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Abstract
In this paper we are concerned with the regularity of solutions to a nonlinear elliptic system
ofm equations in divergence form, satisfying p growth from below and q growth from above,
with p ≤ q; this case is known as p, q-growth conditions. Well known counterexamples,
even in the simpler case p = q , show that solutions to systems may be singular; so, it is
necessary to add suitable structure conditions on the system that force solutions to be regular.
Here we obtain local boundedness of solutions under a componentwise coercivity condition.
Our result is obtained by proving that each component uα of the solution u = (u1, ..., um)

satisfies an improved Caccioppoli’s inequality and we get the boundedness of uα by applying
De Giorgi’s iteration method, provided the two exponents p and q are not too far apart. Let
us remark that, in dimension n = 3 and when p = q , our result works for 3

2 < p≤3, thus it
complements the one of Bjorn whose technique allowed her to deal with p ≤ 2 only. In the
final section, we provide applications of our result.
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1 Introduction

In this paper we are concerned with the regularity of solutions to a nonlinear elliptic system
of m equations in divergence form

n∑

i=1

∂

∂xi

(
Aα
i (x, Du(x))

) = 0, 1 ≤ α ≤ m, (1.1)

where x ∈ � and � is a bounded open set in R
n , n ≥ 2. The function u : � ⊂ R

n → R
m ,

has components (u1, ..., um); then Du(x) is the m × n matrix

(
∂uα

∂xi
(x)

)α=1,...,m

i=1,...,n
.

We assume that Aα
i : � × R

m×n → R, 1 ≤ i ≤ n, 1 ≤ α ≤ m, are Carathéodory
functions satisfying for every x ∈ � and for every z = (z1, . . . , zm)T ∈ R

m×n the following
p, q-growth assumptions:

ν|zα|p − a(x) ≤
n∑

i=1

Aα
i (x, z)zαi ∀α ∈ {1, · · · ,m}, (1.2)

n∑

i=1

|Aα
i (x, z)| ≤ M

(|z|q−1 + b(x)
)
, (1.3)

where 1 < p ≤ q , p ≤ n, ν, M > 0, a ∈ Lτ1
loc(�) and b ∈ Lτ2

loc(�) are non-negative
functions, with 1 < τi ≤ +∞, i = 1, 2, and τ2 ≥ q

q−1 .

Let us recall that u ∈ W 1,q
loc (�;Rm) is a weak solution of (1.1) if

∫

B

m∑

β=1

n∑

i=1

Aβ
i (x, Du(x))Diψ

β(x) dx = 0, (1.4)

for every open set B � � and for every ψ ∈ W 1,q
0 (B;Rm).

As usual the Sobolev exponent is p∗ = np
n−p if p < n, and p∗ is any real number μ > p

if p = n. The Hölder conjugate exponent of p is p′ = p
p−1 . We use the position 1

+∞ = 0.
Our regularity result is the following.

Theorem 1.1 Assume that (1.2) and (1.3) hold, with 1 < p ≤ n, p ≤ q and 1 < τ1, τ2 ≤
+∞, satisfying

q < p∗ n

p(n + 1)
, τ1 >

n

p
, τ2 ≥ q

q − 1
. (1.5)

Then any weak solution u ∈ W 1,q
loc (�;Rm) of (1.1) is locally bounded.

In the vector-valued case, as suggested bywell known counterexamples [11, 13, 14, 18–20,
23, 24, 28, 38, 43, 45, 49, 50], special structures on the operator are required for everywhere
regularity, even under reasonable assumptions on the coefficients; see also the surveys [40,
41] and [25].

In the literature there are still few contributions about the boundedness of weak solutions
to elliptic systems. Ladyzhenskaya and Ural’tseva ([27], Chapter 7) first proposed the local
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boundedness of solutions u = (
u1, u2, . . . , um

)
to the linear elliptic system

n∑

i=1

∂

∂xi

⎛

⎝
n∑

j=1

ai j (x) u
α
x j +

m∑

β=1

bαβ
i (x) uβ + f α

i (x)

⎞

⎠

+
n∑

i=1

m∑

β=1

cαβ
i (x) uβ

xi +
m∑

β=1

dαβ (x) uβ = f α (x) , ∀ α = 1, 2, . . . ,m,

(1.6)

with bounded measurable coefficients ai j , b
αβ
i , cαβ

i , dαβ and given functions f α
i , f α . Here

the structure condition is stated in terms of the positive definite n × n matrix
(
ai j

)
, which

does not depend on α, β. In [39] Meier extended these results to nonlinear elliptic systems
of the form

n∑

i=1

∂

∂xi

(
Aα
i (x, u, Du)

) = 0, (1.7)

under the following p-growth conditions, 1 < p ≤ n,

n∑

i=1

m∑

α=1

Aα
i (x, u, z)zαi ≥ |z|p − d(x)|u|p − g(x) (1.8)

|Aα(x, u, z)| ≤ a|z|p−1 + b(x)|u|p−1 + e(x) (1.9)

for a > 0 and under suitable integrability assumptions on the nonnegative functions b, e, d, g.
Meier introduces the so-called indicator function of the operator

IA(x, u, Du) :=
∑

α,β,i

Aα
i (x, u, Du)Diu

β u
αuβ

|u|2 (1.10)

and a pointwise assumption turns out to be crucial in Meier’s techniques, indeed a weak
solution u of (1.7) is locally bounded if

IA(x, u, Du) ≥ 0 (1.11)

holds for large values of |u|. Notice that (1.11) is satisfied in linear case (1.6). Assumption
(1.11) is satisfied also by some nonlinear operators. For example:

Aα
i (Du) = σ(Du)Diu

α, (1.12)

when 0 ≤ σ , like in the case of Euler’s system of the functional
∫

F(|Du|)dx, (1.13)

where F increases and we take σ(Du) = F ′(|Du|)
|Du| . A third example, for which (1.11) holds

true, is given when considering Euler’s system of the anisotropic integral
∫ n∑

i=1

gi (|Diu|)dx, (1.14)

where gi increases and we take

Aα
i (Du) = g′

i (|Diu|)
|Diu| Diu

α, (1.15)
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see section 4 in [30]. Let us look at another example: we set m = n and we consider the
polyconvex integral

∫
(|Du|p + h(det Du))dx, (1.16)

where h is convex, C1, bounded from below. In this case Euler’s system gives

Aα
i (Du) = p|Du|p−2Diu

α + h′(det Du)(Cof Du)αi , (1.17)

where (Cof Du)αi is the determinant of the (n− 1)× (n− 1) matrix obtained from the n× n
matrix Du by deleting row α and column i , with the sign given by (−1)α+i . It turns out that

IA(x, u, Du) = p|Du|p−2
n∑

i=1

(
n∑

α=1

uα

|u|Diu
α

)2

+ h′(det Du) det Du ≥ inf
R

h − h(0),

(1.18)

then we get (1.11), provided h(0) = inf
R

h; see Sect. 3, later in the present paper; see also

[31].
The previous examples show that Meier’s condition allows us to deal with quite a large

class of nonlinear systems. Boundedness results for weak solutions to nonlinear elliptic
systems are proved by Krömer [26] under assumptions similar to (1.11), see also Landes
[29].

Actually Meier’s regularity result is obtained under a weaker assumption, since IA can be
allowed to be negative, but not too much.

More precisely, under (1.7) and (1.8), there exist positive constants λ and L such that

IA(x, u, z) :=
∑

α,β,i

Aα
i (x, u, z)zβi

uαuβ

|u|2 ≥ −
{

δ|z|p +
(
1

δ

)λ

[d(x)|u|p + g(x)]
}

,(1.19)

for every δ ∈ (0, 1), for all (x, u, z) ∈ � × R
m × R

m×n , with |u| > L .
Let us observe that the following linear decoupled system does not verify (1.19), see [32]

and Sect. 3, later in the present paper:

Aα
i (x, Du) = σα(x)Diu

α, (1.20)

where m = 2,

σ 1(x) = 18 + 2 sin(|x |2) and σ 2(x) = 2 + sin(|x |2). (1.21)

Now we consider another example, see [31], in which the equations are coupled and
Meier’s condition (1.19) is not satisfied: it is Euler’s system of

∫ [|Du|2 + h(D1u
1D1u

2)
]
dx (1.22)

where m = 2, h is convex, C1, bounded from below, so that

Aα
i (Du) = 2Diu

α + h′(D1u
1D1u

2)D1u
α̂δi1, (1.23)

where

α̂ = 2 if α = 1 and α̂ = 1 if α = 2; moreover, δi1 = 1 if i = 1

and δi1 = 0 otherwise.
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Meier’s condition (1.19) is not satisfied, provided h′(0) ≤ −8: for instance, h(t) =
16

√
1 + (t − 1)2; see Sect. 3 later in the present paper.

Combining coefficients σα(x) similar to (1.21) with the nonlinear part of (1.23), we are
able to build an example with p growth that does not satisfyMeier’s condition (1.19). Indeed,

Aα
i (Du) = σα(x)p|Du|p−2Diu

α + h′(D1u
1D1u

2)D1u
α̂δi1, (1.24)

where 2 ≤ p, h is convex,C1, bounded frombelow; α̂ and δi1 are defined as before.Moreover,
m = 2 and

σ 1(x) = 48 + 3 sin(|x |2) and σ 2(x) = 2 + sin(|x |2). (1.25)

Meier’s condition (1.19) is not satisfied, provided h′(0) ≤ 0: for instance, h(t) = (
1 + t2

)p/4
;

see Sect. 3 for the details.
In [2] Bjorn obtained boundedness of solutions u of systems without considering the

indicator function but assuming componentwise coercivity:

ν|zα|p − a(x) − b(x)|u|p ≤
n∑

i=1

Aα
i (x, u, z)zαi , with ν > 0. (1.26)

Previous assumption (1.26) says that, even if row α of the system contains all the com-
ponents of z = Du, after multiplying this row by component α of z = Du, from below we
only see the α component of z = Du and none of other components.

(1.26) is satisfied in system (1.20), provided σα(x) ≥ ν for some positive constant ν.
Furthermore, the structure in (1.12) guarantees (1.26), provided σ(Du) ≥ ν|Du|p−2, for
some constants p ≥ 2 and ν > 0. Let us mention that polyconvex structure (1.17) enjoys
(1.26), provided p ≥ 2, see Sect. 3. Finally, systems in (1.23) and (1.24) satisfy (1.26):
details are in Sect. 3.

Let us observe that the interesting Bjorn’s technique allows to deal only with the sub-
quadratic case 1 < p ≤ 2. When Aα

i does not depend on u, in Theorem 1.1, we are able
to deal with the case p0 < p ≤n, for a suitable p0 = p0(n); in the three dimensional case
n = 3, p0 = 3/2, so our result complements the one of Bjorn and we get boundedness of
solutions of elliptic systems under componentwise coercivity, see details at the end of this
introduction.

It is worth pointing out that we study system satisfing p, q-growth, according toMarcellini
[35]. Regularity in this case is obtained when q is not far from p, see the survey [40] and,
more recently, [36, 37, 42]; inequality p ≤ q < p∗ n

p(n+1) tells us that q cannot be too far
from p.

We underline that the strategy for proving our vectorial regularity result is De Giorgi’s
elegant and powerful method, see [10]. Precisely, we prove separately that each component
uα satisfies a suitable Caccioppoli-type inequality, a decay of the “excess” on super-(sub-)
level sets of uα that allow to apply iteration arguments and, eventually, the local boundedness
of the α-th component of u. A similar strategy has been successfully applied in [6] to prove
the boundedness of local minimizers of polyconvex functionals satisfying a non-standard
growth, see also [3, 4, 47]. Local boundedness of weak solutions to some elliptic systemswith
anisotropic or p, q growth has been proved in [7] by usingMoser’s iteration technique. In [31,
48], a kind of maximum principle has been proved for systems verifying a condition similar
to (1.26); see also [46]. Recent results on the regularity of minimizers of variational integrals
or equations in the scalar framework are in [1, 21]; see also [22], where the boundedness of
scalar localminimizers of variational integrals is proved under a sharp bound on the exponents
p, q , in the light of the counterexamples in [16, 33, 34]. We also cite the interesting paper
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[9], where both the scalar and the vectorial case are considered, this last case under the so
called Uhlenbeck assumption, i.e. the radial structure f (x, Du) = f̃ (x, |Du|), where f is
the energy density of the variational integral. Under this assumption, the usual condition on
the exponents p and q to have the local boundedness of vectorial minimizers of functionals,
or of weak solutions to systems, is q < p∗, see e.g. [7, 8]. Our gap condition on p and q is
more restrictive, but we do not require the strong Uhlenbeck assumption.

We try to explain why we are able to consider values of p larger than the ones considered
in [2]. Bjorn uses Caccioppoli inequality on superlevel sets {v > k} with the same exponent
p both for Dv and v − k. We use Caccioppoli inequality on superlevel sets with different
exponents: p for Dv and p∗ for v − k. When p is close to n, then p∗ is, by far, larger
than p, and this helps a lot. Let us also mention that Bjorn takes v = max{|u1|, ..., |um |},
where u = (u1, ..., um) is the solution of the system; on the contrary, we take v = uα , the
component α of u.

Let us discuss inequalities 1 < p≤ n, p ≤ q < p∗ n
p(n+1) , as required in (1.5) of our

Theorem 1.1. If p = n the condition on q is trivially satisfied.We have to solve p < p∗ n
p(n+1)

when 1 < p < n. This means that 0 < (n + 1)p2 − n(n + 1)p + n2; when n = 2 this is
satisfied for every p; when n = 3, it is true for p �= 3

2 ; when n ≥ 4 the inequality is satisfied
for 1 < p < p− or p+ < p < n, where

p± = n

2

(
1 ±

√
n − 3

n + 1

)
. (1.27)

Note that

1 < p− < 2 < p+ < n. (1.28)

If we confine ourselves to the case p = q , it is possible to make a comparison with Bjorn
[2]. When n = 2, we recover Bjorn’s boundedness result for every 1 < p ≤n = 2. When
n = 3, Bjorn’s result is limited to 1 < p ≤ 2 and we complement it, since we are able to
deal with 2 < p ≤n = 3. When n ≥ 4, Bjorn’s result holds true for 1 < p ≤ 2, our result is
valid when p+ < p ≤ n, so it remains open the case 2 < p ≤ p+.

We conclude by observing that in the definition of weak solution of an elliptic equation or
system with p, q-growth, the solution is assumed to be inW 1,q

loc and not inW 1,p
loc , see e.g. [35]

and [37]. Enforcing the assumptions on the structure of the nonlinear operator, it is possible
to prove the existence of a solution in W 1,q

loc ∩ (W 1,p
0 + u0) of a Dirichlet problem with a

sufficiently regular boundary datum u0, see [5]. On this topic we also refer to Theorem 4.1
in [35], where the scalar case is considered.

Our paper is organized as follows. In the next section we present the proof of Theorem
1.1. In Sect. 3 we give details for some of the previous examples.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on the DeGiorgi method, see [10], suitable for dealing
with equations. Nevertheless we apply it in the vectorial framework, since we can apply it to
each component uα of a weak solution u separately.

In what follows we limit ourselves to consider the case p < n. The remaining case, p = n,
can be obtained by the previous one. Indeed, by using the inequality |z|n−ε − 1 ≤ |z|n , that
holds true for any positive ε ≤ n, we get that the n, q-growth implies a n − ε, q-growth and
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that the assumptions on the exponents, see (1.5), are easily satisfied by choosing 0 < ε < ε0,

with ε0 = min
{

n2
q(n+1) , n

(
1 − 1

τ1

)}
.

STEP 1. Caccioppoli inequality

The particular growth conditions (1.2) and (1.3) guarantee a Caccioppoli inequality for any
component uα of u on every superlevel set {uα > k}.
Proposition 2.1 Let us consider the system (1.1) and assume that (1.2), (1.3) hold. Let u ∈
W 1,q

loc (�;Rm) be a weak solution of (1.1). Let BR(x0) � � with |BR(x0)| ≤ 1; for k ∈ R,
α = 1, ...,m and 0 < τ ≤ R, denote

Aα
k,τ := {x ∈ Bτ (x0) : uα(x) > k}.

If q ≤ p∗ then, there exists c = c(n, p, ν, M) > 0 such that, for every s, t with 0 < s < t ≤
R, for every k ∈ R and for every α = 1, ...,m we have

∫

Aα
k,s

|Duα|p dx ≤ c
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx

+ c
{
‖Du‖(q−1)(p∗)′

Lq (BR(x0))
+ ‖a‖Lτ1 (BR(x0))

+‖b‖(p∗)′
Lτ2 (BR(x0))

}
|Aα

k,t |ϑ , (2.1)

where

ϑ := min

{
1 − (p∗)′

q ′ , 1 − 1

τ1
, 1 − (p∗)′

τ2

}
.

We can take c = 1+M21+p∗
ν

.

Proof Fix α ∈ {1, . . . ,m}. Consider a cut-off function η ∈ C1
0(Bt (x0)) satisfying the fol-

lowing assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t − s
. (2.2)

Define the test function ψ = (ψ1, ..., ψm) ∈ W 1,q
0 (Bt (x0);Rm), where ψβ = 0 if β �= α

and ψα = (uα − k)+ η, where τ+ = max{τ, 0}. Notice that
ψα
xi = χ{uα>k}uα

xi η + ηxi (u
α − k)+,

where χE (x) = 1 if x ∈ E and χE (x) = 0 otherwise; moreover, fxi = Di f = ∂ f
∂xi

.
We insert such a ψ into (1.4) and we get

n∑

i=1

∫

{uα>k}
Aα
i (x, Du)uα

xi η dx = −
n∑

i=1

∫

{uα>k}
Aα
i (x, Du)(uα − k)ηxi dx . (2.3)
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By (1.2) and (1.3)

ν

∫

{uα>k}
|Duα|pη dx ≤

∫

{uα>k,η>0}
a(x)η dx

+ M
∫

{uα>k}
(uα − k)|Du|q−1|Dη| dx

+ M
∫

{uα>k}
(uα − k)b(x)|Dη| dx

=: J1 + J2 + J3. (2.4)

It is easy to estimate J1, indeed, using Hölder inequality

J1 ≤ ‖a‖Lτ1 (BR(x0))|Aα
k,t |1−

1
τ1 . (2.5)

In order to estimate J2, we first use Young inequality with exponents p∗ and (p∗)′.

J2 ≤ M
∫

Aα
k,t

(uα − k)p
∗ |Dη|p∗

dx + M
∫

Aα
k,t

|Du|(q−1)(p∗)′ dx .

Since q < p∗ then (q − 1)(p∗)′ < q . Therefore we can use Hölder inequality with first
exponent q ′

(p∗)′ > 1 to estimate the last integral, obtaining

M
∫

Aα
k,t

|Du|(q−1)(p∗)′ dx ≤ M

(∫

Aα
k,t

|Du|q dx
) (p∗)′

q′ ∣∣Aα
k,t

∣∣1−
(p∗)′
q′ . (2.6)

Thus, if we keep in mind that |Dη| ≤ 2/(t − s), then

J2 ≤ M2p
∗
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx + M

(∫

Aα
k,t

|Du|q dx
) (p∗)′

q′ ∣∣Aα
k,t

∣∣1−
(p∗)′
q′ . (2.7)

In order to estimate J3, we first use Young inequality with exponents p∗ and (p∗)′:

M
∫

{uα>k}
(uα − k)b(x)|Dη| dx ≤ M

∫

Aα
k,t

(uα − k)p
∗ |Dη|p∗

dx + M
∫

Aα
k,t

b(p∗)′ dx;

note that τ2 ≥ q ′ > (p∗)′; so, we can use Hölder inequality with first exponent τ2
(p∗)′ > 1

and we get

M
∫

Aα
k,t

b(x)(p
∗)′ dx ≤ M

(∫

Aα
k,t

b(x)τ2 dx

) (p∗)′
τ2 ∣∣Aα

k,t

∣∣1− (p∗)′
τ2 .

Once again we use that |Dη| ≤ 2/(t − s), then

J3 ≤ M2p
∗
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx + M

(∫

BR(x0)
b(x)τ2 dx

) (p∗)′
τ2 ∣∣Aα

k,t

∣∣1− (p∗)′
τ2 . (2.8)
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Collecting (2.4), (2.5), (2.7), (2.8), we get

ν

∫

Aα
k,t

|Duα|pη dx ≤ M21+p∗
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx + ‖a‖Lτ1 (BR(x0))|Aα
k,t |1−

1
τ1

+M

(∫

Aα
k,t

|Du|q dx
) (p∗)′

q′ ∣∣Aα
k,t

∣∣1−
(p∗)′
q′

+M

(∫

BR(x0)
b(x)τ2 dx

) (p∗)′
τ2 ∣∣Aα

k,t

∣∣1− (p∗)′
τ2

≤ M21+p∗
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx + ‖a‖Lτ1 (BR(x0))|Aα
k,t |1−

1
τ1

+M‖Du‖(q−1)(p∗)′
Lq (BR(x0))

∣∣Aα
k,t

∣∣1−
(p∗)′
q′ + M‖b‖(p∗)′

Lτ2 (BR(x0))

∣∣Aα
k,t

∣∣1− (p∗)′
τ2 .

(2.9)

We keep in mind that η = 1 on Bs(x0) and |Aα
k,t | ≤ |BR(x0)| ≤ 1: inequality (2.1) follows

by taking c = 1+M21+p∗
ν

. ��

STEP 2: Decay of the“excess” on superlevel sets

In this step we consider a scalar Sobolev function v : � ⊂ R
n → R, n ≥ 2.

Let us assume that � is an open set in R
n and v is a scalar function v ∈ W 1,p

loc (�;R),
p ≥ 1. Fix BR0(x0) � �, with R0 < 1 small enough so that

|BR0(x0)| < 1 and
∫

BR0

|v|p∗
dx < 1. (2.10)

Here p∗ = np
n−p , since p < n.

For every R ∈ (0, R0] we define the decreasing sequences

ρh := R

2
+ R

2h+1 = R

2

(
1 + 1

2h

)
, ρ̄h := ρh + ρh+1

2
= R

2

(
1 + 3

4 · 2h
)

.

Fixed a positive constant d ≥ 1, define the increasing sequence of positive real numbers

kh := d

(
1 − 1

2h+1

)
, h ∈ N.

Moreover, define the sequence (Jv,h),

Jv,h :=
∫

Akh ,ρh

(v − kh)
p∗
dx,

where Ak,ρ = {v > k} ∩ Bρ . The following result holds (see [6,Proposition 2.4], [15, 44]).

Proposition 2.2 Let v ∈ W 1,p
loc (�;R), p ≥ 1. Fix BR0(x0) � �, with R0 < 1 small enough

such that (2.10) holds. If there exists 0 ≤ ϑ ≤ 1 and c0 > 0 such that for every 0 < s < t ≤
R0 and for every k ∈ R

∫

Ak,s

|Dv|p dx ≤ c0

{∫

Ak,t

(
v − k

t − s

)p∗

dx + |Ak,t |ϑ
}

, (2.11)
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then, for every R ∈ (0, R0],

Jv,h+1 ≤ c(ϑ, R)

(
2

p∗ p∗
p

)h

J
ϑ

p∗
p

v,h ,

with the positive constant c independent of h.

STEP 3: Iteration and proof of Theorem 1.1

We now resume the proof of Theorem 1.1.
We need the following classical result, see e.g. [17].

Lemma 2.3 Let γ > 0 and let (Jh) be a sequence of real positive numbers, such that

Jh+1 ≤ A λh J 1+γ

h ∀h ∈ N ∪ {0}, (2.12)

with A > 0 and λ > 1. If J0 ≤ A− 1
γ λ

− 1
γ 2 , then Jh ≤ λ

− h
γ J0 and limh→∞ Jh = 0.

Fix BR0(x0) � �, with R0 < 1 small enough such that |BR0(x0)| < 1 and
∫
BR0

|u|p∗
dx <

1. By Proposition 2.1 we have that uα satisfies (2.1); i.e. for every 0 < s < t ≤ R0 and every
k ∈ R,

∫

Aα
k,s

|Duα|p dx ≤ c
∫

Aα
k,t

(
uα − k

t − s

)p∗

dx

+ c
{
‖Du‖(q−1)(p∗)′

Lq (BR0 (x0))
+ ‖a‖Lτ1 (BR0 (x0))

+‖b‖(p∗)′
Lτ2 (BR0 (x0))

}
|Aα

k,t |ϑ ,

where

ϑ := min

{
1 − (p∗)′

q ′ , 1 − 1

τ1
, 1 − (p∗)′

τ2

}

and c = 1+M21+p∗
ν

.
Therefore the scalar function uα satisfies (2.11) of Proposition 2.2with constant c0 depending
on

‖Du‖(q−1)(p∗)′
Lq (BR0 (x0))

, ‖a‖Lτ1 (BR0 (x0)) and ‖b‖(p∗)′
Lτ2 (BR0 (x0))

.

Note that these integrals are finite.
As above, let us define

kh := d

(
1 − 1

2h+1

)
, h ∈ N

with d ≥ 1 (d will be fixed later) and, for every R ∈ (0, R0], define

ρh := R

2
+ R

2h+1 = R

2

(
1 + 1

2h

)
, ρ̄h := ρh + ρh+1

2
= R

2

(
1 + 3

4 · 2h
)

and

Juα,h :=
∫

Aα
kh ,ρh

(uα − kh)
p∗
dx .
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Proposition 2.2, applied to uα , gives

Juα,h+1 ≤ c(ϑ, R)

(
2

p∗ p∗
p

)h

J
ϑ

p∗
p

uα,h , (2.13)

with the positive constant c independent of h and, by (1.5), with the exponent ϑ
p∗
p greater

than 1. Indeed, we notice that q < p∗ n
p(n+1) is equivalent to

q
q−1 >

p∗
p∗−1

n
p ; therefore (1.5)

implies

p

p∗ < min

{
1 − (p∗)′

q ′ , 1 − 1

τ1
, 1 − (p∗)′

τ2

}
= ϑ,

so we get 1 < ϑ
p∗
p .

Moreover, since

Juα,0 =
∫

Aα
d
2 ,R

(
uα − d

2

)p∗

dx → 0 as d → +∞,

we can choose d ≥ 1 large enough, so that

Juα,0 < c(ϑ, R)
− 1

ϑ
p∗
p −1

(
2

p∗ p∗
p

)− 1

(ϑ
p∗
p −1)2

.

Therefore, by Lemma 2.3, limh→+∞ Juα,h = 0. Thus, uα ≤ d a.e. in B R
2
(x0). We have so

proved that uα is locally bounded from above.
To prove that uα is locally bounded from below, we can observe that ũ = −u is a weak

solution for
n∑

i=1

∂

∂xi

(
Ãα
i (x, Dũ(x))

)
= 0, 1 ≤ α ≤ m,

where Ã(x, z) = −A(x,−z). It is easy to check that Ã satisfies assumptions analogous to
(1.2) and (1.3). Therefore, bywhat previously proved, there existsd ′ such that ũα = −uα ≤ d ′
a.e. in B R

2
(x0). We have so proved that uα ∈ L∞(B R

2
(x0)). Due to the arbitrariness of x0

and R0, we get uα ∈ L∞
loc(�).

3 Examples

Example 1 We consider example (1.17) that we rewrite for the convenience of the reader:

Aα
i (z) = p|z|p−2zαi + h′(det z)(Cof z)αi , (3.1)

where m = n, z ∈ R
n×n , det z = ∑n

i=1 z
α
i (Cof z)αi ; moreover, h is convex, bounded from

below and C1. Exploiting the convexity of h, we get

h(0) ≥ h(t) + h′(t)(0 − t), (3.2)

so that

h′(t)t ≥ h(t) − h(0) ≥ inf
R

h − h(0). (3.3)
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Let us compute the indicator function for this choice of A: we get

IA(x, u, z) =
∑

i,α,β

Aα
i (z)zβi

uαuβ

|u|2 =
∑

i,α,β

p|z|p−2zαi z
β
i
uαuβ

|u|2

+
∑

i,α,β

h′(det z)(Cof z)αi z
β
i
uαuβ

|u|2

= p|z|p−2
∑

i

∑

α

zαi
uα

|u|
∑

β

zβi
uβ

|u| + h′(det z)
∑

α,β

uαuβ

|u|2
∑

i

(Cof z)αi z
β
i

= p|z|p−2
∑

i

(
∑

α

zαi
uα

|u|

)2

+ h′(det z)
∑

α

uαuα

|u|2
∑

i

(Cof z)αi z
α
i

= p|z|p−2
∑

i

(
∑

α

zαi
uα

|u|

)2

+ h′(det z) det z ≥ inf
R

h − h(0),

where we used the property
∑
i

(Cof z)αi z
β
i = 0 if β �= α. When h(0) = inf

R

h, then strong

Meier’s condition (1.11) is satisfied; if h(0) > inf
R

h, then weak Meier’s condition (1.19) is

verified with λ = 1, d(x) = 0 and g(x) = h(0) − inf
R

h. Now, let us verify componentwise

coercivity (1.26). We have
∑

i

Aα
i (z)zαi =

∑

i

p|z|p−2zαi z
α
i +

∑

i

h′(det z)(Cof z)αi zαi

= p|z|p−2|zα|2 + h′(det z) det z ≥ p|zα|p + inf
R

h − h(0),

provided p ≥ 2; then (1.26) is verified with ν = p, a(x) = h(0) − inf
R

h and b(x) = 0.

Example 2 We consider example (1.20) that we rewrite for the convenience of the reader:

Aα
i (x, z) = σα(x)zαi , (3.4)

where m = 2, σ 1(x) = 18 + 2 sin(|x |2) and σ 2(x) = 2 + sin(|x |2). Since σα(x) ≥ 1, it is
easy to check (1.26):

∑

i

Aα
i (x, z)zαi =

∑

i

σα(x)zαi z
α
i = σα(x)|zα|2 ≥ |zα|2;

so, (1.26) is verified with p = 2, ν = 1, a(x) = 0 and b(x) = 0. We are going to show
that (1.19) is not fulfilled. Indeed, we take u1 = u2 = s > 0 with s large enough (see (3.5)
later); moreover, we take zαi = 0 if i ≥ 2, z11 = −s2, z21 = 2s2. Then |z|2 = 5s4, |u|2 = 2s2,
uαuβ

|u|2 = 1
2 and

∑

i,α,β

Aα
i (x, z)zβi

uαuβ

|u|2 = 1

2

∑

α,β

Aα
1 (x, z)zβ1 = 1

2

∑

α

Aα
1 (x, z)

∑

β

zβ1

= 1

2
(σ 1(x)z11 + σ 2(x)z21)(z

1
1 + z21) = 1

2
(−σ 1(x) + 2σ 2(x))s4 = −7s4 <︸︷︷︸

0<δ<1

−δ7s4
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= −δs4 {5 + 1 + 1} ≤︸︷︷︸
(∗)

−δs4
{
5 +

(
1

δ

)λ+1 2d(x)

s2
+

(
1

δ

)λ+1 g(x)

s4

}

= −
{

δ|z|2 +
(
1

δ

)λ [
d(x)|u|2 + g(x)

]
}

,

where (*) is guaranteed by the choice of s as follows

s = max

⎧
⎨

⎩L;
[(

1

δ

)λ+1

2d(x)

]1/2

;
[(

1

δ

)λ+1

g(x)

]1/4
⎫
⎬

⎭ . (3.5)

Example 3 Let us consider example (1.23) that we rewrite for the convenience of the reader:

Aα
i (z) = 2zαi + h′(z11z21)zα̂1 δi1, (3.6)

where m = 2, α̂ = 2 if α = 1 and α̂ = 1 if α = 2; moreover, δi1 = 1 if i = 1 and δi1 = 0
otherwise. Here, h is convex, C1, bounded from below and h′(0) ≤ −8. For instance,

h(t) = 16
√
1 + (t − 1)2. (3.7)

Let us first check (1.26):
∑

i

Aα
i (z)zαi =

∑

i

2zαi z
α
i +

∑

i

h′(z11z21)zα̂1 δi1z
α
i

= 2|zα|2 + h′(z11z21)zα̂1 zα1 = 2|zα|2 + h′(z11z21)z11z21 ≥ 2|zα|2 + inf
R

h − h(0),

since zα̂1 z
α
1 = z11z

2
1; then (1.26) is verified with ν = 2, p = 2, a(x) = h(0) − inf

R

h and

b(x) = 0. We are going to show that (1.19) is not fulfilled. Indeed, we take u1 = u2 = s > 0
with s large enough (see (3.5) as before); moreover, we take z21 = s2 and zαi = 0 otherwise.

Then |z|2 = s4, |u|2 = 2s2, uαuβ

|u|2 = 1
2 and

∑

i,α,β

Aα
i (z)zβi

uαuβ

|u|2 = 1

2

∑

α,β

Aα
1 (z)zβ1 = 1

2

∑

α

Aα
1 (z)

∑

β

zβ1

= 1

2
(2z21 + h′(0)z21)(z21) = 1

2
(2 + h′(0))s4 ≤︸︷︷︸

h′(0)≤−8

1

2
(2 − 8)s4 = −3s4 <︸︷︷︸

0<δ<1

−δ3s4

= −δs4 {1 + 1 + 1} ≤︸︷︷︸
(∗)

−δs4
{
1 +

(
1

δ

)λ+1 2d(x)

s2
+

(
1

δ

)λ+1 g(x)

s4

}

= −
{

δ|z|2 +
(
1

δ

)λ [
d(x)|u|2 + g(x)

]
}

,

where (*) is guaranteed by the choice of s (3.5) as before. In order to show that we can use
Theorem 1.1, we use formula (3.7) and we select n = 3. Then |h′(t)| ≤ 16 and we get

3∑

i=1

∣∣Aα
i (z)

∣∣ ≤ 54|z|, (3.8)
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so (1.3) is satisfied with q = 2, M = 54 and b(x) = 0, τ2 = +∞. Note that previous
calculations checked the validity of (1.2) with p = 2, ν = 2, a(x) = h(0) − inf

R

h =
16(

√
2 − 1) and τ1 = +∞. Since we selected n = 3, q = p = 2, then 3

2 = p0(n) < 2 =
q = p < p∗ n

p(n+1) ; this implies that (1.5) is satisfied and we can use our Theorem 1.1 and

we get the following

Corollary 3.1 If � is a bounded open subset of R3, then all solutions u ∈ W 1,2
loc (�;R2) of

system (1.1), with n = 3, m = 2, (3.6) and (3.7), are locally bounded in �.

Example 4 Let us consider example (1.24) that we rewrite for the convenience of the reader:

Aα
i (x, z) = σα(x)p|z|p−2zαi + h′(z11z21)zα̂1 δi1, (3.9)

where m = 2, σ 1(x) = 48 + 3 sin(|x |2) and σ 2(x) = 2 + sin(|x |2), α̂ = 2 if α = 1 and
α̂ = 1 if α = 2; moreover, δi1 = 1 if i = 1 and δi1 = 0 otherwise. Here, 2 ≤ p, h is convex,
C1, bounded from below and h′(0) ≤ 0. For instance,

h(t) = (
1 + t2

)p/4
. (3.10)

Let us first check (1.26); since σα(x) ≥ 1 and zα̂1 z
α
1 = z11z

2
1,

∑

i

Aα
i (x, z)zαi =

∑

i

σα(x)p|z|p−2zαi z
α
i +

∑

i

h′(z11z21)zα̂1 δi1z
α
i

= σα(x)p|z|p−2|zα|2 + h′(z11z21)zα̂1 zα1 = σα(x)p|z|p−2|zα|2 + h′(z11z21)z11z21
≥ p|zα|p + inf

R

h − h(0),

then (1.26) is verified with ν = p, a(x) = h(0) − inf
R

h and b(x) = 0. We are going to show

that (1.19) is not fulfilled. Indeed, we take u1 = u2 = s > 0 with s large enough (see (3.11)
later); moreover, we take z11 = s2, z21 = 0, z12 = −2s2, z22 = 3s2 and zαi = 0 otherwise. Then

|z|2 = 14s4, |u|2 = 2s2, uαuβ

|u|2 = 1
2 and

∑

i,α,β

Aα
i (x, z)zβi

uαuβ

|u|2 = 1

2

∑

i,α,β

Aα
i (x, z)zβi = 1

2

∑

i

∑

α

Aα
i (x, z)

∑

β

zβi

= 1

2

∑

i

∑

α

σα(x)p|z|p−2zαi
∑

β

zβi + 1

2

∑

i

∑

α

h′(z11z21)zα̂1 δi1
∑

β

zβi

= 1

2

∑

i

∑

α

σα(x)p|z|p−2zαi
∑

β

zβi + 1

2

∑

α

h′(z11z21)zα̂1
∑

β

zβ1

= p

2
|z|p−2

∑

i

[
σ 1(x)z1i + σ 2(x)z2i

] [
z1i + z2i

] + 1

2
h′(z11z21)

[
z21 + z11

] [
z11 + z21

]

= p

2
|z|p−2 {[σ 1(x)z11 + σ 2(x)z21

] [
z11 + z21

] + [
σ 1(x)z12 + σ 2(x)z22

] [
z12 + z22

]}

+1

2
h′(z11z21)

[
z11 + z21

]2

= p

2
|z|p−2 {σ 1(x)s4 + [−2σ 1(x) + 3σ 2(x)

]
s4
} + 1

2
h′(0)s4

≤︸︷︷︸
h′(0)≤0

p

2
|z|p−2s4

{−σ 1(x) + 3σ 2(x)
} = p

28
|z|p {−σ 1(x) + 3σ 2(x)

} = −3
p

2
|z|p
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≤︸︷︷︸
2≤p

−3|z|p <︸︷︷︸
0<δ<1

−δ|z|p3 = −δ|z|p {1 + 1 + 1}

≤︸︷︷︸
(∗∗)

−δ|z|p
{
1 +

(
1

δ

)λ+1

d(x)
1

(
√
7s)p

+
(
1

δ

)λ+1 g(x)

(
√
14s2)p

}

= −
{

δ|z|p +
(
1

δ

)λ [
d(x)|u|p + g(x)

]
}

,

where (**) is guaranteed by the choice (3.11) of s as follows.

s = max

⎧
⎨

⎩L;
[(

1

δ

)λ+1 d(x)

(
√
7)p

]1/p

;
[(

1

δ

)λ+1 g(x)

(
√
14)p

]1/(2p)
⎫
⎬

⎭ . (3.11)

In order to show that we can use Theorem 1.1, we use formula (3.10), we select n = 3 and

we require p < 3 = n. Then |h′(t)| ≤ p
2

(
1 + t2

) p−2
4 and we get

3∑

i=1

∣∣Aα
i (x, z)

∣∣ ≤ 3σα(x)p|z|p−1 + 3
p

2

(
1 + |z|4)

p−2
4 |z| ≤ 153p|z|p−1

+3
p

2

(
1 + |z|4)

p−1
4

≤ 153p|z|p−1 + 3
p

2
2

p−1
4

(
1 + |z|p−1) ≤ p(153 + 21+

p−1
4 )(|z|p−1 + 1),

so (1.3) is satisfied with q = p, M = p(153 + 21+
p−1
4 ) and b(x) = 1, τ2 = +∞. Note that

previous calculations checked the validity of (1.2) with ν = p, a(x) = h(0) − inf
R

h = 0

and τ1 = +∞. Since we selected n = 3, q = p ∈ [2, 3), then 3
2 = p0(n) < 2 ≤ q = p <

p∗ n
p(n+1) ; this implies that (1.5) is satisfied and we can use our Theorem 1.1 and we get the

following

Corollary 3.2 If � is a bounded open subset of R3, then all solutions u ∈ W 1,p
loc (�;R2) of

system (1.1), with 2 ≤ p < 3 = n, m = 2, (3.9) and (3.10), are locally bounded in �.
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