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Abstract

This work provides a rigorous treatment concerning the formation of rational expectations equilibria
in a general class of spatial economic models under the effect of externalities, using techniques from
calculus of variations and optimal control. Using detailed estimates for a parametric optimisation
problem, the existence of rational expectations equilibria is proved via a fixed-point theorem, and
they are characterised in terms of a nonlocal Euler-Lagrange equation. The study of the individual
optimisation problem, formulated according to Ramsey’s model, is performed via a convex relaxation
to the space of BV capital paths and measure-valued consumptions, and allows to obtain existence,
uniqueness, regularity and stability properties for the optimisers in a rigorous and original way.

Résumé

Ce travail présente une étude rigoureuse des équilibres rationnels dans une grande classe de
problèmes d’économie spatiale avec externalités, en utilisant des techniques de calcul des variations et
contrôle optimal. Par des estimations fines pour une classe de problèmes d’optimisation à paramètre,
l’existence de ces équilibres est prouvée par un théorème de point fixe, et ensuite les équilibres sont ca-
ractérisés en termes d’une équation d’Euler-Lagrange non-locale. L’étude du problème d’optimisation
individuel, formulé selon le modèle de Ramsey, est faite à travers une relaxation convexe dans le space
BV, pour l’évolution du capital, et dans l’espace des mesures, pour la consommation ; cela permet
d’obtenir l’existence, l’unicité, la régularité et la stabilité des optimiseurs de manière rigoureuse et
originale.
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1. Introduction

We consider in this work infinite horizon spatial optimal growth models, where capital accumulation
and depreciation occur locally but output production is affected by general spatial interactions. In
particular, eventhough there is no direct capital movement between various spatial locations in the
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model, there exist nonlocal externalities in the sense that local capital production is directly influenced
by the distribution of capital in appropriate neighbourhoods, while it is also taken into account that
local capital contributes in a self-consistent manner to the mean field distribution of capital. In these
models a natural research question is the existence of a rational expectations equlibrium (REE) where
a representative individual in each location, acting as a “ local planner”, maximises discounted utility
of consumption by considering the spatial externality as exogenous. In this way he/she contributes
to the mean field capital distribution, which in turn affects the local decision in terms of the nonlocal
externalities. Consistency of the model requires the existence of such a mean field capital distribution
which is compatible with the local decisions in the above manner, called hereafter an REE for the
model.

In this paper we assume that spatial interactions among locations can be expressed as a spatial
externality which in general attenuates with distance, as it is the case, for example, for knowledge
spillover effects from one location to another. The main idea associated with knowledge spillovers
is that innovation and new productive knowledge flows more easily among agents which are located
within the same area (e.g. [12], [6]). Thus proximity is important in characterizing spatial spillovers
([3], [5]). We incorporate general spatial spillovers by interpreting the capital stock of each firm in a
broad sense to include knowledge along with physical capital (e.g. [17]). As argued by [16] the effect
of capital on each firm’s output, at any given point in time, does not depend just on the accumulated
stock by the firm up to this time, but on capital accumulated in nearby locations by other firms. Thus
the spatial externality takes the form introduced by Romer ([17]) where, by keeping all other factors
in fixed supply, output is determined by own capital stock and by an appropriately defined aggregate
of capital stocks of firms across the spatial domain. The capital stock aggregate is determined by
a distance-response function (see [15] for an early use of distance-response functions) that measures
the strength of the effect on the output of a firm in a certain location induced by the capital stock
accumulated by a firm in another location.

A positive distance-response function that attenuates with distance can be interpreted as reflecting
knowledge spillovers. A distance-response which is negative indicates a negative externality such
as generalised congestion effects. Thus, by combining a distance-response function, centripetal and
centrifugal responses can be introduced with the strength - positive or negative - of these forces
diminishing with distance.

Modeling the spatial spillovers by a general nonlinear integral operator, we analyze the problem
where forward-looking local planners maximise discounted utility by choosing a local consumption
path, subject to local capital accumulation, by considering the spatial externality affecting their lo-
cal production as parametric. A REE in the whole spatial domain is defined as the path of local
capital stock and consumption which emerges when the capital stocks comprising the externality are
determined endogenously through the optimality conditions in each location.

The aim of this paper is to provide a rigorous mathematical study of rational expectation equilibria
emerging in the general growth model with spatial interactions, providing existence results using
techniques from the calculus of variations in BV spaces and appropriate fixed point theorems. To the
best of our knowledge such an analysis has not appeared in the literature before. Our choice of the
functional space setting is the most general one may choose for the calculus of variations problem in
consideration, and we will justify and discuss it better later on.

In this spirit, our detailed analysis highlights the effects of conditions on the primitives of the econ-
omy on the behaviour of such equilibria and clarifies aspects related to the fine qualitative properties
of the optimal path and optimal policy. Furthermore, the characterisation of the rational expectations
equilibria is obtained in terms of a nonlocal Euler-Lagrange equation that may be used for further
study of the qualitative spatio-temporal properties of the optimal capital allocations. We think that
the results of our paper shed some light towards a better understanding of the problem of spatial
growth, which is receiving increasing attention in recent economic literature (see e.g. [7] or [4]).
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On the other hand the problem of optimal growth in its temporal version has attracted the attention
of the more mathematically-oriented literature in various forms. For example Ekeland has studied in
detail and rigorously various aspects of the optimal growth problem, focusing on well-posedness as
well as on the derivation of transversality conditions for the infinite horizon version of the model (see
e.g. [10] and references therein). Techniques from the theory of calculus of variations in Sobolev
spaces have been employed for the study of the temporal problem (see e.g. [11] or [13]; see also [18] for
the case of recursive utilities) whereas techniques from the theory of Hamilton-Jacobi equation and
viscosity solutions have been used for the study of stochastic effects in the Ramsey model (see e.g. [1]
and [14]). However, to the best of our knowledge a rigorous mathematical treatment, with the aim
of studying rational expectations equilibrium questions, of the problem of optimal growth in spatial
economies has not been addressed so far.

It is the aim of this paper to make a few steps in this direction by presenting a rigorous treatment
of a spatial economic growth model in the presence of spatial externalities, following up on previous
work by Brock et al [7]. In particular, we present a proof of existence of rational expectations equilbria
(REE) under rather general assumptions, which requires some detailed (and rather technical) results
for a parametric individual optimisation problem in which the state of the externalities is assumed as
a known functional parameter (which can be interesting in their own right.) Indeed, these parametric
problems are exactly a non-autonomous optimal growth (Ramsey) problem (non-autonomous refers
to the fact that externalities can evolve in time, and are a time-dependent datum of the optimisation
problem of each agent). To analyse it, it is preferable to bypass the usual way of treating the au-
tonomous problem, which consists in building (or guessing) solutions to suitable sufficient optimality
conditions (which are expressed in terms of differential equations and transversality conditions), as it
is not always easy to solve them. Thus, one has to follow the direct method of calculus of variations,
i.e. first proving existence in a very weak and wide functional space, which has to be chosen as the
space where the optimisation problem itself provides compactness. In our case, we will see that we
obtain bounds on the total mass of the derivative of the capital path, i.e. BV bounds, but a pr iori
not more. Then, one has to prove regularity and properties about the optimisers, which also includes
proving that they actually belong to better functional spaces, more natural for the economical inter-
pretation. In our case, a crucial tool will also be the proof of lower bounds on the consumption: this
is nowadays quite standard in the autonomous case, but requires more attention in the setting of our
paper, on account of the explicit dependence on the spatial externalities, which are non-constant in
time, and is one of the key technical parts of our work.

Once some desirable properties of the solution of the parametric individual problem have been
established, the existence of REE is obtained by an application of the Schauder fixed point theorem in
an appropriate functional space setting. The establishment of the necessary estimates for the individual
problem as well as the derivation of the nonlocal Euler-Lagrange characterisation of the REE is based
on a suitable application of a Pontryagin maximum principle. The Euler-Lagrange equation which
characterises the REE can be used either for the numerical computation of the equilibrium, or for the
derivation of qualitative aspects such as, for instance, pattern formation behaviour.

The paper is organised as follows. In Section 2, the model for optimal economic growth under
spatial externalities that we consider is presented. In Section 3 a detailed study of the individual
optimisation problem, where the externalities are taken as a given parameter, is performed. Using the
results of Section 3, in Section 4 we study the problem of existence of RE and their characterisation in
terms of the Euler-Lagrange equation and provide the desired existence result. The appendix details
the proof of the most technical result of Section 3.
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2. The model

We consider a growth model with spatial externalities. In particular let D be a given geographic
region (we model this as a compact subset of R2, but a more general metric space could also be used)
and let the function k : R+ ×D → R+ model the spatio-temporal distribution of capital stock in the
region. We are in a one-all-purpose-commodity world where we produce output which can be used
for consumption or investment, that is accumulation of capital. The production of output depends
on spatial externalities, which display spatio-temporal variability as well, and are modeled in terms
of the function K : R+ ×D → R+. Both negative or positive externalities are included in the model
in the sense that externalities may increase or decrease local production. Capital is assumed to be
immobile but spatial effects are introduced through the varying level of externality effects K.

The capital accumulation satisfies the differential equation

k′(t, z) = f(k(t, z),K(t, z))− c(t, z)

where k′(t, z) = ∂k
∂t (t, z), f is the net output given by the capital and the externalities, and c :

R+ × D → R+ describes spatio-temporal consumption. By net output we mean the production,
net of depreciation: we include capital depreciation in f , i.e., f(k,K) = ϕ(k,K) − δk. Here ϕ
is a standard neoclassical production function and the parameter δ > 0 gives capital loss due to
depreciation. A possible example for the production function can be a Cobb-Douglas type production
function ϕ(k,K) = AkαKβ for appropriate values of α and β (with α+β < 1), so that we would have
f(k,K) = AkαKβ − δk . To simplify the exposition we assume that in each location labour is fixed
and fully employed, so the arguments in the production and net output functions can be regarded as
per capita quantities.

The externalities K are determined (in a self-consistent fashion, i.e. endogenously) by the capital
allocation k. The endogeneity is modelled by assuming that we have K = Sk where S is an operator
modelling the positive or negative externality effects. As a particular example, we can consider integral
operators, possibly composed with non-linearities:

(Sk)(t, z) = ψ

(∫
D
w(z, y)k(t, y)dy

)
(1)

where w : D×D → R is a suitable kernel function and ψ : R→ I ⊂ R+ is a given smooth nonlinearity.
More generally, we can also consider

(Sk)(t, z) = ψ

(∫
D
w(z, y)ψ0(k(t, y))dy

)
,

for a suitable function ψ0 : R+ → R. We prefer to include nonlinearities in the model for the
externalities because, for simplicity of exposition, we want a model where K is positive (in many
cases, bounded from below by a strictly positive constant), but we also want to consider possible
negative externalities.

More precisely we will fix an interval Ī (bounded or not) such that Ī ⊂ R+, and consider an
operator S satisfying the following condition

Assumption 2.1. The operator S : L∞(D) → C(D; Ī) is a (possibly nonlinear) Lipschitz map for
the L∞ topology and it maps bounded sets of L∞(D) into compact subsets of C(D; Ī) (the space of
continuous functions over D taking values in the interval Ī, endowed with the topology of uniform
convergence).
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Later on we will also precise some compatibility conditions on the net output function f , the
externalities K, and the interval Ī.

We will then use this operator for each fixed time, taking K(t, ·) = S(k(t, ·)).

Consider now a local planner at location z ∈ D. The planner can only formulate expectations
concerning the evolution of the externalities over the time horizon (0,∞), and his/her actions directly
influence only the local variables taking the externality as parametric. Given his/her expectation
of the exogenous temporal evolution of the effect of the externalities K(·, z) at location z, he/she
maximises local intertemporal utility of consumption at location z ∈ D, i.e. solves the (parametric)
maximisation problem

(2)

max

∫ ∞
0

e−rtU(c(t, z))dt, subject to

k′(t, z) = f(k(t, z),K(t, z))− c(t, z)
k(t, z) ≥ 0, c(t, z) ≥ 0, k(0, z) = k0(z) fixed,

where U is an appropriate utility function and r > 0 is a utility discount rate. The solution of
problem (2) yields an optimal consumption rule c∗(·, z) = c∗(·, z;K) and an optimal path k∗(·, z) =
k∗(·, z;K), where we include K in the notation to emphasise that this optimal path depends on the
exogenous externality state K faced by the “representative” planner at location z. Each planner at
location z ∈ D solves a version of problem (2) (for the proper choice of z), thus obtaining a function
k∗(·, ·;K) : R+ ×D × R+, and a function c∗(·, ·;K) : R+ ×D → R+, such that k∗(·, z;K) : R+ → R+

and c∗(·, z;K) : R+ → R+ are the optimal path and the optimal and the optimal consumption of
the “representative” planner at location z ∈ D, given the instantaneous state of the externalities
K : R+ ×D → R. Recall our assumption that externalities are determined endogenously in terms of
the operator S. This implies that if all individual agents, at any z ∈ D are well informed concerning the
state of the externalities K, and using this knowledge solve their individual problems (2) determining
the optimal function k∗()·, ·,K), then consistency of the model imposes that K = Sk∗.

The above discussion leads to the definition of the operator T by K 7→ k∗(·, ·,K) 7→ Sk∗(·, ·,K),
in terms of which we may now define a rational expectations equilibrium for the spatial economy.

Definition 2.2. A fixed point of the operator T , defined by K 7→ k∗(·, ·,K) 7→ Sk∗(·, ·,K) is a
rational expectations equilibrium for the spatial economy.

Remark 2.3. Our definition of a rational expectations equilibrium for the spatial economy is moti-
vated by the interpretation of the above scheme as a best-response scheme. In particular given that
the agent at location z ∈ D anticipates that the externality effects at such a location are going to
develop in the future as K(·, z) he/she designs the optimal path for the economy as the best response
to this anticipated externality effects, which is the solution k∗(·, z;K(·, z)) to problem (2). This is true
for any agent located at any other site z′ ∈ D. Their joint best responses to the level of externalities
they anticipate will clearly contribute to the formulation of the actual state of the externalities which
will become Sk∗(·, ·;K(·, ·)). This actual state can be interpreted as an adjustment of the agents
anticipation of the level of the externalities, hence the level of externalities where this adjustment
procedure reac ertains the agents anticipation is called a spatial rational expectations equilibrium.

To this point we deliberately refrain from setting a detailed functional space setting for the problem,
and we prefer to introduce this later on (see Sections 3 and 4) after the necessary technical estimates
that clarify our choice are presented. Here, we only impose assumptions on the primitives of the
problem and in particular to the production function and the utility function.

Assumption 2.4 ( Assumptions on f). The net output function f satisfies:
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(i) f is continuous on R+ × R+ and f(0,K) = 0 for every K ∈ Ī (where Ī is the interval in 2.1).

(ii) f is C1 on (0,+∞)× (0,+∞) and by fk, fK we denote the two partial derivatives.

(iii) there exists a constant δ > 0 such that fk ≥ −δ, and moreover fk is bounded from above on any
set of the form [a,∞)× [0, c], for a > 0 and c > 0.

(iv) for every M there is k̄(M) such that f(k,K) ≤ 0 for every K ≤ M and k ≥ k̄(M); moreover,
k̄(M) = o(M) as M →∞.

(v) there exists k1 > 0 such that f(k,K) > 0 for arbitrary K ∈ Ī and k < k1.

(vi) k 7→ f(k,K) is strictly concave for every K ∈ Ī.

These assumptions can be easily seen to be satisfied by the Cobb-Douglas net output function
f(k,K) = AkαKβ− δk for 0 < α, β < 1 and α+β < 1 with the only important observation that point
(v) requires inf Ī > 0.

Assumption 2.5 (Assumptions on U). The utility function U : R+ → R+ is a concave, strictly
increasing function, C1 on R+ \ {0}, and such that U ′(0) =∞ and U ′(∞) = 0.

Remark 2.6. Explicit dependence in z can be included both in the net output function f and/or
in the utility function U , provided sufficient regularity conditions are imposed on such a dependence,
but we will not go into this generalisation.

3. The individual optimisation problem (2)

In this section we consider K : R+ → (0,∞) (here the variable z will be considered as fixed and
will not play any role, hence explicit dependence on z will be omitted) as a given bounded function
and consider the parametric optimisation problem

(3)

max
c

∫ ∞
0

e−rtU(c(t))dt, subject to

k′(t) = f(k(t),K(t))− c(t)
k(t) ≥ 0, c(t) ≥ 0 a.e. k(0) = k0 fixed.

From the economic point of view, c and k should be time-dependent functions, smooth enough (if
possible, k ∈ C1 and c ∈ C0), but, as usual in mathematics, handling this strong regularity will not
be feasible at first, and we will need to extend our problem to a weaker setting, proving later the
regularity of the maximisers.

In particular, the choice of the exact functional space setting for the pairs (k, c) is motivated by
some uniform bounds that we will obtain in a while.

We point out that, thanks to the assumptions on f , whenever K is bounded, then t 7→ f(k(t),K(t))
is also bounded from above, by a constant that depends on K and will be denoted by M(K) =: C1.

We need to introduce the following functional spaces. For every interval I ⊂ R+, by Lp(I),
p ∈ [1,∞] we denote the standard Lebesgue spaces of p−integrable functions on I, whereasMloc(R+)
is the space of real valued Radon measures on R+, M(I) is the space of real valued finite Radon
measures on a compact interval I ⊂ R+, the latter equipped by the norm

‖µ‖M(I) = |µ|(I) = sup

{∫
I
ϕdµ, ; ϕ ∈ C(R+), ‖ϕ‖∞ ≤ 1

}
.

We also introduce the space BV (I) = {u : R+ → R : u ∈ L1(I), Du ∈ M(I)}, for every I ⊂ R+.
It is a Banach space when equipped with the norm ‖u‖BV (I) := ‖u‖L1(I) + ‖Du‖M(I) and may be
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considered as an extension of W 1,1(I), in the sense that the distributional derivative Du is no longer
an integrable function but rather a Radon measure, whereas BVloc(R+) is the space of functions that
belong to BV (I) for every I ⊂ R+, compact.

We will now give a precise functional setting for Problem (3). The choice is motivated by the
uniform bounds that we obtain below, in Lemma 3.1. Let us define, for fixed k0 ∈ R+ and fixed
K ∈ L∞(R+)

A(K) :=

{
(k, c) : k ∈ BVloc(R+), c ∈Mloc(R+),

k ≥ 0, k(0) = k0, c ≥ 0,
k′ + c ≤ f(k,K)

}
,

where the last inequality is to be intended as an inequality between measures (the right-hand side
being the measure on R+ with density f(k(·),K(·))). Note that we omit the dependence of A(K) on
k0 since we will more often need to let K vary, but not k0. On the set of pairs (k, c) (and in particular
on A(K)), we consider the following notion of (weak) convergence: we say (kn, cn) ⇀ (k, c) if cn and
k′n weakly-* converge to c and k′, respectively, as measures on every compact interval I ⊂ R+. It is
important to observe that, thanks to the fact that the initial value k(0) is prescribed in A(K), the
weak convergence as measures k′n ⇀ k′ also implies kn → k a.e., as we have

kn(t) = k0 +

∫ t

0
k′n(s)ds→ k0 +

∫ t

0
k′(s)ds = k(t)

for every t which is not an atom for k′ (i.e. every continuity point t for k). This condition is satisfied
by all but a countable set of points t.

Lemma 3.1 (A priori bounds for A(K)). Consider any pair (k, c) ∈ A(K). Then, k ∈ L∞(R+),
and for any compact subset I ⊂ R+, we have ‖c‖M(I) ≤ C and ‖k′‖M(I) ≤ C, with the constant C
depending on the choice of I but not on (k, c). In particular if I = [0, t], we can choose C = C(t) =
C̄0 + C̄1t for suitable C̄0, C̄1.

Proof. Consider first the constraint

(4) k′ + c ≤ f(k,K),

where the inequality is an inequality between measures. Since c is nonnegative and f is negative for
large k (say for k ≥ k̄), then k is bounded from above by max{k(0), k̄}. Hence, k ∈ L∞(R+).

We return to (4), and note that since the right hand side is positive and bounded above by C1,
we have that k′(t) ≤ C1, for any t. This provides upper L∞ bounds for k′, but we also need lower
bounds if we want to bound k′ in ∈ Mloc(R+). We break up k′ into its positive and negative part as
k′ = (k′)+ − (k′)−. The positive part is bounded, by (4), and the upper bound is C1. We proceed to
obtain a bound for (k′)−. Clearly,

k(t)− k(0) =

∫ t

0
k′ =

∫ t

0
(k′)+ −

∫ t

0
(k′)−,

which, using the fact that k(t) ≥ 0 and the upper bound (k′)+ ≤ C1, leads to the estimate

−k(0) ≤ k(t)− k(0) =

∫ t

0
(k′)+ −

∫ t

0
(k′)− ≤ C1 t−

∫ t

0
(k′)−,

which upon rearrangement provides us with the estimate∫ t

0
(k′)− ≤ k0 + C1 t.(5)

7



This allows us to estimate the total mass of |k′| = (k′)+ + (k′)− as∫ t

0
|k′| =

∫
0
(k′)+ +

∫
0
(k′)− ≤ C1 t+ k0 + C1 t = k0 + 2C1 t,(6)

where we used (5). This estimate implies that ‖k′‖M(I) < C for any compact I = [0, t], where C
depends on t.

Having obtained the desired bound for k′ we return once more to (4) which yields, 0 ≤ c ≤ C1−k′,
from which the desired bound on c follows.

We insist that the above lemma is the one which justifies the choice of the space BV as a functional
setting. Indeed, Lemma 3.1 provides a suitable weak compactness in this space, while the same could
not be obtained in stronger spaces such as W 1,p (no Lp bound on the derivative k′ or on c can
be obtained just from the fact that (k, c) belongs to the admissible set A(K), or to a maximising
sequences).

We now define the quantity which is optimised, in this functional setting, by every agent. Define

J(c) :=

∫ ∞
0

e−rtU(cac(t))dt,

where cac is the absolutely continuous part of the measure c (remember that every positive and locally
finite measure c on R can be decomposed as a sum cac(t)dt + csing, where the first part has density
cac w.r.t. the Lebesgue measure on R, and the second part is singular: it could include atoms or other
measures concentrated on sets with zero Lebesgue measure).

Note that, from an economic point of view, the use of c ∈ Mloc(R+), and in particular the fact
that J takes into account only the absolutely continuous part of c in the computation of the utility,
implies that net capital formation could be reduced due to the singular part of the consumption, but
the representative agent will not receive and additional utility from this singular part. We adopt this
seemingly unrealistic – in terms of economics – definition of J at this stage of the problem because we
want, for compactness reasons, to extend the problem to the space of measures. In this case standard
lower semicontinuity results require that J is defined in this way. Since, as we show in Lemma 3.4,
the optimal consumption c does not contain a singular part, our results are, in the end, meaningful in
terms of economics.

For notational purposes, we also introduce, for T ∈ R+ ∪ {+∞},the quantity JT : Mloc(R+) →
[0,+∞]:

JT (c) :=

∫ T

0
e−rtU(cac(t))dt.

Note that we will use the notation J and J∞ as completely equivalent and chosse one or the other
only depending on the context.

Lemma 3.2 (Approximation and upper semicontinuity of J∞). The following hold:

(i) For any ε > 0, there exists T = T (ε) < ∞ such that J∞(c) ≤ JT (c) + ε for any (k, c) ∈ A(K)
(in particular, T (ε) does not depend on c).

(ii) J∞ is upper semicontinuous on A(K).

Proof. (i) We write

J∞(c) = JT (c) +

∫ ∞
T

e−rtU(cac(t))dt,
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and we use the fact that U , as it is concave, is bounded above by an affine function U(c) ≤ A+ B c.
The integral

∫∞
T e−rtAdt can be made small as soon as T is chosen large enough. For the integral∫∞

T e−rtBcac(t)dt we use the bound in Lemma 3.1, applied to the intervals [T +k, T +k+ 1]. We have∫ T+k+1
T+k cac(t)dt ≤ C̄0 + C̄1(T + k + 1) and hence∫ T+k+1

T+k
e−rtBcac(t)dt ≤ B(C̄0 + C̄1(T + k + 1))e−ke−T .

The series of these quantities as k ranges from 0 to ∞ converges for every T , and can be also made
small just by choosing T large enough.

(ii) Consider a sequence {cn} ∈ A(K) such that cn
∗
⇀ c in Mloc(R+). By (i), for any ε > 0, there

exists T = T (ε) such that

J∞(cn) ≤ JT (cn) + ε, ∀n ∈ N.(7)

Furthermore, using U ≥ 0,

JT (c) ≤ J∞(c), ∀ c ∈Mloc(R+).(8)

The functional JT is upper semicontinuous with respect to weak−∗ convergence inMloc(R+). Indeed,
since U is concave, −U is a convex function, and we can apply standard result on the semicontinuity
of

c 7→
∫
h(cac(x))dx+

∫
h∞(csing),

where here h = −U and h∞ = 0 (see, for instance [2]).
Then, taking the limsup on both sides of (7) yields

lim sup
n
J∞(cn) ≤ lim sup

n
JT (cn) + ε ≤ JT (c) + ε ≤ J∞(c) + ε

where we used first the upper semicontinuity of JT and then (8). Taking the limit as ε→ 0+ we obtain
the upper semicontinuity of J∞.

Proposition 3.3. Given any continuous and bounded function K : R+ → R+, the parametric max-
imisation problem for the individuals (3) admits a maximiser (k∗, c∗) ∈ (BVloc(R+) ∩ L∞(R+)) ×
Mloc(R+).

Proof. Consider (kn, cn) a maximizing sequence for (3). Since (kn, cn) ∈ A(K) for any interval I =
[0, T ], we conclude by Lemma 3.1 that kn is bounded in BVloc(R+) and cn in Mloc(R+) (in the sense
that we have bounds on the mass of k′n and cn on any compact interval of R+). Using the weak−∗
compactness of bounded sets in the space of measures on each compact interval, together with a
suitable diagonal extraction procedure, we obtain the existence of k ∈ BVloc(R+) and ζ, c ∈Mloc(R+)
such that up to subsequences

kn → k a.e.

k′n
∗
⇀ ζ in Mloc(R+),

cn
∗
⇀ c in Mloc(R+).

By standard arguments for distributional derivatives we can see that ζ = k′.
Our first task is to show admissibility of the limit (k, c). It is straightforward to check that c ≥ 0

and k ≥ 0. It remains to check that k′ + c ≤ f(k,K). In order to see this, note first that since
(kn, cn) ∈ A(K) for every n ∈ N, we have that

k′n + cn ≤ f(kn,K), ∀n ∈ N.(9)
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We need to pass to the limit as n→∞ (along the converging subsequence) in the above. The left hand

side is linear and k′n + cn
∗
⇀ k′ + c. Some care must be taken for the nonlinear right hand side. Since

f is continuous and bounded from above, it is sufficient to use the pointwise convergence kn(t)→ k(t)
a.e. in t ∈ [0, T ], guaranteed by the local BV bound on kn.

To show that (k, c) is a maximiser to Problem (3), we use the upper semicontinuity result,
lim supn J∞(cn) ≤ J∞(c) contained in Lemma 3.2.

The above result guarantees the existence of a maximiser (k, c) where both k′ and c are measures.
Before going on with the analysis, we will show that, actually, they have not singular parts, i.e. they
are functions. In terms of the state function k, this means k ∈ W 1,1

loc . This result is crucial both for
the mathematical analysis of the optimisation problem and for its economic meaning.

Lemma 3.4. Any optimiser (k, c) satifies c ∈ L1
loc(R+).

Proof. Let us recall that, in general, any c such that (k, c) ∈ A(K) consists of an absolutely continuous
and a singular part with respect to Lebesgue measure c = cac + csing.

For any Borel function h we will use the notation
∫
−ba h(s)ds = 1

b−a
∫ b
a h(s)ds (if a 6= b, otherwise

this is equal to h(a)).
Suppose (k, c) is optimal. Given an interval I = [a, b] ⊂ R+, we build (k̃, c̃) a new competitor

in the following way: outside I, we take k̃ = k and c̃ = c; then we choose k̃ to be affine on [a, b],
connecting the values k(a−) to k(b+); c̃ restricted to [a, b] is an absolutely continuous measure, with
constant density. We have to choose the constant value for c̃ for the inequality k̃′ + c̃ ≤ f(k̃(t), t) to
be satisfied. Notice that on [a, b] we have k̃′ = k′([a, b])/(b− a). If we set ĉ = c([a, b])/(b− a) for sure

we have k̃′ + ĉ ≤
∫
−ba f(k(s),K(s))ds. Since we can assume f to be bounded (k only takes values in a

bounded set, and k̃ as well, hence), we have
∫
−ba f(k(s),K(s))ds ≤ f(k̃(t), t)+M . Hence, it is sufficient

to set c̃ = ĉ−M , provided ĉ ≥M .
Now, suppose c is not absolutely continuous. Then for sure there exists I = [a, b] such that

csing([a, b]) > M(b−a)+cac([a, b]) (otherwise csing ≤M+cac and csing would be absolutely continuous).
The interval [a, b] may be taken as small as we want, which means that we can assume (b− a)e−ra ≤
2ma,b, where we set ma,b :=

∫ b
a e
−rsds. We choose such an interval and we build k̃ and c̃ as above,

since we have now ĉ ≥M . We now claim we find a contradiction.
Let us set X = cac([b− a])/(b− a) and Y = csing([b− a])/(b− a). The optimality of (k, c) gives∫ b

a
e−rtU(cac(t))dt ≥

∫ b

a
e−rtU(c̃(t))dt.

Using Jensen’s inequality, we get∫ b

a
e−rtU(cac(t)) ≤ ma,bU

(
1

ma,b

∫ b

a
cac(t)e−rtdt

)
≤ ma,bU

(
e−ra

ma,b

∫ b

a
cac(t)dt

)
≤ ma,bU(2X)

and ∫ b

a
e−rtU(c̃(t))dt = ma,bU(X + Y −M).

We deduce
U(X + Y −M) ≤ U(2X),

but the interval [a, b] was chosen so that Y > X+M , which gives a contradiction because of the strict
monotonicity of U .

We can use the above result to prove some useful properties of our maximisation problem.
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Corollary 3.5. For any optimiser (k, c), we have k ∈ W 1,1
loc (R+) and saturation of the constraint

k′ + c = f(k,K). Moreover, the optimal pair (k, c) is unique.

Proof. First, note that, if k /∈ W 1,1
loc (R+), then this means that k′ has a negative singular part

((k′)sing)−. Yet the inequality k′ + c ≤ f(k,K) stays true if we replace c with c + ((k′)sing)−, which
would be another optimiser. But this contradicts Lemma 3.4, since every optimiser c should be
absolutely continuous.

As soon as we know that both k′ and c are absolutely continuous, it is clear that we must have
k′ + c = f(k,K). Otherwise, we can replace c with f(k,K)− k′ and get a better result (we needed to
prove the absolute continuity of k′, since adding a singular part to c does not improve the functional).

In what concerns uniqueness, we first stress that the functional we maximise is not strictly concave,
for two reasons: on the one hand we did not assume U to be strictly concave, and on the other hand,
anyway, there would be an issue as far as the singular part of c is involved. Yet, now that we know
that optimisers are absolutely continuous and saturate the differential inequality constraint, uniqueness
follows from the strict concavity of f .

Indeed, suppose that that (k1, c1) and (k2, c2) are two minimisers. Then, setting c3 = (c1 + c2)/2
and k3 = (k1+k2)/2, the pair (k3, c3) is also admissible (since f is concave in k) and optimal (since the
cost is concave in c). Yet, strict concavity of f implies that (k3, c3) does not saturate the constraint,
which is a contradiction with the first part of the statement, unless k1 = k2. As a consequence, we
obtain uniqueness of k in the optimal pairs (k, c). But this, together with the relation k′+c = f(k,K),
which is now saturated, also provides uniqueness of c.

We now establish uniform bounds on the optimal c, which will be useful for approximation issues
in the next section. This is provided in the following technical proposition, whose proof is broken up
into 4 lemmas, proven in the Appendix.

Proposition 3.6. If k0 > 0, then the optimal consumption c is bounded from above and below on
every bounded interval, i.e., for every T > 0 there exist two constants 0 < c−(T ) < c+(T ) < ∞,
depending only on f, U, k0 and T , such that c(t) ∈ [c−(T ), c+(T )] for every t ∈ [0, T ].

Proof. The proof is complicated (a) by the non Lipschitz property of f at 0 (b) by the non-smoothness
of U at 0 and (c) by the state constraint k ≥ 0. In the appendix (see Lemmas Appendix.6, Appendix.7,
Appendix.8, Appendix.9) we prove the claim in the case where f is Lipschitz, by approximating the
utility function U(c), which is itself non-smooth, with U(c+ h) for h > 0. One of the first points is to
prove that the state constraint is not binding, so that the use of the standard PMP can be justified.

In order to prove the claim for non-Lipschitz functions f , it is enough to apply the results of the
Appendix to an approximation fn, under the condition that fn is smooth, converges uniformly to f ,
and satisfies fn ≥ f . The passage to the limit as n → ∞ can be done using the following Lemma
3.7, which also includes the possible approximation in U . The existence of a suitable approximation
is proven in Lemma 3.8.

Note that, concerning the state constraint (c), one could have used versions of the Pontryagin
maximum principle (PMP) which take such constraints into account (see for instance [9]). However,
as even this approach would still require smoothness of f and U , we decided here to choose a different
strategy, and hence the proof we provide is completely independent of the maximum principle stated
in [9].

Lemma 3.7. Given a sequence of functions fn, and two sequences hn, εn → 0+, suppose fn → f
in the sense of uniform convergence as n → ∞, fn(k + εn,K) ≥ f(k,K) for all (k,K), and set
Un(c) = U(c+ hn). Then we have

max{J∞(c) : (k, c) ∈ A(K), k(0) = k0} = lim
n

max{Jn∞(c) : (k, c) ∈ An(K), k(0) = k0 + εn}
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where the functional Jn is defined by replacing U with Un and the admissibility set An is defined
replacing f with fn, and modifying the starting point. Moreover, we have (kn, cn) ⇀ (k, c) (in the
sense of the convergence that we defined for pairs (k, c) in Section 2), where (kn, cn) and (k, c) are the
optimisers in the above optimisation problems,.

Proof. Let us consider the minimisers (kn, cn): they satisfy the same uniform bounds in the space of
measures that we saw in Lemma 3.1, and hence we can assume, up to subsequences, that we have
(kn, cn) ⇀ (k̃, c̃), but we do not know yet that the limit is the maximiser for the limit problem.
However, we can pass to the limit the inequality k′n + cn ≤ fn(kn,K) because (kn, cn) ⇀ (k̃, c̃) implies
a.e. pointwise convergence for kn. This, together with kn(0) = k0+εn → k0, provides the admissibility
of (k̃, c̃),. We can also apply the semicontinuity result of Lemma 3.2 to cn + hn ⇀ c̃, thus getting

J∞(c̃) ≥ lim sup
n

J (n)
∞ (cn).

This proves that max J∞ ≥ J∞(c̃) ≥ lim supn max J
(n)
∞ , and (k̃, c̃) is optimal if we can prove

max J∞ ≤ lim inf
n

max J (n)
∞ .

Let (k, c) be the (unique) maximiser for J∞: if we define kn := k + εn then (kn, c) is admissible in

the problem with J
(n)
∞ , thanks to the assumption fn(k + εn,K) ≥ f(k,K) and the shift in the initial

datum k0 + εn. Thus we get

lim inf
n

max J (n)
∞ ≥ lim inf

n
J (n)
∞ (c) = lim inf

n

∫
U(c+ hn)e−rtdt ≥

∫
U(c)e−rtdt = J∞(c) = maxJ∞

(in the second inequality we used the monotonicity of U). This proves that c̃ is optimal, hence c̃ = c
by uniqueness and the whole sequence converges.

Lemma 3.8. Given a function f satisfying Assumptions 2.4 and a sequence of positive numbers εn →
0, there exists a sequence fn of smooth Lipschitz continuous functions also satisfying 2.4, converging
uniformly to f , and such that fn(k + εn,K) ≥ f(k,K) for all (k,K).

Proof. Given εn, consider the function f extended to k ∈ [−εn, 0] by the value 0, and define f̃n as the
concave envelope in k of this extension. This function satisfies f(−εn,K) = 0, is Lipschitz continuous,
and is bounded from below by f . We can then define fn(k,K) := f̃n(k− εn,K), which satisfies all the
required properties.

Some corollaries of Proposition 3.6 are the following:

Corollary 3.9. The optimal k is locally Lipschitz on each interval [0, T ], and its Lipschitz constant
only depends on U, f, k0 and T .

Proof. The saturation of the constraint gives k′ = f(k,K)− c. From the boundedness of k and K and
the local upper bound on c obtained from Proposition 3.6, we obtain a local L∞ bound on k′, which
proves the claim.

Corollary 3.10. The optimal k satisfies k(t) > 0 for every t ∈ R+. Moreover, the optimal (k, c)
satisfies the differential equations{

k′ = f(k,K)− c
(U ′(c))′ = (r − fk(k,K))U ′(c)
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Proof. The condition k > 0 is a consequence of the lower bound on c. Suppose that there exists an
instant t0 such that k(t0) = 0. Take the lower bound c−(2t0) for c on the interval [0, 2t0]. Since
f(0,K) = 0 and f and k are continuous, on a small neighbourhood (t0 − ε, t0 + ε) of t0 we have
f(k(t),K(t)) ≤ c−(2t0)/2. Then, on this interval we have k′(t) ≤ −c−(2t0)/2 < 0. But this is
impossible since k ≥ 0 and k(t0) = 0.

Once we know that neither c nor k vanish, then the constraints are not binding and standard
Pontryagin principle (or standard Euler-Lagrange equations in calculus of variations), considering
that now f and U are smooth, provide the desired optimality conditions in the form of the desired
system of ODEs. Notice that, without the assumption U ′′ 6= 0, we cannot obtain regularity for c and
write a rigorous ODE on it, which is why we only wrote an equation on U ′(c).

4. Existence of rational expectations equilibria

We now turn our attention to the rational expectations equilibria. To this end, we recall that we
defined the operator T as follows: consider any externalities configuration K, solve the parametric
individual optimisation problem (3) for any z ∈ D and obtain a family of maximisers {k∗(·, z;K)}z∈D;
then act the operator S on the maximiser to obtain Sk∗, i.e.,

K 7→ k∗ 7→ Sk∗ =: K#, T K := K#.

A fixed point for the operator T is identified as a rational expectations equilibrium.
Our proof of existence is based upon the Schauder fixed point theorem and requires the continuity

of the operator T , together with compactness properties. Note that by defining in the above scheme
first the operator O by OK := k∗, we may decompose the operator T as T = S O. Since S is a compact
operator, we focus our attention on the properties of O. As the operator O is defined by mapping
the parameter K of the parametric optimisation problem (3) to the optimiser, in order to obtain the
continuity of O we need to ensure the continuity of maximisers with respect to the parameter. This is
essentially a Γ-convergence type result (see e.g. [2] or [8]), but we will avoid using this theory, as we
will directly consider optimisers. The argument is very similar to what we developed in Lemma 3.7.

Consider a sequence {Kn} ⊂ L∞(R+) (uniformly bounded in n ∈ N) such that Kn → K, locally
uniformly, and the corresponding sequence of constraint sets

A(Kn) = {(k, c) : k′ + c ≤ f(k,Kn)},

and let (k∗n, c
∗
n) be the maximisers of the sequence of optimisation problems

max
(k,c)∈A(Kn)

J∞(c).

We need to show that we have (k∗n, c
∗
n)→ (k∗, c∗), where (k∗, c∗) is the maximiser of the optimisation

problem

max
(k,c)∈A(K)

J∞(c).

Note that the above maximiser is unique thanks to Corollary 3.5.

Proposition 4.1. Suppose that {Kn} ⊂ L∞(R+) is a uniformly bounded sequence such that Kn → K
locally uniformly, and let (k∗n, c

∗
n) be the corresponding maximisers. Then we have (k∗n, c

∗
n) ⇀ (k∗, c∗),

where (k∗, c∗) is the maximiser corresponding to K, and the convergence k∗n → k∗ is locally uniform.
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Proof. We follow a similar scheme as in Lemma 3.7.
The functions (k∗n, c

∗
n) satisfy the same uniform bounds in the space of measures that we saw in

Lemma 3.1, and hence we can assume, up to subsequences, that they satisfy (k∗n, c
∗
n) ⇀ (k̃, c̃) (in the

sense of the convergence defined on pairs (k, c) in Section 2), but we do not know yet that the limit is
the maximiser for the limit problem. Yet, we can pass to the limit the inequality (k∗n)′+c∗n ≤ f(k∗n,Kn)
and get the admissibility of (k̃, c̃). We can also apply the semicontinuity result of Lemma 3.2, thus
getting

J∞(c̃) ≥ lim sup
n

J∞(c∗n).

This proves that

max{J∞(c) : (k, c) ∈ A(K)} ≥ J∞(c̃) ≥ lim sup
n

J∞(c∗n) = lim sup
n

max{J∞(c) : (k, c) ∈ A(Kn)}.

Then, (k̃, c̃) is optimal if we can prove max{J∞(c) : (k, c) ∈ A(K)} ≤ lim supn max{J∞(c) : (k, c) ∈
A(Kn)}.

In order to do so, let us take the optimal pair (k∗, c∗), fix ε > 0 and find T such that J∞(c∗) ≤
JT (c∗) + ε. Then, let us define a sequence (kn, cn) ∈ A(Kn) as follows. Set εn := ||f(k∗,K) −
f(k∗,Kn)||L∞([0,T ]) → 0 and use

kn(t) = k∗(t), cn(t) := c∗(t)− εn for t ∈ [0, T ];

for t > T , just use any admissible pair (k, c) satisfying k(T ) = k∗(T ) and all the constraints. It is
important to use Proposition 3.6 to guarantee that, at least for large n, the consumption cn defined
above is admissible (i.e. nonnegative).

Then, by monotone convergence we have

JT (c∗) = lim
n
JT (cn) ≤ lim sup

n
J∞(cn) ≤ lim sup

n
max{J∞(c) : (k, c) ∈ A(Kn)},

(where we use positivity of U , to pass from JT to J∞).
We deduce

J∞(c∗) ≤ lim sup
n

max{J∞(c) : (k, c) ∈ A(Kn)}+ ε

and the result is proven since ε is arbitrary.
The optimality of (k̃, c̃) together with the uniqueness of the maximer implies (k̃, c̃) = (k∗, c∗) and

the convergence of the full sequence without the need to extract a subsequence is standard.
We are only left to prove that the convergence k∗n → k∗ is locally uniform. To do this, it is enough

to apply the uniform local Lipschitz bounds guaranteed by Corollary 3.9.

We now define a space Y of continuous and locally bounded functions of the variables (t, z) ∈
R+ ×D in the following way: set

||y||Y := sup
(t,z)∈R+×D

e−t|y(t, z)|,

which is a weighted L∞ norm; we then use

Y = {y ∈ L∞loc(R+ ×D) : ||y||Y < +∞},

endowed with the norm || · ||Y . This is a Banach space, and we want to use Schauder’s fixed point
theorem in it. Whenever a sequence yn is such that ‖yn‖∞ is bounded, then yn → y in Y if and only
if yn → y uniformly on sets of the form [0,m]×D, i.e. if and only if yn → y uniformly in z ∈ D and
locally uniformly in time t ∈ R+.
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The space Y will be taken as the space where externalities K reside. Indeed, we will prove an
existence result involving uniformly bounded externalities (note that we have the inclusion L∞(R+ ×
D) ⊂ Y ). In particular, we define the operator T on L∞(R+ ×D), and, as we said,we factorise it as
T = SO, where

(OK)(·, z) := the unique optimal curve k∗ associated with the externality K(·, z)

and S : (BVloc(R+) ∩ L∞loc(R+)) → Y is the integral operator defined in (1), which is essentially not
affecting time but only space. Because of Proposition 4.1, the operator O is continuous, and hence is
T . We want to use Schauder’s fixed point theorem on the operator T , thus obtaining existence of a
rational expectations equilibrium.

Theorem 4.2. Under the standing assumptions of this paper, and the assumption infz k0(z) > 0, the
operator T admits a fixed point in Y , and hence there exists a rational expectation equilibrium for the
spatial economy.

Proof. Consider Y0 ⊂ Y the set of continuous functions on R+ × D bounded by a constant M such
that

Lip(S) max{sup
z
|k0(z)|, k̄(M)}+ ||S(0)||L∞ < M

(here S(0) is the function obtained by applying S to the zero function, and we use the Lipschitz
behaviour of S so that for every bounded function g we have ||S(g)||L∞ ≤ Lip(S)||g||L∞ + ||S(0)||L∞).
With this choice (which is always possible choosing M large enough, since we supposed k̄(M) = o(M)),
the operator T maps Y0 into itself, since for every continuous function K(·) bounded by M the
corresponding optimiser k∗(·) takes values in [0,max{k0, k̄(M)}].

The set Y0 is a convex subset of Y and T is defined and continous on Y0. Indeed, suppose
Y0 3 yn → y, the convergence in Y being equivalent in this case to the local (in time) uniform
convergence. Then, for every z we can apply Proposition 4.1 to Kn := yn(·, z), and obtain the
pointwise convergence k∗n(t, z) → k∗(t, z), for every (t, z), together with uniform L∞ bounds (the
convergence is actually locally uniform in t for every z). For fixed t, composing with the operator S
and using Assumption 2.1, the convergence of Sk∗n to Sk∗ is uniform in z. On the other hand, for
every T > 0, the functions t 7→ k∗n(t, z) are Lipschitz for every z, and the Lipschitz constant is uniform
both in z and in n. Since we assumed S to be Lipschitz for the L∞ norm (Assumption 2.1), then
the functions Sk∗n will be uniformly Lipschitz continuous on [0, T ] × D w.r.t. the time variable. In
what concerns the space variable z ∈ D, Assumption 2.1 implies that there is a uniform modulus of
continuity w.r.t. z for the functions Sk∗n, as a consequence of the uniform L∞ bounds on k∗n. Hence, by
Ascoli-Arzelà Theorem, the pointwise convergence k∗n(t, z)→ k∗(t, z) becomes uniform on [0, T ]×D.
This, together with the uniform L∞ bounds we already mentioned, provides the convergence of SO(yn)
to SO(y) in Y , and hence the continuity of T .

Now, in order to apply Schauder’s fixed point theorem we just need to check that T maps Y0 into
a compact subset of Y0, but this also comes from the above considerations: because of our choice
of convergence, we just need to guarantee equicontinuity of the functions of the form T (K) on each
set [0, T ] × D. The continuity in time of each maximiser k∗ is again guaranteed by Corollary 3.9,
which provides Lipschitz bounds in time of k∗, combined with the Lipschitz behaviour of S, and the
continuity in space is guaranteed by the assumptions on S.

As a consequence, T admits a fixed point.

Theorem 4.3. A triplet (k, c,K) represents a rational expectation equilibrium if and only if the
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following non-local Euler-Lagrange equation
k′ = f(k,S(k))− c,
U ′′(c)c′ = (r − fk(k,S(k)))U ′(c),

K = S(k)

is satisfied.

Proof. It is easy to see, using Corollary 3.10, that if (k, c,K) is a rational expectation equilibrium,
then it satisfies this system. On the other hand, if (k, c,K) satisfies the system, then we can solve
the individual optimisation problems for given K = S(k) and find a solution k∗ which is characterised
(because of the concavity of the maximisation problem) by the equations in Corollary 3.10. This
means that k∗ = k, and hence k = O(K) and K = S(O(K)) is a fixed point.

Remark 4.4. The arguments can be generalised to the case where the integral operator that models
the effect of externalities, S acts on the temporal variable as well as on the spatial variable, for instance
(Sk)(t, z) =

∫
D

∫∞
0 w(z, y, t, s)k(y, s)dyds, where now S can have some sort of regularisation effect on

the temporal variable, or include memory effects or delays. This is particularly meaningful in order
to model the effect of knowledge spillover in the generation of externalities, as we mentioned in the
introduction. From the technical mathematical point of view, this requires minimal adaptations.

Remark 4.5. It is easy to see that, in case of lack of uniqueness for the maximisers of J∞ inA(K), then
the proof of Proposition 4.1 easily provides that, up to extracting a subsequence, we have convergence
of (k∗n, c

∗
n) to one maximiser. This makes the operator O a multivalued map with closed graph.

Moreover, if f(·,K) is concave, the set of maximisers is a convex set, which allows to obtain the
existence of a fixed point by an easy application of the Kakutani Theorem.

5. Appendix: Uniform local bounds on the optimal consumption

In this appendix we prove that the optimal path (k∗, c∗) of the individual parametrized optimization
problem (2) satisifes upper and lower bound, for both k and c, on each bounded interval [0, T ]. In
this section we will suppose that the output function f , besides all the conditions of Assumption 2.4,
is also globally Lipschitz continuous. Moreover, we set

a0 :=
min{k0, k1}

2
,

where k0 is the initial value of k and k1 is the constant appearing in Assumption 2.4-v, and we denote
by C̄ a constant such that fk(k,K) ≤ C̄ for k ≥ a0. It will be important to obtain estimates which
depend on C̄ but not on the Lipschitz constant of f close to k = 0 so that an approximation argument
will allow to extend the result to the case of a function f which is not Lipschitz close to k = 0.
Moreover, we extend f to k < 0 by setting f(k,K) = −kf+k (0,K), where f+k denotes the right partial
derivative w.r.t. k (remember that we have f(0,K) = 0), and we still use the notation f for the
extended function. In particular the extension also satisfies fk ≥ −δ and fk ≤ C̄ for k ≥ a0.

Lemma 5.1. Suppose that on [0, T0] we have 0 < inft∈[0,T0] k
∗(t) < a0. Then, c∗ ≥ c(T0, δ, C̄) for

some appropriate constant c.

Proof. We first note that (k∗, c∗) also solves the variational problem max J(c) for fixed endpoints (i.e.
if both k(0) and k(T0) are fixed to the values k∗(0) = k0 and k∗(T0), respecitvely). Moreover, we can
also omit the constraint k ≥ 0; indeed, in a convex optimization problem whenever an optimiser, here
k∗, satisifies a constraint in a non-binding way, then it also optimises without the same constraint,
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since it satisfies the corresponding sufficient optimality conditions. To deal with the non smoothness
of the utility function at 0, we consider next the modified problem maxJ (h)(c), where J (h)(c) =∫ T0
0 U(c + h)e−rtdt, under the same boundary conditions and without any condition k ≥ 0. Let

(ch, kh) be the optimal path for this problem. This is a problem without state constraints with a
smooth utility function so one may employ the Pontryagin principle in its standard form for control
problems with fixed endpoints (which is just a re-writing of the Euler-Lagrange equations).

This provides the existence of a function θh satisfying

θ′h(t) = −θh(t)fk(kh(t),K(t)),(10)

while the optimal consumption satisfies

ch ∈ arg max
c≥0
{e−rtU(c+ h) + θh(t)(f(kh(t),K(t))− c)}, a.e.t.(11)

The properties of U combined with (.2) imply

θh = U ′(ch + h)e−rt if ch > 0(12)

θh ≥ U ′(h)e−rt if ch = 0(13)

Set T1 := inf{t : kh(t) < a0}, so that we have kh(T1) = a0 while kh(t) > a0 for t < T1. This
implies that we cannot have k′h > 0 a.e. in a left neighbourhood of T1 (otherwise we would have
kh < kh(T1) = a0 before T1). Hence, for a sequence of times tn → T−1 we have k′h(tn) ≤ 0: by
the dynamic constraint we get ch(tn) = f(kh(tn),K(tn)) − k′h(tn) ≥ f(kh(tn),K(tn)) ≥ C0 by the
assumptions on f , which takes strictly positive values close to k = a0, independently of K This lower
bound on ch(tn), together with the fact that θh = U ′(h + ch)e−rt and the properties of U ′, leads to
an upper bound of the form θh(T1) ≤ C0 for an appropriate constant C0 (note that θh is a Lipschiz
function, thanks to (.1).

Since on [0, T1] we have kh(t) ≥ a0, by definition we have fk ≤ C̄, therefore, by (.1) we see that
θ′h ≥ −C̄θh. Integrating backwards in time and utilizing the bound θh(T1) ≤ C0 we obtain a bound
for θh over the whole interval [0, T1], i.e., there exists a C such that θh ≤ C for all t ∈ [0, T1]. Having
obtained a bound for the initial value of θh and using fk ≥ −δ which is true everywhere, (.1) implies
that θ′h ≤ δθh, and by integration θh ≤ C on [0, T0].

By (.3) if ch(t) = 0 for some t ∈ [0, T0] we have that θh(t) ≥ U ′(h)e−rt ≥ U ′(h)e−rT0 for any
t ∈ [0, T0], and if h is chosen h < h0 with h0 such that U ′(h0)e

−rT0 > C, this contradicts θh(t) < C
for any t ∈ [0, T0]. Hence for h < h0, we have ch(t) > 0 for any t ∈ [0, T0]. Then, θh(t) = U ′(ch(t) +
h)e−rt ≥ U ′(ch(t) + h)e−rT0 combined with θh(t) < C yields U ′(ch + h) ≤ CerT0 . This implies
ch(t) + h ≥ (U ′)−1(Ce−rT0) =: C1(T0, δ, C̄) where importantly the constant C1 is independent of
h < h0. We conclude by letting h→ 0, using ch ⇀ c∗ and Lemma 3.7.

Lemma 5.2. Under the standing assumptions we have k∗(t) > 0 for all t ∈ R.

Proof. If T0 = inf{t : k∗(t) = 0}, apply Lemma Appendix.6 on [0, T0 − ε] for every ε > 0 to obtain
c∗ ≥ c0 on [0, T0].

On the other hand, on [T0,∞[ we have k∗ = c∗ = 0. Indeed, since f is Lipschitz and f(0,K) = 0,
using also the positivity of c we have (k∗)′ ≤ Lip(f)k∗ which implies k∗ = 0 since k∗(T0) = 0. This
also implies c∗ = 0.

Define a competitor (c̃, k̃) which coincides with (k∗, c∗) in [0, T0−ε] and [T0 +ε,∞[, but is modified
inside (T0 − ε, T0 + ε) as follows:

k̃(t) = k∗(T0 − ε)−
k∗(T0 − ε)

2ε
(t− (T0 − ε)),

c̃(t) = f(t, k̃) +
k∗(T0 − ε)

2ε
.
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By optimality of (k∗, c∗), and using c∗ = 0 on [T0, T0 + ε], we have∫ T0+ε

T0−ε
U(c̃)e−rtdt ≤

∫ T0

T0−ε
U(c∗)e−rtdt.(14)

We estimate the right hand side of (.5) using

(15)
1

ε

∫ T0

T0−ε
U(c∗)e−rtdt ≤ e−r(T0−ε) 1

ε

∫ T0

T0−ε
U(c∗)dt ≤ e−r(T0−ε)U

(
1

ε

∫ T0

T0−ε
c∗(t)dt

)
,

where for the last inequality we used Jensen’s inequality. Upon integration of (k∗)′ = f(k∗,K) − c∗
on the interval [T0 − ε, T0] and keeping in mind that k∗(T0) = 0 we get

1

ε
k∗(T0 − ε) =

1

ε

∫ T0

T0−ε
c∗(t)dt− 1

ε

∫ T0

T0−ε
f(k∗(t),K)dt

and keeping in mind that in the limit as ε→ 0 it holds that 1
ε

∫ T0
T0−ε f(k∗(t),K)dt→ f(k∗(T0),K) = 0

we conclude that as ε→ 0,

k∗(T0 − ε)
ε

=
1

ε

∫ T0

T0−ε
c∗(t)dt+ o(1).(16)

Combining (.6) and (.7) we obtain

1

ε

∫ T0

T0−ε
U(c∗(t))e−rtdt ≤ e−r(T0−ε)U

(
k∗(T0 − ε)

ε
+ o(1)

)
(17)

On the other hand, as ε → 0, using that, for small ε the values of k̃ on [T0 − ε, T0 + ε], which are
bounded by k∗(T0 − ε), are small, we have c̃ ≥ k∗(T0 − ε)/(2ε) on the same interval, hence

1

2ε

∫ T0+ε

T0−ε
U(c̃(t))e−rtdt ≥ e−r(T0+ε)U

(
k∗(T0 − ε)

2ε

)
.(18)

Combining (.5), (.8) and (.9) we obtain

U

(
k∗(T0 − ε)

2ε

)
2e−r(T0+ε) ≤ e−r(T0−ε)U

(
k∗(T0 − ε)

ε
+ o(1)

)
.(19)

We now set `ε := k∗(T0 − ε)/ε and we use the fact that, for ε small, `ε ≥ c0/2, together with the fact
that U is uniformly Lipschitz far from c = 0, in order to simplfy the above inequality into

(20) 2U

(
`ε
2

)
≤ e2rε(U(`ε) + o(1)).

We now use the following property

α := inf
`≥c0/2

2U
( `

2

)
− U(`) > 0.

The positivity of the inf can be easily proven by considering that the function ` 7→ 2U(`/2)− U(`) is
increasing, and its value in ` = c0/2 is strictly positive since U is concave and not linear close to 0 (as
a consequence of U ′(0) =∞).

This allows to go on from (.11) and obtain

U(`ε) + α ≤ (1 +O(ε))(U(`ε) + o(1)) = U(`ε) +O(ε)U(`ε) + o(1).

This provides a contradiction for small ε: indeed, `ε could be bounded or not, but it is for sure
at most O(1/ε), and since U is sublinear at infinity we have O(ε)U(`ε) = o(1), which contradicts
α > 0.
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Lemma 5.3. On [0, T0] we have inf c∗ = c0(δ, C̄, T0) > 0.

Proof. If inf [0,T0] k
∗ < a0 the result follows by applying first Lemma Appendix.7 and then Lemma

Appendix.6.
If not, we can assume k∗ ≥ a0 on [0, T0]. We consider an approximation (kh, ch) by solving

J
(h)
T0

:= maxc≥0
∫ T0
0 U(c + h)e−rtdt with fixed endpoints on [0, T0], but without the state constraint

k ≥ 0 (since this state constraint is not binding in the limit). Also, we modify the function f into a
function f̃ so as to impose f̃k ≤ C̄ everywhere, and not only on {k ≥ a0}, yet keeping f = f̃ for k ≥ a0
and −δ ≤ f̃k everywhere. This is not important at the limit, since the maximiser k∗ is supposed to
satisfy lie in the region where f̃ = f , hence it satisfies the optimality condition of the convex problem
it solves both with f and with f̃ . As in Lemma Appendix.6 we may apply the standard Pontryagin
maximum principle and in particular obtain the existence of a function θh, satisfying (.1), (.2) and
(.3). Note that from −δ ≤ f̃k ≤ C we have |θ′h| ≤ Cθh.

We want to give a lower bound on inft∈[0,T0] ch(t) → 0. Let J̄ = max J∞(c) = J∞(c∗) > 0 be the
value of the original problem: this value is strictly positive, since c = 0 is not optimal. Using Lemma
3.2 suppose that T0 is large enough (which is not restrictive) so that∫ ∞

0
U(c∗(t))dt ≤

∫ T0

0
U(c∗(t))dt+

1

4
J̄ .

Using the monotone behaviour of U and U(c+ h) ≥ U(c) for every c, we also obtain

(21) max{
∫ T0

0
U(c) : (k, c) ∈ A(K), k(0) = k0, k(T0) = k∗(T0)}

≤ max{
∫ T0

0
U(c+ h) : (k, c) ∈ A(K) k(0) = k0, k(T0) = k∗(T0)}

and hence

(22)

∫ ∞
0

U(c∗(t))dt ≤
∫ T0

0
U(ch(t) + h))dt+

1

4
J̄ .

Set ε1 so that U(ε1)
∫∞
0 e−rtdt = 1

rU(ε1) <
1
4 J̄ and ε0 so that U ′(ε1) = U ′(ε0)e

−(C+r)T0 .
We want to prove that it is not possible to have h + inf ch < ε0. This will give a lower bound on

ch for small h, and hence on the optimal c∗.
Suppose by contradiction that we have h + inf ch < ε0. First, let us prove that this implies

sup{ch(t) : t ∈ [0, T0]} ≤ ε1. Note that, for some t∗ ∈ [0, T0], we have ch(t∗) + h < ε0. By the
properties of U ′ this means U ′(ch(t∗) + h) > U ′(ε0) and recalling (.3) we have

θh(t∗) > U ′(ε0)e
−rt∗ .(23)

This lower bound on θh at t can be propagated forward and backward in time using |θ′h| ≤ Cθh. This
provides

θh(t) > θh(t∗)e−C|t−t
∗| ≥ θh(t∗)e−CT0 .(24)

Using again the formula for θh we obtain

U ′(ch(t) + h) > θh(t)ert ≥ U ′(ε0)e−rt
∗
e−CT0ert ≥ U ′(ε0)e−(C+r)T0 = U ′(ε1),

where the last equality comes from the choice of ε0. Using once more the monotone decreasing behavior
of U ′ we get ch + h ≤ ε1.
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After proving this, using (.13), we can go on and obtain

J̄ ≤
∫ T0

0
U(h+ ch)e−rtdt+

1

4
J̄ ≤ U(ε1)

∫ T0

0
e−rtdt+

1

4
J̄ ≤ U(ε1)

∫ ∞
0

e−rtdt+
1

4
J̄ ≤ 1

2
J̄ .

Since ch(t) ≥ ε0 for any h > 0, t ∈ [0, T0] passing to the limit as h→ 0 we conclude that c∗ ≥ ε0.

Lemma 5.4. On every [0, T0] we have c∗ ≤ C0 for a constant C0 possibly depending on T0.

Proof. Since we have already established the inequalities k∗ > 0, c∗ > 0 we may now replace f and
U with smooth functions f̃ and Ũ which stay smooth close to k = 0 and c = 0, and and as above we
may use the standard PMP. This provides the existence of a function θ with properties similar to the
ones provided in (.1)-(.3) and in particular θ′ = −f̃kθ and θ(t) = Ũ ′(c)e−rt. Note that θ′ ≤ δθ.

Lemma 3.2 provides
∫ T0+1
T0

c∗(t)dt ≤ C̄0 + C̄1(T0 + 1), which in turn provides c∗(t∗)leqC(T0) for
a certain time t∗ ∈ [T0, T0 + 1]. This implies a lower bound on θ(t∗). We then use the differential
inequality θ′ ≤ δθ to show that a similar lower bound (up to a factor eδ(T0+1) for θ is satisfied for all
t ∈ [0, T0] and again by the definition of θ and the properties of U ′ we conclude that c is bounded
from above on [0, T0].
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