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Abstract 32 

This study integrates field, geochronological and geochemical data to constrain fluid 33 

circulation in the damage and core zone of the seismogenic Monte Morrone Fault System (MMFS), 34 

central Apennines (Italy). Faulting along the MMFS evolved from a diffuse deformation at the 35 

damage zone towards progressive localisation of a narrower fault core and, finally, to (re)activation 36 

of discrete slip surfaces at shallower crustal conditions. Multiple generations of carbonate 37 

mineralisations, including veins and slickfibers, occur along the main fault surfaces. Carbonate 38 

mineralisations are locally fractured and incorporated in the surrounding cataclasites, documenting 39 

repetitive structurally-controlled fluid infiltration during transient episodes of permeability creation 40 

and destruction. Stable carbon and oxygen isotopes of the carbonate mineralisations document a 41 

dominant meteoric water source probably mixed with deeper circulating waters having longer 42 

residence time. Clumped-isotope yield formation temperatures of vein and slickenfibers in the range 43 

between 23 and 40 °C. U-Th dating of carbonate mineralisations yield Middle Pleistocene ages (from 44 

268 to 189 ka BP), with a 10-15-ka cyclicity that we link to the coseismic rejuvenation of the 45 

structural permeability in the fault zone. We propose that fault-related mineralisations recorded the 46 

interactions among tectonic deformation and climate during the Quaternary. Our study is the first 47 

documentation of fault-controlled recurrence intervals in fluid infiltration in a seismically active fault 48 

of central Apennines.  49 

50 
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In the upper seismogenic crust, the growth of major faults includes creation/destruction of

secondary permeability involving deformation and fluid pressure fluctuations in response to a 

continuous stress accumulation throughout the entire seismic cycle (e.g., Sibson, 1992; 2014; 

Hickman et al., 1995; Miller et al., 2004; Smeraglia et al., 2016; Fig. 1). The relationship between 

creation/destruction of secondary permeability in fault rocks and pulses of fluid ingress are sensitive 

gauges of crustal deformation, with implication on location and recurrence intervals of earthquakes. 

During the coseismic rupture, cataclastic processes and fracturing rejuvenate the internal 

architecture of the fault in response to heterogeneous strain localisation during fault growth and 

propagation (Sibson, 1992; Tesei et al., 2013; Delle Piane et al., 2017 and references therein). 

Structural permeability increases depending on fracture persistency, interconnectivity, and 

geometry, allowing enhanced fluid ingress in fault rocks (e.g., Caine et al., 1996; Rowland and 

Sibson, 2004; Cox, 2010; Sibson, 2014; Williams et al., 2015). Fluids migrate through the 

secondary permeability in hydrostatic condition if fault permeability is maintained by cycles of 

coseismic failures (e.g., Sibson and Rowland, 2003). In the interseismic/postseismic stage, mineral 

precipitation from circulating fluids progressively seals the fault zone permeability (e.g., Cox, 

2010). This mechanism of permeability destruction sets the ground for the subsequent 

suprahydrostatic pressure build up, which may enhance coseismic failure at seismogenic depths and 

activation/reactivation of slip surfaces at shallower depths (e.g., Cox et al., 2001; Sibson, 2014; 

Smeraglia et al., 2016). Consequently, cycles of permeability creation and destruction characterise 73 

the fault zone evolution during the different stages of a seismic cycle, and the study of fluid 74 

circulation is, therefore, key to reconstruct the space-time distribution and evolution of fault 75 

permeability (Caine et al., 1996; Sibson and Rowland, 2003). In particular, the geochemical 76 
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properties of the fluids infiltrating along structurally controlled pathway (faults and fractures) 

provide constraints on the scale and types of fluid circulation. The absolute ages of different 

generations of sealing mineralisations provide the timing of the fault activation/reactivation 

episodes. Reconstructing fault/host rock fluid interactions contributes to refine the recurrence model 

of seismic failure during the geological history of major fault systems. 

The seismotectonic framework of the central Apennines is controlled by distributed 

extensional faulting (e.g., Cello et al., 1997; Galli et al., 2008; Faure Walker et al., 2010; Iezzi et al., 

2019). Fault activity is typified by a continuous interaction and feedback between fault 

(re)activation and fluid migration during the complete seismic cycle (e.g., Smith et al., 2011; 

Collettini et al., 2013; Doglioni et al., 2014; Smeraglia et al., 2016; 2018; Barberio et al., 2017). 

Presently, instrumental (ISIDe database; http://terremoti.ingv.it/en/iside), historical (Rovida et al., 87 
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2020; https://emidius.mi.ingv.it/CPTI15-DBMI15/index_en.htm) and paleoseismological (e.g., 

Galli et al., 2008 and references therein) datasets can help reconstruct activity and recurrence 

intervals of seismogenic faults through the entire Holocene. Very few studies, however, provide 

geological and geochronological constraints on the long-term tectonic activity of seismically active 

normal faults. In this view, the occurrence of distinctive fabrics and mineralisations in faults has 

been used to identify the relative chronological sequence of Quaternary deformation events during 

the interseismic and the coseismic stages (Smeraglia et al., 2018; Vignaroli et al., 2020a). 

In this study, we describe the structural relationships between tectonic structures and fluid 

infiltration within the Monte Morrone Fault System (MMFS), an outstanding example of active 

extensional faulting in the central Apennines (Fig. 2a,b). The MMFS consists of NW-SE-striking 

normal fault strands, cutting across Pleistocene-to-Holocene continental deposits (Miccadei et al., 

1998; Galadini and Galli, 2000; Gori et al., 2011). The trace of the MMFS corresponds to a 

regional-scale seismic gap with respect to the 2009 Mw 6.1 L’Aquila and the 2016-2017 Mw 6.0-

6.5 Amatrice-Norcia earthquakes, the last destructive seismic sequences in central Italy (e.g., 

Chiarabba et al., 2009; Chiaraluce et al., 2017). We document multiple generations of syn-tectonic 

carbonate mineralisations within the damage and core zone of the MMFS. We constrained the 

meso- and micro-scale structural properties, the δ13C and δ18O and clumped isotope signature, and 

the U-Th ages of these carbonate mineralisations to reconstruct the fault-fluid interplay and its 

spatio-temporal evolution during the different stages of the seismic cycle. In particular, by dating 

the fault-related mineralisations, we fixed the absolute ages of the MMFS activation episodes. 

Finally, we propose a conceptual model of recurrence intervals of Middle Pleistocene fluid 

infiltration and fault interaction during the seismic cycle of the MMFS. This study could set the 

ground for establishing a seismic recurrence model on regional-scale faults within the seismically 

active tectonic setting of the central Apennines. 111 

112 
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2. Geological Setting114 

2.1. The central Apennines 115 
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The central Apennines (Fig. 2a,b) is a roughly NW-SE-trending orogenic segment originated 

from the Cenozoic oceanic subduction and subsequent continental collision between the European 

and the Adria plates (e.g., Dewey et al., 1989; Boccaletti et al., 1990; Faccenna et al., 2001; 

Carminati et al., 2010). The resulting fold-and-thrust belt (Fig. 2b) deformed rocks belonging to 119 



different paleogeographic domains, including (a) limestones and dolostones of Mesozoic platforms-120 
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to-basin environments, and (b) flysch sediments of Tortonian-to-Pliocene foredeep basins (e.g., 

Vezzani et al., 2010; Cosentino et al., 2010). Crustal shortening operated through the activation of 

west-dipping, regional-scale thrusts in a general eastward migration of compressive fronts toward 

the Adriatic foreland (e.g., Barchi et al., 1998; Patacca et al., 2008). 

The present-day structural setting of the central Apennines results from the progressive 

uplift of the early stacked units followed by extensional tectonics since the Pliocene. This post-

orogenic phase has started from the hinterland (Tyrrhenian) side of the belt and migrated towards 

the foreland, generating mainly NW-SE-striking normal faults and the formation of large 

intermountain basins filled by transitional-to-continental Plio-Quaternary deposits (e.g., Malinverno 

and Ryan, 1986; Dewey, 1988; Martini and Sagri, 1993; Faccenna et al., 1997; Cavinato and 

DeCelles, 1999; Cavinato et al., 2002; Cosentino et al., 2017). Crustal thinning generated a complex 

network of major extensional faults arranged in both en-echelon and collinear geometry (e.g., 

Ghisetti and Vezzani, 2002; Galadini and Messina, 2004; Roberts and Michetti, 2004; Pizzi et al., 

2017; Galli et al., 2019; Fig. 2b). The major normal faults extend to a depth of 10–15 km, with dip 

≥ 45°. Intermountain basins, mostly filled by continental deposits, often develop at the hanging wall 

of the master faults, whereas Mesozoic carbonates are exposed at their footwall, indicating 

kilometre-scale down-section stratigraphic displacements (e.g., Boncio et al., 2004; Roberts and 

Michetti, 2004; Galli et al., 2008; Lanari et al., 2021). The estimated Holocene throw rate for the 

major normal faults ranges from 0.3 to ~2 mm/yr (Roberts and Michetti, 2004; Cowie et al., 2017).  

NW-SE-striking normal faults control the intense seismicity in the axial part of the central 

Apennines, as testified by both the historical (Rovida et al., 2020) and the recent and destructive 

events (the 1997 Colfiorito event, Mw 6.0; the 2009 L’Aquila event, Mw 6.1; the 2016-2017 

Amatrice-Norcia sequence, Mw up to 6.5; Fig. 2b). Seismicity remains confined in the uppermost 

10-12 km crustal section (Amato et al., 1998; Chiaraluce et al., 2017). Studies on fault slip rates

(Roberts and Michetti, 2004; Faure Walker et al., 2010), paleoseismology (Galli et al., 2008; Galli 

et al., 2018; 2019) and global-positioning system (D’Agostino et al., 2011) confirm that the major 

normal faults are the locus of active deformation localisation at short- and long-term scales (up to 

104 years). For the active normal faults, a 1-2 ka recurrence time for Mw > 6.5 earthquakes has been 

estimated based on paleoseimological constraints (Galli et al., 2008). Recent U-series ages for syn-

tectonic mineralisations constrained the long-term activity in potentially-seismogenic structures of 

the central Apennines in the ~350-108 ka time interval (Smeraglia et al., 2018; Vignaroli et al., 

2020a). 152 



The fluid-assisted deformation in the central Apennines has been documented in faulted 153 

carbonate and siliciclastic units through the analysis of syn-tectonic mineralisations (e.g., Maiorani 154 

et al., 1992; Conti et al., 2001; Ghisetti et al., 2001; Agosta et al., 2008; Smeraglia et al., 2016; 155 

2018; Vignaroli et al., 2020a; Curzi et al., 2021; Coppola et al., 2021). Most syn-tectonic 156 

mineralisations preserve the geochemical signature of cold-water circulation at shallow depths, 157 

suggesting a dominant meteoric/groundwater fluid circulation. It is noteworthy, that earthquake-158 

related fluid circulation is characterised by the interplay between transient permeability at the fault 159 

damage zones and mixing of fluids from different reservoirs, in part also of deeper origin 160 

(Smeraglia et al., 2018). 161 
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2.2. The Monte Morrone Fault System 163 
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The MMFS consists of NW-SE-striking fault segments with an along-strike cumulative 

length of ~25 km (e.g., Miccadei et al., 2002; Gori et al., 2011; Fig. 2c). The MMFS runs sub-

parallel and cuts across the SW-dipping, back-limb of the NW-SE-trending Monte Morrone 

anticline, developed at the hanging wall of E-verging thrust sheets (e.g., Vezzani et al., 2010). 

Thrusting involved a Mesozoic-Cenozoic basinal succession of limestones and marls evolving to 

platform carbonates. Seismic profiles suggest that the MMFS penetrates the crust to a depth of 10-

12 km, accommodating more than 2 km of cumulative movement during the Pleistocene-Holocene 

(Patacca et al., 2008). Subsidence at the hanging wall of the MMFS provided the space for 

sedimentation of several hundred metres of alluvial–fluvial–lacustrine sediments that fill the 

intermountain Sulmona Basin (e.g., Miccadei et al., 1998; Giaccio et al., 2009; Fig. 2d). In the 

Sulmona Basin, the eastward dip and the fan geometry of the strata attest for syn-tectonic deposition 

during normal-sense movement of the MMFS (e.g., Miccadei et al., 1998; Gori et al., 2011). Based 

on geomorphic expressions and geological correlations, the Holocene slip rate of the MMFS has 

been estimated to be between 0.4 and 1.1 mm/yr (Roberts and Michetti, 2004; Gori et al., 2011). 

The MMFS developed through propagation and interaction of two parallel west-dipping 

fault strands: the western fault system (WFS) and the eastern fault system (EFS) (Galadini and 

Messina, 2004; Boncio et al., 2012; Gori et al., 2014). The WFS runs through the Roccacasale 

village and extends from the Popoli village in the NW to the Pacentro village in the SE (Fig. 2c). 

This strand consists of a complex network of NW-SE-striking (SW-dipping) fault segments 

arranged in collinear and, subordinate, right-stepping en-echelon geometry. The exposure of the 

WFS fault scarps near Roccacasale reveals almost planar and striated surfaces (Boncio et al., 2012) 

covering an up to half a metre-thick fault core developed through multiple events of fabric 185 



formation and rejuvenation in response to cyclic stress accumulation and dissipation (Ferraro et al., 186 
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2018; 2019; Coppola et al., 2021). Occurrence of different cemented fault rocks, from matrix-

supported to grain-supported (Ferraro et al., 2018), and multiple microcrystalline calcite cement in 

cataclastic-to-ultracataclastic layers (Ferraro et al., 2019; Coppola et al., 2021) suggests a co-

seismic fabric reworking during fluid-assisted deformation. 

No major (i.e. Mw > 4) historical earthquakes are associated with the MMFS (Rovida et al., 

2020). The seismic source of the catastrophic 1706 event that hit the Sulmona Basin is still debated 

(Galli et al., 2015) and possibly located around the adjacent Majella ridge (Fig. 2b). However, 

archaeoseismic and paleoseismic constraints set the elapsed time for the MMFS since the last event 

at ∼1850 yr ago, which is compatible with the average recurrence time of the Apennine 

seismogenic faults (Galadini and Galli, 2001; Galli et al., 2015). Barberio et al. (2017) monitored 

several springs located within the Sulmona Basin and associated their hydrochemical variation to 

the mainshocks of the 2016-2017 Amatrice-Norcia sequence. This hydrogeological setting suggests 

an active structural permeability in the Monte Morrone area, potentially sensitive to seismic inputs.  199 
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3. Materials and Methods202 
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Through the study of fault strands exposed near the Roccacasale village, we focused on the 

structural permeability of the WFS by characterising its brittle structural architecture and the 

associated fault-related carbonate mineralisations (see structural stops in Fig. 2e). Field criteria for 

fault rock classification (e.g., Sibson, 1977; Braathen et al., 2004) have been used to identify and 

characterise the fault structural fabrics, whereas classic kinematic criteria have been used to 

determine the sense of shear (e.g., Petit, 1987).  

We collected hand samples of fault rocks and carbonate mineralisation (Table 1). Optical 

and back-scattered electron (BSE) microscopy was performed on oriented thin sections to 

characterise the overprinting relationships among different generations of structures and carbonate 

mineralisations that took place during faulting. Cold cathodoluminescence (CL) imaging were 

performed using a Cambridge Image Technology Limited luminoscope Leica DM2700P optical 

microscope (model Mk5-2; operating system at 9.9 kV with a beam current of 256 µA) at the 

Department of Chemistry, Life Sciences, and Environmental Sustainability of the University of 

Parma. 216 
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U-Th dating was carried out on (1) a Thermo Electron Neptune multi-collector inductively

coupled mass spectrometer (MC-ICP-MS) (Shen et al., 2012) at the High-Precision Mass 

Spectrometry and Environment Change Laboratory (HISPEC), National Taiwan University, and (2) 

on α-spectrometer at the Laboratory of Environmental and Isotopic Geochemistry, Department of 

Sciences, Roma Tre University, Italy. For MC-ICP-MS dating, we covered about 0.05 g of each 

sample with H2O and dissolved it gradually with double distilled 14 N HNO3. After dissolution, we 

added a 229Th–233U–236U spike (Shen et al., 2003) to the sample, followed by 10 drops of HClO 4 to 

decompose organic matter. We followed the chemical procedure described in Shen et al. (2003) for 

the separation of uranium and thorium. Detailed instrumental analysis is given in Shen et al. (2012). 

Age correction was calculated using an estimated atomic 230Th/232Th ratio of 4±2 x 10-6. The value 

is the one typical for a material at secular equilibrium with the crustal 232Th/238U value of 3.8 and an 

arbitrarily assumed 50% error. Half-lives of U-Th nuclides used for age calculation with 2-sigma 

uncertainty are from Cheng et al. (2013). For α-spectrometry dating, samples were cut with a 

diamond saw and ultrasonically washed in deionized water. About 60 g of each prepared sample 

were thus dissolved in 7 N HNO3 and filtered to separate leachates from insoluble residue. The 

leachates were heated to 200 °C after adding a few millilitres of hydrogen peroxide to annihilate 

organic matter, then spiked with a 228Th/232U tracer. U and Th were extracted according to Edwards 

et al. (1987), then analysed through alpha-counting using high-resolution ion-implanted Ortec 

silicon-surface barrier detectors. For samples with a 230Th/232Th activity ratio higher than 80 (with 

insignificant non-radiogenic 230Th), ages were determined using the measured 230Th/234U and 

234U/238U activity ratio. Sample ages characterized by a 230Th/232Th activity ratio less than or equal 

to 80 indicating the presence of non-radiogenic (detrital) 230Th required a correction based on the 

assumption of an average 230Th/232Th activity ratio of 0.85 ± 0.36 for all detrital Th (Wedepohl, 

1995). All ages were finally calculated using ISOPLOT (Ludwig, 2003) with errors expressed as 

±1σ. 

Samples for geochemical analysis were obtained by micro-drilling. Carbon and oxygen 

isotope analyses of 50 samples from the WFS (Table A1) were carried out at the Istituto di Geologia 

Ambientale e Geoingegneria of the Consiglio Nazionale delle Ricerche (Rome, Italy), by acid 

digestion at 72°C using a Thermo Fisher Scientific Gasbench II coupled to a Delta+ mass 

spectrometer. Approximately 120 g of powder was weighted in duplicate. Standardisation to the 

V-PDB scale was accomplished with three internal standards MC-200, CaCO3 (Merck CCM) and

Solnhofen limestone (SLNF) calibrated against the international references NBS18 and NBS19. 

Oxygen and carbon isotopes are reported with respect to the Vienna Pee Dee Belemnite standard 

(V-PDB).  250 



The clumped isotope compositions of the carbonates were determined at ETH Zürich using a 251 

Thermo Fisher Scientific 253Plus mass spectrometer coupled to a Kiel IV carbonate preparation 252 

device, following the method described in Schmid and Bernasconi (2010), Meckler et al. (2014), 253 

and Müller et al. (2017). The Kiel IV device included a PoraPakQ trap kept at - 40°C to eliminate 254 

potential organic contaminants. Prior to each sample run, the pressure-dependent backgrounds were 255 

determined on all beams to correct for non-linearity effects in the mass spectrometer according to 256 

Bernasconi et al. (2013). During each run, 20 replicates of 100-120 µg of different samples and 5 257 

replicates of each of the two carbonate standards ETH-1, ETH-2, and 10 of ETH-3 were analysed in 258 

LIDI mode. Data processing was carried out with the software Easotope (John and Bowen, 2016) 259 

using the IUPAC parameters for 17O correction as suggested by Daeron et al. (2016). The data are 260 

reported in the Intercarb Carbon dioxide equilibration scale (I-CDES) (Bernasconi et al. 2021) and 261 

the temperatures of formation were calculated with the Anderson et al. (2021) calibration. The 262 

oxygen isotopic composition (δ18Ofluid) of the fluids was calculated using the calibration of Kim and 263 

O'Neil (1997).  264 

265 
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4. Results267 

4.1. Outcrop scale structures268 
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Near Roccacasale (Fig. 2e), the WFS cuts through a sequence of Sinemurian dolomitised 

limestones. There, the WFS consists of multiple NW-SE-striking fault strands dipping moderately 

(30°-50°) to SW, typically associated with dm-to-m-thick damage zones (Fig. 3a). The main slip 

surface, which accommodates the most important offset, commonly show a planar morphology and 

hosts slickenlines, provided by abrasion striae and rare calcite fibres (Fig. 3b). Slickenlines show 

pitch values generally around 80° and 100° (Fig. 3b), indicative of nearly pure dip-slip kinematics. 

Stratigraphic offset, synthetic shears, dragging of the bedding at the fault surfaces, and calcite 

fibres indicate normal-sense movement.  

The main slip surface is associated with a metre-thick damage zone and dm-thick fault core 

at the footwall (Fig. 3c,d; see also Ferraro et al., 2018). The damage zone is characterised by dm-

thick lenses of either massive or foliated cataclasite (Fig. 3e). Cataclasites wrap around dm-to-half 

metre-thick lithons of almost undeformed limestone. The boundaries between the cataclasite lenses 

are commonly marked by mm-thick, subsidiary fault zones, synthetic to the main slip surface (Fig. 

3e). Massive cataclasites are characterised by matrix-clast proportion >50% and clasts are sub-

angular to sub-rounded and up to 1 cm-wide. Foliated cataclasites are characterised by faint layers 283 



with different grain size. Approaching the main slip surfaces, matrix becomes extremely dominant 284 
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and defines centimetre-thick layers of ultra-cataclasite (Fig. 3e; see also Coppola et al., 2021). 

High angle (dip > 55°; insert in Fig. 3a) faults have been mostly observed at the hanging 

wall of the main slip surface (Fig. 4a-c). These fault strands are characterised by roughly planar slip 

surfaces (in section view) dipping to the W-WSW (Fig. 4a,b). The high-angle faults systematically 

cut and displace the main slip surface, producing centimetre-to-decimetre down-dip offsets and 

incipient rigid fault block rotation (Fig. 4b,c). They are commonly accompanied by sets of fault-

parallel joints and lenses of proto-cataclasites, defining centimetre-thick damage zones. 

Carbonate mineralisations occur on the main slip surfaces and on the high-angle normal 

faults (Fig. 4d-h). The main mineralisation is up to 10 cm-thick and consists of a layered calcite, 

found in the immediate hanging wall of the main slip surface (Fig. 4c,d). In section view, layering is 

dominantly plane-parallel, although thickness variations from few centimetres up to 15 cm, and 

pinch-out geometry on older strata can be locally recognised (Fig. 4e,f). When associated with high-

angle faults, carbonate mineralisations consist of up to one cm-thick layers of fine grained calcite 

lying atop striated surfaces (Fig. 4g,h). Layering in these mineralisations is mm-thick, dominantly 

plane and parallel to the fault surfaces.  

4.2. Meso- to micro-scale structures 

The mineralisations consist of the rhythmic layering of mm-thick laminae and sparitic veins 

(Figs. 5a,b and SM1a-e). The laminae, which often appears as alabaster-like translucent deposit of 

fine-grained and massive calcite, are fault-parallel and often characterised by variation in thickness 

and marked by change in colour from whitish to light brown (Figs. 5a and SM1a,d). Layers of fine-

grained calcite are locally intercalated by mm-to-cm-thick pockets of sedimentary breccias, 

probably filling voids of karst origin. The fabric of the breccia consists of a chaotic distribution of 

up to 1-cm large limestone clasts (i.e., protolith) mixed with other carbonate fragments deriving 

from the previous cataclasite (Fig. 5a). The sparitic veins are up to one cm-thick, poorly- to non-

porous and are disposed parallel to the fault surface (Figs. 5a,b; SM1a,b,e). Macroscopically, veins 

show fan-shaped morphology of elongated crystals, which provides unequivocal evidence on the 

growth direction.  

At the microscale, cataclasites show sub-rounded clasts, with increasing roundness 

associated with decreasing particle size (Figs. 5d-f and 6a). The main structural characteristics are: 

(i) sub-angular clasts fragmented at their edges and clasts showing internal set of polygonal315 
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fractures (Fig. 5e,f, 6a,b,d, SM2a-c,g); (ii) truncated clasts by sharp slip surfaces (Fig. 6c); (iii) 

traces of permeating fluid within the fine-grained matrix and mantling the carbonate clasts (Fig. 

6d); (iv) sigmoidal foliation in proximity of the main slip surfaces (Figs. 5d; SM2d; SM3l,m). 

Cathodoluminescence analysis reveals that the convolute structures are characterised by an overall 

bright-purple colour, distinctively brighter than the calcite of both the fine-grained matrix and the 

clasts (Fig. 6e).  

Carbonate laminae and sparitic veins grew from a slip surface that truncates the cataclasite 

(Figs. 6f, SM2a-f, SM3). While the laminae are characterised by fine-grained, dirty calcite mixed 

with clay particles (Fig. 6j), the sparitic veins show an internal fibrous texture with crystal growth 

direction roughly perpendicular to the vein wall (Fig. 6f). The calcite crystal tends to form vein-

normal elongated fan-shaped patterns, which are indicative of the vein growth direction and sense. 

We observed both downward and upward growth patterns, with crystal that converge toward the 

medial line of the veins, documenting a general syntaxial grow mechanism (Fig. 6f,k; SM3d,g). 

Cathodoluminescence shows that this calcite is characterised by dull brown/black colour, 

particularly darker than the calcite occurring within the cataclasite (Fig. 6g).  

The mineralisations are locally reworked by fracturing and cataclasis to form new clasts 

(Figs. 6h,i; SM2c-e; SM3h-m). They are affected by micro-joints producing micrometer 

displacements or display deformation including sigmoidal foliation-like structure embedded in 

minor slip surfaces (Fig. SM2d; SM3l,m). Reworked mineralisations are often surrounded by 

secondary micro-crystalline calcite cements with a purple cathodoluminescence like the calcite in 

the fine-grained matrix. Strips of protocataclasites are locally preserved or bracketed within 

multiple generations of mineralisations (Fig. 6j,k). Bands parallel to the slip surface and formed by 

cataclasites alternating with highly fractured mineralisations are observed within veins and laminae 

(Fig. SM3). The boundaries between cataclasites and mineralisation are often represented by slip 

surfaces or extensional fractures (Figs. 5a,c; SM2c-f) and some mineralisations are flattened and 

truncated along the slip surface (Fig. SM3f,g). 341 

342 

4.3. U-Th geochronology 343 

344 

345 

346 

We dated calcites from nine mineralisations (Table 2). Dated samples are characterised by a 

roughly homogeneous 230Th/238U activity ratio (between 0.87 and 0.93) and a highly variable 

230Th/232Th activity ratio (between 243.2 ± 2.5 and 18969 ± 315) (Table 2). Collectively, samples 

dated by the MC-ICP-MS method (samples M4G, M4H, M4H2, M4HW, M4F1, M4i) show ages 347 



between 190 and 270 ka, with 2σ errors < 7 ka. The sample dated by α-spectrometry (sample M4e) 348 
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shows a mean age of 178 ka and larger 1σ error of +39 and -30 ka. 

In the following, we detail the obtained ages with respect to the structural site of the 

selected sample at the studied outcrop (Figs. 5, 7 and SM1). The oldest age (267.9 ± 6.1 ka) has 

been obtained from sample M4H, which is a carbonate mineralisation collected from the main slip 

surface. Three progressively younger ages (257.4 ± 4.3 ka; 246.6 ± 2.5 ka; 230.3 ± 2.0 ka) have 

been obtained from three generations of calcite of sample M4G (bottom-to-top: M4G3, M4G2, 

M4G1, respectively), a dm-thick mineralisation collected along the main slip surface (Fig. 5a). 

Sample M4e (178 +39/-30 ka) has been also collected from the same main slip surface of M4G. A 

cluster of similar ages have been obtained from samples M4H2 (218.3 ± 3.7 ka), M4HW (215.8 ± 

6.7 ka), and M4F1 (214.9 ± 2.1 ka). Sample M4H2 is from the lower part of the M4H 

mineralisation; sample M4F1 are from the upward portion of the M4G mineralisation; sample 

M4HW is from the top of the sample M4e. Finally, the youngest age (189.4 ± 2.5 ka) has been 

obtained from sample M4i, from a high angle normal fault crosscutting the main fault plane (Fig. 

7).  362 

363 

4.4. Stable carbon and oxygen and clumped isotopes 364 
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The analysed samples (carbonate clast in cataclasite, fine-grained matrix in cataclasite, 

sedimentary breccias embedded within the mineralisation, and carbonate mineralisations deposited 

on fault surfaces) can be grouped in different endmembers showing distinct isotope signatures (Fig. 

8). The clasts in cataclasites are characterised by δ13C ranging from 1.40‰ and 2.38‰ and δ18O 

between -0.43‰ and -1.32‰ typical of marine limestones. Three samples of the fine-grained 

cataclasite matrix are characterised by δ13C between 0.61‰ and 0.19‰ and δ18O between -1.83‰ 

and -2.08‰ whereas one has much more negative δ18O (-9.04‰) and δ13C (-8.67‰). Two samples 

of sedimentary breccias are characterised by negative δ18O between -3.04‰ and -3.33‰ and δ13C 

between -1.13‰ and -1.35‰. Finally, the samples of carbonate mineralisations are characterised by 

negative values of both δ18O (between -7.37‰ and -11.65‰) and δ13C (between -7.14‰ and -

10.46‰).  

Clumped-isotope data from 6 carbonate mineralisations yield Δ47 values in a narrow range 

between 0.552‰ and 0.600‰ (I-CDES) (Table A2). These values correspond to temperatures 

between 40 ±7 °C and 23 ±4 °C. Calcite from M4G mineralisations dated between ∼257 and ∼230 

ka (samples M4G_1b; M4G_1e; M4G_2a; M4G_2b; M4G_3c) precipitated at ∼24-28 °C (95% 

confidence level between ±3 and ±9 °C). Calcite from younger M4F1 mineralisation (dated at 380 



∼215) precipitated at 40±11 °C (sample M4F1_2). Finally, a cataclasite (samples M4G_5N) and the 381 

host rock clast (M4HW_1N) yielded temperatures of 41-45 °C (±7 °C, 95% confidence level). 382 

The calculated δ18O of the fluids from the 6 mineralisation samples range from -9.3 to -3 ‰ 383 

(VSMOW) reflecting a dominant meteoric water signal. The calculated fluids for the cataclasite and 384 

host rock clast reflect a combination of the original marine carbonate components and the 385 

composition of the fluids during burial diagenesis, and are not relevant for the further discussion of 386 

the vein fluids. 387 

388 
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5. Discussion390 

5.1. Structural interpretation 391 
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Previous structural studies of the MMFS documented fault rock heterogeneities (inner fault 

core, outer fault core, damage zones, principal slip surfaces) developed via multiple deformation 

phases of the Meso-Cenozoic carbonate bedrocks (Ferraro et al., 2018; 2019). Intense shear strain 

localisation occurred along fluid-assisted co-seismic ultracataclastic layers (Coppola et al., 2021). 

By integrating the insights from these studies with our data, we refine our understanding of the 

structural permeability along the MMFS (Fig. 9a), which is governed by a continuous interplay 

between tectonic deformation, fluid circulation and mineralisation. Our meso-to-microscale 

observation can guide to a scenario of polyphasic permeability evolution from deep to shallow 

conditions (Fig. 9b).  

The early structural permeability formed in conditions of confined pressure corresponding to 

the depth from which the main slip surface exhumed (< 3 km; Ghisetti and Vezzani, 2000; Coppola 

et al., 2021). The early structural permeability (tn in Fig. 9b) is controlled by the spatial distribution 

of structures associated with formation of the damage zone and the fault core at the expense of 

carbonate bedrock (Fig. 3c,d; Ferraro et al., 2018). The transition from the damage zone to the fault 

core is attested by a strong grain size reduction and the occurrence of foliated cataclasites, which 

progressively replace the massive ones in the damage zone proximal to the fault core (Figs. 3e, 4f). 

Cataclasis is the main deformation mechanism steering significant deformation in the damage zone 

and the fault core (Fig. 3c-e). Rock comminution and clast roundness in cataclasites is assisted by 

chipping at the edges of the sub-angular clasts, as well as intergranular fracturing contributes to 

grain size reduction in larger clasts (Figs. 5, 6a,d, SM2f; Billi, 2010 and references therein). 

Carbonate clasts are commonly truncated by subsidiary slip surfaces and the fine cataclasite matrix 412 
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is permeated by fluidised ultra-fine material (Fig. 6c,e). As already argued by Coppola et al. (2021), 

we consider these microstructural features as evidence for coseismic rupturing, comparable to 

potential seismic markers documented from faulted carbonates within tectonic domains (Hadizadeh, 

1994; Smith et al., 2011; Fondriest et al., 2012; Tesei et al., 2013; Smeraglia et al., 2016; Delle 

Piane et al., 2017).  

The subsequent structural permeability (tn+nx in Fig. 9b) formed at shallower crustal 

conditions and was connected to the development of sharp, discrete slip surfaces cutting through the 

cataclastic fabric in both the damage zone and the fault core. Ferraro et al. (2018) document matrix-

supported textures for these slip surfaces, developed in the latest stages of fault exhumation. The 

main slip surface occurs within the fault core and corresponds to the striated one atop the proximal 

slip zone (of co-seismic origin) of Coppola et al. (2021) (Fig. 9c). This suggests a mechanical 

scenario of progressive fault narrowing through multiple episodes of fabric reworking and shear 

strain localisation (Smith et al., 2011; Smeraglia et al., 2018; Vignaroli et al., 2020b). The 

mineralisations are exclusively localised along the main slip surfaces and on the slip surface of the 

high-angle fault (Fig. 9a), not associated with a system of veins in the damage zone. We propose 

that the fault surfaces acted as localised, fault-parallel conduits (Caine et al., 1996) and the fluid 

circulation channelised within the fault core during reactivation and dilatancy of the slip surfaces 

(Fig. 9b). The combination between faulting and dilatancy during creation of the structural 

permeability is attested by: (i) carbonate mineralisation within cataclasite in dilatant jog (Fig. 4d); 

(ii) fan-shaped crystals growth in veins documenting a general syntaxial grow mechanism (Figs.

6f,k; SM3); (iii) reworked carbonate mineralisations often fractured and cut by slip surfaces (Figs. 

SM2a-f; SM3a); (iv) carbonate mineralisations incorporated within the underlying cataclasites or 

embedded as pockets in protocataclasite or breccias (Figs. 5; 6; SM2; SM3); (v) bands parallel to the 

slip surfaces made of protolith cataclasite alternating with highly fractured mineralisations (Fig. 

SM3); and (vi) sigmoidal foliation-like structure embedded in minor slip surfaces within the 

mineralisations (Figs. SM2d; SM3l,m). The (re)activation of main slip surfaces occurred during the 

progressive exhumation of the fault core-damage zone formed at deeper structural levels. 

Considering the U-Th age range (between 268 and 189 ka) and the Holocene slip rate estimated for 

the MMFS (0.4-1.1 mm/yr Roberts and Michetti, 2004; Gori et al., 2011), we obtain depths between 

60 and 300 m below the present-day outcrop elevation (~450 m a.s.l.) for the development of the 

shallow structural permeability. In this time-dependent conceptual evolution of the structural 

permeability, the development of the high-angle normal faults crosscutting the main fault core 

represents the last increment of strain during fault growth and exhumation. 445 

446 



5.2.Fluid circulation 447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

The structural interpretation can be integrated with the isotope data (Fig. 8; Table A1) to 

propose a comprehensive time-dependent scenario for fluid circulation during the progressive 

exhumation of the MMFS and concomitant subsidence of the Sulmona Basin at its hanging wall 

(e.g., Miccadei et al., 2002; Gori et al., 2011; Galli et al., 2015; Fig. 9d). The protolith carbonate 

clasts embedded in cataclasites have the highest isotope values, in the range of unaltered Mesozoic 

marine carbonates from the central Apennines (e.g., Ghisetti et al. 2001; Agosta and Kirschner 

2003; Smeraglia et al., 2016). The cataclasite matrix, representing the early structural permeability, 

shows more negative isotope values consistent with mixing of marine carbonate particles with 

calcite precipitated from meteoric waters. As observed in Figure 8, the cataclasites plot on a mixing 

line between the host rock and the mineralisation.  

The mineralisations formed within the shallowest structural permeability show typical 

carbon and oxygen isotope signatures of calcite precipitated from meteoric waters that gained a 

significant contribution of respired organic carbon in the soils. The calculated δ18O of the fluids 

ranges between -3 and -9‰ (VSMOW) and is like the average composition of rainfall (-7 and -9‰) 

and slightly enriched with respect to the spring water (-8 and -11‰) in the central Apennines 

(Minissale, 2004). Fluid temperatures (Table A2) range between 23 and 26° C. These temperatures 

are, except for a mineralisation dated at 215 ka (Fig. SM1d), warmer than those of spring waters 

found in the Sulmona Basin (6-15 °C; Barberio et al., 2017) and, in general, for cold springs 

emerging in central Apennines (e.g., Minissale, 2004). Also, the calculated δ18O of the fluids are 

enriched in 18O with respect to the spring waters in the Sulmona Basin (-10 to -11‰; Barberio et 

al., 2017). We, therefore, infer that syn-tectonic mineralisations occurring along the MMFS could 

preserve a minimal component of deeper flow, probably from the deeper circulating waters with 

longer residence time, mixed with the dominant shallow meteoric water circulation. It is noteworthy 

that the hottest sample at 40° C (M4F1-2; Table A2) yields the least negative calculated δ18O of the 

fluids, suggesting a contribution of warmer fluid with a higher oxygen isotope composition 

resulting from more intense water-rock interaction as observe by Smeraglia et al. (2018) in the Val 

Roveto Fault (see location in Fig. 2a). These temperatures are comparable with the coldest fluid 

temperatures (between 32 and 75 °C) estimated for syn-tectonic mineralisations in potentially-

seismogenic structures (Smeraglia et al., 2016; 2018) and for tectonically controlled veins in 

thermogene travertines in central Apennines (e.g., Berardi et al., 2016).  477 

478 

5.3.Implications for long-term fault history 479 
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The results from this and other studies (e.g., Ferrero et al., 2018; Coppola et al., 2021; Fig. 

9c) confirm active coseismic rupturing during growing of the MMFS, creating secondary 

permeability through major fracturing and cataclastic flow, which produced viable structural 

network for fluid ingress. The U-Th ages spanning the Middle Pleistocene (between 268 and 189 

ka) represent the first geochronological documentation of the long-term deformation history of the 

MMFS, constraining the timing of cycles of permeability creation and destruction in response to 

continuous interplay between brittle deformation and fluid ingress.  

Our seismic scenario for the MMFS (Fig. 9e) proposes episodes of coseismic failure at 

depth with faulting and tensile fracturing at shallower crustal levels, where the carbonate 

mineralisations formed. Coseismic failure at seismogenic depths led to rejuvenation of the fault 

permeability through the activation/reactivation of slip surfaces at shallower depths, favouring 

channelised mineralising flow (e.g., Caine et al., 1996; Cox et al., 2001; Rowland and Sibson, 2004; 

Sibson, 2014). Between successive failure events (interseismic/postseismic stage), shallow fault 

permeability decreased ever more by carbonate precipitation and progressive sealing of the fault-

related structures. We propose that the syn-tectonic mineralisations within the MMFS constitute a 

record of fault (re)activation and tensile episodes in response to the cyclic stress accumulation that 

can be used to constrain the age of fluid ingress in response to the seismic failure. U-Th data 

document activation of faulting/tensile failure in the periods 267, 257, 246, 230, and 215 ka. This 

suggests a time recurrence in the range of 10-15 ka (Fig. 9e). 

Our integrated geological model can help to reconstruct the activity of seismogenic master 

faults of central Apennines, currently primarily constrained by seismic catalogues (e.g., Rovida et 

al., 2020) and paleoseismological datasets (e.g., Galli et al., 2008), to much longer temporal and 

spatial scales. Very few studies provided geochronological constraints on neotectonics by dating 

syn-tectonic mineralisation related to major faults (Fig. 10). Smeraglia et al. (2018) dated four fault-

related mineralisations along the Val Roveto Fault (see location in Fig. 2a), which the authors used 

to constrain fluid migration and mixing during Late Pleistocene multiple displacement episodes and 

seismic slip along the fault. Vignaroli et al. (2020a) dated fault-related mineralisations along the 

Amatrice Fault System (see location in Fig. 2a), used to constrain surface rupture and 

hydrodynamic interconnection with the vadose zone during Middle-Late Pleistocene faulting. While 

a cyclical reactivation of the MMFS occurred within the Middle Pleistocene between 268 and 189 

ka, both the Val Roveto Fault and the Amatrice Fault System activated before 290 ka, followed by 

reactivation in the Late Pleistocene-Early Holocene (Fig. 10).  511 



All together, these fault-related mineralisations typify the time of multiple rupture events 512 

along major NW-SE-striking normal faults, their reactivation and the recurrence interval connected 513 

with their seismic cycle. Such an integrated geological model for seismogenic faults could play a 514 

key role in seismic hazard assessment in those areas characterised by the absence of historical 515 

seismicity and/or evidence of Mw < 6 paleoearthquakes. Additional studies on similar syn-tectonic 516 

mineralisations could make possible to identify cyclical variations in the fluctuation of fluid ingress 517 

at greater frequency and, therefore, to provide a viable contribution to the definition of a recurrence 518 

pattern on a regional scale.  519 
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To understand possible feedback relationships between paleoclimate changes and fault-

controlled circulation of mineralising fluids, we compared our ages for the MMFS carbonate 

mineralisations with U-Th ages obtained for some Quaternary travertines and calcite veins located 

on the Tyrrhenian margin of the Apennines (Semproniano-Saturnia travertines: Berardi et al., 2016; 

Vignaroli et al., 2016; Radicofani and Val di Chiana travertines: Brogi et al., 2010; 2012; 2017; Fig. 

10). We considered major Quaternary paleoclimate indicators determined at both local and regional 

scale (Fig. 10), the pollen data set from Valle di Castiglione (Tzedakis et al., 2001) located ~100 

km to the west of the MMFS and the atmospheric CO2 concentration (Past Interglacial Working 

Group of PAGES, 2016). We also considered the climate anomalies generated by periodic 

oscillations of Earth’s orbital parameters over the Cenozoic (Zachos et al., 2001; Past Interglacials 

Working Group of PAGES, 2016).  

The available U-Th data cover the time spanning from MIS 10 to MIS 5 (MIS: Marine 

Isotope Stage; Fig. 10). There is a consensus in considering warm and wet (interglacial) conditions 

as the most favourable for thermogene travertine deposition during late Quaternary time (e.g., 

Sturchio et al., 1994; Rihs et al., 2002; Faccenna et al., 2008; Uysal et al., 2009; De Filippis et al., 

2013; Priewisch et al., 2014). In this view, the ages obtained for the Semproniano-Saturnia 

travertines fall within warm and humid climate periods that have been considered as triggers for 

tectonically controlled fluid discharge along faults (Berardi et al., 2016; Vignaroli et al., 2016). On 

the other hand, a different pattern has been proposed for the travertines in Radicofani Basin, Val di 

Chiana Basin and Tiber Valley (Brogi et al., 2010; 2012; 2017; Giustini et al., 2018), suggesting the 

importance of tectonic activity, rather than climate, to control travertine precipitation during low 

stand conditions of the water table in dry glacial periods (e.g., Uysal et al., 2009; Özkul et al., 

2013). Moreover, some studies documented a correlation between growth phases of surficial 544 
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carbonate mineralisation (travertines and veins) and times of cyclical variations of the Earth’s 

orbital characteristics, including the c. 25 ka precessional component that controls high insolation 

(e.g., Wang et al., 2004; Kampman et al., 2012; De Filippis et al., 2013). 

Discarding the sample M4e, due to its rather large error bars, we note that five of MMFS U-

Th ages fall within the interglacial period, at 180-245 ka (MIS7 in Fig. 10), while three fall within 

the glacial period MIS8. Noteworthy, ages within the MIS7 and MIS8 show a preferential 

correlation with the interstadial events (humid times suggested by the high values of the pollen data 

set from Valle di Castiglione). This correlation matches with paleoclimate conditions supplying the 

deposition of the Semproniano-Saturnia thermogene travertines (Berardi et al., 2016; Vignaroli et 

al., 2016). In addition, over the periods 100-150 and 300-350 ka there is a good correlation between 

the mean ages of mineralisations from the Val Roveto Fault (s61, s129, s132, s149 in Fig. 10), the 

Amatrice Fault System (Fven1/2, Fin8 in Fig. 10), and travertines with the rhythmical negative 

peaks of precession (i.e., conditions of high insolation). Overall, this might suggest that carbonate 

precipitation in active faults and travertines is sensitive to climate variation, being preferentially 

facilitated by warm and humid climate conditions characterised by high-stands of the water table. In 

dryer times, scarce meteoric water supply might not allow the formation of carbonate 

mineralisations in active tectonic structures. Therefore, the variations in climate-controlled water 

availability could bias the recorded periodicity of fault activity, as cycles of permeability creation 

and destruction under dry conditions would not lead to significant mineral precipitation.  563 

564 

565 

6. Conclusions566 

The structural evolution of the MMFS supports the general scenario of focussed,567 

structurally-controlled fluid flow and mineralisation at shallow depths during fault reactivation. We 568 

document multiple events of permeability creation and destruction recording the long-term 569 

evolution of the MMFS: 570 

(i) The development of the secondary permeability in the MMFS evolved in space in571 

time from diffuse deformation (at the fault footwall) towards localisation of a572 

narrower fault core and to final (re)activation of discrete slip surfaces in the573 

shallower crustal levels. The latter correspond to a combination of faulting and574 

tensile fracturing, in response to the stress accumulation during its seismic cycle.575 



(ii) The hydrodynamic regime permeating the secondary permeability mineralising fluid 576 

was dominated by meteoric water circulation at the shallower conditions, where 577 

discrete slip surfaces (re)activated. 578 

(iii) The polyphasic and syn-tectonic mineralisations on the fault surfaces reflect the579 

interaction and feedback among seismically active tectonics and transient circulation580 

of mineralising fluids, likely influenced by paleoclimate oscillations.581 

(iv) U-Th dating of the carbonate mineralisations defined the time lapse encompassed in582 

the fault permeability creation/destruction cycles, providing a pilot study to583 

reconstruct the seismic recurrence model at a regional scale.584 
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Captions to Figures 937 

Figure 1. Structural scenario of the fault-valve mechanism framed within the seismic cycle. The creation of 938 
fault permeability is here correlated to the tectonics, mineralisation, and fluid pressure cycling. EQ: 939 
earthquake. 940 

Figure 2. a) Schematic tectonic framework of the Apennines within the western Mediterranean region; b) 941 
geological setting of the central Apennines, where the distribution of both the main thrust fronts and the 942 
active normal faults is reported (modified and readapted after Cosentino et al., 2010). The map also shows 943 
the localisation of both the main recent earthquakes (including their focal mechanisms) and the historical 944 
earthquakes in the area surrounding the Monte Morrone. The seismic data are after Amato et al. (1998), 945 
Chiarabba et al. (2009), Chiaraluce et al. (2017), and the Parametric Catalogue of Italian Earthquakes 946 
(CPTI15 available at https://emidius.mi.ingv.it/CPTI15-DBMI15/index_en.htm). The location of two dated 947 
faults (Val Roveto Fault: Smeraglia et al., 2018; Amatrice Fault System: Vignaroli et al., 2020a) and dated 948 
Quaternary travertines (Semproniano-Saturnia travertines: Berardi et al., 2016; Vignaroli et al., 2016; 949 
Radicofani and Val di Chiana travertines; Brogi et al., 2010; 2012; 2017) is also shown; c) geological setting 950 
of the Monte Morrone area showing the orientation and distribution of the western (WFS) and eastern (EFS) 951 
strands of the Monte Morrone Fault System (modified after Pizzi et al., 2015); d) schematic cross section 952 
illustrating the main stratigraphic/structural setting of the Monte Morrone-Sulmona Basin system (modified 953 
after Miccadei et al., 2002). The Monte Morrone Fault System cuts through the Meso-Cenozoic carbonate 954 
bedrock and accommodates more than 400 m-thick Quaternary continental deposits filling the Sulmona 955 
Basin; e) Google Earth © view of the study area around the Roccacasale village, showing the localisation of 956 
structural sites along the western strand of the Monte Morrone Fault System. AFS: Amatrice fault System; 957 
SeSa: Semproniano-Saturnia travertines; VRF: Val Roveto Fault. 958 

Figure 3. Structural features of the western strand of the Monte Morrone Fault System observed at the 959 
studied outcrops. a) Panoramic view of the main fault surface exposed southeast to the Roccacasale village 960 
(structural stop M3.1 in Fig. 2e). In the insert: stereographic projection (Schmidt net, lower hemisphere) of 961 
the measured main slip surfaces; b) dip-slip slickenlines (rock abrasion) exposed on the fault surface; c) 962 
metre-thick damage zone, produced at the expense of Meso-Cenozoic carbonate bedrock, occurring at the 963 
footwall of the main slip surface (structural stop M3.2 in Fig. 2e; compare with Fig. 4b of Ferraro et al., 964 
2018); d) outcrop view of the fault damage zone exposed northwest to the Roccacasale village (structural 965 
stop M4.1 in Fig. 2e) where the carbonate mineralisations were collected; e) the damage zone is 966 
characterised by lenses of foliated or massive cataclasites produced at the expense of the Mesozoic 967 
limestone.  968 

Figure 4. Mesoscopic properties of the WFS at the structural stop M4.1 (see Fig. 2e and Table 1 for 969 
location). a) Damage zone around the main slip surface that is, in turn, cross cut by a set of high-angle 970 
normal faults; b) detail of the crosscutting relationships between the main slip surface and the high-angle 971 
normal faults, the latter producing decimetre-to-half metre offset; c) high-angle normal fault crosscutting the 972 
main slip surface, the latter decorated by cm-thick carbonate mineralisation; d) detail of two separated cm-973 
thick carbonate mineralisation occurring atop the main slip surface; e) detail of the main slip surface 974 
intervening between a massive cataclasite (at the footwall) and a dm-to-cm-thick mineralisation (at the 975 
hanging wall); f) enlargement of the previous image (the broken mineralisation is here exposed) showing the 976 
internal fabric of the carbonate mineralisation; g) and h) structural and petrographical details of high-angle 977 
faults, where thin (a few mm) patina of carbonate mineralisation occurs on the slickensided surface. Samples 978 
used for microstructural investigation and geochemical/geochronological purposes are indicated by red 979 
labels. 980 

Figure 5. Example of rock slab (sample M4G; Table 1) used for defining the main observed structural 981 
fabrics. (a) Polished rock slab of sample M4G with the indication of micro-drilling sites for geochemical and 982 
geochronological purposes. U-Th ages and temperatures deriving from clumped isotopes analysis are also 983 
indicated; (b) scanned thin section of sample M4G showing, from bottom to top, the cataclasite, the main slip 984 
surface, the sedimentary breccias (probably filling voids of karst origin) and three main mineralisations 985 



characterised by a layering of thin laminae and sparitic veins; (c) line drawing of the main features observed 986 
in the scanned thin section of sample M4G; (d) and (e) BSE images (see Fig. 5b for location) showing the 987 
main slip surface, sub-rounded small clasts in the ultracataclasite, sub-angular clasts and clasts with 988 
polygonal fractures; (f) enlargement of Fig 5e. 989 

Figure 6. Microscale properties of the collected samples. a) Petrographic image (crossed polarised light) of 990 
massive cataclasite consisting of a fine- to very fine-grained matrix embedding a few large clasts (up to 1.5 991 
mm in width); (b) back-scattered electron (BSE) image showing the occurrence of polygonal fractures within 992 
the cataclasite; c) BSE image showing the occurrence of a slip surface that sharply truncate the carbonate 993 
clasts; d) petrographic image (plane polarised light) and e) cathodoluminescence image showing traces of 994 
permeating fluid (bright colour in cathodoluminescence) within the fine-grained cataclasite matrix; f) 995 
petrographic image (plane polarised light) and g) cathodoluminescence image showing layered (and partly 996 
folded) carbonate mineralisation atop a very fine-grained cataclasite. Note the general upward-convex fan-997 
shaped crystals grown during incremental layering. Cathodoluminescence imaging reveals that calcite 998 
making the mineralisation is characterised by a dark violet colour, darker than the colour of the adjacent 999 
cataclasite; h) petrographic image (plane polarised light) and i) BSE image showing fractured mineralisation 1000 
embedded within the fine-grained cataclasite; j) petrographic image (crossed polarised light) showing 1001 
polyphasic growth of mineralisation embedding lenses of protocataclasite. Note the different style of 1002 
growing (including bedding-parallel layers, undulate layers, elongated crystals); k) upward-convex fan-1003 
shaped crystals grown and downward-convex fan-shaped crystals grown in mineralisations separated by a 1004 
thin layer of cataclasite.  1005 

Figure 7. Line drawing of the studied outcrop (Fig. 3d) with indication of the selected mineralisation 1006 
samples for U-Th ages. The insets indicate the mineralisation slabs, as well as the selected portion for U-Th 1007 
analysis and the obtained results.  1008 

Figure 8. Combined plot of δ13C (‰V-PDB) and δ18O (‰V-PDB) isotope values derived from the collected 1009 
samples. V-PDB: Vienna Peedee Belemnite standard. 1010 

Figure 9. a) simplified structural architecture of the MMFS as deduced from observation at the studied 1011 
outcrops; b) schematic scenario of fault permeability development during the progressive exhumation of the 1012 
of the fault core-damage zone formed at depth (at tn) and reactivation of slip surfaces at shallower crustal 1013 
conditions (at tn+nx); c) structural relationships between the analysed carbonate mineralisations and the fault 1014 
domains as documented by previous work on the same fault strands (Ferraro et al., 2018; Coppola et al., 1015 
2021); d) two-stage structural evolution for the MMFS according to fault cross-cutting relationships, pattern 1016 
of fluid circulation during faulting as deduced from the isotopic analysis, and absolute ages provided by U-1017 
Th dating on carbonate mineralisations; e) proposed scenario of cyclical fault-fluid interactions in the MMFS 1018 
within a recurrence time of 10-15 ka between coseismic events as deduced from this study. fc: fault core; dz: 1019 
damage zone. EFS and WFS are the eastern and western strands of the Monte Morrone Fault System, 1020 
respectively.  1021 

Figure 10. Comparison between U-Th ages of fault-related mineralisations from the MMFS (this study), the 1022 
Amatrice fault System (AFS; Vignaroli et al., 2020a), the Val Roveto Fault (Smeraglia et al., 2018) and 1023 
CaCO3 samples (bedded and banded travertines, calcite-filled veins) from the northern part of the central 1024 
Apennines (Sem-Sat: Semproniano-Saturnia travertines: Berardi et al., 2016; Vignaroli et al., 2016; Ra-VdC: 1025 
travertines from the Radicofani and Val di Chiana basins: Brogi et al., 2010; 2012; 2017; see location in Fig. 1026 
2b). Major paleoclimate indicators are represented by the deep-sea oxygen isotope trend (Zachos et al., 1027 
2001), the pollen data set from Valle di Castiglione (Tzedakis et al., 2001), and the atmospheric CO2 1028 
degassing (Past Interglacial Working Group of PAGES, 2016). Glacial-interglacial periods are redrawn and 1029 
modified after Priewisch et al. (2014). Valle di Castiglione is located in central Italy (see location in Fig. 2b) 1030 
only ~100 km west to the MMFS. MIS: Marine Isotope Stages. AP: arboreal pollen; NAP: non-arboreal 1031 
pollen. Eccentricity/precession are redrawn and modified after Past Interglacial Working Group of PAGES 1032 
(2016). 1033 



Table 1. Summary of observed structures and collected samples during the structural survey along the 1034 
western strand of the Monte Morrone Fault System (see Fig. 2e). 1035 

Table 2. U-Th ages of the carbonate mineralisations from the Monte Morrone Fault System collected at the 1036 
studied outcrop near Roccacasale village (site M4.1; long.: 13.883°; lat.: 42.125°). Sample indicated with * 1037 
was analysed through MC-ICP-MS at the HISPEC of the National Taiwan University (errors quoted as 2σ), 1038 
whereas sample indicated with ** was analysed through α spectrometry done at the at the Laboratory of 1039 
Environmental and Isotopic Geochemistry (Department of Sciences, Roma Tre University, Italy) (errors 1040 
quoted as 1σ). 1041 

Table A1. Stable oxygen and carbon isotope composition of the selected samples from the Monte Morrone 1042 
Fault System collected at the studied outcrop near Roccacasale village (long.: 13.883°; lat.: 42.125°). Isotope 1043 
compositions are expressed in ‰ against Vienna Pee Dee Belemnite standard (VPDB). 1044 

Table A2. Clumped isotopes analyses on the selected samples from the Monte Morrone Fault System. 1045 

Figure SM1. Polished rock slabs of the analysed samples (sample M4G is reported in Fig. 5; Tables 1 and 2) 1046 
with the indication of micro-drilling sites for geochemical (stable isotopes in black and clumped isotopes in 1047 
red) and geochronological analysis (red-white circles). U-Th ages and temperatures deriving from clumped 1048 
isotopes analysis are also indicated. 1049 

Figure SM2. Polished slab, high-resolution scanned thin section, detailed petrographic and back-scattered 1050 
electron (BSE) images showing the main observed structural fabrics of sample M4HW. a) Oriented polished 1051 
rock slab showing the contact between the slip surface (here developed at the top of the carbonate 1052 
mineralisation) and the hanging wall of the massive cataclasite; b) high-resolution scanned thin section of 1053 
sample M4HW showing the carbonate mineralisations (at the bottom) and cataclasite (at the top); c) 1054 
petrographic image (crossed polarised light) showing brecciated mineralisations partially embedded within 1055 
the fine-grained cataclasite. Secondary cement made by calcite crystals occurs within the reworked carbonate 1056 
mineralisations; d) petrographic image (plane polarized light) showing sigmoidal foliation within the 1057 
carbonate mineralisations embedded in two minor slip surfaces; e) petrographic image (plane polarised light) 1058 

showing fractured and brecciated carbonate mineralisations with several minor slip surfaces and embedding 1059 

pockets of protocataclasites; f) BSE image showing the main slip surface at the top of the carbonate 1060 

mineralisations and the fractured mineralisations partially embedded in the cataclasite. Note the two 1061 
extensional fractures developed along the main slip surface; g) BSE image showing structures high angle to 1062 
vertical slip surface, generally with undulating boundaries and characterised by tight cataclasite and calcite 1063 
vein.  1064 

Figure SM3. Petrographic images showing the microscale properties of M4H2 sample at different scale of 1065 
observation. (a) Petrographic photomosaic (plane polarised light) of the lower part of M4H2 thin section 1066 
showing (at the bottom) multiple generation of mineralisations (formed both by laminae and veins) and 1067 
breccia (at the top). The upper edge of the mineralisation is characterized by a thin layer of ultracataclasite. 1068 
At least one slip surface is observed within the mineralisation. (b) Petrographic image (plane polarised light) 1069 
showing within the breccia clasts of former mineralisations mixed with other carbonate fragments deriving 1070 
from previous cataclasite and calcite cement. (c-d) Petrographic images (plane and crossed polarised light, 1071 
respectively) showing a series of bands of cataclasite and ultracataclasite within the mineralisation. (e) 1072 
Petrographic image (plane polarised light) showing the upper edge of the mineralisation covered by a thin 1073 
layer of ultracataclasite. (f-g) Petrographic images (plane and crossed polarised light, respectively) showing a 1074 
series of bands parallel to the slip surface and formed by cataclasites alternating with highly fractured 1075 
mineralisations. The upper portion of the mineralisation is flattened and truncated along the slip surface and 1076 
some fragments of the mineralisation are partially embedded within the thin layer of ultracataclasite. (h-i) 1077 
Petrographic images (plane and crossed polarised light, respectively) showing in detail a series of bands 1078 
parallel to the slip surface and formed by cataclasites alternating with highly fractured mineralisations. 1079 
Interposed between two bands of cataclasite, a thin level of mineralisation is highly fractured, and some 1080 
carbonate clasts are partially dispersed in the cataclasite. (l-m) Petrographic images (plane and crossed 1081 



polarised light, respectively) showing a highly fractured portion of the mineralisation with a shape miming a 1082 
sigmoidal foliation. (n-o) Petrographic images (plane and crossed polarised light, respectively) showing in 1083 
detail the upper portion of the mineralisation. A thin layer of ultracataclasite, with some synthetic shear zone, 1084 
covers the edge of the mineralisation. 1085 

1086 

1087 



TABLE 1. Summary of observed structures and collected samples during the structural survey along the 

western strand of the Monte Morrone Fault System (see Fig. 2e). 

Structural 

stop 
Lat. Long. Structural fabric 

Sample for 

geochronology 

(Table 2) 

Sample for 

isotope data 

(Table A1) 

M1 42.124° 13.888° 
 Damage zone (synthetic faults and

extensional or hybrid fractures)

M3.1 42.121° 13.893° 

 Fault core (main slip surface and 
cataclasite)

 High-angle normal faults cutting the 

main slip surface 

M3.2 42.121° 13.894° 
 Fault core (main slip surface and 

cataclasite)

M4.1 42.125° 13.883° 

 Fault core (main slip surface,

cataclasite, fault breccias and veins
made by calcite precipitation)

 Damage zone (synthetic faults and

extensional or hybrid fractures)
 High-angle normal faults cutting the 

main slip surface 

M4G/1, M4G/2, 

M4G/3, M4H, 
M4H2, M4HW, 

M4F1, M4i, M4e 

M4G/1, M4G/2, 

M4G/3, M4H, 
M4H2, M4HW, 

M4F1, M4i, M4e 

M4.2 42.127° 13.882° 

 Fault core (main slip surface and 

cataclasite)
 High-angle normal faults cutting the 

main slip surface 

M4.3 42.128° 13.881° 

 Fault core (main slip surface and 
cataclasite)

 High-angle normal faults cutting the 

main slip surface 

M4.4 42.129° 13.879° 
 Damage zone (synthetic faults and

extensional or hybrid fractures)

Table 1



Table 2. U-Th ages of the carbonate mineralisations from the Monte Morrone Fault System collected at the studied outcrop near Roccacasale village (site M4.1; lat.: 42.125° N; 

long.: 13.883° E). Sample indicated with * was analysed through MC-ICP-MS at the HISPEC of the National Taiwan University (errors quoted as 2σ), whereas sample indicated 

with ** was analysed through α spectrometry done at the at the Laboratory of Environmental and Isotopic Geochemistry (Department of Sciences, Roma Tre University, Italy) 

(errors quoted as 1σ). 

Sample 

ID 

Weight 

g 

238U 

Ppb (a) 

232Th 

ppb 
234U

measured (a)

[230Th/238U] 

activity (c) 

230Th/232Th 

atomic (x 10-6) 

Age (ka ago) 

uncorrected 

Age (ka ago) 

corrected (c,d) 
234Uinitial

corrected (b)

M4G/1* 0.2311 154.95 ± 0.16 0.1216 ± 0.0020 21.6 ± 1.4 0.9030 ± 0.0018 18969 ± 315 230.3 ± 2.0 230.3 ± 2.0 41.5 ± 2.6 

M4G/2* 0.21021 244.15 ± 0.28 0.4809 ± 0.0023 6.0 ± 1.4 0.9027 ± 0.0018 7556 ± 38 246.6 ± 2.5 246.6 ± 2.5 12.1 ± 2.8 

M4G/3* 0.19458 198.01 ± 0.27 2.5449 ± 0.0055 7.7 ± 1.6 0.9149 ± 0.0033 1173.6 ± 4.6 257.8 ± 4.3 257.4 ± 4.3 15.8 ± 3.3 

M4H* 0.20549 419.68 ± 0.51 10.833 ± 0.033 9.8 ± 1.5 0.9264 ± 0.0046 591.7 ± 3.4 268.6 ± 6.2 267.9 ± 6.1 20.9 ± 3.2 

M4H2* 0.22826 429.58 ± 0.55 11.059 ± 0.036 17.6 ± 1.8 0.8848 ± 0.0043 566.7 ± 3.3 219.0 ± 3.7 218.3 ± 3.7 32.6 ± 3.3 

M4HW* 0.21036 255.88 ± 0.38 15.445 ± 0.067 24.5 ± 1.8 0.8902 ± 0.0086 243.2 ± 2.5 217.3 ± 6.7 215.8 ± 6.7 45.1 ± 3.3 

M4F1* 0.20277 323.87 ± 0.38 0.2808 ± 0.0023 8.9 ± 1.7 0.8703 ± 0.0020 16552 ± 141 214.9 ± 2.1 214.9 ± 2.1 16.4 ± 3.2 

M4i* 0.2008 138.40 ± 0.15 2.0115 ± 0.0033 23.6 ± 1.3 0.8483 ± 0.0039 962.4 ± 4.6 189.7 ± 2.5 189.4 ± 2.5 40.3 ± 2.3 

(a) [238U] = [235U] x 137.818 (±0.65‰) (Hiess et al., 2012); 234U = ([234U/238U]activity - 1) x 1000.

(b) 234Uinitial corrected was calculated based on 230Th age (T), i.e., 234Uinitial = 234Umeasured X e234*T, and T is corrected age.

(c) [230Th/238U]activity = 1 - e-230T
 + (234Umeasured/1000)[230/(230 - 234)](1 - e-(230 - 234) T), where T is the age. Decay constants are 9.1705 x 10-6 yr-1 for 230Th, 2.8221 x 10-6 yr-1 for

234U (Cheng et al., 2013), and 1.55125 x 10-10 yr-1 for 238U (Jaffey et al., 1971).

(d) Age corrections, relative to chemistry date on March 19th, 2019, were calculated using an estimated atomic 230Th/232Th ratio of 4 (± 2) x 10-6.

Those are the values for a material at secular equilibrium, with the crustal 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50%.

Sample 

ID 
U (ppm) 230Th/232Th 234U/238U 230Th/234U (234U/238U) initial Age (ka) 

M4e** 0.137 ± 0.005 83.105±10.401 1.030±0.037 0.809±0.036 1.050±0.061 178 +39/-30 

Table 2
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