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In the present paper a fully–analytical framework is outlined to analyze the effects of cable–suspended 
loads on multirotor platforms. In particular, the dynamics of an isolated vehicle is first investigated by 
including the complete model of the electric propulsion system. Then, system description is extended 
to the load, which introduces non–actuated degrees of freedom and is suspended through a linear–
elastic cable. In order to provide the complete slung–load system with a closed–loop desired behavior, 
an auxiliary controller is proposed to recover or improve the initial multirotor dynamic properties, 
while stabilizing load oscillations. To this end, closed–form equations are derived to design the auxiliary 
controller gains, based on the knowledge of a limited set of parameters. A test case is proposed relative 
to a commercial–off–the–shelf hexarotor whose electrical propulsion system has been characterized by 
an experimental campaign performed at University of Bologna premises.
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1. Introduction

There is an increasing interest in the use of both manned and 
highly–automated unmanned rotorcraft to carry payloads, envis-
aging complex Air Mobility and Delivery (AMD) scenarios, with 
significant benefits in the fields of cargo transportation, sensor 
deployment, fire fighting, and construction [1,2]. In this respect, 
two approaches are typically considered. The first one consists in 
equipping the lifting vehicle with graspers or a sufficiently large 
cargo compartment, leading to increased take–off mass, complex-
ity, and cost. With regard to vehicle performance, flight endurance 
and range would be typically degraded and attitude dynamics 
would suffer from reduced agility [3,4]. The second approach con-
sists in the equipment of cable–suspended loads, which relatively 
preserves the performance of the aircraft and the simplicity of sys-
tems, but it introduces additional non–actuated degrees of freedom 
[5,6]. When carrying a suspended payload, in fact, rotorcraft mo-
tion and/or external disturbances induce cable swing. On the one 
hand, the payload creates disturbance forces and moments that 
can significantly affect the motion of the vehicle. On the other 
hand, the oscillations can damage the payload or its environment 
by colliding with obstacles. To this aim, different control strategies 
are available in the literature for both conventional helicopter and 
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multirotor configurations. As an example, an adaptive controller is 
proposed in [7] to cope with changes to the multirotor center of 
gravity. In [8] the cable is modeled as a series of interconnected 
links and a nonlinear geometric controller is derived to asymp-
totically stabilize the position of the vehicle and keep the cable 
in its vertical position. In [9] a quadrotor platform with a cable–
suspended load is described in terms of a differentially–flat hybrid 
system in order to address cable collapse. In such a framework, a 
controller regulating the aircraft attitude and the position of the 
load on a vertical plane is finally derived. In [10] the nonlinear 
model of the system is decoupled into two subsystems: the in-
ner loop describes vehicle rotational dynamics and attitude state 
variables are used as an input to the outer loop, related to the 
remaining state variables. A nested saturation controller is finally 
derived for stabilizing both the aircraft and the suspended load. 
Input–shape filtering methods are also used to generate a reference 
trajectory that minimizes residual swing during maneuvers [11]. 

An inverse simulation approach based on an integration method is 
proposed in [12] to determine the necessary control action that al-
lows a quadrotor platform to track a prescribed trajectory. In such 
a case, the effect of drag on the payload is included in the model, 
which becomes a fundamental feature when the vehicle is used 
for towing a payload immersed in water. Finally, in a recent work 
by some of the authors [13], a nonlinear controller is proposed 
with the aim to ensure simultaneous trajectory–tracking and pay-
load swing damping, according to a point–mass modeling of both 
the rotorcraft and the load. In particular, the structure of the con-
troller is chosen so that the coupled slung–load system exhibits 
ss article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Nomenclature

0q null matrix with dimension q
A rotor disc area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

a blade airfoil lift curve slope . . . . . . . . . . . . . . . . . . . . . rad−1

a0 rotor pre–cone angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
A1, A2, A3 rotorcraft frame drag areas . . . . . . . . . . . . . . . . . . . . . m2

Ac payload reference area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

b multirotor arm length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
BL buttline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
c payload position with respect to H . . . . . . . . . . . . . . . . . m
c75 blade chord at 75% radius . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Cd drag coefficient
C G rotorcraft center of gravity
C P rotorcraft frame center of pressure
CT rotor thrust coefficient
e error with respect to the desired condition
FB rotorcraft body–fixed frame
FE Earth–fixed frame
FH local–vertical local–horizontal frame
FS rotorcraft structural frame
H hook point
h = [h1, h2, h3]T hook point position . . . . . . . . . . . . . . . . . m
Iq identity matrix with dimension q
J = diag ( J1, J2, J3) rotorcraft inertia matrix . . . kg m2

K cable Hooke’s constant . . . . . . . . . . . . . . . . . . . . . . . . . N m−1

kir, kpr sample inner controller gains (yaw rate error)
ki v , kp v sample inner controller gains (vertical speed error)
kiφ, kpφ, kp sample inner controller gains (roll angle error)
kiθ , kpθ , kq sample inner controller gains (pitch angle error)
k̄ir , k̄pr auxiliary controller gains (yaw rate error)
k̄iv , k̄pv auxiliary controller gains (vertical speed error)
k̄iφ , k̄pφ , k̄p auxiliary controller gains (roll angle error)

k̄iθ , k̄pθ , k̄q auxiliary controller gains (pitch angle error)
k̄η1 , k̄η2 , k̄ν1 , k̄ν2 auxiliary controller gains (payload position 

error)
kind induced power coefficient
kQ torque model coefficient . . . . . . . . . . . . . . . . N m s2 rad−2

kT thrust model coefficient . . . . . . . . . . . . . . . . . . . N s2 rad−2

k� ESC model coefficient
L cable nominal length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
m rotorcraft mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
mc payload mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
N number of rotors
n ESC model exponent
nb number of rotor blades
p = [x, y, z]T rotorcraft position . . . . . . . . . . . . . . . . . . . . . . m
P W M Pulse Width Modulation signal . . . . . . . . . . . . . . . . . . . . . μs
Q rotor torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m
R rotor radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Re blade Reynolds number at 75% radius
ST A stationline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
S maximum overshoot
T rotor thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N
to time of maximum overshoot . . . . . . . . . . . . . . . . . . . . . . . . . s
tr rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

ts settling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T B E Coordinate transformation matrix between FE and FB

T H E Coordinate transformation matrix between FE and FH

v = [u, v, w]T rotorcraft linear velocity . . . . . . . . . . m s−1

V 75 blade speed at 75% radius . . . . . . . . . . . . . . . . . . . . . . m s−1

vi rotor induced speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

Vtip blade tip speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

W L waterline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
xB , yB , zB rotorcraft body–fixed frame axes
xE , yE , zE Earth–fixed frame axes
xH , yH , zH local–vertical local–horizontal frame axes
xS , yS , zS rotorcraft structural frame axes

Greek symbols

δ throttle signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . μs
ε time integral of error e
η = [η1, η2, η3]T payload position error . . . . . . . . . . . . . . m
θ0 blade root pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
θt blade twist angle (tip minus root pitch angle) . . . . rad
λ, λ̄ prescribed eigenvalues
μ air dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa s
ν = [ν1, ν2, ν3]T payload velocity error . . . . . . . . . . m s−1

ξ controller weight parameter
ρ air density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σ rotor solidity
χ density scaling parameter
ψ, θ, φ 3-2-1 Euler angle sequence . . . . . . . . . . . . . . . . . . . . . . . . rad
� rotor angular rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad s−1

ω = [p, q, r]T rotorcraft angular velocity . . . . . . . . rad s−1

Subscripts

c cable–related variable
d desired value
E vector components in FE

exp value obtained through experiments
f wd feed–forward term
H vector components in FH

idle idle condition
j variable related to the j–th rotor
max maximum value
pitch variable related to the pitch channel
roll variable related to the roll channel
v variable related to the vertical channel
yaw variable related to the yaw channel

Superscripts

(a) aerodynamic force/moment contribution
(aux) auxiliary controller contribution
(c) cable–related force/moment contribution
( f ) rotorcraft frame force/moment aerodynamic contribu-

tion
(g) gravity force contribution
(inn) inner controller contribution
(r) rotor force/moment aerodynamic contribution
2
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a two–time–scale behavior, with fast dynamics for the pendulum 
motion and slow dynamics for the positioning task.

In order to properly address the design of novel rotorcraft con-
figurations and the above–mentioned control strategies, a deep 
comprehension of the vehicle open–loop and closed–loop dynam-
ics is required [14]. In the present work, a completely analytical 
framework is thus developed with the aim to describe the effects 
of suspended load oscillations on the dynamics of a multirotor, 
defined by 1) a rigid–body configuration and 2) an electric propul-
sion system made of a battery pack, electronic speed regulators, 
three–phase brushless motors, and fixed–pitch propellers. As a first 
step, it is assumed that the unloaded vehicle is characterized by 
a closed–loop behavior with known dynamic properties, which 
can be either obtained by a native control system (in the case 
of a commercial–off–the–shelf platform) or by the deployment of 
custom control laws, specifically designed for the particular ap-
plication (in the case of an open source platform). In both cases, 
information about closed–loop dynamic properties can be indeed 
estimated by means of simple identification techniques [15]. In the 
latter case only, a dedicate analysis can be alternatively performed 
with the aim to relate selected control gains to the desired be-
havior, based on the exact knowledge of controller structure. To 
this end, an analytical framework is provided that allows to ex-
actly determine the control gains of a sample PID controller as 
a function of desired closed–loop dynamic modes. In particular, 
an attitude control system is developed for roll and pitch angles 
stabilization, while speed regulators are designed to control the 
yaw rate and the vertical speed (an inner–loop control strategy 
which is widespread in commercial solutions such as PX4 autopi-
lots [16]). After the multirotor is equipped with the payload, the 
combined system is shown to be underactuated over the oscilla-
tory dynamics while unstable modes may appear. In this respect, 
a novel outer–loop auxiliary controller is developed with the aim 
to drive the loaded system back to the original stability proper-
ties or to improved ones, with the additional stabilization of the 
oscillatory dynamics. The novelty of the approach is also found in 
the derivation of a set of closed–form equations that allow to ex-
actly size the outer–loop control gains as a function of the desired 
closed–loop dynamic features and a reduced set of system param-
eters.

For the purpose of the present analysis, the cable is assumed to 
be elastic and the suspension point is located in a distinct position 
with respect to the vehicle center of gravity, with the result that 
a coupling effect is produced between load oscillation and attitude 
motion. In this respect, the vertical displacement of the suspension 
point H can be considered as a design variable. In order to stabilize 
load oscillations according to the given requirements, the mea-
surement of load position and velocity with respect to the hook 
point is needed. To this end, a recursive algorithm can be adopted 
to autonomously measure the swing angle and rate by means of 
the data available from the multirotor Inertial Measurement Unit 
(IMU), without the need to rely on extra sensors. Provided the 
multicopter is subject to known control inputs, data–fusion is per-
formed through a Fading Gaussian Deterministic approach, whose 
theoretical background was recently investigated by some of the 
authors [17–19].

In what follows, reference frames and system dynamic equa-
tions are derived in Section 2. The definition of the compan-
ion/auxiliary controller is given in Section 3, where the analytical 
framework allowing the sizing of control gains is also outlined. The 
approach is numerically validated in Section 4, where multirotor 
description is detailed in terms of electric propulsion system com-
ponents and Blade Element characterization of propellers [20]. The 
results of an experimental campaign are provided with the aim 
to describe the considered powerplant, showing the application of 
3

the gain–sizing technique to a nonlinear test case. A section of con-
cluding remarks ends this paper.

The procedure developed in the present work has the merit 
of relative simplicity and the application of the proposed method 
proves to be encouraging in all those cases where the flying qual-
ities of the lifting vehicle and the accuracy of the load positioning 
task both represent a fundamental requirement. Although the final 
equations of the auxiliary controller are derived for the particular 
case of an electric hexarotor, the philosophy has general validity 
and can be extended to both conventional and innovative rotor-
craft configurations.

2. System modeling

Starting from the definition of reference frames, a 6 degrees–
of–freedom mathematical model is adopted to describe the rotor-
craft, with general expressions for the kinematics and dynamics of 
a rigid body with center of gravity C G .

2.1. Reference frames

Three right–handed orthogonal reference frames are introduced, 
according to the definitions in [20]:

1. an Earth-fixed North-East-Down frame, FE = {O E ; xE , yE , zE }: 
the origin, O E , is arbitrarily fixed to a point on the Earth’s sur-
face, xE aims in the direction of the geodetic North, zE points 
downward along the Earth ellipsoid normal, and y E completes 
a right-handed triad. This frame is assumed to be inertial un-
der the assumption of flat and non–rotating Earth;

2. a Body–fixed frame, FB = {C G; xB , yB , zB}: the longitudinal 
axis xB is positive out the nose of the rotorcraft in its selected 
plane of symmetry, being parallel to the plane containing the 
rotor hubs. zB aims in the direction of the local vertical when 
the vehicle is at hover, pointing downwards, and yB completes 
a right–handed triad;

3. a rotorcraft structural reference frame, FS = {O S ; xS , yS , zS }, 
used to locate C G and all vehicle components: the axes are 
parallel to the body–fixed frame axes, such that xS = −xB , 
yS = yB , and zS = −zB . The origin is located at some arbitrary 
point within the rotorcraft plane of symmetry. Stations (ST ) 
are measured positive aft along the longitudinal axis. Buttlines 
(BL) are lateral distances, positive to the right, and waterlines 
(W L) are measured vertically, positive upward. A sketch of the 
rotorcraft including the selected FS frame is reported in Figs. 1
and 2.

Let s (·) = sin(·) and c (·) = cos(·). Vector transformation between 
FE and FB is provided by the rotation matrix [19]

T B E(α) =
⎡
⎣ cθ cψ cθ sψ −sθ

sφ sθ cψ − cφ sψ sφ sθ sψ + cφ cψ sφ cθ
cφ sθ cψ + sφ sψ cφ sθ sψ − sφ cψ cφ cθ

⎤
⎦ (1)

obtained by a 3-2-1 Euler rotation sequence where α = [φ, θ, ψ]T

describes the attitude of the rotorcraft in terms of classical ‘roll’, 
‘pitch’, and ‘yaw’ angles, respectively. The following notation is 
adopted: if w is an arbitrary vector, its components are trans-
formed from FE to FB through w B = T B E w E . In what follows, 
the subscript B will be dropped for simplicity. In addition to 
the reference frames introduced above, a fourth useful defini-
tion is provided for a particular Local–Vertical Local–Horizontal 
frame, FH = {C G; xH , yH , zH }, with origin in C G . Vector trans-
formation between FE and FH is provided by rotation matrix 
T H E = T B E (α0), where α0 = [0, 0, ψ]T is determined by an ele-
mentary rotation about zE with amplitude ψ . Although the defi-
nition of FH does not provide additional information to attitude 
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Fig. 1. Multirotor configuration and selected structural reference frame.

Fig. 2. Sketch of the rotorcraft slung–load system.
characterization, which is defined by T B E , it will be useful in Sec-
tion 3 for the outline of auxiliary controller.

2.2. Multirotor dynamics

Multirotor dynamics is described by Newton–Euler equations of 
motion projected in FB , namely:

v̇ = −ω × v + F/m (2)

ω̇ = J −1 [−ω × ( J ω) + M] (3)

where v = [u, v, w]T is the linear velocity, ω = [p, q, r]T is the 
angular rate vector, J = diag ( J1, J2, J3) is the inertia tensor 
about C G with respect to FB , and m is the total mass of the rotor-
craft. F = [F1, F2, F3]T and M = [M1, M2, M3]T are, respectively, 
the external force and moment vectors.
4

Rotorcraft attitude kinematics, which relates the generalized ve-
locity α̇ to the angular velocity ω, is given by [19]:

α̇ =
⎡
⎣1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

⎤
⎦ω (4)

while the position of the vehicle, pE = [xE , yE , zE ]T , with com-
ponents expressed in the inertial frame FE , is obtained from the 
equation:

ṗE = T B E(α)T v (5)

The external force and moment vectors are made of gravity, 
aerodynamic, and cable contributions, namely F = F (g) + F (a) +
T B E F (c)

E and M = M (a) + M (c) . Taking into account Eq. (1), the 
gravity force vector expressed in the body frame is
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F (g) = T B E(α)

⎡
⎣ 0

0
m g

⎤
⎦= m g

⎡
⎣ − sin θ

sinφ cos θ

cosφ cos θ

⎤
⎦ (6)

where g is the gravitational acceleration, described by WGS84 
Taylor series model [21]. The aerodynamic forces and moments 
are generated by the airframe and the set of propellers, namely 
F (a) = F ( f ) + F (r) and M (a) = M ( f ) + M (r) . Airframe aerodynamics, 
limited to drag modeling, is assessed by the equivalent flat plate 
area model. The force vector, expressed in the body frame, is

F ( f ) = −1

2
ρ
[

A1|u|u A2|v|v A3|w|w ]T (7)

where A1, A2, and A3 are the equivalent flat–plate drag areas 
facing the three body–frame axes and ρ is the air density. The 
moment generated by F ( f ) is M ( f ) = dC P × F ( f ) , where dC P =
[ST AC G − ST AC P , BLC P − BLC G , W LC G − W LC P ]T is the vector 
directed from C G to the center of pressure C P of the airframe, 
assumed to be a fixed point in the body–frame. The effect of rotor 
induced velocity on airframe drag is neglected [14].

Without loss of generality, a planar vehicle configuration with 
N = 6 equal rotors is considered where the thrust T j , j ∈ 1, . . . , N , 
generated by the j–th rotor is directed along zB , pointing upward. 
Generated forces and moments are obtained as

F (r) =
N∑

j=1

F (r)
j , M (r) =

N∑
j=1

M (r)
j (8)

provided the j–th rotor has number of blades nb , radius R , 
area A = π R2, mean aerodynamic chord c̄, and position dR j =
[ST AC G − ST AR j , BLR j − BLC G , W LC G −W LR j ]T , with components 
expressed in FB . Under the assumption of incompressible flow, 
the j–th rotor aerodynamics is described by Momentum Theory 
(MT) and Blade Element Theory (BET) according to the approach 
detailed in [20], whose nomenclature and mathematical models 
are adopted in the present framework. In particular, the following 
assumptions are made: a) rotor blades are rigid in bending and 
torsion with null hinge offset ratio, flapping spring constant, and 
pitch–flap coupling ratio; b) blade flow stall is disregarded; c) no 
inflow dynamics is modeled; d) the blades do not flap and the 
pre–cone angle, a0, is treated as a preset constant.

Let � j be the j–th rotor angular rate, such that Vtip j = � j R is 
blade tip speed. Differently to some of the assumptions provided 
in [20], rotor blades are characterized by airfoils with lift–curve 
slope a < 2π 1/rad and profile drag coefficient, averaged along the 
blade, estimated as [22]:

Cd j = 0.1166 Re−0.2
j + 0.3

(
6 CT j

σ a

)2

(9)

The first term in Eq. (9) accounts for the blade parasitic drag, 
where Re j = ρ c75 V 75 j/μ is the Reynolds number at 75% blade 

radius [23], c75 and V 75 j ≈
√

vi
2
j +
(

0.75 · Vtip j

)2
respectively rep-

resent the local airfoil chord and the relative airspeed, vi j is the 
induced speed at the j–th rotor disc, and μ is the dynamic viscos-
ity of the air. The second term in Eq. (9) accounts for blade induced 
drag as a function of thrust coefficient, CT j = T j/(ρ A Vtip

2
j ), and 

rotor solidity, σ = nb c̄/ (π R). With respect to the characterization 
of rotors inflow, a number of non–ideal effects, including tip losses, 
nonuniform inflow, wake swirl and contraction, and blades inter-
ference are accounted for by an induced power factor kind > 1, 
assumed to be a constant. Rotors in–ground effect for very–low 
gear configurations is provided by the model in [24] and the in-
flow iterative scheme is solved according to Halley’s method with 
5

damping coefficient equal to 0.01 [25]. Air parameters are calcu-
lated from the International Standard Atmosphere (ISA) model as a 
function of rotorcraft altitude [26].

Control of the j–th rotor speed is performed by commanding 
the value δ j of the signal to the j–th motor driver. In particular, 
� j is assumed to be a function of throttle signal δ j , namely

� j = k� δn
j (10)

where k� > 0 and 0 < n < 1 are experimental coefficients. In the 
case when, for example, Pulse Width Modulation (PWM) technol-
ogy is adopted, δ j = P W M j − P W Midle is the command increment 
with respect to the idle condition P W M j = P W Midle , for which 
� j = 0. Control signals are generated by the onboard computer ac-
cording to the following motor–mixing scheme:

δ1 = −δroll + δpitch + δyaw + δv + δ f wd (11)

δ2 = −2 δroll − δyaw + δv + δ f wd (12)

δ3 = −δroll − δpitch + δyaw + δv + δ f wd (13)

δ4 = δroll − δpitch − δyaw + δv + δ f wd (14)

δ5 = 2 δroll + δyaw + δv + δ f wd (15)

δ6 = δroll + δpitch − δyaw + δv + δ f wd (16)

which is based on the particular configuration depicted in Fig. 2. 
The doubling of δroll contribution on motors 2 and 5 is adopted to 
avoid unbalanced yawing moments induced by roll attitude cor-
rections. The signals δroll , δpitch , and δyaw are the outputs of 3
different controllers respectively aiming at the stabilization of roll, 
pitch, and yaw dynamics. The contribution related to δv is used to 
regulate the speed of the multirotor along the Earth–fixed verti-
cal axis. Finally, the additive term δ f wd is a feed–forward throttle 
signal adopted for rapid trimming purposes and is typically tuned 
to allow a near–hover condition with 50% throttle command (for 
example in a RC device), thus providing sufficient maneuvering 
margin along the vertical axis. Disregarding the particular rotor 
configuration, the proposed control strategy is representative of 
many applications where the multirotor is piloted through high–
level commands in terms of desired attitude and climb speed 
(inner–loop stabilization [16]). Such commands are, in turn, gen-
erated by the pilot or by a dedicated guidance and navigation loop 
to perform trajectory or waypoint tracking, with major use of po-
sitioning systems and obstacle detection devices [27].

2.3. Suspended load dynamics

The load is assumed to be a point with mass mc , connected 
by a cable to the multirotor at the hook point H with coordinates 
h = [ST AC G − ST AH , BLH − BLC G , W LC G − W LH ]T = [h1, h2, h3]T

in FB . Payload dynamics is described by Newton–Euler equations 
projected in FE , namely:

mc v̇c E = F c E =
⎡
⎣ 0

0
mc g

⎤
⎦+ F c

(d)
E + F c

(c)
E (17)

where F c
(c)
E = −F (c)

E is the force exerted by the multirotor on the 
load through an elastic cable with Hooke’s constant K > 0 and 
nominal length L. F c

(d)
E is the aerodynamic force acting on the 

payload, here calculated as

F c
(d)
E = −1

2
ρ Ac Cdc ‖vc E‖ vc E (18)

where Cdc is the payload drag coefficient and Ac is a reference area 
for drag computation. The cable is assumed to be mass–less and 
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its aerodynamic drag is disregarded. Provided pc E is the position 
of the load, obtained from

ṗc E = vc E , (19)

the vector describing the actual orientation and length of the cable 
in FE is c E = pc E − pE − T T

B E h. According to Hookes’ model, the 
force F (c)

E results from the linear–elastic equation

F (c)
E = K �L ĉ E (20)

where �L = ‖c E‖ − L is the elastic deformation and ĉ E = c E/ ‖c E‖
is the unit vector directed along the cable. The moment generated 
by force F (c)

E on the multirotor, expressed in FB , is M (c) = h ×[
T B E F (c)

E

]
.

3. Closed–loop system stabilization

In what follows the system described in Section 2 is linearized 
about the hovering condition in both the unloaded and the loaded 
configuration. In the latter case, an auxiliary controller is designed 
to stabilize the underactuated system with almost–desired dynam-
ics. To this end, some preliminary assumptions are made:

Assumption 1. Rotor forces and moments are generated only by 
thrust and torque contributions respectively calculated as

T j = kT �2
j , Q j = kQ �2

j (21)

with kT = χ k̄T and kQ = χ k̄Q . k̄T and k̄Q are positive constants 
determined experimentally at air density ρexp while χ = ρ/ρexp is 
a density scaling parameter.

Assumption 2. The aerodynamics of the airframe and of the sus-
pended load is disregarded.

Assumption 3. The suspension point has coordinates h1 = h2 = 0
and h3 �= 0 in FB , which occurs when ST AH = ST AC G , BLH =
BLC G , and W LH �= W LC G . In addition, a balanced configuration 
with ST AC G = BLC G = 0 is considered.

3.1. Unloaded configuration

Let eφ = φd − φ, eθ = θd − θ , er = rd − r, and ev = żEd − żE be 
error vectors respectively calculated from the desired values of roll 
and pitch angles, yaw rate, and Earth–fixed vertical speed. A set of 
inner–loop control signals δv = δ

(inn)
v (ev , εv ), δyaw = δ

(inn)
yaw (er, εr), 

δroll = δ
(inn)

roll

(
eφ, εφ

)
, and δpitch = δ

(inn)

pitch (eθ , εθ ) is assumed to sta-
bilize the origin of the error system described by state vector 
x ∈R10:

x = [ev , εv , er, εr, p, eφ, εφ, q, eθ , εθ

]T (22)

where

ε̇v = ev , ε̇r = er, ε̇φ = eφ, ε̇θ = eθ (23)

The stability of the error system is evaluated by linearization about 
the hovering condition, where T j = m g/6 and the feed–forward 
contribution to each motor results to be

δ f wd =
(

m g

6 kT k2
�

) 1
2n

(24)

By imposing żEd = 0, rd = 0, and φd = θd = 0, the standard linear 
form ẋ = A x is obtained with A ∈R10×10. The following assump-
tion is made on the dynamic properties of A .
6

Assumption 4. The inner–loop control system is designed and 
tuned such that the state matrix A is block diagonal, namely:

A =

⎡
⎢⎢⎢⎣

Av 0 · · · 0
0 A yaw . . . 0
...

... Aroll 0
0 0 . . . Apitch

⎤
⎥⎥⎥⎦ (25)

Each decoupled subsystem, respectively represented by

Av (λv 1, λv 2) ∈R2×2, A yaw
(
λyaw 1, λyaw 2

) ∈ R2×2,

Aroll (λroll1, λroll2, λroll3) ∈R3×3,

and

Apitch
(
λpitch1, λpitch2, λpitch3

) ∈R3×3

is characterized by a set of prescribed stable eigenvalues λv 1, λv 2, 
λyaw 1, λyaw 2, λroll1, λroll2, λroll3, λpitch1, λpitch2, and λpitch3.

Remark 1. Different control strategies can be adopted to com-
ply with Assumption 4. In what follows, sample regulators are 
proposed which are based on proportional–integral–derivative ap-
proach:

δv = kp v ev + ki v εv (26)

δyaw = kpr er + kir εr (27)

δroll = kpφ eφ + kiφ εφ + kp p (28)

δpitch = kpθ eθ + kiθ εθ + kq q (29)

Let � = 4 k2
� n δ2 n−1

f wd . It is straightforward to prove that 1) matrix 
A is block diagonal and 2) subsystems state matrices are, respec-
tively:

Av =
[ 3 kT �

m
kp v

3 kT �

m
ki v

1 0

]
, (30)

A yaw =
⎡
⎣−3 kQ �

J3
kpr −3 kQ �

J3
kir

1 0

⎤
⎦ , (31)

Aroll =

⎡
⎢⎢⎣

3 b kT �

J1
kp

3 b kT �

J1
kpφ

3 b kT �

J1
kiφ

−1 0 0
0 1 0

⎤
⎥⎥⎦ , (32)

and

Apitch =

⎡
⎢⎢⎣

√
3 b kT �

J2
kq

√
3 b kT �

J2
kpθ

√
3 b kT �

J2
kiθ

−1 0 0
0 1 0

⎤
⎥⎥⎦ (33)

where b =
√

ST A2
R j

+ BL2
R j

is rotor arm length on the plane 
xS – yS . Control gains required for correct pole placement to each 
subsystem result to be, according to Assumption 4,

ki v = −�v δ f wd

2 g n
, kp v = �v δ f wd

2 g n
, (34)

kir = J3 �yaw kT δ f wd

2 m g n kQ
, (35)

kpr = − J3 �yaw kT δ f wd (36)

2 m g n kQ
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Fig. 3. The control strategy proposed for the stabilization of multirotor slung–load system.
kiφ = − J1 �roll δ f wd

2 b m g n
, kpφ = J1 �roll δ f wd

2 b m g n
, (37)

and

kp = J1 �roll δ f wd

2 b m g n
(38)

where �v=λv 1+λv 2, �v=λv 1 λv 2, �yaw=λyaw 1 + λyaw 2, �yaw =
λyaw 1 λyaw 2, �roll = λroll1 + λroll2 + λroll3, �roll = λroll1 λroll2 λroll3, 
and �roll = λroll1 λroll2 +λroll3 (λroll1 + λroll2). In order to reasonably 
provide the multirotor with the same dynamic behavior about the 
roll and the pitch axes, namely λpitch1 = λroll1, λpitch2 = λroll2, and 
λpitch3 = λroll3, the remaining control gains are scaled as follows:

kiθ = J2/ J1
√

3 kiφ, kpθ = J2/ J1
√

3 kpφ, (39)

kq = J2/ J1
√

3 kp (40)

With the proposed control strategy, subsystem matrices in Eqs. 
(30)–(33) respectively become:

Av (λv 1, λv 2) =
[
�v −�v

1 0

]
, (41)

A yaw
(
λyaw1 , λyaw2

)= [�yaw −�yaw

1 0

]
, (42)

Aroll (λroll1, λroll2, λroll3) =
⎡
⎣�roll �roll −�roll

−1 0 0
0 1 0

⎤
⎦ , (43)

while A pitch = Aroll .

3.2. Loaded configuration with active swing–control

Consider the isolated multirotor platform described above un-
der Assumptions 1–3. In the presence of a suspended load, the 
hovering condition is obtained by generating T j = (m + mc) g/6
through the throttle signal:

δ̄ f wd =
[

(m + mc) g

6 kT k2
�

] 1
2n

(44)

The cable equilibrium condition is described by the desired vector 
c E d = [0, 0, Ld]T , where Ld = L +mc g/K is the actual cable length. 
Let ηE = c E d − c E = [η1 E , η2 E , η3 E ]T be the error, expressed in 
7

FE , between the desired and the actual load position relative to 
the suspension point. The dynamics of the cable error vector is 
expressed as

η̇E = ν E (45)

where ν E = [ν1 E , ν2 E , ν3 E ]T follows from

ν̇ E = T T
B E F/m − F c E/mc

+ T T
B E [ω̇ × h + ω × (ω × h)]

(46)

and ν E = −ċ E .
Consider the system described by the extended state vector x̄ ∈

R16:

x̄ = [ev , εv , ν3 E , η3 E , er, εr, p, eφ, εφ,

ν2 E , η2 E , q, eθ , εθ , ν1 E , η1 E

]T (47)

Let ηH = [η1 H , η2 H , η3 H ]T be the load–displacement error vector, 
expressed in FH , obtained as ηH = T H E ηE , with T H E defined in 
Section 2.1. Also, let νH = T H E ν E .

Assume that the control signals in Eqs. (11)–(16) are expressed 
as the sum of 2 contributions, namely δv = δ

(inn)
v + δ

(aux)
v , δyaw =

δ
(inn)
yaw + δ

(aux)
yaw , δroll = δ

(inn)

roll + δ
(aux)
roll , and δpitch = δ

(inn)

pitch + δ
(aux)
pitch , where 

δ
(inn)
v , δ(inn)

yaw , δ(inn)

roll , and δ(inn)

pitch are inner–loop contributions designed 

under Assumption 4. The terms δ(aux)
v , δ(aux)

yaw , δ(aux)
roll , and δ(aux)

pitch are 
a set of auxiliary controllers in the form:

δ
(aux)
v = k̄p v ev + k̄i v εv (48)

δ
(aux)
yaw = k̄pr er + k̄i r εr (49)

δ
(aux)
roll = k̄pφ eφ + k̄iφ εφ + k̄p p

+ k̄η2 η2 H + k̄ν2 ν2 H

(50)

δ
(aux)
pitch = k̄pθ eθ + k̄iθ εθ + k̄q q

+ k̄η1 η1 H + k̄ν1 ν1 H

(51)

The following results provide the values of control gains that al-
low the regulators in Eqs. (48)–(51) to stabilize the origin of the 
extended–state system in Eq. (47) with desired dynamic behavior, 
according to the scheme depicted in Fig. 3.
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Theorem 1. Consider the dynamic system identified by the extended 
state in Eq. (47) under Assumptions 1–3. Assume that a set of controllers 
δ
(inn)
v , δ(inn)

yaw , δ(inn)

roll , and δ(inn)

pitch is designed under Assumption 4 and is sup-
ported by the auxiliary controllers in Eqs. (48)–(51). Then, the linearized 
extended system, described by state–matrix Ā ∈ R16×16 , assumes the 
block–diagonal form:

Ā =

⎡
⎢⎢⎢⎣

Āv 0 · · · 0
0 Ā yaw . . . 0
...

... Āroll 0
0 0 . . . Āpitch

⎤
⎥⎥⎥⎦ (52)

The decoupled subsystems

Ā yaw
(
λ̄yaw1 , λ̄yaw2

) ∈R2×2, (53)

Āroll
(
λ̄roll1 , λ̄roll2 , λ̄roll3 , λ̄roll4 , λ̄roll5

) ∈ R5×5, (54)

and

Āpitch
(
λ̄pitch1

, λ̄pitch2
, λ̄pitch3

, λ̄pitch4
, λ̄pitch5

) ∈R5×5 (55)

are respectively characterized by a set of prescribed stable eigenvalues

λ̄yaw1 , λ̄yaw2 , (56)

λ̄roll1 , λ̄roll2 , λ̄roll3 , λ̄roll4 , λ̄roll5 , (57)

and

λ̄pitch1
, λ̄pitch2

, λ̄pitch3
, λ̄pitch4

, λ̄pitch5
(58)

such that λ̄pitch1
= λ̄roll1 , λ̄pitch2

= λ̄roll2 , λ̄pitch3
= λ̄roll3 , λ̄pitch4

=
λ̄roll4 , λ̄pitch5

= λ̄roll5 if auxiliary control gains are selected as follows:

k̄ir = J3 kT δ̄ f wd

2 kQ (m + mc) g n

(
�̄yaw − ��yaw

)
(59)

k̄pr = J3 kT δ̄ f wd

2 kQ (m + mc) g n

(
��yaw − �̄yaw

)
(60)

k̄η2 = 1

Ld + h3

{
−� G1 + J1 δ̄ f wd

2 b (m + mc) g n

·
[

G3 − g
J1 (m + mc) + h3 m mc (Ld + h3)

J1 Ld m

]} (61)

k̄ν2 = �

[
m2 L2

d G0 − m (m + mc) g Ld G2 + (m + mc)
2 g2 G4

m (m + mc) g Ld (Ld + h3)

]

(62)

k̄iφ = � G0 + J1 �roll δ f wd

2 b m g n
(63)

k̄pφ = � G1 − J1 �roll δ f wd

2 b m g n
+ k̄η2 Ld (64)

k̄p = − (m + mc) g � G4

m Ld
− J1 �roll δ f wd

2 b m g n
+ k̄ν2 h3 (65)

k̄η1 = −
√

3 J2/ J1

Ld + h3

{
−� G1 + J1 δ̄ f wd

2 b (m + mc) g n

·
[

G3 − g
m + mc + J2 h3 m mc (Ld + h3)

Ld m

]} (66)

k̄ν1 = − J2/ J1
√

3 k̄ν2 (67)

k̄iθ = J2/ J1
√

3 k̄iφ , k̄q = J2/ J1
√

3 k̄p (68)

k̄pθ = J2/ J1
√

3 k̄pφ − Ld

(
k̄η1 + J2/ J1

√
3 k̄η2

)
(69)
8

provided

�̄yaw = λ̄yaw1 λ̄yaw2 , �̄yaw = λ̄yaw1 + λ̄yaw2 , (70)

� =
(

1 + mc

m

)1− 1
2n

, � = J1 Ld m δ̄ f wd

2 b n (m + mc)
2 g2

, (71)

and

G0 = −λ̄roll1 λ̄roll2 λ̄roll3 λ̄roll4 λ̄roll5

G1 = λ̄roll5

{
λ̄roll4

[
λ̄roll3

(
λ̄roll1 + λ̄roll2

)
+λ̄roll1 λ̄roll2

]+ λ̄roll1 λ̄roll2 λ̄roll3

}
+ λ̄roll1 λ̄roll2 λ̄roll3 λ̄roll4

G2 = −λ̄roll4

[
λ̄roll3

(
λ̄roll1 + λ̄roll2

)+ λ̄roll1 λ̄roll2

]
− λ̄roll1 λ̄roll2 λ̄roll3

− λ̄roll5

[
λ̄roll3

(
λ̄roll1 + λ̄roll2

)+ λ̄roll1 λ̄roll2

+λ̄roll4

(
λ̄roll1 + λ̄roll2 + λ̄roll3

)]
G3 = λ̄roll3

(
λ̄roll1 + λ̄roll2

)+ λ̄roll1 λ̄roll2

+ λ̄roll4

(
λ̄roll1 + λ̄roll2 + λ̄roll3

)
+ λ̄roll5

(
λ̄roll1 + λ̄roll2 + λ̄roll3 + λ̄roll4

)
G4 = − (λ̄roll1 + λ̄roll2 + λ̄roll3 + λ̄roll4 + λ̄roll5

)

(72)

Proof. See Appendix A.

Remark 2. The pole–placement problem addressed by Theorem 1
is solved through the feedback of state variables characterizing the 
dynamics about the yaw, the roll, and the pitch axis. From a prac-
tical standpoint, rigid–body attitude and angular rate information 
are obtained as a typical output of the onboard Inertial Measure-
ment Unit (IMU). On the converse, the estimation of payload os-
cillatory state is a challenging task that, however, was recently 
investigated by the one of the authors [19]. In particular, a method 
was validated to autonomously estimate the swing angle and an-
gular rate in multicopter slung load applications, with no need to 
rely on sensors different from the available (typically low–cost) 
IMU. Accelerometer readings and dynamic model information can 
be fused by means of a Fading Gaussian Deterministic (FGD) filter, 
in the presence of model uncertainties and measurement errors, 
thus inferring full–state observability and controllability to Āroll
and Ā pitch .

Remark 3. The FGD method outlined in Remark 2 is based on 
the assumption of a rigid cable with constant (nominal) length L, 
with the result that the estimation of oscillation angles and an-
gular rates is uniquely related to the components of ηE and ν E . 
On the converse, the elasticity of cable cannot be disregarded in 
the present framework and a residual degree of uncertainty char-
acterizes the problem. From a practical standpoint, the use of suffi-
ciently rigid cables drastically reduces model uncertainty, provided 
that Ld ≈ L. From a theoretical standpoint, the vertical subsys-
tem Āv assumes a two–time–scale dynamic behavior: 1) multi-
rotor motion along the local vertical represents a low–frequency 
mode observable through ev and εv , with behavior principally de-
termined by λv1 , λv2 , k̄ih , and k̄ph ; 2) cable elongation dynamics, 
mostly observable through ν3 E and η3 E , which is representative of 
a high–frequency mode with properties strictly related to K and 
mc . In this respect, the following Corollary is provided to inves-
tigate the frequency properties of Āv and assign its closed–loop 
eigenvalues with an acceptable degree of accuracy.
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Table 1
Multirotor slung–load system parameters.

Parameter Symbol Value Units

Multirotor

Mass m 2.15 kg

Center of gravity position ST AC G = BLC G 0 m

W LC G -0.02 m

Moments of inertia J1 0.0319 kg m2

J2 0.0287 kg m2

J3 0.0633 kg m2

Center of pressure position ST AC P = BLC P 0 m

W LC P -0.08 m

Frame drag areas A1 = A2 0.023 m2

A3 0.106 m2

Propeller

Number of blades nb 2

Radius R 0.1016 m

Mean aerodynamic chord c̄ 0.0018 m

Chord @ 75% R c75 0.0021 m

Lift curve slope a 5.9 rad−1

Pre–cone angle a0 0 rad

Root pitch angle θ0 0.7854 rad

Total twist θt -0.6632 rad

Induced–power factor kind 1.35

Load

Mass mc 0.5 kg

Reference area Ac 0.008 m2

Drag coefficient (sphere) Cdc 0.5

Cable

Nominal cable length L 0.6 m

Hookes’s constant K 4 900 N/m

Hook point position ST AH = BLH 0 m

W LH -0.1 m

Corollary 1. Consider the decoupled subsystem matrix Āv obtained in 
Theorem 1 and assume the control gains in Eq. (48) are selected as:

k̄iv = �v δ f wd − �̄v δ̄ f wd

2 g n
, k̄pv = �̄v δ̄ f wd − �v δ f wd

2 g n
(73)

with �̄v = λ̄v1 λ̄v2 and �̄v = λ̄v1 + λ̄v2 . Then, the eigenvalues of Āv

approximately track λ̄v1 , λ̄v2 , λ̄v3 , and λ̄v4 for sufficiently high values of 
K . Using standard notation [28], λ̄v3 and λ̄v4 are, in particular, charac-
terized in terms of natural frequency and damping expressions as

ω f ≈√K/mc (1 + mc/m) (74)

ω f ξ f ≈ −�̄v mc/ (2 m) (75)

Proof. See Appendix B.

4. Numerical results

In this Section, the validation of the proposed approach is ad-
dressed by numerical analysis. A DJI F550 Flamewheel hexaro-
tor is considered, with relevant parameters listed in Table 1. The 
planar rotor configuration is characterized by ST AR1 = ST AR6 =
−ST AR3 = −ST AR4 = −0.2382, ST AR2 = ST AR5 = 0 m, BLR1 =
BLR3 = −BLR4 = −BLR6 = 0.1375 m, BLR2 = −BLR5 = 0.2750 m, 
and W LR j = 0.0320 m.
9

For the aim of the gain–sizing task, parameters k̄T and k̄Q in 
Assumption 1 are first evaluated on the basis of an experimen-
tal campaign performed at University of Bologna premises. In this 
respect, it must be noted that the data provided in Table 1 to 
perform nonlinear simulations already include model corrections 
based on the characterization tests described in what follows (see, 
for example, the induced–power factor, kind). Propulsion is pro-
vided by a set of DJI Opto 30A electronic speed regulators and 
DJI 2212 brushless motors powered by a 25C LiPo battery pack 
by Tattu with nominal voltage 14.8 V. Thrust is generated by DJI 
carbon–fiber reinforced nylon propellers with diameter D = 8 in 
and nominal pitch � = 4.5 in. The propulsion unit was mounted 
on a RCbenchmark Series 1585 thrust stand tailored to small and 
medium–size drone optimization analysis. The test bench supports 
thrust and torque measurement up to 5 kgf and 1.5 Nm, re-
spectively, and an optical RPM probe for propeller angular rate 
estimation. Load cells are temperature–compensated and a pre-
liminary calibration procedure allows for accurate measurements 
over the full operating range. Each experiment was conducted at 
room temperature τexp = 24 ◦C and static pressure pexp = 100 877
Pa, with estimated air density ρexp = 1.1827 kg/m3 and air dy-
namic viscosity μexp = 18.32 · 10−6 Pa s. The PWM throttle sig-
nal was progressively incremented from P W Midle = 1100 μs to 
P W Mmax = 2000 μs (namely δ ∈ [0, 900]T μs), respectively gener-
ating zero and maximum thrust, with steady–state measurements 
taken at intervals of 100 μs.

In Fig. 4 the rotor angular rate � is reported as a function of 
control signal δ. Curve fitting of experimental data points is per-
formed according to the model proposed in Eq. (10), with k� =
14.92 and n = 0.6359 (Root Mean Square Error, RM S E = 13.65
rad/s). In Fig. 5 the thrust T and the torque Q are depicted as 
a function of �. Data points are fitted according to the simplified 
models provided in Assumption 1, where k̄T = 7.074 · 10−6 N s/rad 
(RM S E = 0.1276 N) and k̄Q = 1.326 · 10−7 Nm s/rad (RM S E =
0.0018 Nm).

Consider now the isolated (unloaded) multirotor at 360 m al-
titude where, without loss of generality, χ ≈ 1 [26]. In the hov-
ering condition it is T j = m g/6 = 3.514 N and the feed–forward 
contribution to each motor results to be, according to Eq. (24), 
δ f wd = 430 μs. It is assumed that stabilization is performed by the 
sample inner controllers provided in Eqs. (26)–(29), with the con-
trol gains suggested in Eqs. (34)–(39). Let λv 1 = −3.5 + i 1.4 and 
λv 2 = −3.5 − i 1.4 be the desired (complex–conjugate) eigenval-
ues for an underdamped vertical dynamics, such that �v = 14.21
and �v = −7. Required control gains result to be ki v = −489.35
and kp v = −241.06. A critically–damped behavior is prescribed to 
the closed–loop yaw dynamics, such that λyaw1 = λyaw2 = −3.5, 
�yaw = 12.25, and �yaw = −7. It follows kir = 662.60 and kpr =
378.63. With respect to the dynamics about the roll axis, one real 
pole and a pair of complex conjugate poles are assigned, respec-
tively corresponding to λroll1 = −5, λroll2 = −3.5 + i 1.4, and λroll3 =
−3.5 − i 1.4. Given �roll = −71.05, �roll = 49.21, and �roll = −12, 
one derives kiφ = 132.01, kpφ = 91.43, and kp = −22.30. In the 
case when, without loss of generality, the multirotor is to be pro-
vided with the same dynamic behavior about the roll and the pitch 
axes, namely λpitch1 = λroll1, λpitch2 = λroll2, and λpitch3 = λroll3, 
the remaining control gains can be scaled according to Eq. (39), 
such that kiθ = 205.78, kpθ = 142.53, and kq = −34.76.

The multirotor is equipped with a suspended load whose pa-
rameters are listed in Table 1. In the hovering condition it is 
T j = (m + mc) g/6 = 4.33 N, Ld = 0.601 m, and the feed–forward 
contribution to each motor is, according to Eq. (44), δ̄ f wd =
506 μs. Consider the dynamic system identified by the extended 
state vector in Eq. (47), under the hypotheses of Theorem 1. It 
is assumed, without loss of generality, that the auxiliary con-
trollers in Eqs. (48)–(51) are required to provide λ̄yaw = λyaw , 
1 1
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Fig. 4. DJI 8 × 4.5 propeller characterization (angular rate vs. PWM command).

Fig. 5. DJI 8 × 4.5 propeller characterization (a) thrust and b) torque vs. angular rate).
λ̄yaw2 = λyaw2 , λ̄pitch1
= λ̄roll1 = λroll1 , λ̄pitch2

= λ̄roll2 = λroll2 , and 
λ̄pitch3

= λ̄roll3 = λroll3 . With regard to the dynamic mode con-
nected to payload oscillation, a pair of complex–conjugate poles 
is prescribed, namely λ̄pitch4

= λ̄roll4 = −1.2 + i 1.7 and λ̄pitch5
=

λ̄roll5 = −1.2 − i 1.7. As a first step, the parameters defined in The-
orem 1 are evaluated, including � = 1.0457, � = 0.0833, and the 
polynomial coefficients G0 = 307.65, G1 = 383.60, G2 = 241.11, 
G3 = 82.34, and G4 = 14.40. Given �̄yaw = �yaw and �̄yaw =
�yaw , control gains for the updated closed–loop yaw dynamics re-
spectively follow from Eqs. (59)–(60) as k̄ir = −28.96 and k̄pr =
−16.55. Control gains required for pole–placement stabilization of 
Āroll are obtained from Eqs. (61)–(65) as k̄η2 = 63.94, k̄ν2 = 8.04, 
k̄iφ = −104.83, k̄pφ = −19.12, and k̄p = −2.49. Taking into ac-
count Eqs. (66)–(69), control gains for closed–loop Ā pitch stabiliza-
tion are, respectively, k̄η1 = −91.80, k̄ν1 = −12.53, k̄iθ = −163.42, 
k̄pθ = −34.53, and k̄q = −3.88.
10
In order to highlight the effect of the auxiliary controller, it 
is assumed that the latter contribution is modulated by weight 
ξ ∈ [0, 1], such that δyaw = δ

(inn)
yaw + ξ δ

(aux)
yaw , δroll = δ

(inn)

roll + ξ δ
(aux)
roll , 

and δpitch = δ
(inn)

pitch + ξ δ
(aux)
pitch . The eigenvalues of subsystem matrices 

Ā yaw and Āroll are depicted in Fig. 6 for values of ξ ranging from 0
to 1. In the case when ξ = 1, exact pole–placement occurs, based 
on given requirements. When ξ = 0, namely when the auxiliary 
controller does not provide contribution, rigid–body dynamics is 
shown to be altered by the presence of the suspended load. Con-
currently, payload swing develops with a pair of poorly–damped 
poles, −0.41 ± i 3.79, characterized by a damping coefficient equal 
to 0.107 and natural frequency 2.45 rad/s. The effect of active pay-
load stabilization, determined by k̄η2 and k̄ν2 , finally drives the 
poles of the swing mode to the desired values, −1.2 ± i 1.7, deter-
mining an improved damping ratio of 0.577, a natural frequency of 
2.08 rad/s, and reduced settling time. The destabilizing effect de-
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Fig. 6. The eigenvalues of a) Ā yaw and b) Āroll respectively obtained for ξ ∈ [0, 1].
termined by increasing values of h3 is also evident. With regard to 
the yaw dynamics, the effect of the auxiliary controller arises in 
the transformation from real–distinct (over–damped) poles to the 
prescribed critically–damped poles, characterized by faster conver-
gence.

Consider now the extended vertical dynamics. With the aim 
to provide the rigid body with almost the same dynamic behav-
ior of the isolated multirotor, control gains are selected according 
to Eq. (73) in Corollary 1. In particular, it is k̄iv = −87.44 and 
k̄pv = −43.08, provided �̄v = �v = 14.21 and �̄v = �v = −7. 
Using standard notation [28] and the two–time–scale approach 
discussed in Appendix B, the resulting (rigid–body) slow mode 
is thus characterized in terms of natural frequency and damp-
ing expressions as ωs =

√
�̄v = 3.77 rad/s and ωs ξs = −�̄v/2 =

3.5 rad/s. Conversely, the (cable elasticity) fast mode is de-
scribed by expected values ω f = √

K/mc (1 + mc/m) = 109.90
rad/s and ω f ξ f = −�̄v mc/ (2m) = 0.81 rad/s. By substitution 
of the given control gains, Āv assumes the form provided in 
Eq. (114), whose exact eigenvalues are identified by ω

(exact)
s , 

(ωs ξs)
(exact) , ω

(exact)
f , and 

(
ω f ξ f
)(exact) . In Table 2 percentage 

errors between exact and estimated dynamic parameters are re-
ported as a function of cable Hookes’s constant K , provided 
εωs =

(
ωs − ω

(exact)
s

)
/ω

(exact)
s · 100, εξωs

= [(ξsωs) − (ξsωs)
(exact)
]

/ (ξsωs)
(exact) ·100, εω f =

(
ω f − ω

(exact)
f

)
/ω

(exact)
f ·100, and εξω f =[(

ξ f ω f
)− (ξ f ω f

)(exact)
]
/ 
(
ξ f ω f
)(exact) · 100. It is evident that, for 

high values of K , frequency separation unfolds and the values esti-
mated by Eqs. (110)–(113) reach a higher degree of accuracy, even 
though the analysis is limited to a zero dynamic residual L = L0
in Eq. (105).

The proposed control strategy, tuned on the basis of a sim-
plified linearized model, is finally validated by application to the 
full nonlinear simulator. To this end, 3 sample maneuvers (A, B, 
and C) are performed and a comparison is provided between ob-
tained responses of both the linear and the nonlinear systems. In 
case A, the unloaded multirotor is assumed to be at hover with 
an initial non–null vertical velocity error, ev(0) = −1 m/s, and 
εv (0) = 0 m. According to the given requirements, the response 
of linear vertical speed error is expected to represent an under-
damped second–order system with maximum overshoot S = 0.149
11
Table 2
Extended vertical dynamics: evaluation of decoupled analysis approxi-
mation.

Hooke’s constant [N/m] approximation error [%]

K εωs εξωs εω f εξω f

4.9 -11.04 -16.47 12.41 556.43

49 -3.13 -3.84 3.23 20.73

490 -0.33 -0.40 0.33 1.74

4900 -0.03 -0.04 0.03 0.17

m/s at time to = 0.54 s and settling time within 0.02 m/s range 
given by ts = 1.4 s (solid black line in Fig. 7.a). Nonlinear simu-
lation results from the same initial conditions (dashed black line 
in Fig. 7.a) provide S = 0.152 m/s (+2.01%) at time to = 0.6 s 
(+11.11%) and settling time ts = 1.46 s (+4.29%). In case B, an 
initial yaw rate is considered such that er(0) = −10 deg/s and 
εr(0) = 0 deg. The linear subsystem yaw rate error is characterized 
by a maximum overshoot S = 1.35 deg/s at time to = 0.57 s and 
settling time within 0.02 deg/s range given by ts = 2.34 s (solid 
black line in Fig. 7.b). Nonlinear simulation results from the same 
initial conditions (dashed black line in Fig. 7.b) provide S = 1.46
deg/s (+8.15%) at time to = 0.64 s (+12.28%) and settling time 
given by ts = 2.35 s (+0.43%). In case C, with the aim to analyze 
the roll dynamics, the following initial conditions are considered: 
p(0) = 0 deg/s, eφ(0) = −10 deg, and εφ(0) = 0 deg s. The time 
history of linear system error eφ is detailed in Fig. 7.c (solid black 
line), where the maximum overshoot is S = 2.63 deg at to = 0.72
s and the settling time is ts = 2.38 s. The rise time, here in-
tended as the time interval between 0.9 · eφ(0) and 0.1 · eφ(0), 
is tr = 0.38 s. With respect to the nonlinear system response 
(dashed black line in Fig. 7.c), corresponding results are S = 3 deg 
(+14.07%), to = 0.72 s (≈ 0%), ts = 2.09 s (−12.18%), and tr = 0.27
s (−28.95%).

Consider now the loaded configuration under the effect of the 
inner and the auxiliary controllers while performing the same ma-
neuvers A, B, and C. For the sake of brevity, the results of maneu-
vers B and C only are discussed. In Fig. 7.b the stabilization of yaw 
rate (maneuver B) is described while tracking almost exactly both 
the linear reference dynamics and the nonlinear unloaded model 
results (solid gray line). In this respect, it is S = 1.42 deg/s at time 
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Fig. 7. Linear and nonlinear closed–loop system models (maneuvers A, B, and C).

Fig. 8. Linear and nonlinear closed–loop system models (maneuver C).
to = 0.62 s and settling time is equal to ts = 2.37 s. With regard 
to maneuver C, in Fig. 8 model comparison is performed on p, 
where the highly–nonlinear behavior related to the particular h3
configuration rapidly emerges with time. Also, state variable η2 H is 
reported in Fig. 9 for ξ = 0 and ξ = 1, showing the efficacy of the 
auxiliary controller to stabilize multirotor dynamics while rapidly 
damping payload oscillations.

5. Conclusions

The present paper investigates the effects of suspended load os-
cillations on the dynamics of a multirotor platform. The isolated 
rotorcraft is first analyzed from a mathematical standpoint and a 
set of (inner–loop) controllers is assumed to stabilize the hover-
ing condition with known dynamic behavior. Provided the vehicle 
is equipped with the payload through a suspended cable, the com-
bined slung–load system is described as underactuated over the 
12
oscillatory dynamics. A set of auxiliary (outer–loop) controllers is 
thus proposed with the aim to provide the complete system with 
a set of desired dynamic properties, extended to the oscillatory 
modes. To this end, a completely analytical framework is derived 
to size the outer–loop controller gains according to the given re-
quirements.

A numerical validation example is discussed relative to a small–
scale hexacopter whose electric propulsion system is characterized 
experimentally. Although derived through a simplified set of linear 
equations, the proposed controller is proven to stabilize a highly–
nonlinear multirotor model, while tracking the expected closed–
loop behavior with satisfactory accuracy. As a by–product, results 
are also obtained that describe the effects of cable elasticity on 
system stabilization, showing how frequency separation phenom-
ena characterize the vertical dynamics.

The approach, which has the merit of relative simplicity, can 
be extended to different rotorcraft configurations and requires the 
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Fig. 9. The effect of auxiliary controller on payload stabilization (maneuver C).
knowledge of a very–limited set of vehicle parameters, while suc-
cessfully encompassing the prescription of flying qualities.
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Appendix A. Proof of Theorem 1

The dynamic system identified by the extended state vector in 
Eq. (47) is first linearized about the origin. Under Assumptions 1–4, 
the state–matrix Ā ∈ R16×16 assumes the block–diagonal form 
provided in Eq. (52). In particular, the non–zero components of Āv

are:

Āv1,1 = 12 kT k2
� n δ̄2 n−1

f wd

m

(
k̄pv + �v δ f wd

2 g n

)
(76)

Āv1,2 = 12 kT k2
� n δ̄2 n−1

f wd

m

(
k̄iv − �v δ f wd

2 g n

)
(77)

Āv1,4 = K/m, Āv3,4 = −K/mc (1 + mc/m) (78)

Āv3,1 = − Āv1,1 , Āv3,2 = − Āv1,2 (79)

Āv2,1 = Āv4,3 = 1 (80)

With respect to Ā yaw , the following matrix components are de-
rived:

Ā yaw1,1 = ��yaw − 2 kQ k̄pr (m + mc) g n

J3 kT δ̄ f wd
(81)

Ā yaw1,2 = −��yaw − 2 kQ k̄ir (m + mc) g n

J3 kT δ̄ f wd
(82)

Ā yaw2,1 = 1, Ā yaw2,2 = 0 (83)

By imposing the equations
13
det
[

Ā yaw
]= − Ā yaw1,2 = λ̄yaw1 λ̄yaw2 = �̄yaw (84)

and

tr
[

Ā yaw
]= Ā yaw1,1 = λ̄yaw1 + λ̄yaw2 = �̄yaw (85)

the control gains in Eqs. (59) and (60) are respectively derived as 
the independent variables.

In a similar manner, the only non–zero components of Āroll are:

Āroll1,1 = 2 b (m + mc) g n

J1 δ̄ f wd

(
k̄p + J1 �roll δ f wd

2 b m g n

)
(86)

Āroll1,2 = 1

J1

[
12 b kT k2

� n δ̄2 n−1
f wd

(
k̄pφ

+ J1 �roll δ f wd

2 b m g n

)
− K h3 (L − Ld)

] (87)

Āroll1,3 = m + mc

J1 m δ̄ f wd

(
2 b k̄iφ m g n − J1 �roll δ f wd

)
(88)

Āroll1,4 = 12 b kν2 kT k2
� n δ̄2 n−1

f wd

J1
(89)

Āroll1,5 = 1

J1

[
− K h3 (L − Ld)

Ld

+2 b kη2 (m + mc) g n

δ̄ f wd

] (90)

Āroll2,1 = −1, Āroll3,2 = Āroll5,4 = 1 (91)

Āroll4,1 = −h3 Āroll1,1 (92)

Āroll4,2 = −h3

J1

[
2 b (m + mc) g n

δ̄ f wd

(
k̄pφ

+ J1 �roll δ f wd

2 b m g n

)
−K h3 (L − Ld)

]

− (m + mc) g

m

(93)

Āroll = −h3 Āroll , Āroll = −h3 Āroll (94)
4,3 1,3 4,4 1,4
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Āroll4,5 = K (L − Ld)

J1 Ld m mc

[
J1 (m + mc) + h2

3 m mc

]

− 2 b h3 k̄η2 (m + mc) g n

J1 δ̄ f wd

(95)

Provided λ̄roll1 , λ̄roll2 , λ̄roll3 , λ̄roll4 , λ̄roll5 are the design eigenvalues, 
the desired characteristic polynomial of Āroll assumes the form:

Proll(s) =
5∏

i=1

(
s − λ̄rolli

)= s5 + G4 s4 + G3 s3

+ G2 s2 + G1 s + G0

(96)

where polynomial coefficients G0, G1, G2, G3, and G4 are detailed 
in Eq. (72). Let I 5 be the identity matrix of size 5. By equating the 
right–hand side of Eq. (96) to det

[
s I 5 − Āroll

]
, a set of 5 linear 

equations is derived with unknown variables represented by con-
trol gains k̄η2 , k̄ν2 k̄iφ , k̄pφ , and k̄p . Solutions are respectively given 
in Eqs. (61)–(65). The same procedure holds for Ā pitch , finally pro-
viding the control gains in Eqs. (66)–(69).

Appendix B. Proof of Corollary 1

Taking into account Eqs. (76)–(80) in Appendix A, the vertical 
dynamics is conveniently rearranged into:

Āv =
[

C 11 C 12
C 21 C 22

]
(97)

where

C 11 =
[

Āv1,1 Āv1,2

Āv2,1 0

]
, C 12 =

[
0 Āv1,4

0 0

]
(98)

C 21 =
[

Āv3,1 Āv3,2

0 0

]
, C 22 =

[
0 Āv3,4

Āv4,3 0

]
(99)

Let C 0 = C 11 − C 12C−1
22 C 21. Provided C 22 is nonsingular, the verti-

cal dynamics equations are recast in the two–frequency–scale form 
[29]:

ẏ = C 11 y + C 12 z, ż = C 21 y + C 22 z (100)

where y = [ev , εv ]T and z = [ν3 E , η3 E

]T are the vectors contain-
ing the slow/low–frequency and the fast/high-frequency variables, 
respectively. Consider the following change of variable:[

ys
z f

]
=
[

I 2 − M L −M
L I 2

][
y
z

]
(101)

where I2 is the identity matrix of size 2, while L and M are the 
solutions of the following matrix equations:

C 21 − C 22 L + L C 11 − L C 12 L = 02 (102)

(C 11 − C 12 L) M − M (C 22 + L C 12) + C 12 = 02 (103)

with 02 being the null matrix of size 2. The system in Eq. (100) is 
thus decoupled into the subsystems:[

ẏs
ż f

]
=
[

C s 02
02 C f

][
ys
z f

]

=
[

C 11 − C 12 L 02
02 C 22 + L C 12

][
ys
z f

] (104)

Matrix L can be approximated as [29]:

Li = C−1
22 C 21 + C−1

22 Li−1 (C 11 − C 12 Li−1)

L = C−1 C
(105)
0 22 21

14
The existence of a solution to the matrix equality in Eqs. (102)–
(103) and the validity of its approximation in Eq. (105) is ad-
dressed by Lemma 2.1 and Lemma 2.2 in [29]. If one selects a 
zero dynamic residual L = L0 in Eq. (105) and takes into ac-
count Eq. (104), the approximations C (0)

s = C 11 − C 12 C−1
22 C 21 and 

C (0)

f = C 22 + C−1
22 C 21 C 12 can be derived:

C (0)
s =
⎡
⎣ Āv1,1

(
m

m + mc

)
Āv1,2

(
m

m + mc

)
1 0

⎤
⎦ (106)

C (0)

f =
⎡
⎢⎣0 Āv3,4

mc

m

1 Āv1,1

(
mc

m + mc

)
⎤
⎥⎦ (107)

Pole placement of λ̄v1 and λ̄v2 to the low–frequency subsys-

tem matrix C (0)
s is performed by the same approach adopted in 

Eqs. (84) and (85). Taking into account Eqs. (98) and (99), and the 
definition of �̄v and �̄v , it follows:

k̄iv = �v δ f wd − �̄v δ̄ f wd

2 g n
(108)

and

k̄pv = �̄v δ̄ f wd − �v δ f wd

2 g n
(109)

Using standard notation [28], the resulting low–frequency mode is 
characterized in terms of natural frequency and damping expres-
sions as

ωs =
√

det[C (0)
s ] =
√

�̄v (110)

and

ωs ξs = − tr[C (0)
s ]/2 = −�̄v/2 (111)

while the high frequency mode is related to

ω f =
√

det[C (0)

f ] =√K/mc (1 + mc/m) (112)

and

ω f ξ f = − tr[C (0)

f ]/2 = −�̄v mc/ (2 m) (113)

Remark 4. By substitution of Eqs. (108) and (109), Āv assumes the 
form:

Āv=

⎡
⎢⎢⎣

�̄v (1+mc/m) −�̄v (1+mc/m)

1 0 0 0

−�̄v (1+mc/m) �̄v (1+mc/m) 0 −K/mc (1+mc/m)

0 0 1 0

⎤
⎥⎥⎦

(114)

Since the eigenvalues of C (0)

f cannot be arbitrarily assigned, ma-

trix Āv in Eq. (114) results to be generally characterized by dif-
ferent properties than the ones provided to the decoupled pa-
rameters in Eqs. (110)–(113). The matrix decomposition described 
above, in fact, allows to exactly perform pole placement only to 
the low–frequency dynamics while obtaining, as a by–product, the 
decoupled high–frequency mode parameters. However, the error 
between the coupled and the decoupled vertical dynamic modes 
is bounded and reduces in the measure in which frequency sep-
aration occurs. In this respect, the system in Eq. (100) does not 
need to be recast according to the singularly–perturbed form, in 
the presence of a small (explicit) parameter. Provided a sufficiently 
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rigid cable is used, that is a high value of K is considered, a suf-
ficiently high natural frequency ω f results for the subsystem in 
Eq. (112). Hence, inherent decoupling emerges and the eigenval-
ues of Āv in Eq. (114) approximately track the results separately 
provided in Eqs. (110)–(113).
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