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The one-mode quantum-limited Gaussian at-
tenuator and amplifier have Gaussian maxi-
mizers

Giacomo De Palma, Dario Trevisan and Vittorio Giovannetti

Abstract. We determine the p → q norms of the Gaussian one-mode
quantum-limited attenuator and amplifier and prove that they are achieved
by Gaussian states, extending to noncommutative probability the sem-
inal theorem “Gaussian kernels have only Gaussian maximizers” (Lieb,
Invent. Math. 102, 179 (1990)). The quantum-limited attenuator and
amplifier are the building blocks of quantum Gaussian channels, which
play a key role in quantum communication theory since they model in
the quantum regime the attenuation and the noise affecting any electro-
magnetic signal. Our result is crucial to prove the longstanding conjec-
ture stating that Gaussian input states minimize the output entropy of
one-mode phase-covariant quantum Gaussian channels for fixed input
entropy. Our proof technique is based on a new noncommutative loga-
rithmic Sobolev inequality, and it can be used to determine the p → q
norms of any quantum semigroup.

Mathematics Subject Classification (2010). 46B28; 46N50; 81P45; 81V80;
94A15.

Keywords. quantum Gaussian channels, Schatten norms, quantum Gauss-
ian states, thinning, logarithmic Sobolev inequality.

1. Introduction

Given p, q > 1, let us consider a real Gaussian integral kernel G from Lp(Rm)
to Lq(Rn):

(Gf)(x) =

∫
Rm

G(x, y) f(y) dmy , x ∈ Rn , f ∈ Lp(Rm) , (1.1)

where G(x, y) is a real Gaussian function on Rm+n, i.e., the exponential of a
quadratic polynomial in x and y with real coefficients. The p→ q norm of G
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is

‖G‖p→q := sup
0<‖f‖p<∞

‖Gf‖q
‖f‖p

. (1.2)

In the seminal paper “Gaussian kernels have only Gaussian maximizers” [42],
E. H. Lieb proved that the determination of the supremum in (1.2) can be
restricted to real Gaussian functions. If this supremum is finite, it is attained
on a real Gaussian function f ; if it is infinite, it is asymptotically attained by a
suitable sequence of real Gaussian functions. This result permits to determine
the p→ q norms of G and has countless applications, such as straightforward
proofs of the Brascamp–Lieb convolution inequality, the Hausdorff–Young–
Titchmarsh inequality for Fourier integrals and Nelson’s hypercontractivity
theorem [42], a proof of the Entropy Power Inequality and of the Brunn–
Minkowski Inequality (see e.g. [10, section 17.8]), and Lieb’s solution [41,
43] of Wehrl’s conjecture [53, 1], stating that coherent states minimize the
Shannon differential entropy of the Husimi Q representation.

In noncommutative probability, functions on Rn with n even are re-
placed by operators acting on the Hilbert space H of an n/2-mode Gaussian
quantum system, i.e. the irreducible representation of the canonical commu-
tation relations of the ladder operators (see e.g. [34, Chapter 12] or [50])[

âi, â
†
j

]
= δij Î , [âi, âj ] = 0 , i, j = 1, . . . ,

n

2
. (1.3)

The Lp norm of a function f : Rn → C is replaced by the Schatten p norm
[49, 33] of a linear operator X̂ : H → H, defined as the lp norm of its singular
values: ∥∥∥X̂∥∥∥

p
:=

(
Tr
(
X̂†X̂

) p
2

) 1
p

. (1.4)

Integral kernels are replaced by linear maps acting on the operators on H.
For any p, q ≥ 1, the p→ q norm of any such map Φ is [33]

‖Φ‖p→q := sup
0<‖X̂‖

p
<∞

∥∥∥Φ
(
X̂
)∥∥∥

q∥∥∥X̂∥∥∥
p

, (1.5)

and it can be either finite or infinite.
Quantum Gaussian channels [34, 35] are the noncommutative counter-

part of Gaussian integral kernels. They play a key role in quantum com-
munication theory since they model in the quantum regime the attenuation
and the noise that unavoidably affect any electromagnetic communication
through metal wires, optical fibers or free space (see e.g. [9, 5, 52] and ref-
erences therein). Quantum Gaussian channels have been conjectured to have
Gaussian maximizers since 2006 [33]: “In classical information theory the
Gaussian channels admit Gaussian maximizers; moreover, there are corre-
sponding analytic results for norms of integral operators with Gaussian ker-
nels. The problem of whether or not there is an analogue of this property for
bosonic Gaussian channels is another open question which deserves a separate
discussion.”
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We prove this longstanding conjecture for the two building blocks of
one-mode phase-covariant quantum Gaussian channels: the one-mode Gauss-
ian quantum-limited attenuator and amplifier. We prove for these channels
that for any 1 < p < q the supremum in (1.5) is achieved by a quantum
Gaussian operator (Theorems 4.1 and 5.1), i.e., an operator proportional to
the exponential of a quadratic polynomial in the ladder operators (1.3). Our
result implies an upper bound to the p → q norms of any one-mode phase-
covariant quantum Gaussian channel (Proposition 6.1), and we conjecture
that this upper bound is actually optimal.

So far the conjecture “quantum Gaussian channels have Gaussian max-
imizers” has been proven only for p = 1 [35] and p = q [20]. The proof for
p = q follows from complex interpolation. The proof for p = 1 follows from
the proof of the Gaussian majorization conjecture [22, 44], stating that for
any phase-covariant quantum Gaussian channel the output generated by the
vacuum input state majorizes the output generated by any other positive
operator with unit trace.

We also prove that for any 1 < q < p the p → q norm of both the
quantum-limited attenuator and amplifier is infinite and it is asymptotically
achieved by a sequence of Gaussian operators converging to the identity.
The same sequence asymptotically achieves the p → p norm for any p > 1.
Hence, our results imply that the semigroups associated to the generators
of the quantum-limited attenuator and amplifier are not hypercontractive.
However, with a suitable different definition of the norms, hypercontractivity
holds for the semigroup associated to the generator of any one-mode phase-
covariant quantum Gaussian channel admitting a stationary state [6].

As in the classical case, the determination of the noncommutative p→ q
norms requires the maximization of a convex function over a convex set, that
is highly nontrivial since the tools of convex analysis cannot be applied. Our
proof starts from a recent majorization result on one-mode quantum Gauss-
ian channels [15], that reduces the problem to input operators diagonal in
the Fock basis. Our proof technique is completely new in the field of non-
commutative probability. Our main result is that Gaussian states achieve the
p → q norms of the quantum-limited attenuator (Theorem 4.1). The key
point to prove Theorem 4.1 is reducing the claim to a new noncommutative
logarithmic Sobolev inequality (Theorem 3.1). This inequality provides an
upper bound on the derivative of the norms of the output of the attenuator
with respect to the attenuation coefficient. The reduction of Theorem 4.1 to
Theorem 3.1 is inspired by a seminal paper by L. Gross [26], which exploits
a logarithmic Sobolev inequality to determine the p → q norms of classical
Gaussian integral kernels. This is the first time that this technique is ex-
ploited in the noncommutative setting. The difficulty is increased since the
optimization of the p → q norms over quantum Gaussian operators cannot
be performed analytically, and a closed formula for these norms cannot be
provided. The proof of Theorem 3.1 exploits the Karush–Kuhn–Tucker con-
ditions for constrained local optimizers [4, 39], and proceeds along the same
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lines as the proof of the isoperimetric inequality in [17]. We then determine
the p→ q norms of the quantum-limited amplifier (Theorem 5.1) exploiting
that its Hilbert-Schmidt dual is proportional to the quantum-limited atten-
uator. This is the first time that this duality is exploited to prove entropic
inequalities.

A fundamental application of our determination of the p→ q norms of
the one-mode quantum-limited amplifier is the proof [16] of the constrained
minimum output entropy conjecture [27, 46, 24], which was open since 2008
and states that Gaussian input states minimize the output von Neumann
entropy of one-mode phase-covariant quantum Gaussian channels for fixed
input entropy. Quantum states are positive operators with unit trace. They
are the noncommutative counterparts of probability distributions on Rn. The
von Neumann entropy of a quantum state ρ̂ is the Shannon entropy of the
probability distribution associated to its eigenvalues, i.e.

S (ρ̂) = −Tr [ρ̂ ln ρ̂] , (1.6)

and plays a key role in quantum information and communication theory (see
e.g. [54]) analogous to the role of the Shannon entropy in classical information
and communication theory. A Gaussian quantum state is a Gaussian opera-
tor that is also a quantum state. The constrained minimum output entropy
conjecture is crucial to determine both the triple trade-off region and the ca-
pacity region for broadcast communication of the Gaussian quantum-limited
attenuator and amplifier [29, 28, 46]. So far, the conjecture had been proven
only for the Gaussian one-mode quantum-limited attenuator [17] or for zero
input entropy for any phase-covariant quantum Gaussian channel [23, 35].
The constrained minimum output entropy of quantum Gaussian channels
has been bounded by the quantum Entropy Power Inequality [38, 12, 13, 11].
However, this bound is optimal only when the input state has the same en-
tropy as the state of the environment [12], hence it is not sufficient to prove
the conjecture. The proof of the conjecture for the one-mode quantum-limited
Gaussian attenuator of [17] is based on an isoperimetric inequality that is also
proven through the Karush–Kuhn–Tucker conditions. The extension of this
isoperimetric inequality to any one-mode phase-covariant quantum Gauss-
ian channel would imply the conjecture for these channels [47]. However,
the Karush–Kuhn–Tucker conditions are sufficient to prove the isoperimet-
ric inequality only for the quantum-limited attenuator, since for any other
one-mode phase-covariant quantum Gaussian channel these conditions admit
other solutions than quantum Gaussian states [47]. This problem has moti-
vated the exploration of the p → q norms to prove the conjecture. We give
a sketch of the proof of the constrained minimum output entropy conjecture
via the p → q norms of the amplifier in section 7. For a comprehensive pre-
sentation of all the proven or conjectured entropic inequalities for quantum
Gaussian channels, we refer the reader to the review [18].

The restriction of the one-mode quantum-limited attenuator to input
operators diagonal in the Fock basis is the linear map acting on discrete clas-
sical probability distributions on N known in the probability literature under
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the name of thinning [15]. The thinning has been introduced by Rényi [48] as
a discrete analogue of the rescaling of a continuous real random variable. The
thinning has played this role in discrete versions of the central limit theorem
[30, 55, 31] and of the Entropy Power Inequality [56, 37]. Our result implies
that for any 1 < p < q the lp → lq norm of the thinning is achieved by some
geometric probability distribution on N (Theorem 8.4). Moreover, for any
1 < q < p the lp → lq norm of the thinning is infinite and is asymptotically
achieved by a sequence of geometric probability distributions with the ratio
converging to 1. The same sequence asymptotically achieves the lp → lp norm
for any p > 1.

The paper is structured as follows. In section 2 we introduce the one-
mode quantum-limited attenuator and amplifier. In section 3 we prove the
logarithmic Sobolev inequality for the quantum-limited attenuator, and in
section 4 we apply the result to determine the p→ q norms of the quantum-
limited attenuator. In section 5 we determine the p → q norms of the
quantum-limited amplifier, and in section 6 we determine the upper bound
to the p→ q norms of the thermal channels. In section 7 we sketch the proof
of the constrained minimum output entropy conjecture. The relation of the
p → q norms of the attenuator with the thinning is discussed in section 8.
The conclusions are in section 9.

2. Setup

2.1. Gaussian quantum systems

We consider the Hilbert space of one harmonic oscillator, or one mode of
electromagnetic radiation, i.e. the irreducible representation of the canoni-
cal commutation relation (see [34, Chapter 12] or [50] for a more complete
presentation) [

â, â†
]

= Î . (2.1)

The operator â is called ladder operator. We define the Hamiltonian N̂ = â†â,
that counts the number of excitations, or photons. The vector annihilated by
â is the vacuum |0〉, from which the Fock states are built:

|n〉 =

(
â†
)n

√
n!
|0〉 , 〈m|n〉 = δmn , N̂ |n〉 = n|n〉 , m, n ∈ N . (2.2)

An operator diagonal in the Fock basis is called Fock-diagonal.

2.2. Quantum Gaussian states

An operator proportional to the exponential of a quadratic polynomial in â
and â† is a Gaussian operator. If the operator is also positive and has unit
trace, it is a quantum Gaussian state. If the polynomial is proportional to
the Hamiltonian â†â, the Gaussian state is thermal, and corresponds to a
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geometric probability distribution for the energy:

ω̂z =

∞∑
n=0

(1− z) zn |n〉〈n| =
(
1− e−β

)
e−βâ

†â , (2.3)

where β > 0 is the inverse temperature and z = e−β . The average energy of
ω̂z is

E(z) := Tr
[
N̂ ω̂z

]
=

z

1− z
, (2.4)

and its von Neumann entropy is

S(z) = − ln (1− z)− z ln z

1− z
. (2.5)

2.3. Gaussian quantum-limited attenuator

The Gaussian quantum-limited attenuator Eλ of transmissivity 0 ≤ λ ≤ 1
mixes the input operator X̂ with the vacuum state of an ancillary quantum
system B through a beamsplitter of transmissivity λ. The beamsplitter is
implemented by the unitary operator

Ûλ = exp
((
â†b̂− â b̂†

)
arccos

√
λ
)
, (2.6)

that satisfies

Û†λ â Ûλ =
√
λ â+

√
1− λ b̂ , (2.7)

where b̂ is the ladder operator of the ancilla system B (see [19, section 1.4.2]),
and

Eλ
(
X̂
)

= TrB

[
Ûλ

(
X̂ ⊗ |0〉B〈0|

)
Û†λ

]
. (2.8)

The quantum-limited attenuator preserves the set of Fock-diagonal op-
erators [36]. If the input is a Fock-diagonal quantum state, i.e. it has definite
photon number, Eλ lets each photon be transmitted with probability λ and re-
flected or absorbed with probability 1−λ, hence the name “quantum-limited
attenuator”.

From [15, Lemma 13], the quantum-limited attenuators form a semi-
group with generator

L
(
X̂
)

= â X̂ â† − 1

2

{
â†â, X̂

}
, (2.9)

i.e. Ee−t = etL for any t ≥ 0.

The quantum-limited attenuator sends thermal states into themselves,
i.e. Eλ (ω̂z) = ω̂z′ , with

z′ =
λ z

1− (1− λ) z
. (2.10)
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2.4. Gaussian quantum-limited amplifier

The Gaussian quantum-limited amplifierAκ of amplification parameter κ ≥ 1
performs a two-mode squeezing [3] on the input operator X̂ and the vacuum
state of an ancillary quantum system B. The squeezing is implemented by
the unitary operator

Ûκ = exp
((
â†b̂† − â b̂

)
arccosh

√
κ
)
, (2.11)

that satisfies
Û†κ â Ûκ =

√
κ â+

√
κ− 1 b̂† , (2.12)

where b̂ is the ladder operator of the ancilla system B (see [19, section 1.4.4]),
and

Aκ
(
X̂
)

= TrB

[
Ûκ

(
X̂ ⊗ |0〉B〈0|

)
Û†κ

]
. (2.13)

Also the quantum-limited amplifier preserves the set of Fock-diagonal oper-
ators [36].

Proposition 2.1 ([36, Theorem 9]). For any κ ≥ 1 the quantum-limited am-
plifier Aκ and the quantum-limited attenuator E 1

κ
are mutually dual, i.e. for

any trace-class operator X̂ and any bounded operator Ŷ

κ Tr
[
Ŷ Aκ

(
X̂
)]

= Tr
[
E 1
κ

(
Ŷ
)
X̂
]

(2.14)

Tr
[
Ŷ Eκ

(
X̂
)]

= κ Tr
[
Aκ
(
Ŷ
)
X̂
]
. (2.15)

The quantum-limited amplifier sends thermal states into themselves:

Aκ (ω̂z) = ω̂z′ , z′ =
z + κ− 1

κ
. (2.16)

3. The logarithmic Sobolev inequality for the quantum-limited
attenuator

Theorem 3.1 (Logarithmic Sobolev inequality). We define for any 0 < a < 1,

any 0 < z < 1 and any positive operator X̂ with finite rank

Fa

(
X̂
)

:=
d

dt
ln
∥∥∥etL

(
X̂
)∥∥∥

1
a

∣∣∣∣
t=0

,

Sa

(
X̂
)

:= S

(
X̂1/a

Tr X̂1/a

)
,

Fz,a
(
X̂
)

:= Fa

(
X̂
)

+ µ(z, a)Sa

(
X̂
)
, (3.1)

where L is the generator of the quantum-limited attenuator (2.9) and

µ(z, a) :=
a z

a−1
a − 1 + (1− a) z

ln z
1
a

. (3.2)

Then,

Fz,a
(
X̂
)
≤ Fz,a (ω̂z) . (3.3)



8 Giacomo De Palma, Dario Trevisan and Vittorio Giovannetti

Moreover,

Fa

(
X̂
)
≤ 1− a . (3.4)

An interesting consequence of Theorem 3.1 is the following.

Corollary 3.2. For any 0 < a < 1 and any positive operator X̂ with finite
rank

Fa

(
X̂
)
≤ Fa (ω̂) , (3.5)

where ω̂ is the thermal Gaussian state such that Sa(ω̂) = Sa

(
X̂
)

.

Proof. If X̂ has rank 1, we have from Lemma 3.8

Fa

(
X̂
)
≤ Fa

(
X̂↓
)

= Fa (|0〉〈0|) , (3.6)

and the claim follows since Sa

(
X̂
)

= 0. If X̂ has rank at least 2, then

Sa

(
X̂
)
> 0 and the claim follows from Theorem 3.1 with 0 < z < 1 chosen

such that Sa(ω̂z) = Sa

(
X̂
)

. Such z always exists since from (2.3)

ω̂
1
a
z

Tr ω̂
1
a
z

= ω̂
z

1
a
. (3.7)

When z covers the interval (0, 1), z
1
a covers the interval (0, 1), too, and the

claim follows since the entropy of a thermal Gaussian state can take any
positive value. �

3.1. Proof of Theorem 3.1

The starting point of the proof is the recent result of Ref. [15], that links the
p→ q norms to the notions of passive states. The passive states of a quantum
system [45, 40, 25] minimize the average energy for a given spectrum. They
are diagonal in the energy eigenbasis, and their eigenvalues decrease as the
energy increases.

Definition 3.3 (Fock rearrangement). Let X̂ be a positive operator with eigen-
values in decreasing order x0 ≥ x1 ≥ . . . ≥ 0. We define its Fock rearrange-
ment as

X̂↓ :=

∞∑
n=0

xn |n〉〈n| . (3.8)

If X̂ coincides with its own Fock rearrangement, i.e. X̂ = X̂↓, we say that it
is passive [45, 40, 25].

Remark 3.4. From (2.3), any thermal Gaussian state is passive.

Remark 3.5. We have X̂↓ = Û X̂ Û†, where Û is the unitary operator that
for any n ∈ N sends the eigenvector of X̂ with eigenvalue xn to the n-th Fock
state |n〉.

The result is the following:
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Theorem 3.6. For any p, q ≥ 1 the Fock rearrangement of the input does not

decrease the q norm of the output, i.e. for any operator X̂ with
∥∥∥X̂∥∥∥

p
< ∞

and any 0 ≤ λ ≤ 1 ∥∥∥Eλ (X̂)∥∥∥
q
≤
∥∥∥Eλ (X̂↓)∥∥∥

q
. (3.9)

Proof. From [15, Theorem 34], Eλ
(
X̂↓
)

majorizes Eλ
(
X̂
)

. Then, from [15,

Theorem 19] there exists a probability measure µ on the set of unitary oper-
ators such that

Eλ
(
X̂
)

=

∫
Û Eλ

(
X̂↓
)
Û† dp

(
Û
)
. (3.10)

Therefore,∥∥∥Eλ (X̂)∥∥∥
q
≤
∫ ∥∥∥Û Eλ (X̂↓) Û†∥∥∥

q
dp
(
Û
)

=
∥∥∥Eλ (X̂↓)∥∥∥

q
. (3.11)

�

Lemma 3.7. Fa

(
X̂
)

and Fz,a
(
X̂
)

are invariant upon rescaling X̂ by a pos-

itive constant.

Proof. For any λ > 0

Fa

(
λ X̂

)
=

d

dt
ln
∥∥∥etL

(
λ X̂

)∥∥∥
1
a

∣∣∣∣
t=0

=
d

dt

(
lnλ+ ln

∥∥∥etL
(
X̂
)∥∥∥

1
a

)∣∣∣∣
t=0

=
d

dt
ln
∥∥∥etL

(
X̂
)∥∥∥

1
a

∣∣∣∣
t=0

= Fa

(
X̂
)
, (3.12)

hence Fa

(
X̂
)

is invariant. Since Sa

(
λ X̂

)
= Sa

(
X̂
)

, Fz,a
(
X̂
)

is invariant,

too. �

Lemma 3.8. For any positive operator X̂ with finite rank

Fa

(
X̂
)
≤ Fa

(
X̂↓
)
, Fz,a

(
X̂
)
≤ Fz,a

(
X̂↓
)

(3.13)

Proof. From Theorem 3.6,

ln
∥∥∥etL

(
X̂
)∥∥∥

1/a
≤ ln

∥∥∥etL
(
X̂↓
)∥∥∥

1/a
. (3.14)

Since X̂ and X̂↓ have the same spectrum, the two sides of (3.14) coincide at
t = 0, hence

Fa

(
X̂
)

=
d

dt
ln
∥∥∥etL

(
X̂
)∥∥∥

1/a

∣∣∣∣
t=0

≤ d

dt
ln
∥∥∥etL

(
X̂↓
)∥∥∥

1/a

∣∣∣∣
t=0

= Fa

(
X̂↓
)
.

(3.15)

Moreover, Sa

(
X̂
)

= Sa

(
X̂↓
)

, and the claim follows. �
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With some abuse of notation, we define for any x ∈ RN+1

Fa(x) :=

N∑
n=1

n
(
xn |xn−1|

1
a−1 − |xn|

1
a

)
, (3.16)

Sa(x) := −
N∑
n=0

|xn|
1
a ln |xn|

1
a , (3.17)

Fz,a(x) := Fa(x) + µ(z, a)Sa(x) . (3.18)

This choice is motivated by the following Lemma.

Lemma 3.9. For any x ∈ RN+1 with nonnegative components such that

N∑
n=0

|xn|
1
a = 1 , (3.19)

let

X̂ =

N∑
n=0

xn |n〉〈n| . (3.20)

Then,

Fa(x) = Fa

(
X̂
)
, Sa(x) = Sa

(
X̂
)
, Fz,a(x) = Fz,a

(
X̂
)
. (3.21)

Proof. From [17, Eqs. (VI.3), (VI.4)], we have

etL
(
X̂
)

=

N∑
n=0

xn(t) |n〉〈n| , (3.22)

where for n = 0, . . . , N

xn(t) =

N∑
k=n

(
k

n

)
e−nt

(
1− e−t

)k−n
xk . (3.23)

The claim then follows from an explicit computation and from condition
(3.19). �

In the remaining part of this section, we will prove the following Theo-
rem.

Theorem 3.10. For any N ∈ N and any x ∈ RN+1 with nonnegative compo-
nents and satisfying (3.19),

Fz,a(x) ≤ Fz,a (ω̂z) , Fa(x) ≤ 1− a . (3.24)

Proposition 3.11. Theorem 3.10 implies Theorem 3.1.

Proof. Lemma 3.9 and Theorem 3.10 imply that (3.3) and (3.4) hold for any

positive operator X̂ with finite rank, diagonal in the Fock basis and with
Tr X̂1/a = 1. From Lemma 3.8, (3.3) and (3.4) hold for any positive operator

X̂ with finite rank and with Tr X̂1/a = 1, and the claim of Theorem 3.1
follows from Lemma 3.7. �
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Lemma 3.12. For any x ∈ RN+1 satisfying (3.19),

Fa(x) ≤ 1− a . (3.25)

Proof. We define for any n = 0, . . . , N

pn := x
1
a
n , I := {n ∈ {0, . . . , N} : pn > 0} , E :=

∑
n∈I

n pn , (3.26)

such that

Fa(x) =
∑
n∈I

n pn

((
pn−1
pn

)1−a

− 1

)
. (3.27)

From the hypothesis (3.19), p is a probability measure on I. If E = 0, then
p0 = 1 and p1 = . . . = pN = 0, and the right-hand side of (3.27) vanishes.
We can then suppose E > 0. Since the function s 7→ s1−a − 1 is concave,
Jensen’s inequality implies

E
∑
n∈I

npn
E

((
pn−1
pn

)1−a

− 1

)
≤ E

(∑
n∈I

npn
E

pn−1
pn

)1−a

− 1


= E

( 1

E

N∑
n=1

n pn−1

)1−a

− 1


= E

((
E + 1− (N + 1) pN

E

)1−a

− 1

)

≤ E

((
1 +

1

E

)1−a

− 1

)
≤ 1− a , (3.28)

where in the last step we have used the inequality

(1 + s)1−a ≤ 1 + (1− a) s , s ≥ 0 . (3.29)

�

Let PN ⊂ RN+1 be the set of vectors with nonnegative components
satisfying (3.19). Since 0 < a < 1, Fz,a is continuous on RN+1 and PN
is compact. Then, the restriction of Fz,a to PN admits a global maximizer
x̄ ∈ PN .

Lemma 3.13. The restriction of Fz,a to PN always admits a global maximizer
x̄ ∈ PN such that

x̄0 ≥ . . . ≥ x̄N ≥ 0 . (3.30)

Proof. Let x̄ ∈ PN be a global maximizer of the restriction of Fz,a to PN .
Lemma 3.8 and Lemma 3.9 imply that

Fz,a (x̄) ≤ Fz,a
(
x̄↓
)
, (3.31)

where x̄↓ is the decreasing rearrangement of x̄, i.e., x̄↓n = x̄σ(n) for any n =
0, . . . , N , where σ ∈ SN+1 is a permutation such that

x̄σ(0) ≥ . . . ≥ x̄σ(N) ≥ 0 . (3.32)
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Since also x̄↓ ∈ PN , x̄↓ is a global maximizer of the restriction of Fz,a to PN ,
too, and the claim follows. �

From now on, we assume that x̄ = x̄↓, i.e., x̄0 ≥ . . . ≥ x̄N ≥ 0. Let N ′

be such that

x̄0 ≥ . . . ≥ x̄N ′ > 0 , x̄N ′+1 = . . . = x̄N = 0 . (3.33)

If x̄0 ≥ . . . ≥ x̄N > 0, we set N ′ = N . Even if N ′ in principle depends on the
choice of x̄, we omit this dependence for the sake of a simpler notation.

Lemma 3.14. The hypotheses of the Karush–Kuhn–Tucker conditions (The-
orem B.1) for the maximization of Fz,a : RN+1 → R with the constraint
functions

ψn(x) = xn , n = 0, . . . , N, φ(x) =

N∑
n=0

|xn|
1
a − 1 (3.34)

are satisfied in x̄. Therefore, x̄ satisfies the stationarity condition (B.3), i.e.,
there exists λ ∈ R such that

∂Fz,a
∂xn

(x̄) = λ
∂φ

∂xn
(x̄) , n = 0, . . . , N ′ , (3.35)

∂Fz,a
∂xn

(x̄) ≤ λ ∂φ
∂xn

(x̄) , n = N ′ + 1, . . . , N , (3.36)

where N ′ is as in (3.33). An explicit computation of (3.35) yields

n x̄
1−a
a

n−1 −
n

a
x̄

1−a
a

n + (n+ 1)
1− a
a

x̄n+1 x̄
1−2a
a

n − µ(z, a)

a

(
ln x̄

1
a
n + 1

)
x̄

1−a
a

n

=
λ

a
x̄

1−a
a

n , n = 0, . . . , N ′ , (3.37)

while (3.36) for n = N ′ + 1 yields

(N ′ + 1) x̄
1−a
a

N ′ ≤ 0 . (3.38)

Proof. Let us prove that the hypotheses of Theorem B.1 are satisfied.

(a). Since 0 < a < 1, both Fa and φ are continuous on RN+1, hence also
Fz,a is continuous.

(b). The functions φ and Sa are continuously differentiable on RN+1. Let
us prove that Fa is differentiable in x̄. If N ′ = N or N ′ = N − 1, Fa is
continuously differentiable in a neighbourhood of x̄. Let us then assume
N ′ ≤ N − 2. We recall that x̄0 ≥ . . . ≥ x̄N ′ > 0 = x̄N ′+1 = . . . = x̄N .
The only terms in the sum (3.16) that are not continuously differentiable
in a neighbourhood of x̄ are

N∑
n=N ′+2

nxn |xn−1|
1−a
a . (3.39)

From Lemma A.2, the sum (3.39) is differentiable in x̄, and the claim
follows.
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(c). Since φ(x̄) = 0 and x̄ is nonnegative and decreasing, we have x̄0 > 0
and

∂φ

∂x0
(x̄) =

(x̄0)
1
a−1

a
> 0 , (3.40)

hence ∇φ(x̄) 6= 0.
(d). We have I = {N ′+1, . . . , N}. IfN ′ = N , I is empty and the condition

reduces to ∇φ(x̄) 6= 0. Let us then suppose N ′ < N . We have for any
m = 0, . . . , N and any n ∈ I

∂ψn
∂xm

(x̄) = δmn ,
∂φ

∂xm
(x̄) =

(x̄m)
1
a−1

a
. (3.41)

Since x̄m = 0 iff m ∈ I, the gradients ∇φ(x̄) and {∇ψn(x̄)}n∈I are
independent.

The conditions (3.35) and (3.36) follows from (B.3) using that ψn(x) = xn.
The condition (3.37) follows computing explicitly the derivatives in (3.35).
Since x̄N ′+1 = 0 and 0 < a < 1 we have

∂φ

∂xN ′+1
(x̄) =

x̄
1−a
a

N ′+1

a
= 0 ,

∂Sa
∂xN ′+1

(x̄) = −
x

1−a
a

N ′+1

a

(
lnx

1
a

N ′+1 + 1
)∣∣∣∣∣∣
xN′+1=0

= 0 . (3.42)

Moreover,

∂Fa
∂xN ′+1

(x̄) =
∂

∂xN ′+1

(
(N ′ + 1)xN ′+1 x̄

1−a
a

N ′ − x
1
a

N ′+1

)∣∣∣∣
xN′+1=0

= (N ′ + 1) x̄
1−a
a

N ′ , (3.43)

hence (3.36) for n = N ′ + 1 becomes (3.38). �

Lemma 3.15. Let x̄ ∈ PN be a global maximizer of the restriction of Fz,a to
PN such that x̄0 ≥ . . . ≥ x̄N ≥ 0. Then, x̄0 ≥ . . . ≥ x̄N > 0, i.e., its N ′

defined as in (3.33) is equal to N .

Proof. If N ′ < N , condition (3.38) is in contradiction with x̄N ′ > 0. �

The following change of variables simplifies the KKT stationarity con-
dition (3.37):

pn := x̄
1
a
n , n = 0, . . . , N , p−1 := 1 , pN+1 := 0 . (3.44)

From the constraint (3.19), p is a probability measure on {0, . . . , N}. We also
define for any 0 < s < 1

ξ := z
1
a , ν(s, a) := µ(sa, a) =

a sa−1 − 1 + (1− a) sa

ln s
, h(s) := sa−1−1 .

(3.45)
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Bringing all the terms to the left-hand side, the KKT stationarity condition
(3.37) reads

p1−an

a
Kn = 0 , n = 0, . . . , N , (3.46)

where

Kn = nh

(
pn
pn−1

)
+
n pn
pn−1

h′
(

pn
pn−1

)
− (n+ 1)

(
pn+1

pn

)2

h′
(
pn+1

pn

)
− ν(ξ, a) (ln pn + 1)− λ , n = 0, . . . , N , (3.47)

and the function s 7→ s2 h′(s) is set to 0 in s = 0 by continuity.
For n = 0, . . . , N we define

wn :=
pn+1

pn
, (3.48)

so that 0 < wn ≤ 1 for n = 0, . . . , N − 1 and wN = 0. For n = 1, . . . , N we
have from (3.46)

0 = Kn −Kn−1
= nh(wn−1) + nwn−1 h

′(wn−1)− (n+ 1)w2
n h
′(wn)− (n− 1)h(wn−2)

− (n− 1)wn−2 h
′(wn−2) + nw2

n−1 h
′(wn−1)− ν(w, a) lnwn−1 . (3.49)

We notice that

ν(s, a) =
h(s) + s h′(s)− s2 h′(s)

ln s
. (3.50)

Then, (3.49) can be recast as

(n+ 1)
(
w2
n h
′(wn)− w2

n−1 h
′(wn−1)

)
= (n− 1) (h(wn−1) + wn−1 h

′(wn−1)− h(wn−2)− wn−2 h′(wn−2))

+ (ν(wn−1, a)− ν(w, a)) lnwn−1 . (3.51)

Lemma 3.16. For any 0 < a < 1 and any 0 < s < 1, the function s 7→ ν(s, a)
is strictly increasing and maps (0, 1) into (−∞, 0).

Proof. We have to prove

0
?
<

∂

∂s
ν(s, a) =

a(a− 1)sa−1(1− s) ln s− asa−1 + (a− 1)sa + 1

s(ln s)2
, (3.52)

which reduces to the inequality

− a (1− a) (1− s) ln s− a− (1− a) s+ s1−a
?
> 0 . (3.53)

Since the function s 7→ s1−a is concave, we have for any 0 < s < 1

s1−a > 1− (1− a)
1− s
sa

. (3.54)

Moreover,

− a ln s = ln
1

sa
>

1

sa
− 1 , (3.55)
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and (3.53) follows since

− a (1− a) (1− s) ln s− a− (1− a) s+ s1−a

> (1− a) (1− s)
(

1

sa
− 1

)
− a− (1− a) s+ 1− (1− a)

1− s
sa

= 0 . (3.56)

For the second part, it is sufficient to notice that lims→0 ν(s, a) = −∞
and lims→1 ν(1, a) = 0. �

Lemma 3.17. Let x̄ ∈ PN be a global maximizer of the restriction of Fz,a to
PN such that x̄0 ≥ . . . ≥ x̄N ≥ 0, and let w ∈ RN+1 be as in (3.48). Then,

z
1
a = ξ ≥ w0 ≥ w1 ≥ . . . ≥ wN = 0.

Proof. Let us first assume that ξ < w0, hence ν(ξ, a) < ν(w0, a) from Lemma
3.16. We then have from (3.51) with n = 1

2
(
w2

1 h
′(w1)− w2

0 h
′(w0)

)
= (ν(w0, a)− ν(w, a)) lnw0 < 0 , (3.57)

thus w1 > w0 since the function

s 7→ s2 h′(s) = − (1− a) sa (3.58)

is strictly decreasing.

We will prove by induction that wn > wn−1 for n = 1, . . . , N . This
yields a contradiction for n = N since wN = 0. The claim is true for n = 1.
We can assume from the inductive hypothesis wn−1 > wn−2 > . . . > w0,
n ≥ 2. We then have ν(wn−1, a) > ν(w0, a) > ν(ξ, a). Since the function

s 7→ h(s) + s h′(s) =
a

s1−a
− 1 (3.59)

is decreasing, we get from (3.51)

(n+ 1)
(
w2
n h
′(wn)− w2

n−1 h
′(wn−1)

)
= (n− 1) (h(wn−1) + wn−1 h

′(wn−1)− h(wn−2)− wn−2 h′(wn−2))

+ (ν(wn−1, a)− ν(w, a)) lnwn−1

< (n− 1) (h(wn−1) + wn−1 h
′(wn−1)− h(wn−2)− wn−2 h′(wn−2)) < 0 .

(3.60)

Since the function s 7→ s2h′(s) is strictly decreasing, we have wn > wn−1.

We must then have w0 < ξ, hence ν (w0, a) ≤ ν(ξ, a). Thus, from (3.51)
with n = 1,

2
(
w2

1 h
′(w1)− w2

0 h
′(w0)

)
= (ν(w0, a)− ν(ξ, a)) lnw0 ≥ 0 , (3.61)

thus w1 ≤ w0 since the function s 7→ s2h′(s) is strictly decreasing.

Let us prove by induction that wn ≤ wn−1 for n = 1, . . . , N . The claim
is true for n = 1. We can assume from the inductive hypothesis wn−1 ≤
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wn−2 ≤ . . . ≤ w0, n ≥ 2, hence ν (wn−1, a) ≤ ν(w0, a) ≤ ν(ξ, a). Since the
function s 7→ h(s) + sh′(s) is decreasing, we get from (3.51)

(n+ 1)
(
w2
n h
′(wn)− w2

n−1 h
′(wn−1)

)
= (n− 1) (h(wn−1) + wn−1 h

′(wn−1)− h(wn−2)− wn−2 h′(wn−2))

+ (ν(wn−1, a)− ν(ξ, a)) lnwn−1

≥ (n− 1) (h(wn−1) + wn−1 h
′(wn−1)− h(wn−2)− wn−2 h′(wn−2)) ≥ 0 ,

(3.62)

and since the function s 7→ s2h′(s) is strictly decreasing, we have wn ≤
wn−1. �

We now consider the dependence on N . For any N ∈ N, let x̄(N) be a

maximizer of the restriction Fz,a to PN such that x̄
(N)
0 ≥ . . . ≥ x̄(N) ≥ 0,

and let p(N) and w(N) ∈ RN+1 be as in Eqs. (3.44) and (3.48), respectively.
With a diagonal argument, there exists a subsequence {Nk}k∈N such that for
any n ∈ N

lim
k→∞

w(Nk)
n = w∞n , lim

k→∞
p(Nk)n = p∞n . (3.63)

Since monotonicity is preserved in the limit, we have

1 > ξ ≥ w∞0 ≥ w∞1 ≥ . . . ≥ 0 . (3.64)

Lemma 3.18. The w∞n are all strictly positive and satisfy for any n ≥ 1 the
recursive relation

(n+ 1)
[
(w∞n )

2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

]
= (n− 1)

(
h
(
w∞n−1

)
+ w∞n−1 h

′ (w∞n−1)− h (w∞n−2)− w∞n−2 h′ (w∞n−2))
+
(
ν(w∞n−1, a)− ν(w, a)

)
lnw∞n−1 . (3.65)

Proof. If w∞0 = 0, since the sequence n 7→ w
(N)
n is decreasing we have for any

n ∈ N
lim sup
k→∞

w(Nk)
n ≤ lim sup

k→∞
w

(Nk)
0 = w∞0 = 0 , (3.66)

hence w∞n = limk→∞ w
(Nk)
n = 0 for any n. Since w

(N)
n−1 ≤ w

(N)
n−2 and the

function s 7→ h(s) + sh′(s) is decreasing, we get from (3.51)

ν(ξ, a) ≤ ν
(
w

(Nk)
n−1 , a

)
+(n+ 1)

(
w

(Nk)
n

)2
h′
(
w

(Nk)
n

)
−
(
w

(Nk)
n−1

)2
h′
(
w

(Nk)
n−1

)
− lnw

(Nk)
n−1

.

(3.67)
Since lims→0 s

2h′(s) = 0 and lims→0 ν(s, a) = −∞, the right-hand side of
(3.67) tends to −∞ for k →∞, giving a contradiction.

We must then have w∞0 > 0. We proceed by induction on n. From the
inductive hypothesis, we can suppose

w∞0 = lim
k→∞

w
(Nk)
0 ≥ . . . ≥ lim

k→∞
w

(Nk)
n−1 = w∞n−1 > 0 . (3.68)
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Let us suppose w∞n = 0. Since the function s 7→ s2h′(s) is nonpositive and
continuous for any 0 ≤ s ≤ 1, taking the limit k →∞ in (3.51) with n+ 1 in
place of n we get

0 ≥ (n+ 2)
(
w∞n+1

)2
h′(w∞n+1)

= lim
k→∞

(
(n+ 1)

(
h
(
w(Nk)
n

)
+ w(Nk)

n h′
(
w(Nk)
n

))
− ν(ξ, a) lnw(Nk)

n

)
− h(w∞n−1)− w∞n−1 h′(w∞n−1) =∞ , (3.69)

where we have used that h(s) + sh′(s) = O(sa−1) and s2h′(s)→ 0 for s→ 0.
Since (3.69) contains a contradiction, we must have w∞n > 0, and (3.65)
follows taking the limit k →∞ in (3.51). �

Lemma 3.19. w∞n = ξ < 1 for any n ∈ N.

Proof. From (3.64) and Lemma 3.18 we have 0 < w∞0 ≤ ξ < 1. Since the
sequence n 7→ w∞n is positive and decreasing, it has a limit limn→∞ w∞n =
infn∈N w

∞
n = ξ′, that satisfies

0 ≤ ξ′ ≤ w∞0 ≤ ξ < 1 . (3.70)

Since the function s 7→ h(s) + sh′(s) is decreasing and w∞n−1 ≤ w∞n−2, the
recursive relation (3.65) implies

(n+ 1)
(

(w∞n )
2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

)
≥ (ν(w∞n−1, a)− ν(ξ, a)) lnw∞n−1 , (3.71)

hence

ν(ξ, a) ≤
(n+ 1)

(
(w∞n )

2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

)
− lnw∞n−1

+ ν(w∞n−1, a) .

(3.72)
Since the function s 7→ s2h′(s) is bounded and decreasing for 0 ≤ s ≤ 1, we
have
∞∑
n=1

(
(w∞n )

2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

)
= ξ′

2
h′(ξ′)−(w∞0 )

2
h′(w∞0 ) <∞ .

(3.73)

Since w∞n ≤ w∞n−1, the sequence
{

(w∞n )
2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

}
n∈N0

is positive and summable, hence

lim inf
n→∞

(n+ 1)
(

(w∞n )
2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

)
= 0 . (3.74)

Since − lnw∞n−1 ≥ − lnw∞0 > 0, we also have

lim inf
n→∞

(n+ 1)
(

(w∞n )
2
h′(w∞n )−

(
w∞n−1

)2
h′(w∞n−1)

)
− lnw∞n−1

= 0 , (3.75)

and taking the lim inf for n→∞ of (3.72) we get

ν(ξ, a) ≤ ν(ξ′, a) , (3.76)
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hence ξ ≤ ξ′. Since from (3.70) also the converse inequality holds, we must
have ξ′ = w∞0 = ξ. Since the sequence n 7→ w∞n is decreasing and ξ = ξ′ =
infn∈N w

∞
n , we have w∞0 = ξ ≤ w∞n ≤ w∞0 for any n, hence w∞n = ξ. �

Lemma 3.20. limk→∞ p
(Nk)
n = p∞0 ξn for any n ∈ N.

Proof. The claim is true for n = 0. The inductive hypothesis is

lim
k→∞

p
(Nk)
n′ = p∞0 ξ

n′ , n′ = 0, . . . , n . (3.77)

We then have limk→∞ p
(Nk)
n+1 = limk→∞ p

(Nk)
n w

(Nk)
n = p∞0 ξn+1, where we have

used the inductive hypothesis and Lemma 3.19. �

Lemma 3.21. We have p∞0 = 1− ξ, hence limk→∞ p
(Nk)
n = (1− ξ) ξn for any

n ∈ N.

Proof. We have
∑N
n=0 p

(N)
n = 1 for any N ∈ N. Moreover, since the sequence

n 7→ w
(N)
n is decreasing, we also have

p(N)
n = p

(N)
0 w

(N)
0 . . . w

(N)
n−1 ≤ p

(N)
0

(
w

(N)
0

)n
. (3.78)

We have limk→∞ w
(Nk)
0 = ξ < 1, hence w

(Nk)
0 ≤ (1+ξ)/2 for sufficiently large

k, and since p
(N)
0 ≤ 1,

p(Nk)n ≤
(

1 + ξ

2

)n
. (3.79)

The sums
∑Nk
n=0 p

(Nk)
n are then dominated for any k ∈ N by

∑∞
n=0

(
1+ξ
2

)n
<

∞, and from the dominated convergence theorem we have

1 = lim
k→∞

Nk∑
n=0

p(Nk)n =

∞∑
n=0

lim
k→∞

p(Nk)n = p∞0

∞∑
n=0

ξn =
p∞0

1− ξ
, (3.80)

where we have used Lemma 3.20. �

We notice that for any N ∈ N

Sa

(
x̄(N)

)
= S

(
p(N)

)
= −

N∑
n=0

p(N)
n ln p(N)

n . (3.81)

Lemma 3.22. limk→∞ S
(
p(Nk)

)
= S(ω̂ξ).

Proof. The function x 7→ −x lnx is increasing for 0 ≤ x ≤ 1/e. Let us choose
n0 such that ((1 + ξ)/2)n0 ≤ 1/e. Recalling (3.79), the sums

−
Nk∑
n=n0

p(Nk)n ln p(Nk)n (3.82)
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are dominated for any k ∈ N by −
∑∞
n=n0

n
(

1+ξ
2

)n
ln 1+ξ

2 <∞. Then, from

the dominated convergence theorem and Lemma 3.21 we have

lim
k→∞

S
(
p(Nk)

)
= −

∞∑
n=0

p(Nk)n ln p(Nk)n

= −
∞∑
n=0

(1− ξ) ξn (ln (1− ξ) + n ln ξ) = S(ω̂ξ) . (3.83)

�

Lemma 3.23. limk→∞ Fa
(
x̄(Nk)

)
= ξ h(ξ)

1−ξ

Proof. We can rewrite

Fa

(
x̄(Nk)

)
=

Nk∑
n=1

n p
(Nk)
n−1 w

(Nk)
n−1 h

(
w

(Nk)
n−1

)
. (3.84)

For any 0 ≤ s ≤ 1 we have

0 ≤ s h(s) = sa − s ≤ 2 , (3.85)

and from (3.79) the sums in (3.84) are dominated by 2
∑∞
n=1 n

(
1+ξ
2

)n
<∞.

Then, from the dominated convergence theorem and Lemma 3.21 we have

lim
k→∞

Fa

(
x̄(Nk)

)
= h(ξ)

∞∑
n=1

n (1− ξ) ξn =
ξ h(ξ)

1− ξ
. (3.86)

�

Since PN ⊂ PN ′ for any N < N ′, the sequence
{
Fz,a

(
x̄(N)

)}
N∈N is

increasing. We then have for any N ∈ N and any x ∈ RN+1 with nonnegative
components and satisfying (3.19)

Fz,a(x) ≤ Fz,a
(
x̄(N)

)
≤ sup
N ′∈N

F
(
x̄(N

′)
)

= lim
N ′→∞

F
(
p(N

′)
)

= lim
k→∞

F
(
p(Nk)

)
=
ξ h(ξ)

1− ξ
+ ν(ξ, a)S(ω̂ξ) = Fz,a (ω̂ξ) , (3.87)

and the claim follows since

ω̂ξ =
ω̂
1/a
z

Tr ω̂
1/a
z

. (3.88)

4. The quantum-limited attenuator has Gaussian maximizers

Theorem 4.1 (p → q norms). For any 1 < p < q and any 0 < λ < 1 the
p → q norm of Eλ is achieved by a thermal Gaussian state ω̂ (that depends
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on λ, p and q), i.e. for any operator X̂ with
∥∥∥X̂∥∥∥

p
<∞∥∥∥Eλ (X̂)∥∥∥

q∥∥∥X̂∥∥∥
p

≤
‖Eλ (ω̂)‖q
‖ω̂‖p

= ‖Eλ‖p→q . (4.1)

For any p > 1 and any 0 < λ < 1 the p → p norm of Eλ is asymptotically
achieved by thermal Gaussian states with infinite temperature, i.e. for any

operator X̂ with
∥∥∥X̂∥∥∥

p
<∞∥∥∥Eλ (X̂)∥∥∥
p∥∥∥X̂∥∥∥

p

≤ lim
z→1

‖Eλ (ω̂z)‖p
‖ω̂z‖p

= λ
1−p
p = ‖Eλ‖p→p . (4.2)

For any 1 < q < p and any 0 < λ < 1 the p→ q norm of Eλ is infinite and is
asymptotically achieved by thermal Gaussian states with infinite temperature:

lim
z→1

‖Eλ (ω̂z)‖q
‖ω̂z‖p

=∞ = ‖Eλ‖p→q . (4.3)

Remark 4.2. ‖E0‖p→q =∞ for any p, q > 1. Indeed, E0(ω̂z) = |0〉〈0| for any
0 ≤ z < 1, hence

lim
z→1

‖E0(ω̂z)‖q
‖ω̂z‖p

= lim
z→1

1

‖ω̂z‖p
=∞ . (4.4)

Remark 4.3. E1 = I, hence

‖E1‖p→q =

{
1 if 1 ≤ p ≤ q
∞ if 1 ≤ q < p

. (4.5)

4.1. 1<p<q

Lemma 4.4. It is sufficient to prove Theorem 4.1 for positive operators.

Proof. From [2, Theorem 1], we can restrict to X̂ Hermitian. From [2, Eq.

(2)], we have
∥∥∥Eλ (X̂)∥∥∥

q
≤
∥∥∥Eλ (∣∣∣X̂∣∣∣)∥∥∥

q
, where

∣∣∣X̂∣∣∣ is the absolute value of

X̂. Since
∥∥∥X̂∥∥∥

p
=
∥∥∥∣∣∣X̂∣∣∣∥∥∥

p
,∥∥∥Eλ (X̂)∥∥∥

q∥∥∥X̂∥∥∥
p

≤

∥∥∥Eλ (∣∣∣X̂∣∣∣)∥∥∥
q∥∥∥∣∣∣X̂∣∣∣∥∥∥

p

, (4.6)

and the claim follows. �

Lemma 4.5. It is sufficient to prove Theorem 4.1 for positive passive opera-
tors. In other words, if (4.1) holds for any positive passive operator X̂ with∥∥∥X̂∥∥∥

p
<∞, then it holds for any operator X̂ with

∥∥∥X̂∥∥∥
p
<∞.
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Proof. From Theorem 3.6, the Fock rearrangement of the input does not
change its p norm and increases the q norm of the output, i.e. for any X̂ ≥ 0

with
∥∥∥X̂∥∥∥

p
<∞ ∥∥∥Eλ (X̂)∥∥∥

q∥∥∥X̂∥∥∥
p

≤

∥∥∥Eλ (X̂↓)∥∥∥
q∥∥∥X̂↓∥∥∥

p

. (4.7)

�

Lemma 4.6. It is sufficient to prove Theorem 4.1 for positive passive operators
with finite rank.

Proof. Let us suppose that ∥∥∥Eλ (Ŷ )∥∥∥
q∥∥∥Ŷ ∥∥∥

p

≤ C (4.8)

for any positive passive Ŷ with finite rank. For any n ∈ N let

P̂n :=

n∑
k=0

|k〉〈k| (4.9)

be the projector onto the first n + 1 Fock states, and let X̂ be a generic

positive passive operator with
∥∥∥X̂∥∥∥

p
< ∞. Since X̂ is diagonal in the Fock

basis we have
0 ≤ P̂n X̂ = X̂ P̂n = P̂n X̂ P̂n ≤ X̂ (4.10)

and

0 ≤
(
P̂n X̂

)p
= P̂n X̂

p ≤ X̂p . (4.11)

We then have from the dominated convergence theorem

lim
n→∞

Tr
[(
P̂n X̂

)p]
= lim
n→∞

Tr
[
P̂n X̂

p
]

= Tr X̂p , (4.12)

i.e.

lim
n→∞

∥∥∥P̂n X̂∥∥∥
p

=
∥∥∥X̂∥∥∥

p
. (4.13)

Since Eλ is a positive map and preserves the set of Fock-diagonal operators,
we also have

0 ≤ Eλ
(
P̂n X̂

)
≤ Eλ

(
X̂
)

(4.14)

and

0 ≤ Eλ
(
P̂n X̂

)q
≤ Eλ

(
X̂
)q

. (4.15)

Fatou’s lemma implies

Tr
[
Eλ
(
X̂
)q]
≤ lim inf

n→∞
Tr
[
Eλ
(
P̂n X̂

)q]
, (4.16)

i.e. ∥∥∥Eλ (X̂)∥∥∥
q
≤ lim inf

n→∞

∥∥∥Eλ (P̂n X̂)∥∥∥
q
. (4.17)
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Finally, we have from (4.13) and (4.17)∥∥∥Eλ (X̂)∥∥∥
q∥∥∥X̂∥∥∥

p

≤ lim inf
n→∞

∥∥∥Eλ (P̂n X̂)∥∥∥
q∥∥∥P̂n X̂∥∥∥

p

≤ C , (4.18)

where the last inequality follows from the hypothesis (4.8) applied to Ŷ =

P̂n X̂. �

Theorem 4.1 follows integrating the logarithmic Sobolev inequality (3.3).

Lemma 4.7. For any positive operator X̂ with finite rank

d

da
ln
∥∥∥X̂∥∥∥

1
a

= Sa

(
X̂
)
, (4.19)

where Sa is as in (3.1).

Proof. We have

d

da
ln
∥∥∥X̂∥∥∥

1
a

=
d

da

(
a ln Tr X̂

1
a

)
= ln Tr X̂

1
a −

Tr
[
X̂

1
a ln X̂

]
aTr X̂

1
a

= −Tr

[
X̂

1
a

Tr X̂
1
a

ln
X̂

1
a

Tr X̂
1
a

]
= S

(
X̂

1
a

Tr X̂
1
a

)
. (4.20)

�

Lemma 4.8. Let us fix T > 0 and 0 < z0 < 1. We define for any 0 ≤ t ≤ T

z(t) =
e−tz

1− (1− e−t) z
, (4.21)

such that

ω̂z(t) = etL (ω̂z0) , (4.22)

and let a(t) satisfy

0 < a(t) < 1 ,
d

dt
a(t) = µ(z(t), a(t)) , (4.23)

with µ(z, a) as in (3.2). Then for any positive passive operator X̂ with finite
rank ∥∥∥eTL

(
X̂
)∥∥∥

1
a(T )∥∥∥X̂∥∥∥

1
a(0)

≤

∥∥eTL (ω̂z0)
∥∥

1
a(T )

‖ω̂z0‖ 1
a(0)

. (4.24)
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Proof. We have with the help of Lemma 4.7 and of the differential equation
(4.23) for a(t)

d

dt
ln
∥∥∥etL

(
X̂
)∥∥∥

1
a(t)

= Fa(t)

(
etL
(
X̂
))

+ Sa(t)

(
etL
(
X̂
)) d

dt
a(t)

= Fz(t),a(t)
(

etL
(
X̂
))
≤ Fz(t),a(t)

(
ω̂z(t)

)
= Fa(t)

(
etL (ω̂z0)

)
+ Sa(t)

(
etL (ω̂z0)

) d
dt
a(t)

=
d

dt
ln
∥∥etL (ω̂z0)

∥∥
1
a(t)

, (4.25)

where we have used the logarithmic Sobolev inequality (3.3) with X̂ replaced

by etL
(
X̂
)

. Inequality (4.24) then follows integrating (4.25) between t = 0

and t = T . �

The claim (4.1) then follows from

Proposition 4.9. For any 1 < p < q and any T > 0 there is 0 < z0 < 1 such
that the solution to (4.23), with a(0) = 1/p and z(t) given by (4.22), satisfies
a(T ) = 1/q.

Proof. We can extend the function (z, a) 7→ µ(z, a) to z = 1 with µ(1, a) := 0.
This extension is continuously differentiable for 0 < z ≤ 1 and 0 < a < 1. We
then have a(T ) = a(0) = 1/p for z0 = 1. Since 0 < 1/q < 1/p, by continuous
dependence of solutions of differential equations with parameters, e.g., [32,
Theorem 3.1], it is sufficient to show that there exists some 0 < z0 < 1 such
that a(T ) = 0.

We have for 0 < a < 1 and 0 < z < 1

µ(z, a) ≤ a z
a−1
a − 1

ln z
1
a

:= φ(z, a) . (4.26)

The function a 7→ φ(z, a) is increasing for z ≤ e−2. Indeed,

∂

∂a
φ(z, a) = z

a−1
a

2a− z 1−a
a + ln z

ln z
≥ z

a−1
a

2 + ln z

ln z
≥ 0 . (4.27)

Moreover, the function z 7→ φ(z, a) is increasing for z ≤ e
a
a−1 . Indeed,

∂

∂z
φ(z, a) = a

z
1−a
a − a− (1− a) ln z

z
1
a ln2 z

≥ a−a− (1− a) ln z

z
1
a ln2 z

≥ 0 . (4.28)

From Lemma A.1 µ(z, a) < 0, hence the function t 7→ a(t) is decreasing and
therefore

a(t) ≤ a(0) = 1/p . (4.29)

From (4.21), the function t 7→ z(t) is decreasing, and therefore

z(t) ≤ z0 . (4.30)
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Then, choosing z0 ≤ e−2 and z0 ≤ e
1

1−p we have z(t) ≤ e−2 and z(t) ≤ e
1

1−p

for any t > 0. Then,

µ(z(t), a(t)) ≤ φ(z(t), a(t)) ≤ φ(z(t), 1/p) ≤ φ(z0, 1/p) , (4.31)

where the first inequality follows from (4.26), the second inequality follows
from (4.29) since the function a 7→ φ(z, a) is increasing for z ≤ e−2, and the
last inequality follows from (4.30) since the function z 7→ φ(z, a) is increasing

for z ≤ e
a
a−1 . We then have

a(T ) ≤ 1

p
+ φ(z0, 1/p) T . (4.32)

Since limz→0 φ(z, 1/p) = −∞ for any p > 1, for sufficiently small z0 we will
surely have a(T ) = 0. �

4.2. 1<p=q

With the same proof used in the case 1 < p < q, we can restrict to X̂ positive
passive with finite rank. Integrating (3.4) with a = 1/p between t = 0 and
t = − lnλ we get ∥∥∥Eλ (X̂)∥∥∥

p∥∥∥X̂∥∥∥
p

≤ λ
1−p
p . (4.33)

We can compute for any 0 < z < 1

‖ω̂z‖p =
1− z

(1− zp)
1
p

:= fp(z) . (4.34)

We have for ε→ 0

fp(1− ε) = ε
p−1
p

1 +O(ε)

p
1
p

, (4.35)

and using (2.10)

lim
ε→0

‖Eλ (ω̂1−ε)‖p
‖ω̂1−ε‖p

= lim
ε→0

fp

(
1− ε

λ+(1−λ)ε

)
fp(1− ε)

= λ
1−p
p . (4.36)

4.3. 1<q<p

We have using (2.10) and (4.35)

lim
ε→0

‖Eλ (ω̂1−ε)‖q
‖ω̂1−ε‖p

= lim
ε→0

fq

(
1− ε

λ+(1−λ)ε

)
fp(1− ε)

=∞ . (4.37)
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5. The quantum-limited amplifier has Gaussian maximizers

Theorem 5.1. For any 1 < p < q and any κ > 1 the p → q norm of Aκ is
achieved by a thermal Gaussian state ω̂ (that depends on κ, p and q), i.e. for

any operator X̂ with
∥∥∥X̂∥∥∥

p
<∞

∥∥∥Aκ (X̂)∥∥∥
q∥∥∥X̂∥∥∥

p

≤
‖Aκ (ω̂)‖q
‖ω̂‖p

= ‖Aκ‖p→q . (5.1)

For any p > 1 and any κ > 1 the p → p norm of Aκ is asymptotically
achieved by thermal Gaussian states with infinite temperature, i.e. for any

operator X̂ with
∥∥∥X̂∥∥∥

p
<∞

∥∥∥Aκ (X̂)∥∥∥
p∥∥∥X̂∥∥∥

p

≤ lim
z→1

‖Aκ (ω̂z)‖p
‖ω̂z‖p

= κ
1−p
p = ‖Aκ‖p→p . (5.2)

For any 1 < q < p and any κ > 1 the p → q norm of Aκ is infinite and is
asymptotically achieved by thermal Gaussian states with infinite temperature:

lim
z→1

‖Aκ (ω̂z)‖q
‖ω̂z‖p

=∞ = ‖Aκ‖p→q . (5.3)

With the same argument we used for the attenuator, we can reduce to
X̂ positive, passive and with finite rank. In the proof we will repeatedly use

Theorem 5.2 (Hölder’s inequality). For any two commuting positive matrices

Â and B̂ and any p > 1

Tr
[
Â B̂

]
≤
∥∥∥Â∥∥∥

p

∥∥∥B̂∥∥∥
p′
, (5.4)

where p′ := p
p−1 is the conjugate exponent of p.

5.1. 1<p<q

We recalling that the dual of Aκ is 1
κE 1

κ
(Proposition 2.1), and that both Aκ

and E 1
κ

preserve the set of Fock-diagonal states. Then, Hölder’s inequality
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gives ∥∥∥Aκ (X̂)∥∥∥q
q

=
1

κ
Tr

[
X̂ E 1

κ

(
Aκ
(
X̂
)q−1)]

≤ 1

κ

∥∥∥X̂∥∥∥
p

∥∥∥∥E 1
κ

(
Aκ
(
X̂
)q−1)∥∥∥∥

p′

≤
∥∥∥X̂∥∥∥

p

∥∥∥∥Aκ (X̂)q−1∥∥∥∥
q′

∥∥∥E 1
κ

(ω̂)
∥∥∥
p′

κ ‖ω̂‖q′

=
∥∥∥X̂∥∥∥

p

∥∥∥Aκ (X̂)∥∥∥q−1
q

∥∥∥E 1
κ

(ω̂)
∥∥∥
p′

κ ‖ω̂‖q′
, (5.5)

where the first identity follows from (2.14) and ω̂ is the Gaussian state that
achieves the q′ → p′ norm of E1/κ according to Theorem 4.1 (1 < p < q
implies 1 < q′ < p′). Then,∥∥∥Aκ (X̂)∥∥∥

q∥∥∥X̂∥∥∥
p

≤

∥∥∥E 1
κ

(ω̂)
∥∥∥
p′

κ ‖ω̂‖q′
. (5.6)

Since the dual of 1
κEκ is Aκ again, Hölder’s inequality gives

1

κ

∥∥∥E 1
κ

(ω̂)
∥∥∥p′
p′

= Tr
[
ω̂ Aκ

(
E 1
κ

(ω̂)
p′−1

)]
≤ ‖ω̂‖q′

∥∥∥Aκ (E 1
κ

(ω̂)
p′−1

)∥∥∥
q
, (5.7)

hence ∥∥∥E 1
κ

(ω̂)
∥∥∥
p′

κ ‖ω̂‖q′
≤

∥∥∥Aκ (E 1
κ

(ω̂)
p′−1

)∥∥∥
q∥∥∥E 1

κ
(ω̂)
∥∥∥p′−1
p′

=

∥∥∥Aκ (E 1
κ

(ω̂)
p′−1

)∥∥∥
q∥∥∥E 1

κ
(ω̂)

p′−1
∥∥∥
p

. (5.8)

Putting together (5.6) and (5.8) we get that the p→ q norm of Aκ is achieved
by the quantum state

ω̂′ :=
E 1
κ

(ω̂)
p′−1

Tr E 1
κ

(ω̂)
p′−1 . (5.9)

Since ω̂ is a thermal Gaussian state, also E 1
κ

(ω̂) is a (different) thermal

Gaussian state. Finally, from (2.3) any positive power of a thermal Gaussian
state is proportional to another thermal Gaussian state, hence also ω̂′ is a
thermal Gaussian state.
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5.2. 1<p=q

Recalling that the dual of Aκ is 1
κE 1

κ
, and that both Aκ and E 1

κ
preserve the

set of Fock-diagonal states, Hölder’s inequality gives∥∥∥Aκ (X̂)∥∥∥p
p

=
1

κ
Tr

[
X̂ E 1

κ

(
Aκ
(
X̂
)p−1)]

≤ 1

κ

∥∥∥X̂∥∥∥
p

∥∥∥∥E 1
κ

(
Aκ
(
X̂
)p−1)∥∥∥∥

p′

≤
∥∥∥X̂∥∥∥

p

∥∥∥∥Aκ (X̂)p−1∥∥∥∥
p′

∥∥∥E 1
κ

∥∥∥
p′→p′

κ

=
∥∥∥X̂∥∥∥

p

∥∥∥Aκ (X̂)∥∥∥p−1
p

κ
1−p
p , (5.10)

where we have used (4.2), hence

‖Aκ‖p→p ≤ κ
1−p
p . (5.11)

Moreover, using (2.16) and (4.35) we have

lim
ε→0

‖Aκ (ω̂1−ε)‖p
‖ω̂1−ε‖p

= lim
ε→0

fp
(
1− ε

κ

)
fp(1− ε)

= κ
1−p
p . (5.12)

5.3. 1<q<p

We have from (2.16) and (4.35)

lim
ε→0

‖Aκ (ω̂1−ε)‖q
‖ω̂1−ε‖p

= lim
ε→0

fq
(
1− ε

κ

)
fp(1− ε)

=∞ . (5.13)

6. Thermal quantum Gaussian channels

The one-mode phase-covariant quantum Gaussian channel are the quantum
channels resulting from the composition of a quantum-limited amplifier with
a quantum-limited attenuator [44, 23, 35, 21]. The following upper bound to
their p→ q norms holds:

Proposition 6.1. For any 0 ≤ λ ≤ 1, any κ ≥ 1 and any p, q ≥ 1,

‖Aκ ◦ Eλ‖p→q ≤ inf
r≥1

(
‖Aκ‖r→q ‖Eλ‖p→r

)
. (6.1)

Proof. For any operator X̂ with
∥∥∥X̂∥∥∥

p
<∞ and for any r ≥ 1,∥∥∥(Aκ ◦ Eλ)

(
X̂
)∥∥∥

q
≤ ‖Aκ‖r→q

∥∥∥Eλ (X̂)∥∥∥
r
≤ ‖Aκ‖r→q ‖Eλ‖p→r

∥∥∥X̂∥∥∥
p
.

(6.2)
�

The lack of an analytic expression for ‖Aκ‖r→q and ‖Eλ‖p→r makes the

computation of the right-hand side of (6.1) difficult. However, we conjecture
that the right-hand side of (6.1) coincides with the p→ q norm of Aκ ◦ Eλ.
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7. The constrained minimum output entropy conjecture

A crucial consequence of Theorem 5.1 is the constrained minimum output en-
tropy conjecture for the one-mode phase-covariant quantum Gaussian chan-
nels.

Theorem 7.1 (constrained minimum output entropy conjecture [16, Theo-
rem 4]). Quantum thermal Gaussian input states minimize the output von
Neumann entropy of any one-mode phase-covariant quantum Gaussian chan-
nel among all the input states with a given von Neumann entropy. In other
words, for any one-mode phase-covariant quantum Gaussian channel Φ, any
0 ≤ z < 1 and any one-mode quantum state ρ̂ with S(ρ̂) = S(ω̂z),

S(Φ(ρ̂)) ≥ S(Φ(ω̂z)) . (7.1)

We provide here a sketch of the proof of Theorem 7.1. The reader can
find the complete proof in Ref. [16].

Theorem 7.1 has been proven in Ref. [17] in the case where Φ is a
one-mode quantum-limited attenuator. The proof of Ref. [17] is based on
an isoperimetric inequality and does not use the p → q norms. Since any
one-mode phase-covariant quantum Gaussian channel can be decomposed
as a quantum-limited attenuator followed by a quantum-limited amplifier
[44, 23, 35, 21], it is sufficient to prove Theorem 7.1 when Φ is a one-mode
quantum-limited amplifier (see [16] for the details). For this purpose, it is
convenient to rephrase Theorem 5.1 in the following way.

Lemma 7.2 ([16, Lemma 1]). Let us fix κ ≥ 1 and 0 < z < 1. Then, for any
1 < q < 3

2 there exists 1 < p < q such that the p→ q norm of Aκ is achieved
by ω̂z, and for any one-mode quantum state ρ̂

‖Aκ(ρ̂)‖q
‖ρ̂‖p

≤ ‖Aκ‖p→q =
‖Aκ(ω̂z)‖q
‖ω̂z‖p

. (7.2)

For any p > 1, the Rényi p-entropy [34] of the quantum state ρ̂ is

Sp(ρ̂) =
p

1− p
ln ‖ρ̂‖p (7.3)

and satisfies

lim
p→1

Sp(ρ̂) = S(ρ̂) . (7.4)

Let now ρ̂ be a one-mode quantum state with

S(ρ̂) = S(ω̂z) . (7.5)

Rewriting (7.2) in terms of the Rényi entropies we get

Sq(Aκ(ρ̂)) ≥ Sq(Aκ(ω̂z)) +
p− 1

q − 1

q

p
(Sp(ρ̂)− Sp(ω̂z)) . (7.6)

Taking the limit q → 1 and recalling (7.4) we get the claim

S(Aκ(ρ̂)) ≥ S(Aκ(ω̂z)) . (7.7)
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8. The thinning

The thinning [48] is the map acting on classical probability distributions on
the set of natural numbers that is the discrete analogue of the continuous
rescaling operation on positive real numbers.

Definition 8.1 (Thinning). Let N be a random variable with values in N. The
thinning with parameter 0 ≤ λ ≤ 1 is defined as

Tλ(N) =

N∑
i=1

Bi , (8.1)

where the {Bn}n∈N+ are independent Bernoulli variables with parameter λ,
i.e. each Bi is one with probability λ, and zero with probability 1− λ.

From a physical point of view, the thinning can be understood as follows:
each incoming photon has probability λ of being transmitted, and 1 − λ of
being reflected or absorbed. Let N be the random variable associated to the
number of incoming photons, and {pn}n∈N its probability distribution, i.e. pn
is the probability that N = n (i.e. that n photons are sent). Then, Tλ(p) is
the probability distribution of the number of transmitted photons. It is easy
to show that

[Tλ(p)]n =

∞∑
k=0

rn|k pk , (8.2)

where the transition probabilities rn|k are given by

rn|k =

(
k

n

)
λn(1− λ)k−n , (8.3)

and vanish for k < n.
The thinning coincides with the restriction of the attenuator to input

states diagonal in the Fock basis:

Theorem 8.2. Let Eλ and Tλ be the quantum-limited attenuator and the thin-
ning of parameter 0 ≤ λ ≤ 1, respectively. Then for any probability distribu-
tion p on N

Eλ

( ∞∑
n=0

pn |n〉〈n|

)
=

∞∑
n=0

[Tλ(p)]n |n〉〈n| . (8.4)

Proof. See [15, Theorem 56]. �

Thanks to Theorem 8.2, our main result applies also to the thinning
with the usual lp norms:

Definition 8.3 (lp norm). For any p ≥ 1, the lp norm of a sequence of complex
numbers {xn}n∈N is

‖x‖p =

(∑
n∈N
|xn|p

) 1
p

. (8.5)
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Theorem 8.4 (lp → lq norms). For any 1 < p < q and any 0 < λ < 1 the
lp → lq norm of Tλ is achieved by a geometric probability distribution

ωn(z) = (1− z) zn , n ∈ N (8.6)

with 0 < z < 1 depending on λ, p and q, i.e. for any sequence {xn}n∈N of
complex numbers with ‖x‖p <∞

‖Tλ (x)‖q
‖x‖p

≤
‖Tλ (ω)‖q
‖ω‖p

= ‖Tλ‖p→q . (8.7)

For any p > 1 and any 0 < λ < 1 the lp → lp norm of Tλ is asymptoti-
cally achieved by geometric probability distributions with z → 1, i.e. for any
sequence {xn}n∈N of complex numbers with ‖x‖p <∞

‖Tλ (x)‖p
‖x‖p

≤ lim
z→1

‖Tλ (ω(z))‖p
‖ω(z)‖p

= λ
1−p
p = ‖Tλ‖p→p . (8.8)

For any 1 < q < p and any 0 < λ < 1 the lp → lq norm of Tλ is infinite and
is asymptotically achieved by geometric probability distributions with z → 1:

lim
z→1

‖Tλ (ω(z))‖q
‖ω(z)‖p

=∞ = ‖Tλ‖p→q . (8.9)

9. Conclusions

We have proven that Gaussian states achieve the p → q norms of the two
building blocks of one-mode phase-covariant quantum Gaussian channels: the
quantum-limited attenuator and amplifier. This fundamental result proves a
longstanding conjecture, which was open since 2006 [33].

Our result has led to the proof [16] of the constrained minimum out-
put entropy conjecture, which was open since 2008 and states that Gaussian
states minimize the output entropy of any one-mode phase-covariant quan-
tum Gaussian channel among all the input states with a given entropy. The
logarithm of the p-norm of a quantum state is proportional to its Rényi p-
entropy [34]. The Rényi entropies play a key role in quantum information
processing with finite resources [51]. Our result might then also find applica-
tion in this scenario.

Our proof technique cannot be directly applied to the one-mode phase-
covariant quantum Gaussian channels that are not quantum-limited. Indeed,
the application of the Karush–Kuhn–Tucker conditions heavily relies on the
restriction to input states diagonal in the Fock basis and with finite rank and
on the property that the quantum-limited attenuator preserves this class of
states. Indeed, it has been shown in the case of the minimization of the output
entropy that for any other phase-covariant quantum Gaussian channel, quan-
tum Gaussian states are not the only solution to the Karush–Kuhn–Tucker
conditions [47]. The quantum-limited amplifier is an exception since its p→ q
norms are determined by the norms of the quantum-limited attenuator via
a duality argument. We have also been able to prove an upper bound to the
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p → q norms of any one-mode phase-covariant quantum Gaussian channel,
and we conjecture that this upper bound is optimal.

The fundamental property stating that the output generated by the
vacuum input state majorizes the output generated by any other input state
holds for any multimode phase-covariant quantum Gaussian channel [22, 35].
We then conjecture that multimode Gaussian states achieve the p→ q norms
of multimode phase-covariant quantum Gaussian channels. This result would
imply the multiplicativity of such norms [35]

‖Φ⊗ Φ′‖p→q = ‖Φ‖p→q ‖Φ
′‖p→q (9.1)

for any two multimode phase-covariant quantum Gaussian channels Φ and
Φ′, proven so far only for p = 1 [35] and p = q [20]. While the multiplicativ-
ity of the norms of any two classical integral kernels can be proven via the
Minkowski inequality, in the quantum case entanglement makes it a highly
nontrivial property that does not necessarily hold (see [33] and references
therein for a review).

Our proof relies on the majorization results of [15], that fail in the
multimode scenario (see [14, section IV.A]). The multimode extension will be
an open challenge for the future, that could exploit the recently discovered
relation between quantum Gaussian semigroups and optimal mass transport
[7, 8]. We conjecture that quantum Gaussian states are the only operators
that achieve the p → q norms of quantum Gaussian channels, as it is for
classical Gaussian integral kernels [42]. The proof of this conjecture will be
another open challenge for the future.
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Appendix A. Auxiliary Lemmas

Lemma A.1. The function

µ(z, a) :=
a z

a−1
a − 1 + (1− a) z

ln z
1
a

(A.1)

is negative for any 0 < a < 1 and any 0 < z < 1.

Proof. Since 0 < a < 1, the function z 7→ az
a−1
a is convex and

a z
a−1
a > a+ (a− 1) (z − 1) = 1− (1− a) z . (A.2)
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Then, the numerator in (A.1) is positive. Since 0 < z < 1, the denominator
in (A.1) is negative, and the claim follows. �

Lemma A.2. For any 0 < a < 1, the function

(x, y) 7→ x |y|
1
a−1 (A.3)

is differentiable in (0, 0) with a vanishing differential.

Proof.

lim sup
(x,y)→(0,0)

|x| |y|
1
a−1√

x2 + y2
≤ lim sup

(x,y)→(0,0)

|y|
1
a−1 = 0 . (A.4)

�

Appendix B. Karush–Kuhn–Tucker conditions

Theorem B.1 (Karush–Kuhn–Tucker conditions [4, Theorem 7.2.9]). Let f ,
{ψn}Nn=0, φ : RM → R be continuous functions (a). Let x̄ ∈ RM be a local
maximizer for f(x) on the domain Ω ⊂ RM defined by the constraints

ψn(x) ≥ 0 ∀n = 0, . . . , N, φ(x) = 0 . (B.1)

Let f , {ψn}Nn=0 and φ be differentiable in x̄ (b) with ∇φ(x̄) 6= 0 (c). Let

I = {n ∈ {0, . . . , N} : ψn(x̄) = 0} , (B.2)

and let us suppose that the gradients ∇φ(x̄) and {∇ψn(x̄)}n∈I are linearly
independent (d). Then, there exist λ ∈ R and {αn}n∈I with αn ≥ 0 for any
n ∈ I such that

∇f(x̄)− λ∇φ(x̄) +
∑
n∈I

αn∇ψn(x̄) = 0 . (B.3)
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