
16 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Garbugli A., Bujari A., Bellavista P. (2021). End-to-end QoS Management in Self-Configuring TSN
Networks. Institute of Electrical and Electronics Engineers Inc. [10.1109/WFCS46889.2021.9483600].

Published Version:

End-to-end QoS Management in Self-Configuring TSN Networks

Published:
DOI: http://doi.org/10.1109/WFCS46889.2021.9483600

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/851188 since: 2022-02-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/WFCS46889.2021.9483600
https://hdl.handle.net/11585/851188

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Garbugli, A. Bujari and P. Bellavista, "End-to-end QoS Management in Self-
Configuring TSN Networks," 2021 17th IEEE International Conference on Factory
Communication Systems (WFCS), Linz, Austria, 2021, pp. 131-134

The final published version is available online at

https://dx.doi.org/10.1109/WFCS46889.2021.9483600

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/WFCS46889.2021.9483600

End-to-end QoS Management in Self-Configuring
TSN Networks

Andrea Garbugli
University of Bologna

Bologna, Italy
andrea.garbugli@unibo.it

Armir Bujari
University of Bologna

Bologna, Italy
armir.bujari@unibo.it

Paolo Bellavista
University of Bologna

Bologna, Italy
paolo.bellavista@unibo.it

Abstract—Industrial networked computing environments are
expected to serve a wide range of applications with heterogeneous
Quality-of-Service (QoS) requirements. This capability demands
for novel, QoS-aware network management and configuration
techniques resilient in the face of network changes. State-of-the-
art approaches only focus on aspects related to the management
of network devices. In this work, we move a step further,
proposing an end-to-end QoS management approach in Time-
Sensitive Networking (TSN) compliant networks, capable of
handling reconfiguration events e.g., link-drop. Shedding some
light on our proposal, we first discuss its functional building
blocks, successively validating the approach on a real TSN
testbed.

Index Terms—time-sensitive networking, management, recon-
figuration

I. INTRODUCTION

The Internet of Things (IoT), and in particular its industrial
application referred to as the Industrial Internet of Things
(IIoT), is at the heart of the Industry 4.0 evolution, seen
as an enabler for intelligent and cooperative Cyber-Physical
Systems. IIoT represents the convergence of flexible com-
munication technologies, new computing techniques such as
cloud/edge computing and the application of the IoT vision
to industrial production systems. As a result, industrial de-
vices and machines will use heterogeneous wired/wireless
technologies to communicate with applications running on
local/global cloud/edge platforms, in order to take advantage
of new efficient solutions, such as process scheduling and
optimization [1].

Indeed, cloud/edge computing is starting to be seen as a
relevant opportunity that can contribute to the convergence
of Operation and Information Technology (OT/IT) domains,
opening the road for end-to-end optimizations of processes.
This objective can be achieved through the on-premise deploy-
ment of layer(s) of edge/fog nodes with different capabilities,
seamlessly integrating compute, storage and networking func-
tionalities in support of industrial applications. This networked
computing environment gives rise to a more fluid model
identified as the Cloud-to-Thing Continuum (C2TC) [2].

The C2TC model provides several benefits compared to
a pure datacenter, cloud-based approach achieved in terms
of application bandwidth/latency and data security/privacy.
However, a seamless integration of all the levels of the in-
frastructure (both cloud and edge) demands for novel manage-

ment approaches capable of joint orchestration of (virtualized)
compute, storage and networking resources aimed at ensuring
industrial applications QoS guarantees.

In this depicted scenario, QoS-aware network management
and configuration is a necessary building block, providing the
basis for higher level, service/application-aware functionali-
ties. In this work in progress study, we present an end-to-end
self-(re)configuring solution for use in Time Sensitive Net-
working (TSN) compliant networks. To this aim, we first dis-
cuss some control and data plane functional components along
with the envisaged management and configuration interfaces.
Next, we assess the proposal on a real TSN testbed, comprised
of a multi-hop network topology, servicing industrial control
applications. Contributing to the state-of-the-art, our solution
extends the configuration and management functionality of
TSN to all elements of the network, including end-devices, and
is capable of (transparent) handling of reconfiguration events.

II. BACKGROUND

In this section, we provide a concise survey onto a subset
of TSN standards, focusing on QoS and network configuration
related issues need to better comprehend this work.

A. Time Synchronization

An essential network functionality required to support low-
latency industrial traffic is accurate time synchronization,
aimed at defining a shared time reference among all network
entities. In the context of TSN, related mechanisms are spec-
ified under the IEEE 802.1AS standalone standard. The IEEE
802.1AS is based on a specialized profile of the IEEE 1588
Precision Time Protocol (PTP) standard, called the generic
Precision Time Protocol (gPTP). gPTP envisages two main
entities: a (i) Clock Master (CM) and a (ii) Clock Slave (CS),
both deployed and provisioned on the networked devices,
exchanging messages embodying synchronization events. One
CM also called the PTP grandmaster, sends the information to
each of the Clock Slaves connected to it, for example, using
multicast communication. Each of the CSs, also called gPTP
instances, must correct the synchronized time received. To this
aim, they must add the time delay due to the propagation
of the message along the gPTP communication path, from
the grandmaster to the PTP instance. Once all devices are

synchronized, we have what is in effect a time-aware network,
also referred to as a gPTP domain.

B. Time-Trigger Traffic
The IEEE 802.1Qbv is a standard aimed at supporting

real-time traffic in TSN networks. This standard specifies
the techniques and mechanisms supporting different types of
time-critical flows, introducing the notion of time-triggered
communication windows often referred to as a secure traffic
windows or time-aware traffic windows. In this context, a
window is divided into multiple time slots that repeat cycli-
cally, and it possible to associate traffic flows to selected
traffic classes. This helps prevent lower priority traffic, such as
best-effort traffic, from interfering with real-time or scheduled
traffic transmissions. A so-called guard band precedes the
scheduled traffic windows, and packets belonging to other
traffic classes are buffered until their traffic class can be
transmitted. A time-aware schedule is expressed in terms of
slotted communications, implemented by means of a Gate
Control List (GCL), identifying time-instants where packets
can be transmitted on the medium.

Fig. 1. Centralized Configuration and Management Model.

C. Network Configuration
An important feature available in IEEE 802.1 networks is

that using plug-and-play mechanisms to e.g., seamlessly add
and configure new devices to the network. A standard for
providing similar functionalities on TSN-compliant networks
is the IEEE 802.1Qcc, which defines several configuration
models ranging from centralized to distributed ones. The
standard introduces several entities and among those is the:
(i) User-Network Interface (UNI) and the (ii) Centralized
Network Configuration (CNC) node. The UNI provides a
standard method of requesting L2 services while the CNC
interacts with the UNI for performing resource reservation,
scheduling, and other types of configuration via a management
protocol.

An optional functional entity called Centralized User Con-
figuration (CUC) communicates with the CNC via a standard
interface, implementing the so-called fully centralized network
architecture. The CUC can be used to discover end stations,
talkers and listeners in TSN terminology, retrieve their capabil-
ities, and to configure time-scheduled features in end stations
(mainly for industrial control applications).

In this context, the YANG Data Model provides a frame-
work for periodic status reporting and configuration of 802.1
bridges and components. In specific, YANG is a information
model used to express configuration and state data for net-
work management protocols. The latter, called the Network
Configuration Protocol (NETCONF), provides mechanisms
for installing, managing and deleting the configurations of
network devices [3].

III. RELATED WORK

Herein, we provide a concise survey of state-of-the-art work
related to the end-to-end management and control topic in
TSN.

In [4], an architecture for real-time systems called Time-
sensitive Software-defined Network (TSSDN) is presented.
The objective is to schedule and route time-triggered traffic
using commodity hardware via a software-defined networking
approach. The authors present several scheduling algorithms,
assigning time-slots to time-triggered flows, minimizing in-
network queuing while maximizing the number of co-existing
flows.

Gutiérrez et al. propose a heuristic capable of run-time
configuration of fog-enabled TSN [5], [6]. The authors in their
works take into account time-critical flows that can appear and
disappear over time. To this end, they adopt a configuration
agent architecture able to reacts to network (traffic) changes.

Gerhard et al in [7] present an approach that combines
SDN and TSN with emphasis on network management and
configuration. Their architecture, called Software-defined Flow
Reservation (SDFR), implements the IEEE 802.1Qcc standard
and can be integrated with existing SDN solutions. The
proposal allows for the configuration of time-triggered traffic
flows exploiting a southbound interface protocol.

In this work, we propose a centralized architectural solu-
tion and functional building blocks, extending the concept
of self-(re)configuration and monitoring to all elements of
the network, including end-devices. The proposed solution is
validated on a real TSN testbed, showcasing its capability to
dynamically adapt to network changes.

IV. SYSTEM ARCHITECTURE

Fig. 2. Proposed QoS Management Architecture.

Fig. 1 provides a high-level overview on our proposal.
Architecturally, we follow the centralized management and
configuration model comprising the CUC, CNC and UNI
entities. The solution is made up of several components, each
of which plays a particular role in managing and servicing the
different actors of a TSN network.

A. Centralized Network Configuration

The CNC communicates directly with the network devices
employing the NETCONF protocol. Once attached to the
network, the CNC obtains the capabilities and configurations
of the devices. This information is then saved in the knowledge
base present in our architecture. Operationally, the CNC is
tasked with the management of the networked devices enforc-
ing QoS as requested by TSN communication endpoints. To
this aim, the CNC enacts the following mechanisms:

• PTP-based synchronization service management.
• VLAN setup and configuration.
• Network Schedule distribution.

From a monitoring viewpoint, the module takes advantage
of the NETCONF Event Notifications protocol, which allows
us to express topic interests, subscribing to specific notification
events. In particular, we are interested in receiving events
related to a configuration changes, errors and possibly other
metrics quantifying the data plane performance.

B. Centralized User Configuration

The CUC cooperates with the TSN Agent (later on) in
order to manage the configuration of the TSN stream(s)
servicing the QoS specifications as mandated by end-devices.
The management control flow is designed to work in both
directions, that is, an end-device can send a configuration
request for a TSN stream to the CUC via the TSN Agent,
but also the CUC can push a new configuration towards the
TSN Agent. The CUC also takes care of updating the logically
centralized knowledge base.

For the CUC-TSN Agent communication interface, one can
rely on different options e.g., OPC-UA, DDS, and Zenoh
[8]. Our current implementation relies on Zenoh, a data-
centric middleware solution, allowing for future extensions
and integration of the approach in a C2TC, heterogeneous
networking environment.

C. Knowledge Base

The knowledge base represents the module in which infor-
mation regarding managed elements, including end-devices,
is stored. The information stored herein ranges from device
configuration, physical and overlay network topology to active
communication flows.

To build the knowledge base, all participants in the TSN
network send periodical updates using the CUC-CNC inter-
face. The knowledge base can be queried e.g., in case of
reconfiguration events.

D. TSN Agent

The TSN agent represents the module deployed on the
end-device tasked with communication with the CUC, re-
questing the setup and configuration of a viable QoS-aware
TSN streams. To act upon the request, the CUC queries the
knowledge base, computes a viable schedule and sends the
configuration parameters to the TSN Agent. Moreover, the
CUC also takes care of tasking the CNC to manage the
configuration of the network path connecting the devices,
setting up the end-to-end TSN stream.

The TSN Agent exploits Netlink, a standard socket-based
interface that allows user space applications to communicate
and modify the settings of some kernel modules. In specific,
the TSN Agent uses the NETLINK_ROUTE subsystem, often
referred to as rtnetlink, enabling the reception of routing and
link updates. This also gives us the capability to e.g., modify
routing tables (both IPv4 and IPv6), link parameters, neighbors
settings, queuing disciplines etc. All of these features are
essential to support and enact the concept of a TSN stream.
Currently, we use two new queuing disciplines (qdiscs) built
into the Linux kernel: (i) taprio (Time Aware Priority
Shaper) implementing a simplified version of the scheduling
defined by IEEE 802.1Qbv and (ii) etf (Earliest TxTime
First) qdisc. This latter discipline allows applications to set
a transmission time for each packet, information used by
the scheduler to dequeue the packet and forward it over the
TSN. The synchronization feature is implemented via the
linuxptp package.

As far as monitoring is concerned, the TSN Agent exploits
the capability of Netlink to subscribe to one or more multicast
groups in order to receive networking events. In particular, the
TSN Agent subscribes to the group on RTMGRP_LINK of the
NETLINK_ROUTE family. This group allows the TSN Agent
to receive events related to the configuration and status updates
of network interfaces.

V. IN-THE-FIELD EXPERIMENTAL VALIDATION

A. Experimental Settings

The goal of the experiment is to validate the approach,
showcasing its capability to handle reconfiguration events at
run-time. To this end, we have developed a real testbed based
on the architecture shown in Fig 2. The testbed comprises a T
(talker) and an L (listener), each represented by a UP Xtreme
board equipped with 4 TSN NICs (Intel I210), Intel (R) Core
(TM) i3-8145UE 2/4 CPU, and 8GB RAM.

With reference to Fig 2, the boards (T, L) are connected
to each other via two distinct physical paths. The first one
(blue color) connects T’s NIC (T1) with L’s NIC (L1) through
Switch 1 (SW1). We refer to this connection Stream 1 (S1).
The second path (orange color) connects T’s NIC (T2) with
L’s NIC (L2) through Stream 2 (S2), which crosses Switch 2
(SW2) and Switch 3 (SW3). The two streams are configured
with two different VLANs.

The traffic is UDP-based with a payload varying from
32, 64, 128 and 256 bytes. For each configuration, we send

105 packets with a 1 ms regular interval. In the first set of
experiments, we measure both latency and jitter of the time
critical flows.

In the second experiment, we showcase the TSN Agents’
capability of identifying a link-drop event. In this scenario,
the talker communicates with the listener using the S1 stream,
after which a drop occurs between T and SW1. Once the
event is noticed by the agent, it stops the transmission of the
talker through NIC (T1), requests a new configuration from the
CUC, rescheduling it via the viable alternative S2. Once the
configuration parameters have been received, the TSN Agent
starts the reconfiguration process via NIC (T2), updating the
network scheduling parameters, starting the PTP functionality
as to as re-synchronize the clocks. Upon termination, packets
can flow via the viable alternative S2.

B. Results

In Fig. 3 are reported the jitter and latency values for both
the S1 and S2 streams. One can observe that the flows QoS
are in line with the 1 ms specification. Although the jitter
remains more or less constant both with the increase of the
payload and the communication stream used, the latency, on
the other hand, is always greater during communication via
S2 compared to S1. This is essentially due to the fact that S2
needs to go through two hops (SW2 and SW3), introducing
an increase in latency in the order of microseconds. In all
configurations, the proposed approach is able to fully satisfy
QoS specifications.

Finally, in Fig. 4 is shown the result of the reconfiguration
scenario. In this setting, the communication is initially serviced
via the S1 and, following a link-drop event, goes through S2
with a downtime period due to the reconfiguration of about
150 ms.

VI. CONCLUSIONS

We discussed a practical, end-to-end TSN compliant QoS
management approach, validating it in a real testbed. This
work is part of an on-going project which has the ambitious
object of devising mechanisms and techniques for the end-to-
end QoS management of industrial C2TC computing environ-
ments comprising heterogeneous communication technologies.

REFERENCES

[1] 5G-AICA, “Integration of 5G with Time-Sensitive Networking
for Industrial Communications,” Feb. 2021. [Online]. Avail-
able: https://www.5g-acia.org/whitepapers/integration-of-5g-with-time-
sensitive-networking-for-industrial-communications/

[2] P. Pop, M. L. Raagaard, M. Gutierrez, and W. Steiner, “Enabling Fog
Computing for Industrial Automation Through Time-Sensitive Network-
ing (TSN),” IEEE Communications Standards Magazine, vol. 2, no. 2,
pp. 55–61, 2018.

[3] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.

[4] Nayak, Naresh Ganesh and Dürr, Frank and Rothermel, Kurt, “Time-
sensitive software-defined network (TSSDN) for real-time applications,”
ACN International Conference on Real-Time Networks and Systems, pp.
193–202, 2016.

(a) Observed jitter for streams S1 and S2.

(b) Observed latency for streams S1 and S2.

Fig. 3. Jitter and latency of the received UDP packets; metrics are expressed
for each packet size and stream.

Fig. 4. Observed latencies before and after the reconfiguration phase.

[5] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat,
“Self-configuration of IEEE 802.1 TSN Networks,” in IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA,
2017.

[6] M. L. Raagaard, P. Pop, M. Gutierrez, and W. Steiner, “Runtime Re-
configuration of Time-sensitive Networking (TSN) Schedules for Fog
Computing,” in IEEE Fog World Congress, 2018, pp. 1–6.

[7] T. Gerhard, T. Kobzan, I. Blöcher, and M. Hendel, “Software-defined
Flow Reservation: Configuring IEEE 802.1Q Time-Sensitive Networks
by the Use of Software-Defined Networking,” in IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA,
vol. 2019, 2019, pp. 216–223.

[8] A. Corsaro and G. Baldoni, “fogØ5: Unifying the Computing, Networking
and Storage Fabrics End-to-end,” in Cloudification of the Internet of
Things (CIoT), 2018, pp. 1–8.

