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Simple Summary: Osteosarcoma represents the most common bone tumor, and it is the second most
fatal cancer in children and young adults. However, despite the clinical benefit of chemotherapy,
osteosarcoma patients still have a poor prognosis due to the common onset of drug resistance, as
well as the disease’s growth and metastasis frequency. Thus, understanding the processes underlying
the phenomenon of resistance represents a challenge in the field of oncology and may lead to new
approaches to overcome resistance. This study highlights a different mitochondrial phenotype in
doxorubicin-resistant cancer cells and suggests targeting the altered pathway to re-sensitize the
resistant clones to the drug. Taken together, these results contribute to identifying the mitochondrial
metabolism changes and to developing combined approaches with the final goal of overcoming
doxorubicin resistance in osteosarcoma.

Abstract: Osteosarcoma is considered the most common bone tumor affecting children and young
adults. The standard of care is chemotherapy; however, the onset of drug resistance still jeopardizes
osteosarcoma patients, thus making it necessary to conduct a thorough investigation of the possible
mechanisms behind this phenomenon. In the last decades, metabolic rewiring of cancer cells has
been proposed as a cause of chemotherapy resistance. Our aim was to compare the mitochondrial
phenotype of sensitive osteosarcoma cells (HOS and MG-63) versus their clones when continuously
exposed to doxorubicin (resistant cells) and identify alterations exploitable for pharmacological ap-
proaches to overcome chemotherapy resistance. Compared with sensitive cells, doxorubicin-resistant
clones showed sustained viability with less oxygen-dependent metabolisms, and significantly re-
duced mitochondrial membrane potential, mitochondrial mass, and ROS production. In addition, we
found reduced expression of TFAM gene generally associated with mitochondrial biogenesis. Finally,
combined treatment of resistant osteosarcoma cells with doxorubicin and quercetin, a known inducer
of mitochondrial biogenesis, re-sensitizes the doxorubicin effect in resistant cells. Despite further
investigations being needed, these results pave the way for the use of mitochondrial inducers as a
promising strategy to re-sensitize doxorubicin cytotoxicity in patients who do not respond to therapy
or reduce doxorubicin side effects.

Keywords: osteosarcoma; cancer; chemotherapy; doxorubicin; drug resistance; metabolism; mito-
chondria; targeting mitochondrial alterations
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1. Introduction

Osteosarcoma is a severe bone tumor mostly affecting children and adolescents [1]. Its
worldwide incidence rate reaches four cases per million per year [2,3]. Current therapeutic
management includes surgery, radiotherapy, and chemotherapy [2]. The standard of
care for chemotherapy is represented by methotrexate, cisplatin, and doxorubicin, or a
combination of these three agents [4].

Doxorubicin (DXR) is a chemotherapeutic agent intercalating DNA and belongs to
the anthracycline family. The mechanism of action consists of the inhibition of DNA
topoisomerase II, which blocks DNA replication hampering the recombination of DNA
double-strand. Recently, another mode of action for DXR has been proposed: this mecha-
nism involves increased reactive species of oxygen (ROS) levels which causes DNA damage
and leads to cell death [5]. The successful use of doxorubicin in clinical therapy has been
jeopardized by severe toxicity, such as cardiotoxicity [6], and the onset of drug resistance [7].

The main known mechanisms of DXR resistance involve increased drug efflux due to
P-glycoprotein expression, which is also associated with a worse outcome [8,9], decreased
drug influx as well as drug compartmentalization into lysosomes [10], and enhanced DNA
repair or detoxification systems [11]. In the last decades, even the deregulation of energy
metabolism has been described as a hallmark of cancer and drug resistance. This phe-
nomenon is also called metabolic reprogramming and it involves several alterations in
metabolic pathways, such as increased glycolysis, a shift toward the pentose phosphate
pathway, as well as enhanced lipid synthesis, higher exploitation of glutamine pathway, and
mitochondrial alterations [12]. Several studies highlighted the central role that mitochon-
dria play in cancer development and progression [13], and in the onset of drug resistance,
suggesting that targeting the mitochondrial pathway could represent a promising strategy
to overcome drug resistance [7].

Previous studies in our laboratory already identified that mitochondrial alterations
are strictly linked with chemotherapy resistance. In particular, we demonstrated that
ovarian and osteosarcoma cisplatin-resistant cancer cells presented defects in mitochondrial
morphology, in particular reduced mitochondrial mass, suggesting an enhanced activation
of mitophagy and a central role played by mitochondria in cisplatin resistance [14,15].
Similarly, in DXR-resistant cells with a multidrug-resistant (MDR) phenotype, we also
demonstrated a lower mitochondrial activity [16].

In light of these considerations, our hypothesis is that DXR resistance in osteosarcoma
cell models could be driven also by mitochondrial dysfunctions. The purpose of this
paper is to characterize the mitochondrial phenotype of two osteosarcoma cell lines, MG63
and HOS, analyzing both sensitive and DXR-resistant clones with the aim of identifying
alterations in resistant clones that could be exploited for cancer therapy.

2. Materials and Methods
2.1. Cell Lines

The HOS and MG63 cell lines were kindly provided by IRCCS Istituto Ortopedico Riz-
zoli (IOR, Bologna, Italy), and derived from human osteosarcoma. The cell lines included
in our research are commercially available; for this reason, it is not necessary to obtain
ethical approval. The DXR-resistant variants HOS DXR 10 ng/mL, HOS DXR 30 ng/mL,
HOS DXR 100 ng/mL, as well as MG63 DXR 30 ng/mL and MG63 DXR 100 ng/mL, were
obtained by continuous exposure to increasing DXR (Teva Pharmaceutical Industries, Tel
Aviv, Israel) concentrations, as reported by Avnet and coworkers [10]. Approximately
2–3 weeks (4–5 passages) were required to establish adequate growth at each DXR concen-
tration. The cells were grown in Iscove’s Modified Dulbecco’s Medium (IMDM) medium
(Corning, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS) (Thermo
Fisher Scientific, Waltham, MA, USA), 4 mM glutamine (Corning, New York, NY, USA),
100 U/mL penicillin, and 100 µg/mL streptomycin (Corning, New York, NY, USA), in
humidified condition at 5% CO2 and 37 ◦C. Cells were collected every 2 days with the
minimum amount of 0.25% trypsin-0.2% EDTA (Euroclone, Milan, Italy).
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2.2. Mitochondrial Network by Confocal Microscopy

Cells were grown on glass coverslips for 24 h in a complete medium. Then, cells were
fixed with paraformaldehyde 4% in phosphate buffer saline solution (PBS), stained with
20 nM Mitotracker Orange (ex: 554 nm/em: 576 nm) (Thermo Fisher Scientific, Waltham,
MA, USA) for 30 min and Hoechst 33342 (Thermo Fisher Scientific, Waltham, MA, USA)
for 20 min. Images were acquired by confocal microscopy LSM 800 and software ZEN 2.1
60× objective and analyzed by ImageJ version 1.53t (U.S. National Institutes of Health,
Bethesda, MA, USA).

2.3. Mitochondrial Membrane Potential by Flow Cytometry

Cells were seeded in 12-well plates and grown in complete medium, washed with PBS,
detached with 0.25% trypsin-0.2% EDTA and centrifuged for 5 min at 1200 rpm. Cells were
stained with rhodamine-123 10 µM (Sigma-Aldrich, St. Louis, MO, USA) and incubated
for 15 min. Fluorescence intensity was analyzed using an Epics XL flow cytometer. Mean
fluorescence intensity (MFI) values were obtained using the EXPO 32 software.

2.4. Mitochondrial Mass by Flow Cytometry

Cells were seeded in 12-well plates and grown in complete medium, washed with
PBS, detached with 0.25% trypsin-0.2% EDTA and centrifuged for 5 min at 1200 rpm. Cells
were resuspended with nonyl acridine orange (NAO) 1.25 µM (Sigma-Aldrich, St. Louis,
MO, USA) and incubated for 15 min. Fluorescence intensity was analyzed using an Epics
XL flow cytometer version 3.0. Mean fluorescence intensity (MFI) values were obtained
using the EXPO32 software (Applied Cytometry Systems, Dinnington, Sheffield, UK).

2.5. Quantitative Real-Time PCR

Total mRNA was isolated with TRIzol (Themo Fisher, Waltham, MA, USA) as previ-
ously described by Chomczynski and Sacchi [17] and quantified with Nanodrop. The rela-
tive expression of each gene was determined by quantitative real-time PCR (Eco™ Illumina,
Real-Time PCR system, San Diego, CA, USA) using One Step SYBR PrimeScript RT-PCR
Kit (Takara Bio, Otsu, Shiga, Japan) and the primers designed as follow: PGC-1α: F 5′-
ACACAGTCGCAGTCACAACAC-3′ R 5′-GGAGTGGTGGGTGGAGTTAGG-3′; NRF1: F
5′-GCTTGCGTCGTCTGGATGG-3′ R 5′-GTAACCCTGATGGCACTGTCTC-3′; NRF2: F 5′-
TTCCTTCAGCAGCATCCTCTCC-3′ R 5′-AATCTGTGTTGACTGTGGCATCTG-3′; TFAM:
F 5′-AACAACGAAAATATGGTGCTGAGG-3′ R 5′-CAAGTATTATGCTGGCAGAAGTCC-
3′; BNIP3: F 5′-GAATTTCTGAAAGTTTCCTTCCA-3′ R 5′-TTGTCAGACGCCTTCCAATA-
3′. Linearity and efficiency of PCR amplifications were assessed using standard curves gen-
erated by serial dilution of complementary DNA; melt-curve analysis was used to confirm
the specificity of amplification and the absence of primer dimers. All genes were normalized
to CALNEXIN or GAPDH designed as follows: CALNEXIN: F 5′-GAAGGGAAGTGGTTGCTGTG-
3′; R 5′-GATGAAGGAGGAGCAGTGGT-3′; GAPDH: F 5′-AATCCCATCACCATCTTCCA-3′ R
5′-TGGACTCCACGACGTACTCA-3′. Expression levels of the indicated genes were calcu-
lated by the ∆∆Ct method using, respectively, the dedicated StepOne software version 2.1
(Applied Biosystems, Waltham, MA, USA) or Eco™ Software v4.0.7.0 (Illumina Inc., San
Diego, CA, USA).

2.6. Western Blotting

The Lowry method was used to evaluate the protein content after the cells had been
seeded in 6-well plates, cultured in complete media, and lysed using ice-cold lysis buffer
supplemented with protease inhibitor cocktails (Roche Molecular Biochemicals, Mannheim,
Germany) (Biorad DC Protein Assay, MA, USA). In the running buffer, 25 µg of protein
from each sample was placed onto a polyacrylamide gel and electrophoretically separated.
The proteins were blotted onto a Hybond-P PVDF membrane following electrophoresis
(Amersham Biosciences, Buckinghamshire, UK). The membrane was exposed to anti-
TOM20 (mouse, 1:1000; AbCam, Cambridge, UK), anti-VDAC1 (mouse, 1:1000; AbCam,
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Cambridge, UK), and anti-BNIP3 (rabbit, 1:1000; AbCam, Cambridge, UK) after blocking
with a 10% skim milk solution. Following washing, the membrane was incubated with HRP-
conjugated anti-rabbit secondary antibody (1:3500; PerkinElmer, MA, SUA) or anti-mouse
secondary antibody (1:10000; PerkinElmer, MA, USA). According to the manufacturer’s
instructions, the signal was seen using an improved chemiluminescent kit from Amersham
Biosciences, and then it was examined using a Molecular Imager VersaDoc MP 4000 (Biorad,
Hercules, CA, USA). Proteins were normalized to β-ACTIN (mouse, 1:7000, AbCam,
Cambridge, UK) and GAPDH (rabbit, 1:2000, Cell Signaling, Danvers, MA, USA).

2.7. Mitochondrial ROS Levels by Flow Cytometry

A constant number of cells were seeded, and after 48 h, 5 µM Mitosox (Invitrogen,
Waltham, MA, USA) was added and incubated for 30 min at 37 ◦C. Cells were then washed
in PBS solution, detached using 0.05% trypsin and 0.02% EDTA, centrifuged for 10 min
at 2000 rpm, and resuspended in a solution of PBS, 2% FBS, and 0.02% sodium azide
(Sigma-Aldrich, St. Louis, MO, USA). Cells were then examined directly using a 488 Argon
laser-equipped Epics XL Coulter Systems (Beckman Coulter, Brea, CA, USA). Dead cells
were electronically gated out using forward versus side scatter profiles, and a minimum
of 104 cells of interest were then examined further. Analysis using the EXPO 32 software
produced the percentages of the fluorescent cells’ values (Beckman Coulter, Brea, CA, USA).

2.8. Apoptosis Detection by Flow Cytometry

Cells were seeded in 6-well plates and grown in complete medium, washed with PBS,
detached with 0.25% trypsin-0.2% EDTA and centrifuged for 5 min at 1200 rpm. Cells were
stained with FITC Annexin V (InVitrogen, Waltham, MA, USA) and Propidium Iodide
according to manufacturer’s instructions, and then diluted with Annexin V-binding buffer
(InVitrogen, Waltham, MA, USA). Fluorescence intensity was analyzed using BD FACS
Aria instrument.

2.9. Cell Viability Assays
2.9.1. Crystal Violet Assay

Crystal Violet Assay exploits the ability of this dye to bind the DNA and proteins of
adherent cells. For the assay, cells were seeded in 96-well plates, and, following overnight
incubation, cells were treated with DXR (1-10-50-100-250-500 ng/mL) and quercetin (0.1-1-5-
10-25-50-100-200 µM). After 24, 48, and 72 h of treatment, cells were fixed with paraformalde-
hyde 4% in PBS. Then, cells were stained with Crystal Violet (Sigma-Aldrich, St. Louis, MO,
USA) solution 0.1 % and resuspended in acetic acid 10% in water. The absorbance (Abs)
was measured at 590 nm using a Victor3X multilabel plate counter (Wallac Instruments,
Turku, Finland).

2.9.2. Trypan Blue Assay

Cells were plated on 12-well plates and, following overnight incubation, were exposed
to different rotenone treatments (0.01–0.1–1 µM) according to the experimental protocol.
After treatments, cells were washed, detached with 0.25% trypsin-0.2% EDTA, and sus-
pended in trypan blue (Sigma-Aldrich, St. Louis, MO, USA) at a 1:1 ratio in a medium
solution. Cells were counted using a chamber Burker hemocytometer.

2.9.3. Hoechst Cell Count in Hypoxic Conditions

Cells were plated on 96-well plates and, following overnight incubation, were exposed
to 100 µM cobalt chloride (Sigma-Aldrich, St. Louis, MO, USA). 24 and 48 h from incubation
with cobalt chloride, cells were stained with Hoechst 33258 2.25 µg/mL (Thermo Fisher
Scientific, Waltham, MA, USA) for 20 min. To induce hypoxia from oxygen deprivation,
cells were plated on 96-well plates and, following overnight incubation, were moved to the
Environmental Chamber of ImageXpress Pico Automated Cell Imaging System (Molecular
Devices, San Jose, CA, USA) at 2% O2 concentration. For both the chemically induced
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hypoxia and hypoxia from oxygen deprivation, cells were stained with Hoechst 33258
2.25 µg/mL for 20 min at different time points. Images were acquired by fluorescent
microscopy ImageXpress Pico Automated Cell Imaging System with a 10× objective.
Analysis software detected the total number of cells based on Hoechst positive nuclei.

2.10. Statistical Analysis

The statistical analysis of experimental results was performed using GraphPad Prism
version 7 (GraphPad, San Diego, CA, USA.). An appropriate post-hoc test (Bonferroni,
Tukey—Kramer, or Šídák multiple comparison tests) was used after the one-way or two-
way analysis of variance (ANOVA) of the data. For the purpose of assessing statistical
significance, a p-value of less than 0.05 was taken into account.

3. Results
3.1. DXR-Resistant Clones Demonstrate Changes in Mitochondrial Morphology and Loss in
Mitochondrial Membrane Potential

Mitochondrial morphology can be modified in response to environmental and cellular
stresses, such as DXR treatment. This process is regulated by fusion and fission dynamics
and plays a pivotal role in cellular activity [18].

The evaluation of mitochondrial network of sensitive and resistant osteosarcoma
cell lines by confocal microscopy was performed through the orange-fluorescent probe
Mitotracker Orange, which stains mitochondria with a membrane potential-dependent
accumulation. Figure 1a shows the mitochondrial network of sensitive MG63 and resistant
clones, DXR 30 ng/mL, and DXR 100 ng/mL, while Figure 1b refers to HOS and relative
DXR-resistant clones, DXR 10 ng/mL, DXR 30 ng/mL, and DXR 100 ng/mL. Images
suggested no difference in the mitochondrial network, which is similar and filamentous
in both sensitive and resistant cancer cells. However, the membrane potential is lower in
resistant clones compared to sensitive cells.

To confirm the data obtained by confocal microscopy, the mitochondrial membrane
potential of sensitive and resistant osteosarcoma cells was evaluated in both MG63 and
HOS cell lines through flow cytometry analysis. Cells were stained with Rhodamine 123,
a fluorescent probe sequestered by active mitochondria in a membrane potential fash-
ion. Figure 1c,d shows that all resistant clones significantly reduced membrane potential
compared to sensitive clones, thus confirming results obtained with confocal microscopy
images.

These preliminary results suggest an alteration in the mitochondrial status of DXR-
resistant osteosarcoma cells, indicating that further investigations are needed to understand
the molecular mechanisms responsible for these changes.

3.2. The Mitochondrial Mass Was Lower in DXR-Resistant Clones than in Sensitive Cells:
Is Mitochondrial Biogenesis or Mitophagy the Involved Pathway?

Mitochondria are dynamic organelles and changes in mitochondrial mass reflect
unbalance between mitochondrial biogenesis and mitophagy [19]. Increased or decreased
mitochondrial mass has been correlated with cancer [20]. Nonyl acridine orange (NAO),
a fluorescent probe binding cardiolipin, was used to assess the mitochondrial mass of
sensitive and DXR osteosarcoma cells by flow cytometry. Results showed a significant
decrease of NAO fluorescence percentage in all resistant clones compared to sensitive
cancer cells (Figure 2a,b).
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Figure 1. (a) Images representing mitochondrial network morphology of sensitive and resistant
clones: MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL. (b) Images representing mito-
chondrial network morphology of sensitive and resistant clones: HOS, HOS DXR 10 ng/mL, HOS
DXR 30 ng/mL, HOS DXR 100 ng/mL. Mitotracker Orange (ex:554 nm/em:576 nm) was used to
stain mitochondria, while Hoechst 33342 was used to stain nuclei. Images were acquired by confocal
microscopy LSM 800 and software ZEN 2.1 60× objective. Scale bar = 20 µm. (c) Evaluation of
mitochondrial membrane potential by flow cytometry. Representative cytograms and graphical
quantification showing the percentage of fluorescence intensity of Rhodamine 123 (10 µM) in MG63,
MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL. The horizontal dotted line refers to normalized
untreated cells. (d) Evaluation of mitochondrial membrane potential by flow cytometry. Represen-
tative cytograms and graphical quantification showing the percentage of fluorescence intensity of
Rhodamine 123 (10 µM) in HOS, HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, HOS DXR 100 ng/mL
cells. The horizontal dotted line refers to normalized untreated cells. Data represent mean ± SD of
three different experiments. **** p < 0.0001, resistant vs. sensitive cells.
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Figure 2. Evaluation of mitochondrial mass by flow cytometry and western blot. (a) Representative
cytograms and graphical representation showing the percentage of fluorescence intensity of NAO
1.25 µM in MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL cells. The horizontal dotted
line refers to normalized untreated cells. (b) Representative cytograms and graphical representation
showing the percentage of fluorescence intensity of NAO 1.25 µM in HOS, HOS DXR 10 ng/mL,
HOS DXR 30 ng/mL, HOS DXR 100 ng/mL cells. The horizontal dotted line refers to normalized
untreated cells. Data represent mean ± SD of three different experiments. **** p < 0.0001, resistant vs.
sensitive cells. (c) Representative images and graphical quantification of protein expression of VDAC1
and TOM20, normalized to GAPDH in MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL
cells. The horizontal dotted line refers to normalized untreated cells. (d) Representative images and
graphical quantification of protein expression of VDAC1 and TOM20, normalized to β-actin in HOS,
HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, HOS DXR 100 ng/mL cells. The horizontal dotted line
refers to normalized untreated cells. The uncropped Western Blot images can be found in Figure S2.
Data represent mean± SD of four different experiments. * p < 0.05, ** p < 0.01, **** p < 0.0001, resistant
vs. sensitive cells.
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To confirm these data, we even assessed the protein expression of VDAC1 and TOM20,
which are already considered specific markers of mitochondrial mass. As it is possible to
observe in Figure 2c,d, the expression of both proteins is significantly decreased in resistant
cells with respect to their sensitive counterparts. The uncropped Western Blot images can
be found in Figures S1 and S2.

Considering that the equilibrium between mitochondrial biogenesis and mitophagy
regulates mitochondrial mass [21], we analyzed some genes involved in both these path-
ways to dissect which is the process involved in mitochondrial alteration. For mitochondrial
biogenesis, we checked the mRNA levels of PGC1-α, TFAM, and NRF-2. As Figure 3a,b
shows, the expression of both PGC1-α and TFAM decreases in MG63 DXR-resistant cells,
and TFAM levels are lower in HOS DXR-resistant clones. These results suggest that re-
duced biogenesis could be responsible for the observed reduction of mitochondrial mass
in resistant clones. As further confirmation, the protein expression on BNIP3, a marker
of mitophagy [22], downregulated in the MG63-DRX resistant clones, thus excluding the
involvement of mitophagy as the process responsible for reduced mitochondrial mass
(Figure 3c). The uncropped Western Blot images can be found in Figure S2.
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Figure 3. (a) Relative mRNA expression levels of genes related to mitochondrial biogenesis in
MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL cells. mRNA levels of all genes are
normalized to GAPDH. The horizontal dotted line refers to normalized untreated cells. (b) Relative
mRNA expression levels of genes related to mitochondrial biogenesis in HOS, HOS DXR 10 ng/mL,
HOS DXR 30 ng/mL, HOS DXR 100 ng/mL cells. mRNA levels of all genes are normalized to
CALNEXIN. The horizontal dotted line refers to normalized untreated cells. (c) Representative images
and graphical quantification of protein expression of BNIP3, normalized to GAPDH in MG63, MG63
DXR 30 ng/mL, and MG63 DXR 100 ng/mL cells. The horizontal dotted line refers to normalized
untreated cells. The uncropped Western Blot images can be found in Figure S3. (d) Relative mRNA
expression levels of BNIP3 in HOS, HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, HOS DXR 100 ng/mL
cells. mRNA levels of all genes are normalized to CALNEXIN. The horizontal dotted line refers to
normalized untreated cells. Data represent media ± SD of three different experiments. * p < 0.05,
** p < 0.01, *** p < 0.001, resistant vs. sensitive cells.
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Furthermore, we evaluated the mRNA levels of BNIP3 in HOS cell lines, as reported in
Figure 3d. The results showed that only HOS DXR 30 ng/mL cancer cells slightly increase
the expression, but not in a significant way.

3.3. DXR Osteosarcoma Cells Show Decreased mtROS Levels and Different Response to Hypoxia

Cellular homeostasis is also regulated by the oxidative status, and alterations such
as an increase in ROS production represent a factor involved in cell death. In the context
of chemotherapy, it is known that the mode of action of several chemotherapeutic agents,
such as cisplatin and DXR, is related to oxidative stress induction, which leads to cell death.
On the other side, one of the mechanisms of drug resistance is the increased antioxidant
system, which counteracts the enhanced chemotherapy-induced oxidative stress [23], and
that might be obtained by reducing the biogenesis ROS-producing mitochondria. Therefore,
we analyzed the ROS content. As confirmation, results in Figure 4a,b showed ROS decrease
in DXR-resistant osteosarcoma cells compared to sensitive counterparts.
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Figure 4. (a) Evaluation of ROS levels by flow cytometry. Representative cytograms and relative
quantification showing the fluorescence intensity of Mitosox 5 µM in MG63, MG63 DXR 30 ng/mL,
and MG63 DXR 100 ng/mL cells. The horizontal dotted line refers to normalized untreated cells.
(b) Evaluation of ROS levels by flow cytometry. Representative cytograms and relative quantification
showing the fluorescence intensity of Mitosox 5 µM in HOS, HOS DXR 10 ng/mL, HOS DXR
30 ng/mL, HOS DXR 100 ng/mL cells. The horizontal dotted line refers to normalized untreated
cells. Data represent media ± SD of three different experiments. * p < 0.05, ** p < 0.01, *** p < 0.001,
resistant vs. sensitive clones.
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The reduced mitochondrial mass and biogenesis and the reduced ROS production in
resistant cells suggest that these cells have reduced mitochondrial oxidative phosphoryla-
tion. To validate this hypothesis, we measured the cellular response to low-oxygen (2%) or
chemically induced hypoxia (with CoCl2). CoCl2 stabilizes hypoxia-inducible factors 1α
and 2α under normoxic conditions and simulates a hypoxic microenvironment [24]. As
confirmation of the hypoxia-like metabolic state in CoCl2-treated cells, mRNA expression
levels of the indirect hypoxia marker CAIX [25] were induced in all cells tested (Figure A1).
We then counted the number of cells after incubation with both low oxygen tension and
CoCl2. Before 144 h, cell growth was mostly unaffected by both types of hypoxia, with the
exception of sensitive cells treated with CoCl2 (Figure A2). In contrast, after longer exposure
(at 144 h under low O2 tension), all cell types were significantly affected compared with the
normoxic condition (Figure 5c–j). Overall, it can be concluded that resistant cells appear
to be much less dependent on oxygen metabolism than sensitive cells, as attested by both
CAIX expression levels and cell numbers at 48 h when treated with CoCl2 (Figure 5a,b).

3.4. DXR-Resistant Osteosarcoma Cells Show Different Behavior under Metabolic Stresses

DXR-resistant osteosarcoma cells revealed a different mitochondrial profile with re-
spect to their sensitive counterpart. Accumulating evidence showed that mitochondrial
dysfunctions can be highlighted when oxidative metabolism is increased, such as glucose
deprivation and galactose addition in the medium. The next step of this work was to
evaluate the response of sensitive and DXR-resistant cancer cells under two metabolic
stresses, glucose, and glutamine deprivation. MG63 DXR-resistant clones significantly
reduced cell viability after 24 h in both glucose-free/galactose 5 mM, and glutamine-free
media (Figure 6a,b). On the other side, among the resistant HOS clones, only HOS DXR
100 ng/mL cells resulted to be affected by these metabolic stresses (Figure 6c,d).

These results, taken together, suggest mitochondrial dysfunctions in DXR-resistant
cancer cells, which are more dependent on glucose and glutamine pathways with respect
to sensitive counterparts.

3.5. Targeting Mitochondrial Biogenesis to Restore DXR Sensitivity

Our results highlighted a different mitochondrial profile of DXR-resistant osteosar-
coma cells compared to sensitive cells, in particular demonstrating reduced mitochon-
drial membrane mass, potential, and activity. Further investigations assessed that the
process responsible for decreased mitochondrial mass in resistant cells is likely the reduc-
tion of mitochondrial biogenesis. In line with these observations, we reasoned to verify
whether the induction of mitochondrial biogenesis was able to re-sensitize DXR effect in
osteosarcoma-resistant clones. The previous literature reported that the natural compound
quercetin is an inducer of mitochondrial biogenesis [26]. We evaluated cell viability of
both sensitive and DXR-resistant cancer cells following 24, 48, and 72 h of the combined
treatment with quercetin 0.1–200 µM and DXR, at the respective concentration of each
resistant cancer cell lines (DXR 10–30–100 ng/mL). Results showed that the association
with quercetin re-sensitized the effect of DXR in MG63 and HOS DXR-resistant cancer
cells (Figures 7 and 8, Table 1, Table 2, Tables S1 and S2), by enhancing the percentage of
late apoptotic cells (Figure A3). In addition, we also demonstrated that quercetin 10 µM
enhanced TFAM expression following 72 h of treatment (Figure A4).
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Figure 5. Analysis of cell growth of sensitive and resistant clones under hypoxia for various exposure
times. We counted the total number of MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL
cells (a,c–f) and HOS, HOS DXR 10 ng/mL, and HOS DXR 30 ng/mL cells (b,g–j) after CoCl2 (a,b)
low O2 tension (2%) (c–j) treatments by Hoechst 33258 staining with automated cell count system
and at different time points, 48 (a–e), 72 (b–f), 96 (c–g), and 144 h (d–h). Data represent mean ± SD of
four-eight different experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, hypoxia vs. normoxia conditions;
# p < 0.05, CoCl2 vs. untreated conditions, *** p < 0.001, **** p < 0.0001, resistant vs. sensitive clones
after CoCl2 treatment.
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Figure 6. (a,b) Evaluation of cell viability by Trypan blue assay in MG63, MG63 DXR 30 ng/mL and
MG63 DXR 100 ng/mL cells after 24 h in glucose-free/5 mM galactose medium (a) and glutamine
deprivation (b). The horizontal dotted line refers to normalized untreated cells. (c,d) Evaluation of
cell viability by Trypan blue assay in HOS, HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, and HOS DXR
100 ng/mL cells after 24 h in glucose-free/5 mM galactose medium (c) and glutamine deprivation (d).
The horizontal dotted line refers to normalized untreated cells. Data represent mean ± SD of four
different experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 resistant vs. sensitive cells.
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Figure 7. Evaluation of cell viability in MG63, MG63 DXR 30 ng/mL, and MG63 DXR 100 ng/mL fol-
lowing treatment with DXR (a–c) and quercetin combined with DXR 30 and 100 ng/mL, respectively
(d–f) for 24 (a–d), 48 (b–e), and 72 h (c–f). Data represent mean ± SD of three different experiments.
** p < 0.01, **** p < 0.0001, resistant vs. sensitive cells; # p < 0.05, #### p < 0.0001, DXR100 vs. DXR
30 clones.
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Figure 8. Evaluation of cell viability in HOS, HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, and HOS
DXR 100 ng/mL following treatment with DXR (a–c) and quercetin combined with DXR 10, 30 and
100 ng/mL, respectively, (d–f) for 24 (a–d), 48 (b–e), and 72 h (c–f). Data represent mean± SD of three
different experiments. ** p < 0.01, **** p < 0.0001, resistant vs. sensitive cells; ## p < 0.01, ### p < 0.001,
#### p < 0.0001, DXR 100 vs. DXR 30 clones, or DXR 30 vs. DXR 10, or DXR 100 vs. DXR 10 clones.

Table 1. Cytotoxic effect of quercetin (calculated as IC50) after 24, 48, and 72 h of treatment in MG63,
MG63 DXR30 ng/mL, and MG63 DXR100 ng/mL cell lines.

Cell Line
IC50 Quercetin (µM)a

24 h 48 h 72 h

MG63 124.87 ± 9.03 68.42 ± 4.53 64.71 ± 3.87

MG63 DXR30 ng/mL 110.87 ± 2.46 47.03 ± 8.13 * 35.70 ± 2.34 **

MG63 DXR100 ng/mL 100.62 ± 7.50 ◦ 84.41 ± 7.54 56.84 ± 8.60
a Values were determined by regression analysis and are expressed as mean ± SD of three different experiments.
* p < 0.05, ** p < 0.01, MG63 DXR30 ng/mL vs. MG63 cells; ◦ p < 0.05, MG63 DXR100 ng/mL vs. MG63 cells.

Table 2. Cytotoxic effect of quercetin (calculated as IC50) after 24, 48, and 72 h of treatment in HOS,
HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, and HOS DXR 100 ng/mL cell lines.

Cell Line
IC50 Quercetin (µM) a

24 h 48 h 72 h

HOS 339.23 ± 6.70 226.80 ± 10.07 224.24 ± 4.72

HOS DXR10 ng/mL 536.25 ± 11.46 **** 265.30 ± 0.95 *** 286.04 ± 1.00 ****

HOS DXR30 ng/mL 458.51 ± 3.02 ◦◦◦◦ 270.48 ± 3.57 ◦◦◦◦ 262.12 ± 3.39 ◦◦◦◦

HOS DXR100 ng/mL 792.65 ± 7.36 #### 236.77 ± 4.16 248.01 ± 2.88 ####

a Values were determined by regression analysis and are expressed as mean ± SD of three different experiments.
*** p < 0.001, **** p < 0.0001, HOS DXR 10 ng/mL vs. HOS cells; ◦◦◦◦ p < 0.0001, HOS DXR 30 ng/mL vs. HOS
cells; #### p < 0.0001, HOS DXR 100 ng/mL vs. HOS cells.

These preliminary data suggested that the stimulation of mitochondria biogenesis
could improve DXR efficacy in resistant cells; therefore, the combined treatment between
mitochondrial biogenesis inducers and the chemotherapeutic drug represents a promising
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pharmacological approach to overcoming drug resistance. However, further studies will be
necessary to identify a selective inducer of this pathway.

4. Discussion

Mitochondria play a pivotal role in cell life, coordinating several signaling processes
such as the tricarboxylic acid (TCA) cycle, fatty acid oxidation (FAO), and oxidative phos-
phorylation (OXPHOS) [27], and regulating energy homeostasis and cell death via apoptosis.
Recent studies correlated mitochondria and cancer, suggesting that mitochondrial dys-
functions are responsible for tumor development and metastasis progression and also for
alterations in chemotherapy’s response. Evidence reported that several chemotherapeutic
agents accumulate into mitochondria, thus causing mtDNA damage [28]. These organelles
are considered one of the main targets of DXR, through abnormalities in mitochondrial
shape and functionality and mitochondrial death mediated by apoptosis.

Considering the pivotal role of mitochondria in tumor development and in DXR
pharmacological activity, this work aimed to characterize the mitochondrial phenotype of
sensitive and DXR-resistant osteosarcoma cells. Once alterations were identified, the goal
was to target them to restore drug sensitivity in resistant cells.

Several studies reported that alterations in the mitochondrial network, membrane
potential, and mass are correlated with chemoresistance or cancer aggressiveness in dif-
ferent types of tumors such as colon, breast, and gastric cancers [29–31]. These aspects
reflect the functional and healthy state of these organelles and could become indicators
of an unhealthy and dysfunctional status. Our results showed that DXR-resistant cancer
cells decreased both the mitochondrial number and the membrane potential, although
their morphology remains unchanged. The mitochondrial membrane potential (∆Ψm) is
a thorough indicator of mitochondrial function, and its dysregulation causes an increase
in reactive oxygen species production, with consequent oxidative damage to DNA and
other cellular structures, and ultimately results in cell death [32,33]. It is interesting to
note that several cell models have shown a decrease in mitochondrial membrane potential
after exposure to DXR in vitro [34], and our data are in line with these findings. In fact, all
DXR-resistant osteosarcoma cells showed a reduced mitochondrial membrane potential
with respect to the sensitive counterpart.

It is known that DXR is a redox-active substance that can interact with a number
of enzymes, such as mitochondrial complex I, to produce large quantities of ROS and
the semiquinone radical [35]. Our results indicate that mitochondria of resistant cells
present lower levels of mitochondrial ROS production. Furthermore, DXR-resistant os-
teosarcoma cells also showed a reduction of mitochondrial mass, confirmed both with
NAO fluorescence and the decreased expression of two mitochondrial markers, VDAC1
and TOM20. It is known that mitochondrial mass is regulated by the equilibrium between
mitochondrial biogenesis and mitophagy. Alterations of these processes have been cor-
related with chemoresistance. Peroxisome proliferator-activated receptor-coactivator 1
(PGC-1) and mitochondrial transcription factor A (TFAM), two mitochondrial transcription
factors, mediate an increase in mitochondrial number in response to cellular injury [36].
According to several studies, the mitochondrial biogenesis pathway’s genes and proteins
are upregulated, and these changes cause cancer chemoresistance. Increased expression
of TFAM and PGC-1α was assessed in tumors unresponsive to cisplatin and sorafenib;
it was also demonstrated that the depletion of these proteins restored the sensitivity to
the drugs [37–39]. On the other side, a recent study in our laboratory demonstrated that
the increased expression of BNIP3, which is a protein involved in the mitophagy process,
is related to cisplatin resistance. Both genetic and pharmacological approaches through
inhibition showed a re-sensitization of resistant cancer cells to the chemotherapeutic agent,
supporting the idea that targeting mitochondrial dynamics could be a valuable strategy
in chemosensitization. Interestingly, our data demonstrated that DXR-resistant osteosar-
coma cells decreased mRNA levels of TFAM gene compared to their sensitive counterpart,
thus suggesting that the downregulation of mitochondrial biogenesis could be the process
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involved in the DXR resistance onset. In line with this, the evaluation of the mitophagic
marker BNIP3 shows that resistant cells didn’t present significant alterations, prompt-
ing us to exclude an increased mitophagy as the mechanism responsible for a reduced
mitochondrial mass. This result is not very surprising because in previous studies, we
have already observed that osteosarcoma cells do not tend to activate autophagy as an
adaptation mechanism to stressful conditions [10,40].

Having identified the downregulation of mitochondrial biogenesis genes as a possible
mechanism of resistance, we sought to combine DXR treatment with a drug that may
induce the activation of this process and thus re-sensitize DXR-resistant cells. Quercetin is a
natural flavonoid already known to be an inducer of mitochondrial biogenesis [41]. In our
DXR-resistant cell model, combining DXR with quercetin re-sensitized the resistant cells
to DXR. However, quercetin is also a monocarboxylate transporter (MCT) inhibitor [42].
Since MCTs play a significant role in maintaining intracellular pH by transporting excess
protons outside cancer cells, it is also possible that quercetin treatment acidifies the cytosol
in resistant cells. The subsequent increase of the pH gradient at the plasma membrane may
facilitate the cellular intake of DXR, which is a weakly basic molecule, and thus increase
its intracellular accumulation and toxicity [10]. However, in this study, we also showed
that quercetin treatment increases TFAM levels in MG63-resistant cells, confirming that,
in these cells, quercetin treatment has the potential to restore DXR sensitivity by inducing
mitochondrial biogenesis. In conclusion, our preliminary results pave the way for TFAM
inducers or other mitochondrial inducers as possible DXR sensitizers. The combination
of compounds acting on different targets represents a promising strategy in the context of
chemoresistance therapy because it allows for a reduction in the dosage of single drugs, thus
alleviating severe toxicities and at the same time enhancing the therapeutic effectiveness.

5. Conclusions

Taken together, these data highlighted a different mitochondrial profile between
sensitive and DXR-resistant osteosarcoma cells. In particular, resistant clones showed a
decreased mitochondrial mass and reduced expression of mitochondrial biogenesis genes.
The phenotyping of the mitochondrial profile allows the identification of altered pathways,
which can be exploited by novel pharmacological approaches that selectively target mito-
chondrial dysfunctions in resistant cancer cells. In this work, the treatment of osteosarcoma
cells with quercetin, a natural compound able to induce mitochondrial biogenesis, caused a
re-sensitization of DXR-resistant cells to the chemotherapeutic agent. These preliminary
results open the window to the development of promising pharmacological strategies to
overcome DXR resistance in osteosarcoma.
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Figure A1. (a) Relative mRNA expression levels of CAIX gene in MG63, MG63 DXR 30 ng/mL, and
MG63 DXR 100 ng/mL cells following treatment with CoCl2. mRNA levels of CAIX are normalized to
β-ACTIN. The horizontal dotted line refers to normalized untreated cells. Data represent mean ± SD
of four different experiments. ## p < 0.01, treated vs. untreated sensitive cells. ** p < 0.01, *** p < 0.001,
**** p < 0.0001 treated vs. untreated resistant cells. (b) Relative mRNA expression levels of CAIX
gene in HOS, HOS DXR 10 ng/mL, and HOS3 DXR 30 ng/mL cells following treatment with CoCl2.
mRNA levels of CAIX are normalized to β-ACTIN. The horizontal dotted line refers to normalized
untreated cells. Data represent mean ± SD of four different experiments. #### p < 0.0001, treated vs.
untreated sensitive cells. *** p < 0.001, **** p < 0.0001 treated vs. untreated resistant cells.
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Figure A2. Analysis of cell growth of sensitive and resistant clones under hypoxia for various
exposure times. We counted the total number of HOS, HOS DXR 10 ng/mL, and HOS DXR 30 ng/mL
cells after CoCl2 (a,b) treatments by Hoechst staining with an automated cell count system and at
24 h. Data represent mean ± SD of four different experiments. * p < 0.05, ** p < 0.01, resistant vs.
sensitive clones after CoCl2 treatment.
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Figure A3. (a) Representative cytograms of apoptotic cells analyzed with Annexin V-PI staining.
MG63, MG63 DXR 30 ng/mL and MG63 DXR 100 ng/mL cells were treated 72 h with quercetin
10 µM. The graphs represent the quantification of early (b) and late apoptosis (c) by showing the
ratio between treated and untreated. (d) Representative cytograms of apoptotic cells analyzed with
Annexin V-PI staining. HOS, HOS DXR 10 ng/mL, HOS DXR 30 ng/mL, and HOS DXR 100 ng/mL
cells were treated 72 h with quercetin 10 µM. The graphs represent the quantification of early (e) and
late apoptosis (f) by showing the ratio between treated and untreated. Data are shown as mean ± SD
of three different experiments. * p < 0.05, treated vs. untreated cells.
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