
Data and text mining

Spathial: an R package for the evolutionary analysis of

biological data

Erika Gardini1,2,*, Federico M. Giorgi 2, Sergio Decherchi1,* and Andrea Cavalli1,2

1Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy and 2Department of Pharmacy and

Biotechnology, University of Bologna, Bologna 40126, Italy

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on October 17, 2019; revised on April 15, 2020; editorial decision on April 19, 2020; accepted on May 18, 2020

Abstract

Summary: A primary problem in high-throughput genomics experiments is finding the most important genes
involved in biological processes (e.g. tumor progression). In this applications note, we introduce spathial, an R pack-
age for navigating high-dimensional data spaces. spathial implements the Principal Path algorithm, which is a topo-
logical method for locally navigating on the data manifold. The package, together with the core algorithm, provides
several high-level functions for interpreting the results. One of the analyses we propose is the extraction of the
genes that are mainly involved in the progress from one state to another. We show a possible application in the con-
text of tumor progression using RNA-Seq and single-cell datasets, and we compare our results with two commonly
used algorithms, edgeR and monocle3, respectively.

Availability and implementation: The R package spathial is available on the Comprehensive R Archive Network
(https://cran.r-project.org/web/packages/spathial/index.html) and on GitHub (https://github.com/erikagardini/spa
thial). It is distributed under the GNU General Public License (version 3).

Contact: erika.gardini@iit.it or sergio.decherchi@iit.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent advent of next-generation sequencing techniques has pro-
duced a massive amount of high-throughput data for quantitative
biology, especially in the field of transcriptomics. The increased
depth and sample size of transcript measurement has challenged sci-
entists to create novel algorithms that can use these highly complex
datasets to increase our understanding of biological phenomena
(Camacho et al., 2018).

Examples of these complex transcriptomic datasets are those gen-
erated by the TCGA (Tomczak et al., 2015) and GTEX (Lonsdale
et al., 2013) consortia, which collect tens of thousands of human
RNA-Seq samples from tumor and physiological tissues, respectively.
In the past few years, the development of single-cell sequencing tech-
nologies has further increased the sample size of RNA-Seq datasets,
albeit at a cost for transcript coverage (Svensson et al., 2018).

RNA-Seq analyses to understand changes in gene expression
have built on the previous generation of technological platforms
(microarrays), and have focused on characterizing the quantitative
differences between two or more groups of samples, a process
known as differential gene expression analysis (DGEA).

As the sample sizes increase, so does our ability to detect and
study the natural heterogeneity of living systems, whether they are
bulk tissues (e.g. interpatient variance in cancer) or single cells (e.g.

different cells and cell states in a microenvironment). Moreover,
large datasets allow us to measure biological transition processes,
such as cell differentiation and tumor progression (Pastushenko and
Blanpain, 2019). The literature contains some studies on defining
cell trajectories (Qiu et al., 2017); however, to our knowledge, there
is no general and flexible algorithm/package for modeling continu-
ous processes and extracting the associated features (i.e. genes or
transcripts).

Recently, Ferrarotti et al. (2019) designed an algorithm to iden-
tify smooth and energetically meaningful paths in data space
(Ferrarotti et al., 2019; Ragusa et al., 2019). This algorithm, the
Principal Path algorithm, was inspired by the minimum free-energy
path concept in statistical mechanics (Maragliano et al., 2006). It
allows the user to navigate and analyze vector spaces morphing
from a start point to an end point. The waypoints along the path
can be imagined as a chain of springs, with each being a small vari-
ation of the previous one. They are therefore particularly interesting
from the evolutionary point of view.

Unlike shortest path algorithms [e.g. the Dijkstra shortest path
(Dijkstra, 1959)], the Principal Path takes into account the concept
of smoothness, which can deliver solutions that are much more cog-
nitively sound (Ferrarotti et al., 2019). The model can also be con-
sidered generative (even if a distribution is not explicitly derived)
because the waypoints are interpolated over the data manifold.
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Here, we present a readily usable R package, dubbed spathial,
which implements the Principal Path algorithm to analyze progres-
sions in large-scale transcriptomic datasets, such as those arising
from bulk and single-cell RNA-Seq.

2 The package

Here, we introduce a novel R package, spathial, which implements
the Principal Path algorithm for the analysis of multidimensional
biological datasets.

The algorithm is based on the following minimization problem:

min
W;u

XN

i¼1

XNc

j¼1

jj/ðxiÞ � xjjj2dðui; jÞ þ s
XNc

i¼0

jjxiþ1 � xijj2;

where N is the number of samples, Nc is the number of waypoints,
/ð�Þ : Rd ! R

d0 is the (possibly non-linear) transformation mapping
of the d-dimensional input space, xi is a sample of the N � d matrix
X arranged in a row-wise fashion, xj is a waypoint of the Nc � d0

matrix W arranged in row-wise fashion and dðui; jÞ is the Kronecker
delta where ui are cluster memberships.

This functional is an extension of k-means clustering, where the
first and last clusters are fixed, while the other clusters are evolved
according to the functional, which induces a curve topology due to
the regularization term. All the clusters are waypoints for the path
and are topologically connected by a chain of springs (Ferrarotti
et al., 2019). The s hyperparameter regulates the trade-off between
data-fitting and smoothness of the inferred path. The selection of s is
critical. The Supplementary Materials provide details on how s is
selected in this package together with the discussion regarding the
computational complexity of the algorithm.

Conceptually, the algorithm allows one to infer a relevant transi-
tion or evolutionary path that can highlight the features involved in
a specific process. It can thus be useful in all the scenarios where the
temporal (or pseudo-temporal) evolution is the main problem (e.g.
tumor progression, cell-cycle analysis). The input of the algorithm
(together with the full data matrix) comprises two points, which rep-
resent the boundary conditions of the algorithm: the start point and
the end point. Given the boundaries, the algorithm learns a smooth
transition path connecting them. Along the path, there are new
intermediate data samples, which gradually morph from the start
point to the end point. In this way, it is possible to move from two
known states and analyze which features are involved in the transi-
tion between the two states.

The package spathial offers the option of running the Principal
Path algorithm using very high-level functions. It subdivides the
workflow for constructing the path into a few steps:

• selection of the boundaries (start and end points). spathial pro-

vides three different options: a visual selection by the user, classes

centroids or selection of the samples using their row-name.

However, users can choose their own strategy, extract the row-

names of the boundaries and set them using the third mode;
• prefiltering (optional): allows one to obtain a local solution,

which does not involve the entire dataset. This procedure

removes some data points and forces the Principal Path algo-

rithm to go through a restricted number of samples. This can cre-

ate smoother paths but at the same time can prune some

available data;
• execution of the Principal Path algorithm with the boundaries

selected during the first step and with the input data (filtered or

not filtered).

After the Principal Path algorithm is run, users obtain the coordi-
nates of the waypoints (new interpolating samples). spathial pro-
vides some utility functions for the analysis of the output. In
particular, users can compute the labels of the waypoints (assigned
as the label of the nearest point). Additionally, they can plot the 2D
visual representation of the datapoints together with the path

waypoints. This utility function takes as input the data points and
the waypoints of the path. If those are in 2D, the function directly
plots them. If not, it performs a dimensionality reduction using
tSNE (Van der Maaten and Hinton, 2008) and then plots the points.
However, users can adopt their preferred dimensionality reduction
strategy and give 2D coordinates to the function. Finally, spathial
allows the user to compute some statistical information about the
waypoints. In particular, it allows one to obtain the Pearson’s correl-
ation of the waypoint features with the path progression. Path pro-
gression is here defined as the ordered sequence of waypoint indices
from 0 (the start point) to Nc þ 1 (the end point). In this way, users
can obtain the features that are correlated with the progression (fea-
tures involved in the transition between the start point and the end
point), and they can perform a feature selection according to the
Pearson’s correlation scores. The function also provides the associ-
ated P-value and q-value.

While the package can be applied to any data, its current focus is
the analysis of transcriptomic data, which include some of the larg-
est (in terms of number of features and samples) and most common-
ly generated datasets.

3 Results

We performed several experiments to compare spathial with existing
tools and to demonstrate its flexibility.

First, we experimented on the TCGA lung adenocarcinoma
RNA-Seq dataset (Weinstein et al., 2013), comprising 562 gene ex-
pression profiles RPM-normalized (19637 genes each). Each sample
is labeled as ‘tumor’ or ‘normal’ according to the TCGA barcode.
The aim of the experiment is to navigate the space from the normal
samples to the tumor samples. In this case, the start point was the
most distant normal sample from the tumor centroid and the end
point was the most distant tumor sample from the normal centroid.
We selected these start and end points because we were searching
for the extremes, conceptually the most normal sample and the most
diseased sample. We considered as ground truth the oncogenes and
tumor suppressor genes (tsg) listed in the Cancer Gene Census
(Sondka et al., 2018). The prefiltering was not executed since the
search is for a global solution. Finally, the Principal Path algorithm
was run with 50 intermediate points (waypoints) plus the bounda-
ries. Figure 1A shows the samples (colored according to the labels)
and the path.

We compared the first 1000 best q-value ranked genes for spa-
thial with the relevant genes extracted by a commonly used tool for
DGEA, edgeR (Robinson et al., 2010) (again the first 1000 best q-
values genes). Supplementary Tables ST1 and ST2 show the details
for this comparison. Some genes that spathial identified as being
involved in the progression were not identified as such by edgeR
(and vice versa).

To further highlight the genes found by spathial and missed by
edgeR (see Fig. 1B), we selected the most correlated genes for spa-
thial using the quantiles and setting two thresholds such that 70%
of values fell below the first threshold and 30% fell above the se-
cond threshold, representing the most positively and negatively
correlated genes. From among the positively correlated genes for
spathial, we selected the oncogenes and compared them with the
edgeR results. In particular, we analyzed how these oncogenes are
placed by the edgeR and spathial ranking, respectively, according
to their statistical significance [computed as �log10ðPvalueÞ�
signðFoldChangeÞ] and their Pearson’s correlation scores. Finally,
we selected the first 30 genes for which spathial disagreed the most
strongly with edgeR and for which the spathial rank was better
than edgeR. The same comparison can be performed by selecting
the tsg from among the most negatively correlated genes for
spathial.

Figure 1B shows the subset of 60 genes selected as described
above. The x and y coordinates are the position in the rank for
edgeR and spathial, respectively. Oncogenes and tsg should be
placed at the end and the beginning of the rank, respectively (the
rank is with sign and ascending), because they should be highly posi-
tively and highly negatively correlated in the transition from normal
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to tumor. Therefore, the red genes on the left (oncogenes) and the
blue genes (tsg) on the right are those that spathial (but not edgeR)
identified as involved in the transition from normal to tumor.

Other experiments on the TCGA liver hepatocellular carcinoma
and the breast invasive carcinoma RNA-Seq datasets (Weinstein
et al., 2013) are shown in the Supplementary Materials.
Supplementary Figures SF3 and SF4 and Tables ST3–ST 6 show the
resulting path and the comparison with edgeR.

We performed a second experiment with spathial on a single-cell
RNA-Seq dataset. In this case, we selected the dataset used in the

experiments in Karlsson et al. (2017). This dataset comprises 96
human myxoid liposarcoma cells, each described with a gene expres-
sion profile (23 928 genes each). Cells are labeled as ‘G1’, ‘S’ and
‘G2/M’ according to their experimentally determined cell-cycle
phase. The aim of the experiment is to navigate the space from the
‘G1’ samples to the ‘G2/M’ samples. The start point was the ‘G1’
centroid and the end point was the ‘G2/M’ centroid. There was no
prefiltering because the search was for a global solution. Finally, the
Principal Path algorithm was run with 50 intermediate points (way-
points) and the boundaries. Supplementary Figure SF5 shows the
samples (colored according to the labels) and the path.

We computed the q-value for each gene, then selected the genes
with high statistical significance (the first 1000 best q-value ranked
genes). Then, we compared them with the statistical information
extracted with monocle3, a package for computing single-cell trajec-
tory analysis (Qiu et al., 2017). In particular, one can use monocle3
to learn the graph and find genes that are differentially expressed
across a single-cell trajectory computing the Moran’s I test. Here
too, we selected the first 1000 best q-value ranked genes (this q-
value is computed on the Moran’s I scores and adjusted according to
the Benjamini–Hochberg method). We detected a significant overlap
between monocle3 and spathial gene predictions (see Supplementary
Tables ST7 and ST8). However, some genes identified by spathial as
being involved in the progression were not identified as such by
monocle3 (and vice versa). Some of those genes belong to ‘Group2’
and ‘Group3’ of the Karlsson et al. (2017) experiment and
are known to respectively decrease and increase in expression from
G1 toward mitosis; the decrease/increase information is used as
ground truth.

The Supplementary Material contains all the detailed results,
tables and figures, all the datasets and the scripts for reproducing
the experiments and figures.

4 Conclusions

We have developed spathial, an R implementation of the Principal
Path algorithm. spathial can be readily used to identify progression
paths, either temporal or pseudo-temporal, in data space. We
applied this algorithm to transcriptomic and single-cell RNA-Seq
datasets because these applications demonstrate its flexibility in cop-
ing with different problems. However, the package can be applied to
any omics. Results show that the tool is able to retrieve information
missed from other packages and vice versa.

The package is available on the Comprehensive R Archive
Network (https://cran.r-project.org/web/packages/spathial/index.
html) and on GitHub (https://github.com/erikagardini/spathial).
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