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CORRIGENDUM AND ADDENDUM TO �POLARIZED PARALLEL

TRANSPORT AND UNIRULED DIVISORS ON GENERALIZED KUMMER

VARIETIES�

GIOVANNI MONGARDI AND GIANLUCA PACIENZA

Abstract. We correct the statement of the main result of [MP] and provide some further pre-
cisions.

The goal of this short note is to state correctly the main result of [MP]. For the de�nitions, the
notations and the motivations we refer the reader to [MP]. The correct statement is the following:

Theorem 0.1. Let n ≥ 1 be an integer. Let M = ∪d>0M2d be the union of the moduli spaces

M2d of projective irreducible holomorphic symplectic varieties of Kn(A)-type polarized by a line

bundle of degree 2d. For all (X,H) ∈M, outside at most a �nite number of connected components

determined by the monodromy orbit of H, the linear system |mH|, for some m, contains a uniruled

divisor covered by rational curves of primitive class.

Let q be the Beauville-Bogomolov quadratic form on H2(X,Z). This induces an embedding
H2(X,Z) ↪→ H2(X,Z), H 7→ H∨. By abuse of notation we denote again by q the quadratic form
on H2(X,Z).
Remark 0.2. The statement above insures precisely existence of uniruled divisors covered by
primitive rational curves if there exist integers p, g and ε such that p ≥ g and ε = 0 or 1 with

(i) the class α := H∨

div(H) ∈ H2(X,Z) can be written as γ+(2g− ε)η with η in the monodromy

orbit of the class of the exceptional curve on a Kn(A);

(ii) γ ∈ η⊥, q(γ) = 2p− 2 (hence q(α) = 2p− 2− (2g−ε)2
2n+2 ).

Remark 0.3. (i) It follows from Proposition 2.1 that if q(α) > n+ 1, then a multiple of H
is uniruled by primitive rational curves of class α.

(ii) If ρ(X) ≥ 2 thenX always contains an ample uniruled divisor covered by primitive rational
curves (cf. Corollary 2.3).

(iii) If n ≤ 5 then the conclusion of the theorem holds for all the connected components of M
(cf. Remark 2.4).

(iv) If n + 1 is a power of a prime number, then by [Mark, Mon2], the monodromy group is

maximal. Therefore it su�ces to check that the square q(α) is of the form 2p−2− (2g−ε)2
2n+2 ,

with p ≥ g.

The original proof was based on 3 ingredients: the �rst was a deformation theoretic statement,
saying that rational curves whose deformations cover a divisor in irreducible holomorphic sym-
plectic manifolds are non-obstructed (see [CP, Corollary 3.5]). The second is the characterization
of polarized parallel transport operators on polarized irreducible holomorphic symplectic varieties
(X,H) of Kn(A)-type (see [MP, Theorem 1.1]) which allows to obtain an explicit description of
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the polarized deformation equivalence (see [MP, Theorem 4.2]). These two ingredients are true.
The third argument consists in the construction of explicit examples of uniruled divisors on the
generalized Kummer variety associated to a polarised abelian surface (A,HA) with NS(A) = ZHA

such that pa(HA) ≥ g ≥ 2. The construction is also correct, but the examples that we provided
cannot yield all the possible primitive polarizations, as we tacitely and erroneously assumed in
[MP]. Even without taking the monodromy orbit into account, this is simply because it may

happen that the number 2p − 2 − (2g−ε)2
2n+2 , ε = 0, 1, is positive even with p < g, which obviously

renders our geometric argument empty. Indeed the rational curves are constructed as g1n on the
normalization of a nodal curve of geometric genus g lying in the hyperplane linear system |HA|,
which is supposed to have pa(HA) = p. We also take the occasion of this note to provide the full
proof (see Proposition 1.1) of a technical point which we claimed in [MP, Section 4.2] to follow
from a dimension count as in [Voi15, Example 4.1, 3)]. The statement is correct, but the argument
cannot be the same as in [Voi15, Example 4.1, 3)] because we deal here with a locally closed subset
(the Severi variety) of a complete linear system, and not with the full complete linear system.

The K3[n]-type case, initially treated in [CP], is subjet to the same considerations and will be
treated in [CMP].

We realized our mistake after the appearance of [OSY], which provides counterexamples in the

K3[n]-case which apply exactly in all the cases not covered by the similar geometric constructions
for the Hilbert scheme of points on a general projective K3.Contrary to the K3[n]-type case as
far as we know there are no known counterexamples to the existence of uniruled divisors ruled by
a primitive curve class in the Kn(A)-type case. Nevertheless we have no reasons to believe that
the Kn(A)-type case could be exempt from this type of sporadic pathologies.
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1. Existence of uniruled divisors on Kn(A)

In [MP, Section 4.2 �Examples�] we claimed that �the natural map from C̃ 1
g+1 → A[g+1] is �nite

onto its image� invoking a dimension count made in [Voi15, Example 4.1, 3)]. However the same
argument cannot work because we do not work with the full continuous system, but with a locally
closed subset (the Severi variety). Hence we take the occasion to provide a full proof of that
statement in the following.

Proposition 1.1. Let g be an integer ≥ 2 and (A,HA) be a general polarized abelian surface with

pa(HA) =: p ≥ g. Then A[g+1] contains a uniruled divisor covered by the g1g+1 on nodal genus g

curves in the continuous system {HA}.

Proof. To prove the statement we can actually work over a very general polarized abelian surface,
so let us suppose that NS(A) = ZHA. We will prove this statement by induction on g. It is
su�cient to show it on the symmetric product of A.

Observe that, by [KLM, Thm. 1.1], for all 2 ≤ g ≤ pa(HA), that the Severi variety parametrizing
nodal genus g curves inside {HA} is non-empty of the expected dimension g.
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It is su�cient to show the claim on the symmetric product A(g+1) of A. More precisely, we will
prove the following statement: there exists an irreducible component V of the (Zariski closure of
the) Severi variety parametrizing nodal genus g curves inside {HA} such that, if CV → V denotes

the universal curve and C
(g+1)
V → V the relative symmetric product, the natural morphism

C
(g+1)
V → A(g+1)

is generically �nite onto its image. Note that this is equivalent to saying that (g + 1) generic
points on a generic curve of the family lie only on a �nite number of curves of the family.

Indeed as
dimC

(g+1)
V = reldim(C

(g+1)
V ) + dimV = (g + 1) + g = 2g + 1

it follows that the image is a divisor inside A(g+1). Since the k-th symmetric product of a curve
is uniruled for k greater than the genus of the curve, as a by-product we have that such divisor is
uniruled.

Note also that positive dimensional �bers of the morphism C
(g+1)
V → A(g+1) cannot lie in a �ber

of C
(g+1)
V → V , as C

(g+1)
t injects into A(g+1) for every t ∈ V .

We start with the case g = 2. Let C be one of the (�nitely many) nodal curves of geometric
genus 2 inside the linear system |HA|. In this case the points of the component V of the Severi

variety containing C are given by all the translates of C. The third symmetric product C(3)

injects as a 3-dimensional subvariety inside A(3). The action of A on C(3) by translation has no
positive-dimensional stabilizer (as A is general, hence simple). Therefore the orbit of C(3) under

this action is a divisor. Using the notation above such divisor is the image of C
(2+1)
V in A(3).

By inductive hypothesis, there exists an irreducible component W of the (Zariski closure of the)
Severi variety parametrizing nodal genus g− 1 curves inside {HA} such that, if CW →W denotes

the universal curve and C
(g)
W →W the relative symmetric product, the natural morphism

C
(g)
W → A(g)

is generically �nite onto its image.

Now let V be (the Zariski closure of) an irreducible component of the Severi variety of nodal
genus g curves in {HA} obtained by smoothing one node of the curves in W (which can be done
by the regularity of the Severi variety, [CS, Example 1.3]). By construction W ⊂ V . Let CV → V
be the universal curve. Its restriction over W yields a map CW →W . Let D be the image of the
morphism

C
(g+1)
V → A(g+1).

Observe that D contains the image DW of

C
(g+1)
W → A(g+1).

We claim that by the inductive hypothesis DW has codimension 2, or, equivalenty, that the

morphism C
(g+1)
W → A(g+1) is generically �nite onto its image. Indeed if ξ = x1 + . . .+ xg+1 is a

generic point of the image, then, say, x1+ . . .+xg is a generic point of the image of the morphism

C
(g)
W → A(g). By the inductive hypothesis the points x1, . . . , xg lie on �nitely many curves of the

family W , a fortiori that will be true for x1, . . . , xg, xg+1 and the claim follows.

We want to prove that D contains DW strictly. If this were not the case, by irreducibility, we

would have D = DW . Let U ⊂ D be an open subset over which the morphisms C
(g+1)
W → A(g+1)

and C
(g+1)
V → A(g+1) are smooth and let p1 + p2 + · · ·+ pg+1 be a point in U . Let C be a nodal

genus g curve in V containing these points. Let us �x the �rst g points p1, . . . , pg. By induction
these points are contained inside a �nite number of curves of genus g − 1 belonging to W . Let

3



B1, . . . , Bm be all such curves. Let UC ⊂ C be an open subset such that for all q ∈ UC we have
p1 + . . . + pg + q ∈ U . As we have seen above p1, . . . , pg, q lie on �nitely many curves of genus
g − 1 belonging to W , and these curves must be B1, . . . , Bm. Therefore, as q varies in UC , we
deduce that UC is a subset of a �nite union of genus (g − 1) curves. As C is irreducible, there is
an i such that C = Bi, which is clearly a contradiction. Therefore D must strictly contain DW

and be a divisor, which is necessarily uniruled.

�

The rest of the proof remains the same and we refer the reader to [MP] for the details.

2. Where it does not work

In this section we prove that, for every dimension, there is at most a �nite number of components of
the moduli space of polarized manifolds (X,H) of Kn(A)-type where the strategy of the previous
section does not work.
The uniruled divisors we constructed have a cohomology class which is a multiple of HA − (2g)τ
(or HA − (2g − 1)τ) where 2p − 2 = H2

A and HA is the primitive polarization on the abelian
surface. We have the following:

Proposition 2.1. Let X be a projective irreducible holomorphic symplectic variety of Kn(A)-
type. Let C ∈ H2(X,Z)∩N1(X) be a primitive class such that its square q(C) with respect to the

Beauville-Bogomolov form is > n+ 1. Then, the class C is deformation equivalent to the class of

one of the curves constructed in the previous section.

Proof. We know by [MP, Theorem 4.2] that C is deformation equivalent to either HA − 2gτ or
HA− (2g− 1)τ , with g ≤ n+1. If q(C) > n+1, the square of HA− (2n+2)τ is positive, that is
H2
A = 2p− 2 with p > n+1. Thus, p > n+1 ≥ g which means that HA− 2gτ can be represented

by the class of a g1g+1 on a nodal curve in {HA}. �

Corollary 2.2. Let Mn be the moduli space of all polarized manifolds of Kn(A)-type with n �xed.

Then, the number of components of Mn whose general points (X,H) do not have a uniruled divisor

ruled by a rational curve of primitive class is at most �nite.

Proof. The components of Mn are in bijective correspondence with the monodromy orbits of a
given class of positive square in Ln := U3 ⊕ (−2n− 2) ∼= H2(X,Z), see [Ono, Thm. 2.8].

For a �xed square of H, there is a �nite number of orbits (computed again in [Ono, Thm. 2.8]),
so it follows that if X has a uniruled divisor when q(H) is big enough, our claim will hold.
The dual curve to H is given by H/div(H), where div(H) is the divisibility of H which is the
positive generator of the ideal q(H,H2(X,Z)). The divisibility is at most 2n + 2, therefore if
q(H) ≥ (2n+ 2)2(n+ 1) the dual curve has square at least n+ 1, so that Proposition 2.1 applies
and our claim follows. �

Corollary 2.3. Let X be a projective manifold of Kn(A)-type with Picard rank at least two. Then

X has an ample divisor ruled by primitive rational curves.

Proof. Since X is projective and has Picard rank at least two, its Picard lattice is inde�nite and
contains primitive elements of positive arbitrary Beauville-Bogomolov square, and so does the
ample cone. Let H be an ample divisor such that q(H) ≥ (2n + 2)2(n + 1). Let C be its dual
curve in H2(X,Z). As the divisibility of H is at most 2n + 2 it follows that q(C) ≥ n + 1 and
Proposition 2.1 yields our claim. �
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Remark 2.4. The estimate of Proposition 2.1 is de�nitely not sharp, indeed all primitive curves
of positive square on manifolds of Kn(A)-type with n ≤ 5 are deformation equivalent to the
curves we construct in Proposition 1.1. Indeed, by [MP, Theorem 4.2] we can suppose that
our pair (X,C) with q(C) > 0 is (Kn(A), HA − µτ) with 0 ≤ µ ≤ n + 1 and A is an abelian
surface of genus p. The class HA − µτ is given by the class of the rational curves constructed
in Proposition 1.1, which have class HA − 2gτ , with the eventual addition of a tail of class
τ , so that 2g ≤ n + 2. By contradiction let us suppose that g > p and n ≤ 5. We have

q(HA − 2gτ) = 2p − 2 − 2 g2

n+1 ≤ 2p − 2 − 2 (p+1)2

n+1 ≤ 2p − 2 − 2 (p+1)2

6 . However, the last value is

never positive, hence q(HA − 2gτ) cannot be positive and we reach a contradiction. Analogously,

for C = HA− (2g− 1)τ , we have q(C) ≤ 20p−25−4p2
12 with g ≥ p+1 and 2g ≤ n+2, which is again

not positive.

References

[CP] F. Charles, G. Pacienza, Families of rational curves on holomorphic symplectic varieties,
arXiv:1401.4071v2 [math.AG].

[CMP] F. Charles, G. Mongardi, G. Pacienza, Families of rational curves on holomorphic symplectic varieties

of K3[n] − type, forthcoming.
[CS] L. Chiantini, E. Sernesi, Nodal curves on surfaces of general type, Math. Annalen 307 (1997), 41-56.
[KLM] A. L. Knutsen, M. Lelli-Chiesa, and G. Mongardi, Severi varieties and Brill-Noether theory of curves on

abelian surfaces, Journal für die reine und angewandte Mathematik (Crelles Journal), Vol. 749 (2019),
Pages 161�200.

[KLM2] A.-L. Knutsen, M. Lelli-Chiesa, G. Mongardi, Wall divisors and algebraically coisotropic subvarieties
of irreducible holomorphic symplectic manifolds, Trans. Amer. Math. Soc. vol. 371 (2019) no. 2, 1403�
1438.

[LS] H. Lange, E. Sernesi, Severi varieties and branch curves of abelian surfaces of type (1,3), International
J. of Math. 13 (2002), 227-244.

[Mon2] G. Mongardi, On the monodromy of irreducible symplectic manifolds, Alg. Geom. (2016) no. 3, 385�391.
[Mark] E. Markman, The monodromy of generalized Kummer varieties and algebraic cycles on their interme-

diate Jacobians, arXiv:1805.11574.
[MP] G. Mongardi, G. Pacienza, Polarized parallel transport and uniruled divisors on deformations of gen-

eralized Kummer varieties, International Mathematics Research Notices Volume 2018 (2018), no. 11,
Pages 3606�3620.

[OSY] G. Oberdieck, J. Shen and Q. Yin, Rational curves in the Fano varieties of cubic 4-folds and Gromov-
Witten invariants, arXiv:1805.07001v1.

[Ono] C. Onorati, Connected components of moduli spaces of generalized Kummer varieties,
arXiv:1608.06465

[Voi15] C. Voisin, Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties,
�K3 Surfaces and Their Moduli�, Progress in Math, Proceedings of the Schiermonnikoog conference
2014, Birkhäuser.

Alma Mater studiorum Universitá di Bologna Dipartimento di Matematica, Piazza di Porta San

Donato 5, Bologna, 40126 Italia

Email address: giovanni.mongardi2@unibo.it

Institut Elie Cartan de Lorraine, Université de Lorraine, B.P. 70239, F-54506 Vandoeuvre-lés-

Nancy Cedex France

Email address: gianluca.pacienza@univ-lorraine.fr

5


	Copertina_postprint_IRIS_UNIBO (2)
	main (11)
	Acknowledgements
	1. Existence of uniruled divisors on Kn(A)
	2. Where it does not work
	References


