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Abstract

We give the superalgebra of N = 2 chiral (and antichiral) quan-
tum superfields realized as a subalgebra of the quantum supergroup
SLq(4|2). The multiplication law in the quantum supergroup induces
a coaction on the set of chiral superfields. We also realize the quan-
tum deformation of the chiral Minkowski superspace as a quantum
principal bundle.
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1 Introduction

It is well known that the N = 1 superconformal superspace, in its complex-
ified version [1, 2], is the superflag F l(2|0, 2|1, 4|1), on which the conformal
supergroup SL(4|1) acts naturally. The space C4|1, underlying the defining
representation of SL(4|1), is the space of supertwistors [3, 4].

Dealing with the complexified version has the advantage of seeing this
structure, while the conditions for the real form can be imposed later on [2].
It is also well known, and differently from the non super case, that not all the
superflags are projective superspaces (take for example the super Grassman-
nian Gr(1|1, 2|2) [1]) and indeed the projective cases are rare among these
superspaces, though a new approach to this question was taken in [5]. For the
super Grassmannians only the extreme cases Gr(p|0, m|n) or Gr(p|n,m|n)
are superprojective and are both embedded into the projective superspace
P
M |N for suitable M and N see [8]. These super Grassmannians are dual to

each other and are the antichiral and chiral superspaces respectively.
The superflag F l(2|0, 2|1, 4|1) can be embedded in the product

F l(2|0, 2|1, 4|1) ⊂ Gr(2|0, 4|1)×Gr(2|1, 4|1) ,

and using the super Segre embedding [6] the superflag is embedded into the
projective superspace P80|64 [7, 8].

For N = 2 we can reproduce the same situation with

F l(2|0, 2|2, 4|2) ⊂ Gr(2|0, 4|2)×Gr(2|2, 4|2) ,

but this superflag is too big. The scalar superfields associated to it have too
many field components to be useful in the formulation of supersymmetric field
theories. Still, the antichiral Gr(2|0, 4|2) and chiral Gr(2|2, 4|2) superspaces
do have physical applications so it is useful to study them. They are both
embedded in P8|8.

There is a third super Grassmannian, Gr(2|1, 4|2), which is not projective
but that has physical applications. It is the harmonic superspace of [9, 10].
This example, together with more general ones, were studied from this point
of view in the series of papers [11, 12, 13, 14, 15, 16, 17].

Here we will consider only the (anti)chiral superspace (also considered
in [18]). Our aim is to quantize it by substituting the supergroup SL(4|2)
by the quantum group SLq(4|2) (in the sense of Manin [19]) and trying to
define appropriately the quantum super Grassmannian as an homogeneous
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superspace. This was done for N = 1 in [7, 8]. As we will see, the N = 2
case has its own peculiarities.

This program could, in principle be proposed for general homogeneous
superspaces, not necessarily superprojective. But the projectivity gives us
an advantage: the algebra associated to the projective embedding (super
Plücker embedding) can be seen both, as a quotient algebra of the projec-
tive superspace P8|8 modulo some homogeneous polynomial relations (super
Plücker relations) as well as a graded subring of the superring C[SL(4|2)],
encoding its projective embedding (see also [20, 21, 22]). We will see this in
detail in Section 3. One can then define a quantum super Grassmannian as a
certain subalgebra of the super Hopf algebra SLq(4|2). If done correctly, the
subalgebra must represent a quantum homogeneous superspace for SLq(4|2),
that is, the coproduct in SLq(4|2) induces a coaction on the quantum super
Grassmannian.

The chiral Minkowski N = 2 superspace M emerges naturally in this
context as the big cell in the Grassmannian Gr(2|0, 4|2). The N = 1 case
was extensively studied in [8], Chapter 4. However, as remarked above, the
N = 2 SUSY has its own peculiarities, which make the theory richer. We
view the big cell in Gr(2|0, 4|2) as the subsupermanifold containing certain
2|0 subspaces and we realize it as the set S of pairs of vectors in C4|2 modulo
the natural right GL(2) action, which accounts for basis change. Hence, we
construct M as the quotient of S modulo the ordinary general linear group
GL(2). The quantization of M is obtained, as expected, as the subsuperring
of a localization of SLq(4|2), generated by the quantum coinvariants with
respect to the coaction of quantum GLq(2) (see [8], Chapter 4 for the N = 1
case). The presentation of this quantum superring via generators and rela-
tions, makes an essential use of the commutation relations among the quan-
tum determinants appearing in the definition of the quantum Gr(2|0, 4|2)
and the Plücker relations. Moreover, the quantum Minkowski space, Mq, is
isomorphic to the quantum Manin superalgebra, that is, the quantum super
bialgebra of matrices, as described in [19]. This fact is highly non obvious,
it depends on the quite involved commutation relations of quantum deter-
minants and it shows how this framework is natural and suitable for more
exploration, as we detail below.

The chiral Minkowski N = 2 superspace, being a quotient, appears then
naturally also as a principal bundle for the action of GL(2). There is an
extensive literature regarding the quantization of principal bundles (see [22,
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23, 24, 25, 26] and references therein). In particular the notion of Hopf-Galois
extension [27] appears to be the right one to formulate, in the affine setting,
the theory of principal bundles to obtain their quantum deformations.

We hence proceed to define Hopf-Galois extensions in the SUSY frame-
work and prove that the chiral Minkowski N = 2 superspace M is the base
for a principal bundle S for the supergroup GL(2), by realizing it as a triv-
ial Hopf-Galois extension (see also [28] for a more geometric, yet equivalent,
view on super principal bundles). Next, we construct a quantum deformation
Mq of M, by taking advantage of our previous realization and show that Mq

is the quantum space, base for the quantum principal bundle Sq, for GLq(2).

We plan to explore, in a forthcoming paper, the construction of covariant
differential calculi on the quantum chiral Minkowski N = 2 superspace and
then proceed towards the realization of a theory in a curved background.

The paper is organized as follows.
In Section 2 we describe the super Plücker embedding of the super Grass-

mannian and its presentation in terms of generators and relations.
In Section 3 we give the classical super Grassmannian as a subalgebra of

the coordinate superalgebra of SL(4|2).
In Section 4 we briefly describe the big cell of the super Grassmannian,

the N = 2, D = 4 Minkowski superspace.
In Section 5 we pass to define the super Grassmannian as a subsuperalge-

bra of SLq(4|2), computing the commutation relations of the generators and
the quantum super Plücker relations that they satisfy.

In Section 6 we give the coaction of SLq(4|2) on the quantum super Grass-
mannian defined in the previous section, proving that it is a quantum homo-
geneous superspace.

In the last section, Section 7, we construct the N = 2 ordinary chiral
Minkowski superspace M and its quantization Mq, realized both first as ho-
mogeneous spaces for the action of the ordinary (quantum) general linear
group in dimension 2, then as bases for (quantum) principal bundles for
GL(2) and GLq(2) respectively.

2 The super Plücker embedding

We are going to give the embedding of Gr(2|0, 4|2) in the projective super-
space P8|8. Let E =

∧2
C4|2 and {e1, . . . , e4, ǫ5, ǫ6} an homogeneous basis for
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C4|2, we then have a basis for E as

ei ∧ ej 1 ≤ i < j ≤ 4, ǫ5 ∧ ǫ5, ǫ6 ∧ ǫ6, ǫ5 ∧ ǫ6, (even),

ek ∧ ǫ5, ek ∧ ǫ6 1 ≤ k ≤ 4, (odd) .

So E ≃ C9|8 and P(E) ≃ P8|8. An element of E is given as

Q = q + λ5 ∧ ǫ5 + λ6 ∧ ǫ6 + a55ǫ5 ∧ ǫ5 + a66ǫ6 ∧ ǫ6 + a56ǫ5 ∧ ǫ6 ,

with

q = qijei ∧ ej, λm = λimei, i, j = 1, . . . , 4, m = 5, 6 .

The element q is decomposable if q = a ∧ b, where

a = r + ξ5ǫ5 + ξ6ǫ6, b = s+ η5ǫ5 + η6ǫ6,

with r = riei, s = siei.
One obtains the following relations

q = r ∧ s

λ5 = ξ5s− η5r, λ6 = ξ6s− η6r,

a55 = ξ5η5, a66 = ξ6η6, a56 = ξ5η6 + ξ6η5 , (1)

which imply

q ∧ q = 0,

q ∧ λ5 = 0, q ∧ λ6 = 0,

λ5 ∧ λ5 = −2a55q, λ6 ∧ λ6 = −2a66q, λ5 ∧ λ6 = −a56q,

λ5a55 = 0, λ6a66 = 0,

λ5a66 = −λ6a56, λ6a55 = −λ5a56,

a255 = 0, a266 = 0, a56a56 = −2a55a66,

a55a56 = 0, a66a56 = 0 . (2)

Relations (2) are the super Plücker relations. We can write them in
coordinates in the following way (always 1 ≤ i < j < k ≤ 4 and 5 ≤ n ≤ 6):
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q12q34 − q13q24 + q14q23 = 0, (Plücker relation)

qijλkn − qikλjn + qjkλin = 0,

λinλjn = annqij , λi5λj6 + λi6λj5 = a56qij ,

λinann = 0, λi5a66 = −λi6a56 λi6a55 = −λi5a56

a2nn = 0 a55a56 = 0, a66a56 = 0

a56a56 = −2a55a66 . (3)

For N = 1 these relations were given in [7], were the relation a255 = 0 was
missing but implicitly assumed. As we can see, for N = 2 extra relations
appear. The super Plücker relations for arbitrary N are given in [5], page 17.
They coincide with ours by a change in the notation due to the appearance
of a sign, because of a different convention on row/column vectors, hence the
consequent change of sign of the supertranspose.

We will denote as IP the ideal generated by them in the affine super-
space A9|8 (with generators qij , anm, λkn). They are homogeneous quadratic
equations, so they are defined in the projective space P8|8.

Let us denote Gr = Gr(2|0, 4|2) and consider the super Plücker map

Gr −−−→ P
8|8

span{a, b} −−−→ [a ∧ b] ,

We have the following

Proposition 2.1. The superring associated to the image of Gr under the
super Plücker embedding is

C[Gr] ∼= C[qij, anm, λkn]/IP ,

that is, the relations in IP are all the relations satisfied by the generators
qij , anm, λkn. Then Gr(2|0, 4|2), is a projective supervariety.

Proof. This is proven for arbitrary N (and further generalizations) in [5],
Theorem 6, denoted as the “algebraic case”.

�
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3 The classical picture

As stated in the introduction, one can see C[Gr] as a subalgebra of C[SL(4|2)].
Let us display the generators of this algebra in matrix form

















g11 g12 g13 g14 γ15 γ16
g21 g22 g23 g24 γ25 γ26
g31 g32 g33 g34 γ35 γ36
g41 g42 g43 g44 γ45 γ46
γ51 γ52 γ53 γ54 g55 g56
γ61 γ62 γ63 γ64 g65 g66

















(4)

then

C[SL(4|2)] = C[gij, gmn, γim, γnj]/(Ber− 1) ,

where Ber is the Berezinian of the matrix and 1 ≤ i, j ≤ 4 and 5 ≤ m,n ≤ 6.

Proposition 3.1. The superring

C[Gr] ∼= C[qij, anm, λkn]/IP ,

is generated, as a subring of C[SL(4|2)] by the elements

yij = gi1gj2 − gi2gj1, ηkn = gk1γn2 − gk2γn1

x55 = γ51γ52, x66 = γ61γ62 x56 = γ51γ62 + γ61γ52

with the homomorphism

C[Gr] −−−→ C[SL(4|2)]

qij , λkn −−−→ yij, ηkn

a55, a66, a56 −−−→ x55, x66, x56

Proof. The proof uses an argument similar to the one used to obtain (1).
Instead of taking the vectors a and b we have to take the first two columns
of the matrix (4).

�
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4 The big cell

A (2|0) subspace of C4|2 is given as the linear span of two even vectors2

V (A) = span

















u1 v1
u2 v2
u3 v3
u4 v4
µ1 ν1
µ2 ν2

















ui, vi ∈ A0, µi, νi ∈ A1 , (5)

where A is any superalgebra. Clearly there is a right action of GL2(A) over
V (A) (change of basis). We assume now that

det

(

u1 v1
u2 v2

)

invertible in A0 (6)

This is a supervariety, which is an affine open set into the affine superspace
A

8|4. It is represented by the superring:

C[S] = C[aij , αkl][T ]/((a11a22 − a12a21)T − 1), 1 ≤ i < j ≤ 4, 5 ≤ k < l ≤ 6

The condition of invertibility of the determinant function a11a22 − a12a21
accounts for the condition in (6).

Then, using the right action of GL2(A) we can bring (5) to the standard
form

V (A) = span





112×2

P2×2

ψt2×2



 .

P and ψ are even and odd coordinates in the open subset of Gr characterized
by (6) called the big cell of Gr. As for the N = 1 case, one can show
that the subgroup of SL(4|2) that leaves invariant the big cell contains the
(complexified) N = 2 super Poincaré group times the R-symmetry (dilations
for N = 1). In fact, we call Gr the antichiral3 conformal superspace, while
the big cell is the antichiral Minkowski superspace. In this respect we do not

2Here we are using implicitly the formalism of the functor of points to describe a super
variety [29].

3See [8] to see why this space is the antichiral one.
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coincide with the notation of [11]-[17], where they call directly Minkowski
superspace to the Grassmannian.

We do not extend here on this construction, but the condition (6) will be
also used in the quantum setting.

5 The quantum Grassmannian

We follow [19] to define the quantum group SLq(r|s).

Definition 5.1. The quantum matrix superalgebra Mq(r|s) is defined as

Mq(r|s) =def Cq〈zij, ξkl〉/IM

where Cq〈zij , ξkl〉 denotes the free superalgebra over Cq = C[q, q−1] generated
by the even variables

zij, for 1 ≤ i, j ≤ r or r + 1 ≤ i, j ≤ r + s.

and by the odd variables

ξkl for 1 ≤ k ≤ r, r + 1 ≤ l ≤ r + s

or r + 1 ≤ k ≤ r + s, 1 ≤ l ≤ r,

satisfying the relations ξ2kl = 0 and IM is an ideal that we describe below.
We can visualize the generators as a matrix

(

zr×r ξr×s
ξs×r zs×s

)

. (7)

It is convenient sometimes to have a common notation for even and odd
variables.

aij =



















zij 1 ≤ i, j ≤ r, or r + 1 ≤ i, j ≤ r + s,

ξij 1 ≤ i ≤ r, r + 1 ≤ j ≤ r + s, or

r + 1 ≤ i ≤ r + s, 1 ≤ j ≤ r .

We assign a parity to the indices: p(i) = 0 if 1 ≤ i ≤ r and p(i) = 1 if
r + 1 ≤ i ≤ r + s. The parity of aij is π(aij) = p(i) + p(j) mod 2. Then, the
ideal IM is generated by the relations [19]:
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aijail = (−1)π(aij )π(ail)q(−1)p(i)+1

ailaij, for j < l

aijakj = (−1)π(aij )π(akj)q(−1)p(j)+1

akjaij , for i < k

aijakl = (−1)π(aij )π(akl)aklaij , for i < k, j > l

or i > k, j < l

aijakl − (−1)π(aij )π(akl)aklaij = (−1)π(aij )π(akl)(q−1 − q)akjail,

for i < k, j < l

(8)

�

There is also a comultiplication

Mq(m|n)
∆

−−−→ Mq(m|n)⊗Mq(m|n)

∆(aij) =
∑

k aik ⊗ akj and a counit ε(aij) = δij .
One can restrict to SLq(r|s) by setting the quantum Berezinian to 1. The

antipode is the usual one (see [19] or [8], Appendix E). Then SLq(m|n) is a
super Hopf algebra.

We can now define the quantum Grassmannian Grq mimicking Proposi-
tion 3.1:

Definition 5.2. The quantum super Grassmannian Grq := Grq(2|0, 4|2) is
the subalgebra of SLq(4|2) generated by the elements

Dij := ai1aj2 − q−1ai2aj1 Din := ai1an2 − q−1ai2an1

D55 := a51a52 D66 := a61a62

D56 = a51a62 − q−1a52a61

with 1 ≤ i < j ≤ 4 and n = 5, 6.

�
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We want to give a presentation in terms of generators and relations, as
in Proposition 2.1 for the classical case. Note that, first of all, we have
to compute the commutation rules among the D’s. After some (tedious)
calculations we arrive at:

• Let 1 ≤ i, j, k, l ≤ 6 be not all distinct, and Dij , Dkl not both odd.
Then

DijDkl = q−1DklDij , (i, j) < (k, l), i < j, k < l , (9)

where the ordering ‘<’ of pairs is the lexicographical ordering.

• Let 1 ≤ i, j, k, l ≤ 6 be all distinct, and Dij , Dkl not both odd and
Dij, Dkl 6= D56. Then

DijDkl = q−2DklDij, 1 ≤ i < j < k < l ≤ 6,

DijDkl = q−2DklDij − (q−1 − q)DikDjl 1 ≤ i < k < j < l ≤ 6,

DijDkl = DklDij 1 ≤ i < k < l < j ≤ 6, (10)

• Let 1 ≤ i < j ≤ 4, 5 ≤ n ≤ m ≤ 6. Then

DinDjn = −q−1DjnDin − (q−1 − q)DijDnn = −qDjnDin,

DijDnm = q−2DnmDij,

Di5Dj6 = −q−2Dj6Di5 − (q−1 − q)DijD56,

Di6Dj5 = −Dj5Di6,

Di5Di6 = −q−1Di6Di5,

Di5Di6 = −q−1Di6Di5,

D55D66 = q−2D66D55 ,

D55D56 = 0 . (11)

The Plücker relations are modified. One has for 1 ≤ i < j < k ≤ 4 and
n = 5, 6:
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D12D34 − q−1D13D24 + q−2D14D23 = 0,

DijDkn − q−1DikDjn + q−2DjkDin = 0,

Di5Dj6 + q−1Di6Dj5 = qDijD56,

DinDjn = qDijDnn,

DinDnn = 0,

Di5D66 = −q−1Di6D56,

Di6D55 = −q2Di5D56

D2
nn = 0,

D55D56 = 0,

D66D56 = 0

D56D56 = (q−1 − 3q)D55D66 . (12)

The first relation in (11) has been simplified with the use of the fourth
relation in (12).

We have the following

Proposition 5.3. The quantum Grassmannian superring Grq = Grq(2|0, 4|2)
is given in terms of generators and relations as

Grq = Cq〈Xij, Xmn, Xim〉, Iq, 1 ≤ i < j ≤ 4; 5 ≤ m ≤ n ≤ 6 ,

where Iq is the ideal generated by the commutation relations (9),(10),(11)
and the quantum super Plücker relations (12).

Proof. We give a sketch of the argument, whose idea is expressed in [20]
Theorem 5.4 and also in [8] Chapter 4.

The super Plücker relations are all the relations satisfied by the quantum
determinants: suppose that there is an extra relation R. Then R = (q −
1)R(1). Then R(1) may be of the form R(1) = (q− 1)R(2) or R(1) mod (q− 1)
not identically 0. In the second case, since SLq(m|n) is an algebra without
torsion, we would have an additional classical Plücker relation, which cannot
be. In the first case we have the same possibilities for R(2). At the end of
the procedure we will obtain R(n) = 0, that would be a new classical Plücker
condition. But we know that this is not possible.

�
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6 The quantum super Grassmannian as a quan-

tum homogeneous superspace

To finish the interpretation of the quantum super Grassmannian as an ho-
mogeneous superspace under the quantum supergroup SLq(4|2) we have to
see how it is the coaction on Grq. This is done in the following

Proposition 6.1. The restriction of the comultiplication in SLq(4|2)

SLq(4|2)
∆

−−−→ SLq(4|2)⊗ SLq(4|2)

aij −−−→ ∆(aij) =
∑6

k=1 aik ⊗ akj

to the subalgebra Grq is of the form4

Grq
∆

−−−→ SLq(4|2)⊗Grq .

Proof. The coaction property is guaranteed by the associativity of the
coproduct, so we only have to check that

Dij , Dim, Dmn ∈ SLq(4|2)⊗Grq .

Let us denote as Dkl
ij = aikajl − q−1ailajk, so in the previous notation

Dij = D12
ij . After some calculations one can prove

1. Let us call P the condition 1 ≤ k, l ≤ 6 and at least one of the two
indices is less that 5. For 1 ≤ i < j ≤ 4:

∆(Dij) =
∑

P∩(k<l)

Dkl
ij ⊗D12

kl − (ai5aj6 + q−1ai6aj5)⊗D56

− (1 + q−2)
∑

5≤k≤6

aikajk ⊗Dkk .

2. For 1 ≤ i ≤ 4 and 5 ≤ m ≤ 6:

4We denote with ∆ both, the comultiplication and its restriction to Grq in order not
to burden the notation. The meaning should be clear from the context.
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∆(Dim) =
∑

k<5
k<l

aikaml ⊗Dkl − q−1
∑

k<5
l<k

aikaml ⊗Dlk

+ (ai5am6 + q−1ai6am5)⊗D56

+ (1 + q−2)
∑

5≤k≤6

aikamk ⊗Dkk + q−1
∑

k≥5
l<5

aikaml ⊗Dlk .

3. For 5 ≤ m,n ≤ 6:

∆(D56) =
∑

k<5
k<l

a5ka6l ⊗Dkl − q−1
∑

k<5
l<k

a5ka6l ⊗Dlk

+ (a55a66 + q−1a56a65)⊗D56

+ (1 + q−2)
∑

5≤k≤6

a5ka6k ⊗Dkk + q−1
∑

k≥5
l<5

a5ka6l ⊗Dlk ,

and

∆(Dnn) =
∑

1≤k<l≤6

ankanl ⊗Dkl +
∑

5≤k≤6

a2nk ⊗Dkk .

This proves our statement.
�

7 Quantum super bundles: quantum chiral

Minkowski superspace

In this section we want to reinterpret our construction in the framework
of quantum principal bundles, as in [22] and references therein. We shall
concentrate our attention on the local picture, that is, we want to look at
the quantization of a super bundle S −→ C4|4, with base space the chi-
ral Minkowski superspace C4|4, which we interpret as the big cell into the
Grassmannian supermanifold Gr (see also Sec. 4).

We shall not develop a full theory of quantum principal super bundles,
but we will recall the key definitions in order to put in the correct framework
our construction.

We start with the classical definition.
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Definition 7.1. Let X and M be topological spaces, P a topological group
and ℘ : X −→ M a continuous function. We say that (X,M, ℘, P ) is a P -
principal bundle (or principal bundle for short) with total space X and base
M , if the following conditions hold

1. ℘ is surjective.

2. P acts freely from the right on X .

3. P acts transitively on the fiber ℘−1(m) of each point m ∈M .

4. X is locally trivial over M , i.e. there is an open covering M = ∪Ui and
homeomorphisms σi : ℘

−1(Ui) −→ Ui × P that are P -equivariant i.e.,
σi(up) = σi(u)p, u ∈ Ui, p ∈ P .

If X ∼=M × P we say that the bundle is globally trivial.
�

We can then define algebraic, analytic or smooth P -principal bundles,
by the taking objects and morphisms in the appropriate categories. There
is clearly no obstacle in writing the same definition in the super context,
provided we exert some care in the definition of surjectivity (see [30], Section
8.1 for details). We would like, however, to take a different route.

We turn to the notion of Hopf-Galois extension, that is most fruitful for
the quantization. Our definition in the super category is the same as for the
ordinary one (see [27] for more details in the ordinary category).

Definition 7.2. Let (H,∆, ǫ, S) be a Hopf superalgebra and A be an H-
comodule superalgebra with coaction δ : A −→ A⊗H . Let

B := AcoinvH := {a ∈ A | δ(a) = a⊗ 1} . (13)

The extension A of the superalgebra B is called H-Hopf-Galois (or simply
Hopf-Galois) if the map

χ : A⊗B A −→ A⊗H, χ = (mA ⊗ id)(id⊗B δ)

called the canonical map, is bijective (mA denotes the multiplication in A).
The extension B = AcoinvH ⊂ A is called H-principal comodule super-

algebra if it is Hopf-Galois and A is H-equivariantly projective as a left B-
supermodule, i.e., there exists a left B-supermodule and right H-comodule
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morphism s : A → B ⊗ A that is a section of the (restricted) product
m : B ⊗A→ A.

In particular if H is a Hopf algebra with bijective antipode over a field,
the condition of equivariant projectivity of A is equivalent to that of faithful
flatness of A (see [31], [32]). �

We now follow [22] Sec. 2, in giving the definition of quantum principal
bundle, though it differs slightly from the one given in the literature, which
also requires the existence of a differential structure (see e.g. [33] Ch. 5).
We plan to explore such structures in a forthcoming paper.

Definition 7.3. We define quantum principal bundle a pair (A,B), where A
is an H-Hopf Galois extension and A is H-equivariantly projective as a left
B-supermodule, that is, A is an H-principal comodule superalgebra.

�

In the ordinary case, the notion of affine H-principal bundle coincides
with Definition 7.1 when we take H = O(P ), A = O(X) and B = O(M),
where O(X) denotes the algebra of functions on X (algebraic, differential,
holomorphic, etc). The Hopf-Galois condition is equivalent to saying that
the action of P on X is free and the equivariance property means that the
bundle is locally trivial.

We assume, in the algebraic setting, that all our varieties are affine.

There is a special case of Hopf-Galois extensions, corresponding to a
globally trivial principal bundle. In this case the technical conditions of
Definition 7.3 are automatically satisfied. We shall focus on this case leaving
aside the general one.

Definition 7.4. Let H be a Hopf superalgebra and A an H-comodule su-
peralgebra. The algebra extension AcoinvH ⊂ A is called a cleft extension
if there is a right H-comodule map j : H → A, called cleaving map, that
is convolution invertible, i.e. there exists a map h : H → A such that the
convolution product j ⋆ h satisfies,

j ⋆ h := mA ◦ (j ⊗ h) ◦∆(f) = ǫ(f) · 1

or, in Sweedler notation ∆(f) =
∑

f1 ⊗ f2,

∑

j(f1)h(f2) = ǫ(f) · 1
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for all f ∈ H . The map h is the convolution inverse of j.
An extension AcoinvH ⊂ A is called a trivial extension if there exists such

map.
Notice that when j is an algebra map, its convolution inverse is just

h = j ◦ S−1.
�

A trivial extension is actually a Hopf-Galois extension and a principal
bundle. When j is an algebra map, we have an algebra isomorphism A ∼=
B#H (see [27], Sections 4.1 and 7.2 for the smash product ‘# ’), which in
the classical case means that we have a trivial bundle (see [27] Chapter 8 and
[33] Sec. 5.1.2).

We now examine an example with physical significance coming from our
previous treatment. Consider the set of 4 × 2 | 2 × 2 supermatrices with
complex entries

















a11 a12
a21 a22
a31 a32
a41 a41
α51 α52

α61 α62

















. (14)

This can be seen as the affine superspace A8|4 described by the coordinate
superalgebra C[aij , αkl] with i = 1, . . . , 4, j, l = 1, 2, k = 5, 6. As in the
ordinary setting, we can view elements in A8|4 as 2|0 subspaces of C4|2:

W = span{a1, a2} ⊂ C
4|2

In this way, W may also be viewed as an element in Gr.

In the superspace A8|4 consider the open subset S consisting of matrices
such that the minor formed with aij , i, j = 1, 2 is invertible. This open subset
S is described by its coordinate superalgebra:

C[S] = C[aij , αkl][T ]/((a11a22 − a12a21)T − 1)

We have a right action of GL2(C) on S corresponding to the change of basis
of such subspaces:

span{a1, a2}, g 7→ span{a1 · g, a2 · g}, g ∈ GL2(C) .
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Proposition 7.5. Let the notation be as above. The quotient of S by the
right GL2(C) action is an affine superspace M of dimension 4|4, the N = 2
chiral Minkowski superspace M.

Proof. We can write:

M =

{

(a1, a2), a1, a2 ∈ C
4|2 | det

(

a11 a12
a21 a22

)

6= 0

}

/

GL2(C) (15)

In the quotient M we can choose a (unique) representative (u, v) for (a1, a2)
of the form:















































1
0
u1
u2
ν3
ν4

















,

















0
1
v1
v2
η3
η4















































, (16)

so M is C4|4.
�

We notice that M is naturally identified with the dense open set of the
Grassmannian Gr in the Plücker embedding, determined by the invertibility
of the coordinate q12 in P8|8.

We now would like to retrieve a set of global coordinates for M starting
from the global coordinates aij for S. Let C[GL2] = C[gij][T ]/((g11g22 −
g12g21)T − 1) be the coordinate algebra for the algebraic group GL2(C). Let
us write heuristically the equation relating the generators of C[S], C[GL2]
and the polynomial superalgebra C[M] := C[uij, νkl]

















a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

















=

















1 0
0 1
u31 u32
u41 u42
ν51 ν52
ν61 ν62

















(

g11 g12
g21 g22

)

(17)

We obtain immediately:

(

g11 g12
g21 g22

)

=

(

a11 a12
a21 a22

)
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and then with a short calculation,

ui1 = −d2id
−1
12 ui2 = d1id

−1
12

νk1 = −d2kd
−1
12 νk2 = d1kd

−1
12

for i = 3, 4 and k = 5, 6, where

drs := ar1as2 − ar2as1 r < s .

Proposition 7.6. Let the notation be as above.

1. The complex supermanifold S is diffeomorphic to the supermanifold
C4|4 ×GL2(C):

S
ψ

−−−→ C4|4 ×GL2(C) ,

with

ψ∗(gij) = aij

ψ∗(ui1) = −d2id
−1
12 , ψ∗(ui2) = d1id

−1
12 .

ψ∗(νk1) = −d2kd
−1
12 ψ∗(νk2) = d1kd

−1
12

2. The diffeomorphism ψ is GL2(C)-equivariant with respect to the right
GL2(C) action, hence S/GL2(C) ∼= C4|4.

Proof. We notice that ψ is invertible, ψ−1 is given by:

(ψ−1)∗(aij) = gij

and the rest follows from equation (17).
The right equivariance of ψ is a simple calculation, taking into account

that the determinants dij transform as dij det g
′, were g′ ∈ GL2(C).

�

Lemma 7.7. The coordinate superalgebra C[M] := C[uij , νkl] is isomorphic
to C[S]coinvC[GL2] the coinvariants in C[S] with respect to the C[GL2] right
coaction δ:

C[S]
δ

−−−→ C[S]⊗ C[GL2]
















a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

















−−−→

















a11 a12
a21 a22
a31 a32
a41 a42
α51 α52

α61 α62

















⊗

(

g11 g12
g21 g22

)
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Proof. In our heuristic calculation we computed expressions for the co-
ordinates on M. We claim that these are coinvariants, so we need to show
δ(c) = c⊗ 1 for any c ∈ {uij, νkl}. A little calculation gives us

δ(drs) = drs ⊗ (g11g22 − g12g21) ⇒ δ(drsd
−1
12 ) = drsd

−1
12 ⊗ 1

which proves our claim.
On the other hand, the space of functions on S that are invariant under

the right translation of the group can be identified with the space of functions
on the quotient S/GL2(C). Since we have global coordinates in M, any
other invariant will be a function of these coordinates. In the Hopf algebra
language, this means that {uij, νkl} are the only independent coinvariants.

�

Proposition 7.8. Let the notation be as above. The natural projection p :
S −→ S/GL2(C) is a trivial principal bundle on the chiral superspace.

Proof. We will show that C[S] is a trivial C[GL2]-Hopf Galois extension
of C[M]. In our previous lemma we proved that C[M] ∼= C[S]coinvC[GL2], so
if we give an algebra cleaving map we will have proven our proposition. We
define

C[GL2]
j

−−−→ C[S]

gij −−−→ aij .

We leave to the reader the easy check that j is convolution invertible with
convolution inverse

h = j ◦ S .

Moreover, the calculation below shows that j is a C[GL2(C)]-comodule map,

(δ ◦ j)(gij) = δ(aij) =
∑

aik ⊗ gkj.

((j ⊗ id) ◦∆)(gij) = (j ⊗ id)(
∑

gik ⊗ gkj) =
∑

aik ⊗ gkj.

⇒ δ ◦ j = (j ⊗ id) ◦∆.

This proves the result.
�
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We now go to the quantum setting, where we lose the geometric inter-
pretation and we retain only the algebraic point of view. Hence a quantum
principal super bundle over an affine base is just understood as a Hopf-Galois
extension with the properties mentioned in Definition 7.3.

We want to study the quantization of the example studied above. Let
Cq[S] be the quantization of the superalgebra C[S] obtained by taking the
Manin relations (8) among the entries still denoted as aij and αkl, with
i, j = 1, . . . , 4 and k, l = 5, 6.

Definition 7.9. The N = 2 quantum chiral Mikowski superspace, Cq[M], is
the superalgebra generated by the elements

ũi1 = −q−1D2iD
−1
12 , ũi2 = D1iD

−1
12 ,

ν̃k1 = −q−1D2kD
−1
12 , ν̃k2 = D1kD

−1
12 ,

for i = 3, 4 and k = 5, 6 in Cq[Gr], where

Drs := ar1as2 − q−1ar2as1, r < s.

�

Using our previous computations for commutation relations among Drs’s
we get the following commutation relations among ũij’s and ν̃kl’s:

ũi2ũi1 = q−1ũi1ũi2, i = 3, 4,

ν̃k1ν̃k2 = −q−1ν̃k2ν̃k1, k = 5, 6,

ν̃5lν̃6l = −q−1ν̃6lν̃5l, l = 1, 2,

ũ3jũ4j = q−1ũ4jũ3j, j = 1, 2,

ũij ν̃kj = q−1ν̃kj ũij, j = 1, 2 i = 3, 4 k = 5, 6,

ũi1ν̃k2 = ν̃k2ũi1, i = 3, 4 k = 5, 6,

ũ31ũ42 = ũ42ũ31,

ν̃51ν̃62 = −ν̃62ν̃51,

ũ32ũ41 − ũ41ũ32 = (q−1 − q)ũ42ũ31,

ũi2ν̃k1 − ν̃k1ũi2 = (q−1 − q)ν̃k2ũi1, i = 3, 4 k = 5, 6,

ν̃52ν̃61 + ν̃61ν̃52 = −(q−1 − q)ν̃62ν̃51 . (18)

We have the following
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Proposition 7.10. The quantum chiral Minkowski superspace Cq[M ] is iso-
morphic to the quantum superalgebra of matrices Mq(2|2) (Definition 5.1).

Proof. We define the map β : Cq[M ] −→ Mq(2|2) by giving it on the
generators as follows:

β(ũij) := zrs where r = i− 2 and s =

{

1 if j = 2,

2 if j = 1,

β(ν̃kl) := ξmn where m = k − 2 and n =

{

1 if l = 2,

2 if l = 1 .

It is clearly bijective. Comparing the commutation relations (8) with (18) it
follows that β is an isomorphism.

�

We now want to show the main result for this section.

Theorem 7.11. The quantum superalgebra Cq[S] is a trivial quantum prin-
cipal super bundle on the quantum chiral Minkowski superspace.

Proof. We need to show that Cq[S] is a trivial Hopf-Galois extension of
Cq[M ]. We will proceed similarly to the classical case. It is easy to see that
the quantum version of Lemma 7.7 also holds. It is enough to check that

δq(Drs) = Drs ⊗ (g11g22 − q−1g12g21) .

Therefore, we need to give an algebra cleaving map jq : Cq[GL2(C)] −→
Cq[S]. Define:

jq(gij) := aij , hq = jq ◦ Sq,

so hq : Cq[GL2(C)] −→ Cq[S],

hq(g11) := D−1a22 hq(g12) := −qD−1a12

hq(g21) := −q−1D−1a21 hq(g22) := D−1a11,

where D := a11a22 − q−1a12a21. One can observe that:

jq ⋆ hq = ε.1 = hq ⋆ jq,

where ⋆ denotes the convolution product, i.e jq is convolution invertible.
Moreover, a similar calculation to the one given in Proposition 7.8 shows
that jq is a Cq[GL2]-comodule map, i.e. δq ◦ jq = (jq ⊗ id) ◦∆. Therefore, jq
is an algebra cleaving map and Cq[M ] ⊂ Cq[S] is a trivial extension. Hence
the theorem is proven. �
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