgrounds not tractable with simple approaches. Among
the deep learning methods, FASTDLO [14] is currently the
state-of-the-art method for the instance segmentation of DLOs,
achieving processing speeds of above 20 FPS compared to
the few FPS of Ariadne+, and employing a skeleton-based
approach. These learning methods require the utilization of a
dataset to optimize their model. In the literature, an approach
for generating a dataset employing a chroma-key method
is investigated in [15], which dataset is used in Ariadne+
[13]. Recently, an approach investigating the utilization of a
dataset composed of a mixture of synthetic and real images is
proposed in [16].

B. Teleoperation

A teleoperation system allows a human operator to control a
remote manipulator through a haptic system by recording the
motion performed in a local workspace and replicating it in
the remote environment. The replicated behavior is commonly
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Fig. 1: Teleoperation framework.

driven by a predefined mapping function between the local
and remote workspace. Such mapping plays a crucial role
in the definition of the system performances and imposes a
direct relation between the position or the velocities of the
devices [17]. Despite their simplicity, these mappings usually
produce low performances when dealing with workspaces of
different dimensions. Therefore hybrid mappings exploiting
different paradigms according to the sub-task executed or
the environment conditions are usually preferred [18]. An
interesting solution is given by edge drifting techniques [19],
[20], that allow the local workspace to ”drift” around the
remote environment so that precise manipulation can be per-
formed regardless of the workspace dimensions. Additional
improvements are obtained when exploiting shared control
strategies, where the system cooperates with the operator to
produce a more intuitive control [21] with the aim of reducing
the overall mental workload [22]. Recent works focused on
simplifying the interaction with the environment by improving
the precise interaction or grasping of the objects by exploiting
the additional information provided through a vision system.
In [23] the camera system is exploited to perceive the user
intention and a shared control framework is exploited to guide
the motion for the grasp. Similarly in [24] a guided system al-
lows the operator to focus on the fine manipulation whereas the
autonomous system handles the primitive motions toward the
target. Nonetheless these solutions are specifically influenced
by the task and require knowledge of the environment. Other
solutions exploit the concept of virtual fixtures, force surfaces
generated on the haptic device to improve the operator’s
perception of the environment to feel the presence of obstacles
[25] or guide the user for the interaction [26]. Inspired by these
works we propose a novel teleoperation system combining a
vision system for cable localization and tracking and a shared
control architecture for simplified grasping and manipulation.
Moreover, we exploit virtual fixtures to guide the operator
through the task and allow a clear perception of the cable
shape. The proposed framework aims at simplifying DLO
manipulation tasks in different environments since the only
focus is the cable grasping and no preconception on the
environment or task to be executed is considered.

III. SYSTEM DESCRIPTION

In the following, a novel teleoperation framework for intu-
itive DLO manipulation is presented. The system, see Fig. 1,
records the operator’s motions through the haptic platform and
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Fig. 2: DLO perception diagram with the spline of the detected
DLO evaluated at n = 20 points.

replicates them in the remote environment. An RGB camera
mounted on the end-effector of the remote manipulator allows
for on-site quick reconstruction of the cable shape on operator
demand as described in Sec. III-A. Then the DLO characteri-
zation produced is exploited to enhance the picking operation
and successfully manipulate the environment to perform the
required task. A clear description of the teleoperation system
and the shared control framework is proposed in Sec. III-B.

A. DLOs Perception and Modeling

The perception of the DLO is achieved by employing the
algorithm named FASTDLO [14]. The approach takes as input
a 2D RGB image of the scene and provides as output the
individual DLO instances composing it. In particular, the
output of FASTDLO is twofold: 1) a colored mask where
each DLO is densely labeled pixel-wise with a unique color
identifying its ID; 2) a set of 2D splines in pixels coordinates
where each spline describes a DLO instance. Concerning the
latter, a generic DLO shape is represented in the image space
by a 3rd-order spline basis as a function of a free coordinate
u representing the position along the cable starting from an
endpoint (u = 0) to the opposite end (u = L) being L the
length of the DLO. That is:

q(u) =

n∑
i=1

bi(u)qi

where q(u) = [px(u) py(u)]
T is the vector of pixel

coordinates of each point along the DLO, bi(u) is the i-th
elements of the spline polynomial basis used to represent
the DLO shape and qi are n properly selected coefficients,
usually called control points, used to interpolate the DLO
shape through the bi(u) function basis. An example of the
output generated by FASTDLO is provided in Fig. 2.

Afterward, the spline is evaluated in a number n of points.
Each of the obtained points is projected in the 3D cartesian
space as v⃗ = cTrAp⃗, where v⃗ = [x, y, z, 1]T is the vector
associated to the 3D point in the robot base frame, A is the
intrinsic camera matrix obtained via camera calibration, rTc is
the transformation from camera to robot, and p⃗ = [p′x, p

′
y, w]

T

where w is the scaling factor and [wp′x, wp
′
y]

T the input pixel
coordinates.

B. Teleoperation

The teleoperation framework aims at simplifying the DLO
manipulation task by providing an intuitive interface to suc-
cessfully perform DLO picking operations. The system alter-
nates between two main control modes: free teleoperation and



Fig. 3: 3DSystems Geomagic Touch haptic device

cable targeting modes.
In free teleoperation mode the remote manipulator’s behavior
is directly controlled through the operator’s motions. The
operator is able to freely move the robot in different workspace
areas and interact with the environment.
In cable targeting mode the system performs a scan of the
environment to search for existing cables and docks the robot
to the most likely target (nearest DLO detected). By exploiting
the points of the spline detected, the remote manipulator is
then forced to move along the cable main dimension only,
simplifying the grasping operation and guaranteeing finer
control over the choice of the grasping point.
The operator during the task can freely switch between the two
control modes by pressing a specific button on the stylus of
the haptic device. This choice allows one to perform different
tasks in the remote environment and exploit the cable targeting
capabilities only when a cable grasp operation is required. In
the following description, the reference frames of the haptic
device and the remote manipulator Oh and Or are considered
for simplicity of notation to have the same axis orientation.
A rotation rRh ∈ R3×3 describing the haptic reference
frame orientation Oh in the manipulator one Or should be
always applied in the general case for all the control mapping
functions.

1) Free Teleoperation Mode: In this control mode, the
operator fully controls the remote manipulator motion. An
edge drifting mapping technique is employed to efficiently
map the whole task environment: given the haptic stylus and
the robot end-effector positions Ph(t) ∈ R3 and Pr(t) ∈ R3

respectively, a virtual spherical region or radius rh centered
in the zero coordinate of the haptic workspace is defined as
shown in Fig. 3. Inside the spherical region a position control
mapping is applied:

Pr(t) = K(Ph(t)) +Dhr (1)

where K ∈ R3 is the scale factor that specifies the precision
imposed by the mapping and Dhr ∈ R3 the initial mapping
position bias from eq. 1 at time t = 0

Dhr = Pr(0)−K(Ph(0)) (2)

In this area, the remote manipulator exactly replicates the
scaled motion of the operator in the local workspace. Outside
the spherical region, a rate control mapping is applied. The

velocity of the manipulator Vh(t) ∈ R3 is controlled propor-
tionally to the distance from the sphere:

Ṗr(t) = Kv(Ph(t)− Lh(t)) (3)

where Lh(t) = rh(Ph/∥Ph∥) is the intersection point
of the position vector Ph with the spherical region and
Kv = Vmax/(rmax − rh) is the velocity gain designed to map
the whole velocity range Vmax of the manipulator.

The maximum radius rmax for the rate control region is
defined as the radius of the largest sphere described inside
the haptic workspace. An elastic force feedback is produced
when moving in the rate control region to provide the operator
with a clear perception of the commanded velocity. The force
Fh(t) ∈ R3 is generated proportionally to the distance from
the position control area:

Fh(t) = −Kf (Ph(t)− Lh(t)) (4)

with Kf (t) ∈ R3 the feedback gain. Moreover, the feed-
back presence in rate control allows the operator to perceive
the surface that separates the two mappings, automatically
providing a clear understanding of the robot’s behavior in
each instant. Conceptually the edge drift mapping described
allows to map a spherical region of the local workspace in
the remote workspace and to change its position by ”pushing”
on the region boundaries. During rate control, the operator is
effectively moving the spherical working region across the en-
vironment stopping by entering in position control when actual
interaction is expected. Eventually, the grasping interaction is
controlled by a specific button on the haptic stylus.

2) Cable Targeting Mode: Upon the operator’s request,
the system can enter in cable targeting mode. The vision
system mounted on the robot end-effector acquires an image
of the environment and localizes the DLOs in it as spline
functions described as vectors of points in the horizontal plane
Qi = [Qix, Qiy] ∈ Rnx2 with n the total number of points
evaluating the spline. Then the closest DLO is identified as the
interaction target Q and the robot motion is constrained along
its main direction. In this mode edge drifting on the horizontal
coordinates is disabled and the control mapping is modified
to enforce the constraints: the haptic workspace is directly
projected on the DLO surface so that any operator motion
would result in a manipulator displacement along the object.
At first, the spline vector describing the closest DLO Q∗ is
virtually reconstructed and centered in the haptic workspace

Q∗ = K∗(Q) +D∗
hr (5)

where D∗
hr is the position bias to center the cable and K∗ is

defined on the basis of the haptic workspace maximum radius
rmax and the DLO maximum extension lmax

K∗ = rmax/lmax. (6)

Then in each control loop the stylus position Ph is projected
on the spline toward normal directions to the spline curve

q∗ ← argmin
qi∈Q∗

d(qi, Ph) (7)



Fig. 4: Virtual fixture force feedback generated around the
detected DLO shape in the haptic workspace during cable
targeting mode.

where d(·, ·) is a generic distance function providing the
spline-to-point distance. Eventually, the obtained position
along the object is remapped in the remote environment by
inverting eq. 5 and commanded as a reference for the robot.
Along the vertical direction, the edge drifting mapping is kept
active to allow a quick motion to the correct height. In order
to speed up the grasping procedure the initial position bias
Dhr is redefined closer to the horizontal plane to prepare the
operator for the picking procedure. Moreover, the manipulator
end-effector is naturally oriented perpendicularly to the DLO
main direction at the current point, guaranteeing an effective
grasp position for the gripper. In cable targeting mode, the
operator’s perception is furtherly enhanced by a virtual fixture
generation through haptic feedback of the DLO shape. A
potential map generating an attractive force Fvf toward the
cable shape is generated as a function of the distance from
the DLO according to an arctangent behavior

Fvf = −(1
2
+ atan(d(q∗, Ph)Kvf )) (8)

with Kvf characterizing the gradient of the force moving
toward the DLO shape as presented in Fig. 4.

3) Remote Manipulator Control: The remote manipulator
is controlled through an impedance control scheme directly
commanding the torque reference fed to the joints. This choice
allows to produce the required real-time replica of the operator
motion while guaranteeing at the same time the safety of the
interaction by properly imposing the impedance behavior. The
dynamic model of a manipulator in the joint space can be
defined as:

M(x)ẍ+ C(x, ẋ)ẋ+ g(x) = Finput + Fext, (9)

with M(x) ∈ Rm×m, C(x, ẋ) ∈ Rm×m and g(x) ∈ Rm

the inertia, Coriolis-Centrifugal and gravity term respectively,
defined in the workspace as a function of the robot end-effector
pose x and Fext the vector of external forces applied by the
environment and with m the dimension of the task space. The
control input Finput, defined as:

Finput = Ĉ(x, ẋ) + ĝ(x) + Fimpedance, (10)

is characterized by two different control actions: the compen-
sation of the nonlinear dynamics expressed by the Coriolis-
Centrifugal matrix and gravity term Ĉ(x, ẋ) + ĝ(x) and

Fig. 5: Experimental setup composed of a Panda robot from
Franka Emika equipped with an eye-on-hand camera.

the definition of the desired impedance dynamic (where the
impedance Inertia matrix is considered the same as the ma-
nipulator’s):

Fimpedance = Kp(Pr − x)−Kdẋ, (11)

where Kp,Kd ∈ R6×6 are positive definite matrices imposing
the desired behavior, and Pr is the reference position guided
by the operator’s motions on the haptic device.

IV. EXPERIMENTS

The proposed teleoperation framework was evaluated
through the experimental setup presented in Fig. 5. The system
was mounted on an UBUNTU 20.04 operating system with an
NVIDIA RTX 2080 Ti GPU running on the ROS framework.
The operator was controlling a Franka Emika Panda robot
through a 3DSystems Geomagic haptic device.

The visual perception of the DLO was accomplished by
means of 2D RGB images acquired from an OAK-D camera
by Luxonis. It is a device composed of an RGB sensor at the
center and two monochrome sensors at the sides. In this work,
only the RGB sensor is employed.

The control parameters chosen for the test were defined as
a trade-off between control efficiency and intuitivity of motion
for the human operator and are reported in Tab. I.

The experimental test was motivated by a use-case sce-
nario of the REMODEL project, where specific cables in
the environment had to be routed through specific clips to
obtain a predefined configuration. Nonetheless, it can be
easily compared to any scenario in which DLOs have to be
manipulated and interacted with the environment. The test was
performed engaging 10 healthy subjects (2 females, 8 males
age: 29 ± 4 − right-handed: 9 sbjs., left-handed: 1 sbj) with
no prior knowledge of the setup. All tests were performed
in accordance with the Declaration of Helsinki and all par-
ticipants were thoroughly informed about the experimental

TABLE I: Control parameters for the experiments.

symbol description value
K scale factor 1
Kf elastic feedback gain 80
Kp(linear) impedance elastic linear gain 800
Kp(angular) impedance elastic angular gain 40
Kd(linear) impedance damping linear gain 56.56
Kd(angular) impedance damping angular gain 12.64
rh spherical region radius 0.06m
rmax haptic workspace radius 0.09m
Vmax maximum robot linear velocity 0.3m/s
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Fig. 6: Motion on the horizontal plane of the remote ma-
nipulator during a single trial. Different control modes are
highlighted: position control (blue) and rate control (red) for
the free teleoperation mode, and cable targeting mode (green).

protocol and were asked to sign an informed consent form. The
experimental protocol is described as follows. Each subject
was asked to perform several manipulation tests consisting of
multiple insertions of a cable in specific clips fixed in the
environment as shown in Fig. 5. In each test, the operator was
asked to move the robot in position to grasp a specific point
along the DLO shape and perform a first insertion in clip A
or B. Then, it was asked to grasp at the cable at a random
point further along its shape and perform a second insertion
in clip C or D. The operation was repeated three times with
the free teleoperation mode only and three additional times
exploiting also the cable targeting mode. In each of the
three sequences with the free teleoperation mode, a different
coupling between clips {A,B} and clips {C,D} was selected.
The same couples were repeated then also with the exploitation
of the cable targeting mode. Before the tests, each subject was
given five minutes of initial training time to experiment with
the system and acquire confidence. The overall task time for
each sequence was measured to evaluate the effectiveness of
the proposed approach. Moreover, each subject was asked to
fill out a questionnaire to measure the user experience and the
intuitiveness of the proposed framework.

A. Single subject results

In the following the results for a single test subject during
the test involving clips A and C are reported. In Fig. 6 a
complete view of the remote manipulator motion projected
in the horizontal plane is presented. The spatial motion is
differentiated between the different control modes: free teleop-
eration position control as a blue segment, free teleoperation
rate control as a red segment, and cable targeting mode control
as a green segment. The manipulator is initially placed at
the center of the environment (start position) and then moved
toward the cable to perform the first grasp (section on the left
in the figure). The cable is dragged across the environment and
inserted in the first clip (i.e. A). Eventually, the manipulator
is moved toward a further section of the cable for the next
grasp (section to the right in the figure) and the cable is
placed in the second clip (i.e. C). From the graph, it is easy
to notice that most of the motion is performed in exploiting
rate control to move the spherical position control area across
the environment while the position control was exploited
only during high precision tasks as the clip insertions or
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Fig. 7: Comparison between the trajectories of execution
along the vertical axis of a single subject with/without the
shared control framework. The grasping phase of the cable is
highlighted with respect to the remaining of the task.

simply traversed to move to and from the grasping operations.
Eventually, the cable targeting mode was exploited during the
precise grasp of the DLO.

From Fig. 7 it is also possible to appreciate the different
performance provided by the shared control framework as
highlighted in the grasping phase (green segment) with respect
to the rest of the motion (blue segment). As can be clearly
seen, the shared control framework produces a clear reduction
in the execution time of the grasping operation, allowing the
operator to mainly focus on the remaining of the task.

B. Complete test results

In the following, the complete results for the test comparing
all test subjects are presented. In particular, the metric Task
Completion Time (TCT) was analyzed in order to compare
the performance of the subjects with and without the aid of
the proposed shared control approach. Therefore, a one-way
repeated measure Analysis of Variance (ANOVA) was planned
to be conducted between the two data groups composed by
the mean TCT over the three experimental trials carried out by
each subject with the shared control switched OFF and ON, re-
spectively, as reported in the boxplots of Fig. 8. In other words,
we compared the resulting subjects’ mean TCTs with and
without shared control. The statistically significant difference
level was set to p < .05. The Kolmogorov-Smirnov normality
test revealed that the null hypothesis that the data groups came
from a standard normal distribution was rejected at the 5%
level. Therefore, as ordinary procedure in these cases, instead
of the initially planned ANOVA, we performed the nonpara-
metric Kruskal-Wallis one-way analysis, which revealed that
the mean TCT resulted to be statistically significantly lower
in presence of the shared control aid, χ2(1) = 4.48, p = .03.
The positive effect of the proposed approach was therefore
reflected in the TCT metrics with statistical evidence.

Moreover the results from the questionnaire are proposed
in Tab. II. The proposed framework was indeed considered
effective in providing further assistance and intuitiveness for
the teleoperation task with respect to a standard control
framework. In particular the effectiveness in simplifying the
required task (PU1) and decreasing the workload for the
operator (C1/C2) were highlighted.



TABLE II: User experience. Mean scores values computed over the subjects (± st. deviation): Likert scale from 1 (entirely
disagree) to 7 (entirely agree.)

Outcome type Questionnaire Shared Control OFF Shared Control ON

Perceived ease of use
PE1 It was easy to teleoperate the robot manipulator for the required task. 5.2±0.94 6.1±0.47

PE2 The provided teleoperation framework was easy to interpret. 6.2±0.52 6.3±0.63

Usefulness PU1 I think the system provided facilitated the teleoperation task. 4.8±1.23 6.5±0.81

Emotions E1 I liked to teleoperate the robotic manipulator with the proposed framework. 6.0±0.92 6.3±0.82

Comfort
C1 The provided system was appropriate to perform the required teleoperation task. 5.3±1.23 6.2±0.85

C2 It was helpful in terms of cognitive effort to teleoperate the robot for the required goals. 5.4±0.70 6.2±0.51
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Fig. 8: Boxplot of the subjects’ mean Task Completion Times
(TCTs) with and without the shared control aid. The symbol
“*” indicates statistically significantly difference with p < .05.

V. CONCLUSIONS

In this work a novel shared control framework to improve
the performance and intuitiveness of DLO manipulation tasks
was presented. The reconstruction of the DLO shape through
the camera system provided a clear simplification of the
grasping procedure, allowing the operator to focus on the
remaining part of the control task. An experimental session
carried out with ten healthy subjects proved the effectiveness
of the proposed framework in reducing the operator’s mental
fatigue and in improving the overall performances. Future
works will focus on the extension of the proposed framework
in cluttered environments with partially occluded cable and on
the improvement of the vision system to produce a complete
real-time 3D detection during the operator motions.
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