
17 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Al Sadi A., Berardi D., Callegati F., Melis A., Prandini M., Tolomei L. (2023). A Structured Approach to
Insider Threat Monitoring for Offensive Security Teams. New York : IEEE
[10.1109/CCNC51644.2023.10060017].

Published Version:

A Structured Approach to Insider Threat Monitoring for Offensive Security Teams

Published:
DOI: http://doi.org/10.1109/CCNC51644.2023.10060017

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/923396 since: 2023-04-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/CCNC51644.2023.10060017
https://hdl.handle.net/11585/923396

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Al Sadi, D. Berardi, F. Callegati, A. Melis, M. Prandini and L. Tolomei, "A Structured Approach to Insider
Threat Monitoring for Offensive Security Teams," 2023 IEEE 20th Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, USA, 2023, pp. 628-631.

The final published version is available online at:
https://dx.doi.org/10.1109/CCNC51644.2023.10060017

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/CCNC51644.2023.10060017

A Structured Approach to Insider Threat Monitoring
for Offensive Security Teams

Amir Al Sadi †, Davide Berardi †, Franco Callegati †, Andrea Melis †, Marco Prandini †, Luca Tolomei �
{amir.alsadi, davide.berardi, franco.callegati, a.melis, marco.prandini}@unibo.it, luca.tolomei@obsidium.it

† Department of Computer Science and Engineering University of Bologna, Bologna, Italy
� Obsidium S.R.L., Bologna, Italy

Abstract—In many countries, government agencies resort to
third parties to acquire security services of many kinds, in-
cluding Red Team operations to test the effectiveness of own
defenses mechanisms. Absolute trust is a key requirement, lest
a potentially devastating finding be exploited by a treacherous
Red Team against the same entity which commissioned the
operation, or sold to its adversaries. In our endeavour as a
joint private-academic initiative to address this peculiar market,
we observed that a structured approach to this issue is much
less common than we would have expected. In this work, we
outline the process we are devising to offer customers a verified
environment, but integrating it with an evidence-based proof of
their correct behavior during the operation, striving to solve the
“Quis custodiet ipsos custodes” struggle in an offensive setting.

Index Terms—Secure Infrastructure, Penetration Testing, In-
sider Threat, IaC

I. INTRODUCTION

Insider threats pose a complex challenge. They represent
one of the most expensive security issues for companies [1]
in general. Furthermore, they have the potential to obliterate
companies working in specific fields where customers’ trust is
the tool of the trade. A prime example is the offensive security
sector, e.g. firms offering penetration testing services, which
have a mission to uncover unbeknownst ways to access sensitive
data or to interfere with the processes of their customers.
While initial vetting of prospective employees and a sane trust
relationship built on close cooperation remain fundamental, it is
only prudent to deploy technological aids to detect possible ma-
licious behaviors and to contain their effects. In this paper, we
describe the initial release of an architecture for the automated
deployment of a penetration testing environment including
insider threat management features. The Castrum model is the
result of a cooperation between a young start-up and a university
research group to devise a system incorporating scientifically
sound, state-of-the-art methodologies, at the same time taking
into account real-world needs. The result is a framework for the
programmable definition of the whole ecosystem of hardware
components, configurations, and services needed to conduct a
specific penetration testing mission in a controlled environment.
The paper summarizes the related works in the area of insider
threat detection in Section II, then proceeds to Section III to
describe the proposed architecture for the automatic deployment
of the monitoring infrastructure. Section IV presents the results
of a test case, before drawing conclusions in Section V.

II. CONTEXT AND RELATED WORKS

In a classic cybersecurity framework, e.g. NIST’s, five
main phases are defined: Identification, Prevention, Detection,
Response and Recovery [2].
The first three phases are those related to the monitoring of
the behavior of all the agents in the system. After that, the
Response and Recovery phases focus on how to react to the
attack once it is identified, to contain damages and restore
normal operations.
Prevention would require a priori knowledge; response and
recovery are next to pointless after highly sensitive data have
been exfiltrated or vulnerabilities have been exploited. For
these reasons we decided to focus mainly on the detection
phase, implementing an efficient way to deploy a monitoring
infrastructure for suspicious insider threat activities, based
on a customer-oriented insider definition. We argue that this
approach is more cost and resource efficient.

Literature abounds with guidelines and principles aimed at
providing general descriptions of the context and the identity
of the insiders [3], [4], [5]. However, experts agree that the
strong contextual variance of threats [6], [7] makes providing
a general yet precise identification of all possible insiders
difficult.
So it’s important first to build a set of rules or guidelines on
how we could define the malicious behavior of an insider. In
[8], for example, authors describes approaches to assemble
knowledge about insider threats and to apply this knowledge
in support of insider threat assessment.
Similar work has been done in [9] where authors defined a
strict methodology to identify insider threats based on a better
collaboration process between the information technology (IT)
management and the human resources (HR) department. In
[10] authors proposed a research on a comprehensive ontology
of sociotechnical and organizational factors for insider threat.
One of the most recent works on this same approach is [11].
This research aims to catalog human as well as technical factors
associated with insider threat risks to inform the development
of more proactive approaches to insider threat assessment.
In [12], the detection of the insider is based on a real-time
testing simulation of real users, generating user data to test the
detection of malicious users.
We found other updated and relevant resources in [13] which

is one of the latest surveys that summarized techniques for
insider threat identification and detection.
What we argue is different in our approach is not the definition
of an insider threat behavior but rather how we are able to
detect it within a penetration testing scenario.

III. MONITORING INFRASTRUCTURE

The architecture we are going to describe has two elements
worth highlighting, namely: (i) the inclusion of an easily
extensible set of detection tools, and (ii) the automated
deployment of said tools and of the complementary data
gathering and processing infrastructure. In Figure 1, the main
elements of the insider threat infrastructure are depicted.
Automation is of paramount importance to ensure the consistent
deployment and management of all the needed components.
Besides technical correctness, it also provides a guarantee that
all employees’ work will get profiled to detect anomalies in
behavioural patterns, acting as a deterrent.
The approach to automatic configuration is based on the Infras-
tructure as Code (IaC) paradigm. As described in Section III-A,
using such a technology it is possible to configure the entire
infrastructure from a single centralized system.
During its life-cycle, the infrastructure is going to be continu-
ously updated. To properly manage this process, an automated
supply chain that can replicate the production environment and
audit the developers changes is needed.
To ensure traceability and cope with the incremental de-
velopment of the infrastructure, our proposal uses a role
called Infrastructure Source Management. This role is in
charge of maintaining the versioned source code and execute
analyses on code smells. These automatized analyses and
Continuous Development (CD) cycle could be reflected in test
and production environment interacting with the provisioning
entities, lowering the complexity of managing a flexible and
non-trivial infrastructure.
The Secret Management role employs these measures, providing
a standardized way to access data from clients, maintaining
security as the first principle, and automating as many aspects
as possible, to reduce error-prone manual intervention at the
bare minimum required by specific processes.
Similarly, users and their roles are managed through a database,
conforming to the Identity Management role, which is mainly
used by the Secret management and Infrastructure source
management roles. Therefore, the Identity Manager, will
supervise over the access to the other roles, enabling a
centralized control over the set of credentials that can be used
to access the platform.
The aforementioned components functionally manage their
own data-sets, producing a detailed audit trail for the Log and
analysis role.
Whenever a log entry or combination thereof raises suspicion
of malicious activity, the insider threat managers will be
notified, giving them the possibility of further investigating
and suggesting a response.

A. Infrastructure as Code and environment replication

To set the entire infrastructure up, we used a set of
provisioning tools according to the Infrastructure as Code
(IaC) paradigm. IaC entails a process based on the concept
of maintaining the infrastructure description as source code,
enabling the use of techniques such as versioning (e.g. with
software like git) and code auditing.
IaC ensures continuity, as all the environments are provisioned
and configured automatically, which greatly speeds up and
simplifies infrastructure tests. Seamless updates positively affect
security too, since legacy components gone useless and bugged
software for which patches exist, are immediately taken care
of. IaC also brings Continuous Integration (CI) capabilities
along. CI and IaC combine to enable rapid provisioning and
configuration of the environments where code is developed and
tested; new tools and features can be reliably integrated into
the main project trunk, following flexible delivery roadmaps
such as policy checkers [14], without jeopardizing system
performance and stability,

B. Traffic inspection

One of the core features of our proposed architecture is traffic
analysis via deep packet inspection. This kind of monitoring
could be quite expensive if centralized on a dedicated machine,
which may need to employ hardware offloading or proprietary
solutions to accelerate the analysis.
For this reason we chose to implement a distributed approach
by default, with the possibility to switch to a centralized DPI
platform. This analysis shall be aware of secure communication
protocols, this will be described in details in Section IV-A.
It is important to highlight that the proposed architecture
foresees specific organizational roles for each activity. An
important role will be that of insider threat manager, the
person(s) in charge, and the only authorized one(s), to receive
notifications of suspicious events and to be able to access the
related details.
In this paper, to provide a complete case study, we focus on a
specific threat that can come from insiders, i.e. data exfiltration.
To detect sensitive data spill-out, we need to identify it in the
flowing traffic, which is done using the so-called HoneyTokens
[15].
This countermeasure is obviously not a silver bullet against
exfiltration, as the tokens could be identified and removed
from the outgoing stream, but we argue that, in a constantly
monitored environment, with a limited time, an attacker
unaware of the tokens will trip onto them with high probability.

IV. TEST CASE RESULT

This infrastructure has already been tested on several real-
world use cases. The goal is not to illustrate the whole process
of testing a specific target, but rather to show some of the main
interesting results that we are able to proof.

A. Analyzed security threats

The main threats we have analyzed are the ones we identified
as preeminent for this scenarios, namely Network exfiltration

…

identity
management

service
abstraction layer

domain name
service

secret
management

certificate lifecycle
management

VM service

orchestration
framework

dashboard

investigation
platform

monitoring
system

event
collector

SIEM

document
workflow

backup
server

continuous
integration&delivery

project management
system

artifact
repository

adversary
simulation lab

cracking
servers

infrastructure
management

secrets
and users

insider threat
detection

Fig. 1. Infrastructure layout with the main functions implemented by the insider threat detection platform.

and External memory exfiltration. Other methods, such as,
Physical exfiltration using covert channels, described in [16]
are now out of the scope of this framework relase.
As a demonstration for the possibility introduced by our
analysis platform, we have evaluated Network exfiltration via
secure channels, such as HTTPS.
One of the most common and reliable way to analyze HTTPS
traffic is to use a MITM attack on the protocol[17], [18],
without introducing weak ciphers or reducing the overall
security of the protocol. To implement this probe, we had
to intervene on one of the measures introduced to defeat
the MITM attacks, the so-called Certificate Key Pinning: the
browser keeps the certificate of critical sites in its internal
environment to ensure that a MITM attack will not invalidate
the security of the system.
Disabling this kind of support will reduce the security of the

system, therefore, the implementation of the network inspection
part of the platform relies on the termination of the connections
using SSLsplit and the inspection of the packets on the SSLsplit
server. The inspection acted by this server can be split in three
parts: the first component redirects all the encrypted connections
to the SSLsplit server which can therefore open it using its
certificate; then, it analyzes the contents using a classic Network
intrusion detection system, in our case Zeek; finally, SSLsplit
will re-encrypt the traffic, sending it to its original destination.
As stated in Section III-B, the analysis of traffic can burden a
system with excessive load if it is in charge of analyzing the
entire list of packets that roam the network. To optimize the
network load and the work of the analysis machine furthermore,
we have designed a filter for the Network intrusion detection
module to search for the HoneyTokens.
When encrypted traffic is detected, it will be sent to the analysis
platform as a warning. After that, regardless of the previous
choice, the detection system will check if a token, pre-injected

ALERT SYSTEM

Fig. 2. Alert originated by the insertion of a not allowed USB device. In this
case the metadata of the analyzed machine and USB dongle are presented in
the alert report.

in databases or in critical files, is present in the traffic. If the
token is found, it means that specific data are being exfiltered.
The External memory exfiltration detection exploits the same
concepts seen for network exfiltration. Because the insertion
and removal of external devices is a critical operation, it has
more strict policies implemented by default in our platform.
When a device is inserted or removed, the system will register
the event information in a log file. For instance, in case of USB
devices, the log will contain the timestamp of the insertion or
the unplugging, and information on the device such Vendor
and Product IDs. This log will be sent to the analysis machine.

Software Avg. CPU CPU max Avg. Mem Mem max
Zeek IDS 22.45% 100.00% 35.65% 62.81%
SSLsplit 2.83% 12.50% 0.27% 0.34%
Traffic Mirror 1.18% 1.89% 0.15% 0.34%

Fig. 3. SSL Inspection performances. The test was conducted over one hour
of network downloads, brute-forces and network scans.

If this device is not present in the pre-compiled allow-list, an
alarm will be triggered and sent to the responsible team.
We focused mainly on USB devices, but the procedure can be
extended to every external device that has fixed information
and issues events in the Linux OS: for instance, logs in the
kernel buffer which are readable using dmesg.

B. Performances and Evaluations

To evaluate the usability of the method, we let different users
groups perform realistic work; some of them were aware of
the monitoring platform, some were not. In detail, the overall
effectiveness of the platform was tested over 4 teams using 4
machines each, for a total of 12 monitored Unix machines.
We tested the system asking users to insert unregistered USB
devices in the running systems and to exfiltrate a sensitive
file, (/etc/shadow) pre-loaded with HoneyTokens, from
the analyzed machines using plain-text (HTTP) and encrypted
(HTTPS) connections to public websites.
In all these cases, the alerts were promptly reported to the
insider threat manager to immediately analyze the anomalies.
An example of the alert and the associated metadata which
are sent to the email address of the insider threat manager is
visible in Figure 2. In this e-mail, various metadata, useful to
identify the target device and machine, are presented to the
insider threat manager.
In Table 3 the performance impact of the implementation of
traffic inspection described in Section III-B are shown.
This test was conducted using a VirtualBox virtual machine
with 2GiB of RAM, a single virtual (uncapped) CPU and our
custom Kali Linux distribution. The hypervisor was running
over an Intel Core i7 CPU 870 with a nominal clock frequency
of 2.93GHz. During these runs the machine under test was
executing common penetration test tasks, such as network
scanning using nmap, bruteforce attacks using hydra.
The results show that the system load is bearable on modern
hardware; most of the processing power is required by Zeek,
while SSLsplit and the inspection chain are not relevant for
the system load.

V. CONCLUSIONS

Insider threats are still high on the list of dangerous attacks
that companies and agencies have to deal with.
The challenges of this scenario are due to the fact that insiders
have much wider freedom of access than an external attacker,
so identifying what is a legitimate action or a malicious one
requires much finer analyses. Create customized solutions for
specific customers is one the main challenges that security
service providers have to face, in order to reduce the margin
for expensive mistakes, to gain the clients’ trust.

Extensively exploiting virtualization technologies offered by
modern operating systems, combined with the IaC paradigm,
we developed a framework to deploy a complete monitoring
infrastructure, customized from the client’s specifications. We
defined a formal process, to isolate sensitive organizational
roles and to manage all the components and team members
operations during a red team assignment.
We described several real-world attacks retrieved from our
penetration testing campaigns. We argue that this approach
might not be innovative in terms of technologies and basic
concepts, but in our experience of the field it is original in
its methodical application of what is needed to maximise the
intended outcome such as the probability of early detection of
malicious insider activities.

REFERENCES

[1] V. Stavrou, M. Kandias, G. Karoulas, and D. Gritzalis, “Business process
modeling for insider threat monitoring and handling,” in International
Conference on Trust, Privacy and Security in Digital Business, pp. 119–
131, Springer, 2014.

[2] NIST, “Cybersecurity framework,” 2020.
[3] L. Flynn, G. Porter, and C. DiFatta, “Cloud service provider methods

for managing insider threats: Analysis phase 2, expanded analysis and
recommendations,” tech. rep., Pittsburgh University, 2014.

[4] F. Callegati, S. Giallorenzo, A. Melis, and M. Prandini, “Cloud-of-things
meets mobility-as-a-service: An insider threat perspective,” Computers
& Security, vol. 74, pp. 277–295, 2018.

[5] A. Melis, M. Prandini, S. Giallorenzo, and F. Callegati, “Insider threats
in emerging mobility-as-a-service scenarios,” in Proceedings of the 50th
Hawaii International Conference on System Sciences, 2017.

[6] F. Callegati, S. Giallorenzo, M. Gabbrielli, A. Melis, and M. Prandini,
“Federated platooning: Insider threats and mitigations,” in Proceedings
of the 52nd Hawaii International Conference on System Sciences, 2019.

[7] B. Schneier, Secrets and lies: digital security in a networked world. John
Wiley & Sons, 2015.

[8] F. L. Greitzer, J. Purl, Y. M. Leong, and P. J. Sticha, “Positioning
your organization to respond to insider threats,” IEEE Engineering
Management Review, vol. 47, no. 2, pp. 75–83, 2019.

[9] I. H. Elifoglu, I. Abel, and Ö. Taşseven, “Minimizing insider threat
risk with behavioral monitoring,” Review of business, vol. 38, no. 2,
pp. 61–73, 2018.

[10] F. Greitzer, J. Purl, D. Becker, P. Sticha, and Y. M. Leong, “Modeling
expert judgments of insider threat using ontology structure: Effects of
individual indicator threat value and class membership,” in Proceedings
of the 52nd Hawaii International Conference on System Sciences, 2019.

[11] F. L. Greitzer, “Insider threats: It’s the human, stupid!,” in Proceedings
of the Northwest Cybersecurity Symposium, NCS ’19, (New York, NY,
USA), Association for Computing Machinery, 2019.

[12] S. Stolfo, “Simulated user bots: Real time testing of insider threat
detection systems,” 2018.

[13] I. Homoliak, F. Toffalini, J. Guarnizo, Y. Elovici, and M. Ochoa, “Insight
into insiders and it: A survey of insider threat taxonomies, analysis,
modeling, and countermeasures,” ACM Comput. Surv., vol. 52, Apr.
2019.

[14] A. Melis, D. Berardi, C. Contoli, F. Callegati, F. Esposito, and M. Prandini,
“A policy checker approach for secure industrial sdn,” in 2018 2nd Cyber
Security in Networking Conference (CSNet), pp. 1–7, IEEE, 2018.

[15] F. Pouget, M. Dacier, and H. Debar, “White paper: honeypot, honeynet,
honeytoken: terminological issues,” Rapport technique EURECOM,
vol. 1275, 2003.

[16] M. Guri, B. Zadov, D. Bykhovsky, and Y. Elovici, “Powerhammer:
Exfiltrating data from air-gapped computers through power lines,” arXiv
preprint arXiv:1804.04014, 2018.

[17] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to
the https protocol,” IEEE Security & Privacy, vol. 7, no. 1, pp. 78–81,
2009.

[18] M. Prandini, M. Ramilli, W. Cerroni, and F. Callegati, “Splitting the
https stream to attack secure web connections,” IEEE Security Privacy,
vol. 8, no. 6, pp. 80–84, 2010.

	Introduction
	Context and related works
	Monitoring Infrastructure
	Infrastructure as Code and environment replication
	Traffic inspection

	Test Case Result
	Analyzed security threats
	Performances and Evaluations

	Conclusions
	References

