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Abstract
We consider viscosity solutions to two-phase free boundary problems for the p(x)-Laplacian
with non-zero right hand side. We prove that flat free boundaries are C1,γ . No assumption
on the Lipschitz continuity of solutions is made. These regularity results are the first ones
in literature for two-phase free boundary problems for the p(x)-Laplacian and also for two-
phase problems for singular/degenerate operators with non-zero right hand side. They are
new even when p(x) ≡ p, i.e., for the p-Laplacian. The fact that our results hold for merely
viscosity solutions allows a wide applicability.

Mathematics Subject Classification 35R35 · 35B65 · 35J60 · 35J70

1 Introduction andmain results

In this paper we study two-phase free boundary problems governed by the p(x)-Laplacian
with non-zero right hand side, continuing with our work in [22, 23], where we dealt with the
one-phase version of these problems. Our purpose is to investigate the regularity of the free
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boundary. More precisely, we denote by

�p(x)u := div(|∇u|p(x)−2∇u),

with p a function such that 1 < p(x) < +∞. Then, one of the two-phase problems we
consider here is the following:{

�p(x)u = f , in �+(u) ∪ �−(u),

(u+
ν )p(x) − (u−

ν )p(x) = g, on F(u) := ∂�+(u) ∩ �,
(1.1)

where � ⊂ R
n is a bounded domain and

�+(u) := {x ∈ � : u(x) > 0}, �−(u) := {x ∈ � : u(x) ≤ 0}◦,
while u+

ν and u−
ν denote the normal derivatives in the inward direction to �+(u) and �−(u)

respectively. F(u) is called the free boundary. Also, f ∈ L∞(�) is continuous in �+(u) ∪
�−(u), p ∈ C1(�) is a Lipschitz continuous function, and g ∈ C0,γ̄ (�), g > 0.

This problem comes out naturally from limits of singular perturbation problems with
forcing term as in [32, 33], where solutions to (1.1), arising in the study of flame propagation
with nonlocal and electromagnetic effects, are analyzed. On the other hand, nonnegative
solutions to (1.1) appear in [36] where an optimal design problem is studied. Problem (1.1)
is also obtained by minimizing the following functional

J (v) =
∫

�

(
|∇v|p(x)

p(x)
+ q(x)(λ+χ{v>0} + λ−χ{v≤0}) + f (x)v

)
dx, (1.2)

where λ+ > λ− ≥ 0 are given numbers and q is a strictly positive given function. For
nonnegative minimizers we refer to [35] for the general energy (1.2), and to the seminal
paper by Alt and Caffarelli [2] for the case p(x) ≡ 2 and f ≡ 0.

In case of minimizers without sign restriction of the general energy (1.2)—problem origi-
nally treated in [3] with p(x) ≡ 2 and f ≡ 0—the two-phase problem (1.1) is obtained with
free boundary condition given by

(u+
ν )p(x) − (u−

ν )p(x) = q(x)p(x)
(λ+ − λ−)

p(x) − 1
, (1.3)

under suitable assumptions, see Appendix A.
In the present paper we will study a general two-phase free boundary problem of the type{

�p(x)u = f , in �+(u) ∪ �−(u),

u+
ν = G(u−

ν , x), on F(u) := ∂�+(u) ∩ �,
(1.4)

which includes, in particular, problem (1.1).
We are interested in the regularity of the free boundary for viscosity solutions of problem

(1.4).
In this paper, we are following the strategy developed in [13, 14]—inspired by [12]—for

two-phase problems with non-zero right hand side, respectively in a linear and a fully non-
linear uniformly elliptic setting. The same technique was applied to the p-Laplace operator
(p(x) ≡ p in (1.1)) for the one-phase case, with p ≥ 2, in [37] and to the p(x)-Laplace
operator in one-phase in [22, 23].

Let us mention that the two-phase problem (1.4), in the linear homogeneous case, gov-
erned by the Laplacian, i.e., when p(x) ≡ 2 and f ≡ 0, was settled in the classical works by
Caffarelli [6, 7]. These results have been widely generalized to different classes of homoge-
neous elliptic problems. See for example [9, 25, 26] for linear operators, [5, 19–21, 43, 44]
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for fully nonlinear operators and [38, 39] for the p-Laplacian. The general strategy followed
by these papers, however, seems not so suitable when a non-zero right hand side is present,
as it is our case.

We also point out that, in the one-phase case, problem (1.4) with non-zero right hand
side was dealt with in [34]. There, the C1,α regularity of the free boundary near flat free
boundary points was obtained, for weak (variational) solutions, following the approach in
[2]. However, it is not clear how to adapt these techniques to the two-phase case.

We here apply the tools introduced in [12], and then extended in [13, 14], and we prove
that flat free boundaries of two-phase viscosity solutions of (1.4) are C1,γ .

Our assumptions on the function p(x) will be

p ∈ C1(�), 1 < pmin ≤ p(x) ≤ pmax < ∞, ∇ p ∈ L∞(�), (1.5)

for some positive constants pmin and pmax, and our assumptions on f will be

f ∈ L∞(�), f is continuous in �+(u) ∪ �−(u). (1.6)

Our results also hold in case f is merely bounded measurable, but we assume (1.6) to avoid
technicalities.

In order to simplify the presentation, we prefer to start our research by focusing our
attention on a particular case of problem (1.4), which is{

�p(x)u = f , in �+(u) ∪ �−(u),

(u+
ν )2 − (u−

ν )2 = 1, on F(u) := ∂�+(u) ∩ �,
(1.7)

and then deal with the general case (1.4).
In fact, let x0 ∈ F(u). Without loss of generality we assume that x0 = 0. Also, for

notational convenience we set p0 = p(0).
Let us denote Uβ the one-dimensional function,

Uβ(t) = αt+ − βt−, β ≥ 0, α =
√
1 + β2,

where

t+ = max{t, 0}, t− = −min{t, 0}.
Then Uβ(x) = Uβ(xn) is the so-called two-plane solution to (1.7) when f ≡ 0 and

p(x) ≡ p0.
Let us state our main results for problem (1.7) (for notation and the precise definition of

viscosity solution to (1.7) we refer to Sect. 2).

Theorem 1.1 Let u be a viscosity solution to (1.7) in B1. Let0 < β̂ < L. Assume f ∈ L∞(B1)

is continuous in B+
1 (u)∪ B−

1 (u) and p satisfies (1.5) in B1. There exists a universal constant
ε̄ > 0 such that, if

‖u − Uβ‖L∞(B1) ≤ ε̄ for some 0 < β̂ ≤ β ≤ L, (1.8)

and

‖∇ p‖L∞(B1) ≤ ε̄, ‖ f ‖L∞(B1) ≤ ε̄,

then F(u) is C1,γ in B1/2. Here γ is universal and the C1,γ norm of F(u) is bounded by a
universal constant.

Theorem 1.1 is obtained as a consequence of the following result, which is a two-phase
counterpart of our Theorem 1.1 in [22] in the one-phase setting:
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Theorem 1.2 (Flatness implies C1,γ ) Let u be a viscosity solution to (1.7) in B1. Let 0 <

β̂ < L. Assume f ∈ L∞(B1) is continuous in B+
1 (u) ∪ B−

1 (u) and p satisfies (1.5) in B1.
There exists a universal constant ε̄ > 0 such that, if

Uβ(xn − ε̄) ≤ u(x) ≤ Uβ(xn + ε̄) in B1 for some 0 < β̂ ≤ β ≤ L,

and

‖∇ p‖L∞(B1) ≤ ε̄, ‖ f ‖L∞(B1) ≤ ε̄,

then F(u) is C1,γ in B1/2. Here γ is universal and the C1,γ norm of F(u) is bounded by a
universal constant.

In the context of problem (1.7), a constant is called universal if it depends only on n, pmin,
pmax, β̂ and L .

The proof of Theorem 1.2 is based on an improvement of flatness, obtained via a compact-
ness argument which linearizes the problem into a limiting one. The key tool is a geometric
Harnack inequality that localizes the free boundary well, and allows the rigorous passage to
the limit.

Wewant to emphasize that our smoothness assumptions on the solution and on the data are
the same as the ones in our Theorem 1.1 in [22] for the one-phase problem. In particular, in
order to obtain these resultswe don’t need to assume that the solution is Lipschitz continuous.

These previous remarks also apply to our results for problem (1.4) (see Theorems 1.3 and
1.4 below).

When dealing with the general problem (1.4), we assume the following basic hypotheses
on the function G:

G(η, x) : [0,∞) × � → (0,∞)

and, for 0 < β̂ < L ,

(H1) G(η, ·) ∈ C0,γ̄ (�) uniformly in η ∈ [ β̂
2 , 4L]; G(·, x) ∈ C1,γ̄ ([ β̂

2 , 4 L]) for every

x ∈ � and G ∈ L∞((
β̂
2 , 4 L) × �).

(H2) G ′(·, x) > 0 in [ β̂
2 , 4L] for x ∈ � and, for some γ0 constant, G ≥ γ0 > 0 in

[ β̂
2 , 4L] × �.

These assumptions are complemented with the additional structural conditions (H3) and
(H4) that are introduced and discussed in detail in Sect. 7.

We present some interesting examples of functions satisfying (H1)–(H4) in Remarks 7.7
to 7.12.

Let x0 ∈ F(u). Without loss of generality we assume that x0 = 0. Also, for notational
convenience we set p0 = p(0) and

G0(β) = G(β, 0).

Let Uβ be the two-plane solution to (1.4) when p(x) ≡ p0, f ≡ 0 and G = G0, i.e.,

Uβ(x) = αx+
n − βx−

n , β ≥ 0, α = G0(β).

Then our main results for the general problem (1.4) are the following (for the precise
definition of viscosity solution to (1.4) we refer to Sect. 7):
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Theorem 1.3 Let u be a viscosity solution to (1.4) in B1. Let0 < β̂ < L. Assume f ∈ L∞(B1)

is continuous in B+
1 (u) ∪ B−

1 (u), p satisfies (1.5) and G satisfies assumptions (H1)–(H4) in
B1. There exists a universal constant ε̄ > 0 such that, if

‖u − Uβ‖L∞(B1) ≤ ε̄ for some 0 < β̂ ≤ β ≤ L,

and

‖∇ p‖L∞(B1) ≤ ε̄, ‖ f ‖L∞(B1) ≤ ε̄,

[G(η, ·)]C0,γ̄ (B1)
≤ ε̄, for all 0 <

β̂

2
≤ η ≤ 4L,

then F(u) is C1,γ in B1/2. Here γ is universal and the C1,γ norm of F(u) is bounded by a
universal constant.

We obtain Theorem 1.3 as a consequence of the following result, which is the two-phase
counterpart of our Theorem 1.1 in [22] in the one-phase setting:

Theorem 1.4 (Flatness impliesC1,γ ) Let u be a viscosity solution to (1.4) in B1. Let 0 < β̂ <

L. Assume f ∈ L∞(B1) is continuous in B+
1 (u) ∪ B−

1 (u), p satisfies (1.5) and G satisfies
assumptions (H1)–(H4) in B1. There exists a universal constant ε̄ > 0 such that, if

Uβ(xn − ε̄) ≤ u(x) ≤ Uβ(xn + ε̄) in B1 for some 0 < β̂ ≤ β ≤ L,

and

‖∇ p‖L∞(B1) ≤ ε̄, ‖ f ‖L∞(B1) ≤ ε̄,

[G(η, ·)]C0,γ̄ (B1)
≤ ε̄, for all 0 <

β̂

2
≤ η ≤ 4L, (1.9)

then F(u) is C1,γ in B1/2. Here γ is universal and the C1,γ norm of F(u) is bounded by a
universal constant.

In the context of problem (1.4), a constant depending only on n, pmin, pmax, β̂, L ,
[G(η, ·)]C0,γ̄ , ‖G(·, x)‖C1,γ̄ , ‖G‖L∞ , γ0 and the constants C and δ in assumptions (H3)–
(H4) is called universal.

Let us mention that in the case of the p(x)-Laplacian some constants may depend on
‖u‖L∞ (as those derived from Harnack inequality). Under the assumptions of Theorems 1.1
and 1.2, ‖u‖L∞ can be bounded by a constant that depends only on L and under those of
Theorems 1.3 and 1.4, ‖u‖L∞ can be bounded by a constant that depends only on L and
‖G‖L∞ .

Wewould like to stress, at this point, that no regularity resultswere knownup to themoment
on free boundary problems for the p(x)-Laplacian in the two-phase setting. Moreover, after
the contributions of [13, 14] for inhomogeneous uniformly elliptic two-phase problems, our
regularity results are the first ones for two-phase problems for singular/degenerate operators
with non-zero right hand side.

We point out that, as was already the case in [22, 23] for the treatment of the one-phase
version of problem (1.4), carrying out, for the inhomogeneous p(x)-Laplace operator, the
strategy devised in [13, 14] for two-phase problems for inhomogeneous uniformly elliptic
operators, presented challenging difficulties due to the type of nonlinear behavior of the
p(x)-Laplacian. In fact, the p(x)-Laplacian is a nonlinear operator that appears naturally in
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divergence form from minimization problems, i.e., in the form divA(x,∇u) = f (x), with

λ|η|p(x)−2|ξ |2 ≤
n∑

i, j=1

∂ Ai

∂η j
(x, η)ξiξ j ≤ �|η|p(x)−2|ξ |2, ξ ∈ R

n, (1.10)

where 0 < λ ≤ �. This operator is singular in the regions where 1 < p(x) < 2 and
degenerate in the ones where p(x) > 2. Its treatment is particularly delicate in the presence
of a non-zero right hand side since, in this case, the factor |η|p(x)−2 in (1.10) can not be
neglected.

One of the key differences between our situation and the one in [13, 14] is that in these later
works, given u a viscosity solution to the free boundary problem, the functions v = u − αxn

and v = u −βxn are solutions in�+(u)∪�−(u) to the same equation as u which, of course,
is still uniformly elliptic. This fact is repeatedly used throughout the proofs. In contrast, in
the problems under study in the present paper, such functions v are viscosity solutions in
D := �+(u) ∪ �−(u) to an inhomogeneous equation with nonstandard growth of general
type of the form

divA(x,∇v) = f (x) in D, (1.11)

where A : D × R
n → R

n satisfies the following structure conditions:
For some positive constants C1, C2, C3, C4, and for every x ∈ D and ξ ∈ R

n ,

|A(x, ξ)| ≤ C1|ξ |p(x)−1 + C2 (1.12)

and

〈A(x, ξ), ξ 〉 ≥ C3|ξ |p(x) − C4, (1.13)

where p(x) verifies (1.5). We stress that the treatment of an equation of singular/degenerate
type satisfying (1.11), (1.12) and (1.13) is highly nontrivial, in particular when—as in our
case—the right hand side in (1.11) is not zero. Moreover, the presence of the non-zero
constants C2 and C4 in (1.12) and (1.13)—which in the case of the structure conditions for
the p(x)-Laplacian are zero—makes the treatment of this equation much more delicate than
that of the p(x)-Laplacian itself.

Let us remark at this point that the main arguments in the approach in [13, 14] are based on
Harnack inequality for the operator under consideration. Hence a key tool for the proof of our
results is a Harnack inequality for an auxiliary inhomogeneous operator with nonstandard
growth (see Theorem 4.3), originally proven in [22] and modified here to allow the treatment
of the two-phase problems (1.7) and (1.4).

Unlike Harnack inequality for the inhomogeneous uniformly elliptic operators dealt with
in [13, 14], where nonnegative solutions satisfy the inequality of standard form

sup
Br

v ≤ C
(
inf
Br

v + || f ||L∞(Br )

)
,

the corresponding inequality we are forced to use here (i.e., Theorem 4.3) requires a very
delicate handling and highly non-trivial computations, that can be found at different stages
of our work (see, for instance, Lemma 4.5, Theorem 4.1 and Lemma 7.4).

Another invaluable tool for the proof of our main theorems is a result concerning the
existence of barrier functions for the inhomogeneous p(x)-Laplacian operator (see Theo-
rem 4.4), which was originally proven in [22] and that is carefully revisited here to allow the
treatment of the two-phase problems (1.7) and (1.4). The present proof requires very accu-
rate computations which are reflected in the nontrivial choice of the growth in the bounds
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appearing in (4.4) and (4.6). This choice is then reflected in the growth order required both
for the exponent p(x) and the right hand side f in all the results in the paper, and it eventually
leads to the proper choice of the universal constant ε̄ appearing in the statement of our main
theorems. This barrier result is novel and of possible interest in other contexts, even in the
case of the p-Laplacian (i.e., when p(x) is a constant).

The difficulties present in the treatment of two-phase free boundary problems for the
inhomogeneous nonstandard growth equation �p(x)u = f also appear in the proof of The-
orems 1.3 and 1.4, where we deal with a general free boundary condition of the type

u+
ν = G(u−

ν , x). (1.14)

In fact, once more the arguments used in [13, 14] to deal with u − αxn do not apply here.
We successfully study a general free boundary condition of the type (1.14), by carefully
choosing a different set of assumptions on the function G. This choice allows, in particular,
the treatment of problem (1.1), that arises in different applications such as the study of
limits of singular perturbation problems and the study of minimizers of (1.2). Moreover,
our assumptions allow the inclusion of some interesting free boundary conditions, that we
discuss in detail in Sect. 7 (see Remarks 7.7 to 7.12).

Wewould like to point out that the p(x)-Laplacian is a prototype operatorwith nonstandard
growth. Partial differential equations with nonstandard growth have been receiving a lot of
attention due to their wide range of applications. Among them we mention the modeling of
non-Newtonian fluids, for instance, electrorheological [42] or thermorheological fluids [4].
Other applications include nonlinear elasticity [45], image reconstruction [1, 10] and the
modeling of electric conductors [46], to cite a few.

Let us finally refer the reader to the surveys [15, 24] for additional references on elliptic
two-phase free boundary problems.

The paper is organized as follows. In Sects. 2 to 6 we deal with problem (1.7). Namely,
in Sect. 2 we provide basic definitions and notation. Section3 is devoted to the linearized
problem. In Sect. 4 we obtain the necessary Harnack inequality which rigorously allows the
linearization of the problem. Section5 provides the proof of the improvement of flatness
lemma. Then the main results for problem (1.7), i.e., Theorems 1.1 and 1.2, are proved in
Sect. 6. In Sect. 7, we deal with a more general free boundary condition, i.e. with problem
(1.4), and we prove the main results for this problem, Theorems 1.3 and 1.4. We also present
examples of functions G satisfying assumptions (H1)–(H4) (Remarks 7.7 to 7.12). For the
sake of completeness, in Appendix A, we briefly discuss how free boundary problem (1.1)
appears in two-phase minimization problems and, in Appendix B, we introduce the Sobolev
spaces with variable exponent, which are the appropriate spaces to work with weak solutions
of the p(x)-Laplacian.

1.1 Assumptions

Throughout the paper we let � ⊂ R
n be a bounded domain.

Assumptions on p(x). We assume that the function p(x) verifies

p ∈ C1(�), 1 < pmin ≤ p(x) ≤ pmax < ∞, ∇ p ∈ L∞(�), (1.15)

for some positive constants pmin and pmax.
Assumptions on f . We assume that function f verifies

f ∈ L∞(�), f is continuous in �+(u) ∪ �−(u). (1.16)
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Our results also hold in case f is merely bounded measurable, but we assume (1.16) to avoid
technicalities.
Assumptions on G. When dealing with the general problem (1.4), we assume that the
function G,

G(η, x) : [0,∞) × � → (0,∞),

satisfies conditions (H1)–(H4) that are discussed in detail in Sect. 7.

2 Basic definitions, notation and preliminaries

In this section, we provide notation, basic definitions and some preliminaries that will be
relevant for our work.
Notation. For any continuous function u : � ⊂ R

n → R we denote

�+(u) := {x ∈ � : u(x) > 0}, �−(u) := {x ∈ � : u(x) ≤ 0}◦

and

F(u) := ∂�+(u) ∩ �.

We refer to the set F(u) as the free boundary of u, while �+(u) is its positive phase (or side)
and �−(u) is the nonpositive phase.

From now on, Uβ denotes the one-dimensional function,

Uβ(t) = αt+ − βt−, β ≥ 0, α =
√
1 + β2,

where

t+ = max{t, 0}, t− = −min{t, 0}.
Then Uβ(x) ≡ Uβ(xn) is the so-called two-plane solution to (1.7) when f ≡ 0 and

p(x) ≡ p0 with p0 constant. Here, as usual, xn denotes x · en . Of course, we may replace
direction en with a different direction as well.

We begin with some remarks on the p(x)-Laplacian. In particular, we recall the rela-
tionship between the different notions of solutions to �p(x)u = f we are using, namely,
weak and viscosity solutions. Then we give the definition of viscosity solution to problem
(1.7) and we deduce some consequences. We here refer to the usual definition of C-viscosity
sub/supersolution and solution of an elliptic PDE, see e.g., [11].

We start by observing that direct calculations show that, for C2 functions u such that
∇u(x) �= 0 in some open set,

�p(x)u = div(|∇u|p(x)−2∇u)

= |∇u(x)|p(x)−2
(
�u + (p(x) − 2)�N∞u + 〈∇ p(x),∇u(x)〉 log |∇u(x)|

)
,
(2.1)

where

�N∞u :=
〈
D2u(x)

∇u(x)

|∇u(x)| ,
∇u(x)

|∇u(x)|
〉

denotes the normalized ∞-Laplace operator.
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We also deduce that

|∇u(x)|p(x)−2
(
M−

λ0,�0
(D2u(x)) + 〈∇ p(x),∇u(x)〉 log |∇u(x)|

)

≤ �p(x)u ≤ |∇u(x)|p(x)−2
(
M+

λ0,�0
(D2u(x)) + 〈∇ p(x),∇u(x)〉 log |∇u(x)|

)
,
(2.2)

where λ0 := min{1, pmin − 1} and �0 := max{1, pmax − 1}. As usual, if 0 < λ ≤ � are
numbers, and ei is the i−th eigenvalue of the n × n symmetric matrix M, then M+

λ,� and

M−
λ,� denote the extremal Pucci operators and are defined (see [8]) as

M+
λ,�(M) = λ

∑
ei <0

ei + �
∑
ei >0

ei ,

M−
λ,�(M) = �

∑
ei <0

ei + λ
∑
ei >0

ei .

First we need (seeAppendix B for the definition of Sobolev spaceswith variable exponent)

Definition 2.1 Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz continuous
in � and f ∈ L∞(�).

We say that u ∈ W 1,p(·)(�) is a weak supersolution of

�p(x)u = f , in �, (2.3)

if for every ϕ ∈ C∞
0 (�), ϕ ≥ 0, there holds that

−
∫

�

|∇u(x)|p(x)−2∇u · ∇ϕ dx ≤
∫

�

ϕ f (x) dx .

Analogously, we say that u ∈ W 1,p(·)(�) is a weak subsolution of (2.3), if for every ϕ ∈
C∞
0 (�), ϕ ≥ 0, there holds that

−
∫

�

|∇u(x)|p(x)−2∇u · ∇ϕ dx ≥
∫

�

ϕ f (x) dx .

Finally, u ∈ W 1,p(·)(�) is a weak solution to (2.3) if it is both a weak sub- and supersolution.

We recall the following result we proved in [22] (see [22, Theorem 3.2])

Theorem 2.2 Let p and f be as in Definition 2.1. Assume moreover that f ∈ C(�) and
p ∈ C1(�).

Let u ∈ W 1,p(·)(�) ∩ C(�) be a weak solution to �p(x)u = f in �. Then u is a viscosity
solution to �p(x)u = f in �.

Remark 2.3 We point out that the equivalence between weak and viscosity solutions to the
p(x)-Laplacian with right hand side f ≡ 0 was proved in [30]. On the other hand, this
equivalence, in case p(x) ≡ p and f �≡ 0 was dealt with in [28, 40]. See also [29] for the
case p(x) ≡ p and f ≡ 0.

Next we recall the following standard notion.

Definition 2.4 Given u, v ∈ C(�), we say that v touches u by below (resp. above) at x0 ∈ �

if u(x0) = v(x0), and

u(x) ≥ v(x) (resp. u(x) ≤ v(x)) in a neighborhood O of x0.

If this inequality is strict in O \ {x0}, we say that v touches u strictly by below (resp. above).
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Now we give the definition of viscosity solution to the problem (1.7).

Definition 2.5 Let u be a continuous function in �. We say that u is a viscosity solution to
(1.7) in �, if the following conditions are satisfied:

(i) �p(x)u = f in �+(u) ∪ �−(u) in the weak sense of Definition 2.1.
(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v)) ∩ C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v

touches u by below (resp. above) at x0 ∈ F(v), then

(v+
ν (x0))

2 − (v−
ν (x0))

2 ≤ 1 (resp. ≥ 1).

Next theorem follows as a consequence of our Theorem 2.2.

Theorem 2.6 Let u be a viscosity solution to (1.7) in �. Then the following conditions are
satisfied:

(i) �p(x)u = f in �+(u) ∪ �−(u) in the viscosity sense, that is:

(ia) for every v ∈ C2(�+(u)∪�−(u)), if v touches u from above at x0 ∈ �+(u)∪�−(u)

and ∇v(x0) �= 0, then �p(x0)v(x0) ≥ f (x0), that is, u is a viscosity subsolution;
(ib) for every v ∈ C2(�+(u)∪�−(u)), if v touches u from below at x0 ∈ �+(u)∪�−(u)

and ∇v(x0) �= 0, then �p(x0)v(x0) ≤ f (x0), that is, u is a viscosity supersolution.

(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v)) ∩ C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v

touches u by below (resp. above) at x0 ∈ F(v), then

(v+
ν (x0))

2 − (v−
ν (x0))

2 ≤ 1 (resp. ≥ 1).

It is convenient to introduce also the notion of comparison sub/supersolutionswe are going
to deal with.

Definition 2.7 Wesay thatv ∈ C(�) is a (strict) comparison subsolution (resp. supersolution)
to (1.7) in �, if v ∈ C2(�+(v))∩C2(�−(v)), ∇v �= 0 in �+(v)∪�−(v) and the following
conditions are satisfied:

(i) �p(x)v > f (resp. < f ) in �+(v) ∪ �−(v) (see Remark 2.8).
(ii) If x0 ∈ F(v), then

(v+
ν (x0))

2 − (v−
ν (x0))

2 > 1 (resp. (v+
ν (x0))

2 − (v−
ν (x0))

2 < 1).

Remark 2.8 Let v be as in Definition 2.7. Since v ∈ C2(�+(v) ∪ �−(v)) and ∇v �= 0 in
�+(v) ∪ �−(v) then �p(x)v > f (resp. < f ) in �+(v) ∪ �−(v) is understood pointwise,
in the sense of (2.1).

Remark 2.9 Notice that by the implicit function theorem, according to our definition, the free
boundary of a comparison sub/supersolution is C2.

Remark 2.10 Any (strict) comparison subsolution v (resp. supersolution) cannot touch a
viscosity solution u by below (resp. by above) at a point x0 ∈ F(v) (resp. F(u)).

Notation. From now on Bρ(x0) ⊂ R
n will denote the open ball of radius ρ centered at x0,

and Bρ = Bρ(0). A positive constant depending only on the dimension n, pmin, pmax, and
on β̂ and L (given in Theorems 1.1 and 1.2) will be called universal.

We will use c, ci to denote small universal constants and C , Ci to denote large universal
constants.
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3 The linearized problem

Theorem 1.2 follows from the regularity properties of viscosity solutions to the following
transmission problem{

Lp0 ũ = 0 in Bρ ∩ {xn �= 0},
a(ũn)+ − b(ũn)− = 0 on Bρ ∩ {xn = 0}, (3.1)

where (ũn)+ (resp. (ũn)−) denotes the derivative in the en direction of ũ restricted to {xn > 0}
(resp. {xn < 0}) and a > 0, b ≥ 0 are constants.

Here p0 is a constant such that 1 < pmin ≤ p0 ≤ pmax < ∞, and

Lp0 ũ := �ũ + (p0 − 2)∂nnũ.

Definition 3.1 We say that ũ ∈ C(Bρ) is a viscosity solution to (3.1) if:

(i) Lp0 ũ = 0 in Bρ ∩ {xn �= 0}, in the viscosity sense.
(ii) Let φ be a function of the form

φ(x) = A + px+
n − qx−

n + B Q(x − y)

with

Q(x) = 1

2
[γ x2n − |x ′|2], y = (y′, 0), A ∈ R, B > 0

and

ap − bq > 0.

Then φ cannot touch ũ strictly by below at a point x0 = (x ′
0, 0) ∈ Bρ .

Analogously, if

ap − bq < 0

then φ cannot touch ũ strictly by above at x0 = (x ′
0, 0) ∈ Bρ .

Here γ is a fixed constant such that

γ > γ̃ (n, pmin, pmax) := max

{
�0

2λ0
(n − 1) − 1

2
, 1

}
,

where λ0 and �0 are as in (2.2).

Remark 3.2 The motivation of the choice of this particular γ in Definition 3.1 will be clear
in the proof of Lemma 5.1.

Wewill use the following regularity result for viscosity solutions to the linearized problem
(3.1). Here constants depending only on n, pmin and pmax are called universal.

Theorem 3.3 Let ũ be a viscosity solution to (3.1) in B1/2 such that ‖ũ‖∞ ≤ 1. Then ũ ∈
C2(B1/4 ∩ {xn ≥ 0}) ∩ C2(B1/4 ∩ {xn ≤ 0}) with a universal bound on the C2 norm. In
particular, there exists a universal constant C̃ such that

|ũ(x) − ũ(0) − (∇x ′ ũ(0) · x ′ + p̃x+
n − q̃x−

n )| ≤ C̃r2, in Br (3.2)

for all r ≤ 1/4 and with

a p̃ − bq̃ = 0.

Proof The result was proven in Theorem 3.2 in [13] in the case of the Laplace operator (with
γ = n − 1 in Definition 3.1). This proof also applies to the present case. ��
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4 Harnack inequality

In this section we prove our main tool, a Harnack-type inequality for “flat" solutions to free
boundary problem (1.7). This result will allow the rigorous linearization of our problem in
Sect. 5.

We recall that, unless otherwise stated, our assumptions on p and f will be resp. (1.5)
and (1.6), in the corresponding regions.

Theorem 4.1 (Harnack inequality) There exists a universal constant ε̄, such that if u is a
solution of (1.7) that satisfies at some point x0 ∈ B2

Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + b0) in Br (x0) ⊂ B2, (4.1)

for some 0 < β̂ ≤ β ≤ L, with

‖ f ‖L∞(B2) ≤ ε2 min{1, β pmax−1},
‖∇ p‖L∞(B2) ≤ ε1+θ min{1, β pmax−1}, 0 < θ ≤ 1,

(4.2)

and

b0 − a0 ≤ εr ,

for some ε ≤ ε̄, then

Uβ(xn + a1) ≤ u(x) ≤ Uβ(xn + b1) in Br/40(x0),

with

a0 ≤ a1 ≤ b1 ≤ b0, b1 − a1 ≤ (1 − c)εr ,

and 0 < c < 1 universal.

Let

ũε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) − αxn

αε
in B+

2 (u) ∪ F(u)

u(x) − βxn

βε
in B−

2 (u).

From a standard iterative argument (see [13]), we obtain the following corollary.

Corollary 4.2 Let u be as in Theorem 4.1 satisfying (4.1) for r = 1. Then, in B1(x0), ũε has
a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄, i.e. for all x ∈ B1(x0)
with |x − x0| ≥ ε/ε̄

|ũε(x) − ũε(x0)| ≤ C |x − x0|γ̂ .

Here ε̄ is as in Theorem 4.1, and C and 0 < γ̂ < 1 are universal.

We will need the following Harnack inequality for an auxiliary inhomogeneous operator
with nonstandard growth. This result will be repeatedly used along our work.
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Theorem 4.3 Assume that 1 < pmin ≤ p(x) ≤ pmax < ∞ with p(x) Lipschitz continuous in
� and ‖∇ p‖L∞ ≤ L0, for some L0 > 0. Let x0 ∈ � and 0 < R ≤ 1 such that B4R(x0) ⊂ �.
Let v ∈ W 1,p(·)(�) ∩ L∞(�) be a nonnegative solution to

div(|∇v + e|p(x)−2(∇v + e)) = f in �,

where f ∈ L∞(�) with || f ||L∞(�) ≤ 1 and e ∈ R
n with |e| ≤ σ̃ . Then, there exists C such

that

sup
BR(x0)

v ≤ C
[

inf
BR(x0)

v + R
(
|| f ||L∞(B4R(x0))

1
pmax−1 + C

)]
. (4.3)

The constant C depends only on n, pmin, pmax, ||v||L∞(B4R(x0)), σ̃ and L0.

Proof The proof was done in Lemma 4.1 in [22] under the assumption that |e| = 1. We
can redo the computations in [22], with a careful tracking of the dependence on |e| in the
constants, and this eventually leads us to the stated result. ��

We will also need the following theorem concerning the existence of barrier functions
for the inhomogeneous p(x)-Laplacian operator. This result will be frequently employed
throughout the paper.

Theorem 4.4 Let x0 ∈ B1 and 0 < r̄1 < r̄2 ≤ 1. Assume that 1 < pmin ≤ p(x) ≤ pmax <

∞. Let c0, c1, c2, μ0 be positive constants and let and c3 ∈ R. Let 0 < μ ≤ μ0. Assume
moreover that

‖∇ p‖L∞ ≤ ε1+θ min{1, μpmax−1} for some 0 < θ ≤ 1. (4.4)

There exist positive constants γ ≥ 1, c̄, ε0 and ε1 such that the functions

w(x) = c1|x − x0|−γ − c2,

v(x) = μ
[
q(x) + c0

2
ε(w(x) − 1)

]
, q(x) = xn + c3

satisfy, for r̄1 ≤ |x − x0| ≤ r̄2,

�p(x)w ≥ c̄, for 0 < ε ≤ ε0, (4.5)
μ

2
≤ |∇v| ≤ 2μ, �p(x)v > ε2 min{1, μpmax−1}, for 0 < ε ≤ ε1. (4.6)

Here γ = γ (n, pmin, pmax), c̄ = c̄(pmin, pmax, c1), ε0 = ε0(n, pmin, pmax, r̄1, c1, μ0),
ε1 = ε1(n, pmin, pmax, r̄1, c0, c1, θ, μ0).

Proof The proof was done in Lemma 4.2 in [22] under the assumption that μ = 1.
In order to get the result for any 0 < μ ≤ μ0, we need a careful revision of the computa-

tions in [22]. In fact, we first proceed as in (4.30) in [22] and obtain, using (4.4),

�p(x)w ≥ 2c̄ − εmin{1, μpmax−1}C4, for r̄1 ≤ |x | ≤ r̄2,

with c̄ = c̄(pmin, pmax, c1) and C4 = C4(n, pmin, pmax, r̄1, c1). Then, (4.5) follows.
We now denote

v(x) = μv̄(x) with v̄(x) = q(x) + c0
2

ε(w(x) − 1).

Hence (4.23) in [22] gives, for r̄1 ≤ |x | ≤ r̄2,

1

2
≤ |∇v̄| ≤ 2, for ε ≤ ε̄1, (4.7)
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if ε ≤ ε̄1 = ε̄1(n, pmin, pmax, r̄1, c0, c1). So the first assertion in (4.6) follows.
Also (4.25) in [22] shows that, for r̄1 ≤ |x | ≤ r̄2,

|∇v̄|p(x)−1
∣∣ log |∇v̄|∣∣ ≤ C3(pmin, pmax), if ε ≤ ε̄1. (4.8)

Thus, using (4.4), (4.7) and (4.8) we get, for r̄1 ≤ |x | ≤ r̄2,∣∣∣|∇v|p(x)−2〈∇ p(x),∇v〉 log |∇v|
∣∣∣

≤ |∇v|p(x)−1
∣∣ log |∇v|∣∣‖∇ p‖L∞

= μp(x)−1|∇v̄|p(x)−1
∣∣ log |μ∇v̄|∣∣‖∇ p‖L∞

≤ μp(x)−1(C̄ | logμ| + C3
)‖∇ p‖L∞

≤ μp(x)−1(C̄ | logμ| + C3
)
min{1, μpmax−1}ε1+θ ≤ μp(x)−1C̄3ε

1+θ (4.9)

if ε ≤ ε̄1, where C̄ = C̄(pmin, pmax) and C̄3 = C̄3(pmin, pmax, μ0). On the other hand,
using (4.22) in [22], (4.7) and (4.9), we obtain, for r̄1 ≤ |x | ≤ r̄2,

�p(x)v = |∇v|p(x)−2
(
�v + (p(x) − 2)

〈
D2v

∇v

|∇v| ,
∇v

|∇v|
〉
+ 〈∇ p(x),∇v〉 log |∇v|

)

≥ |∇v|p(x)−2
(
�v + (p(x) − 2)

〈
D2v

∇v

|∇v| ,
∇v

|∇v|
〉)

− ∣∣|∇v|p(x)−2〈∇ p(x),∇v〉 log |∇v|∣∣

≥ μp(x)−1
(

|∇v̄|p(x)−2
(
�v̄ + (p(x) − 2)

〈
D2v̄

∇v̄

|∇v̄| ,
∇v̄

|∇v̄|
〉)

− C̄3ε
1+θ

)

≥ μp(x)−1
( c0c1ε

2
|∇v̄|p(x)−2|x |−γ−2 − C̄3ε

1+θ
)

≥ μp(x)−1 (εC5|x |−γ−2 − C̄3ε
1+θ

)
≥ μp(x)−1 (εC5 − ε1+θ C̄3

) = μp(x)−1ε
(
C5 − εθ C̄3

)
,

if ε ≤ ε̄1, where we have used that r̄2 ≤ 1 and C5 = C5(pmin, pmax, c0, c1). We conclude
that, for r̄1 ≤ |x | ≤ r̄2,

�p(x)v ≥ μp(x)−1ε
(
C5 − εθ C̄3

) ≥ μp(x)−1ε
C5

2
> ε2 min{1, μpmax−1},

if moreover ε ≤ ε̃1 = ε̃1(pmin, pmax, c0, c1, θ, μ0). That is, the second assertion in (4.6)
follows. ��

The main tool in the proof of the Harnack inequality is the following lemma.

Lemma 4.5 There exists a universal constant ε̄ > 0 such that if u is a solution of (1.7) and
satisfies

Uβ(xn + σ) ≤ u(x) ≤ Uβ(xn + σ + ε), x ∈ B1, |σ | <
1

20
, (4.10)

for some 0 < β ≤ L, with

‖ f ‖L∞(B1) ≤ ε2 min{1, β pmax−1},
‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1}, 0 < θ ≤ 1,

(4.11)

and in x̄ = 1
10en,

u(x̄) ≥ Uβ

(
x̄n + σ + ε

2

)
,
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for some ε ≤ ε̄, then

u(x) ≥ Uβ(xn + σ + cε) in B 1
2
, (4.12)

for some universal 0 < c < 1. Analogously, if

u(x̄) ≤ Uβ

(
x̄n + σ + ε

2

)
,

then

u(x) ≤ Uβ(xn + σ + (1 − c)ε) in B 1
2
. (4.13)

Proof We prove the first statement. For notational simplicity we drop the sub-index β from
Uβ .

From (4.10) we have that u(x) ≥ U (xn + σ) in B1.
We also notice that B1/20(x̄) ⊂ B+

1 (u). Then,

�p(x)u = f in B1/20(x̄). (4.14)

Thus, byTheorem1.1 in [18],u ∈ C1,γ̃ in B1/40(x̄),where γ̃ = γ̃ (pmin, pmax, n, L) ∈ (0, 1)
and ||u||C1,γ̃ (B1/40(x̄)) ≤ C, with C = C(pmin, pmax, n, L) ≥ 1. Here we have used (4.11)

and also that (4.10) implies that ||u||L∞(B1) ≤ 2α ≤ 2
√
1 + L2.

We will consider two cases:
Case (i). Suppose |∇u(x̄)| < α

4 . We choose r1 > 0, r1 = r1(pmin, pmax, n, L) ≤ 1/40
such that |∇u(x)| ≤ α

2 in Br1(x̄). In addition, there exists a constant 0 < r2 = r2(r1) =
r2(pmin, pmax, n, L) < r1 such that (x − r2en) ∈ Br1(x̄), for every x ∈ Br1/2(x̄). We denote
q(x) = α(xn + σ) and we observe that ṽ = u − q ≥ 0 in B 1

20
(x̄) and satisfies

div(|∇ṽ + αen |p(x)−2(∇ṽ + αen)) = f in B 1
20

(x̄). (4.15)

We now apply Theorem 4.3 to the function ṽ = u − q in B4r3(x̄), where r3 = min{ r1
4 , r2

8 }.
In particular we obtain from (4.3) that

u(x) − q(x) ≥ C−1(u(x̄) − q(x̄)) − r3 ≥ αε

2C
− r3,

for x ∈ Br3(x̄). Here C = C(n, pmin, pmax, L) is a universal constant because ‖ f ‖L∞(B1) ≤
ε2 min{1, β pmax−1} and ‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1} see (4.11), and ||ṽ||L∞(B1) ≤
3
√
1 + L2.
On the other hand, for all x ∈ Br3(x̄) we obtain

αε

2C
− r3 ≤ u(x) − q(x) = u((x − r2en) + r2en) − q((x − r2en) + r2en)

= u((x − r2en) + r2en) − q(x − r2en) − αr2

≤ u(x − r2en) − q(x − r2en) + αr2
2

− αr2.

As a consequence, denoting c0 = C−1 and x̄0 := x̄ − r2en , and using that α ≥ 1, we get for
all x ∈ Br3(x̄0)

α
c0
2

ε = αε

2C
≤ αε

2C
− r3 + r2

2
≤ αε

2C
− r3 − αr2

2
+ αr2 ≤ u(x) − q(x). (4.16)
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Let us define the function w : Ā → R, A := B 4
5
(x̄0)\B̄r3(x̄0) as

w(x) = c

(
|x − x̄0|−γ −

(
4

5

)−γ
)

,

for γ = γ (n, pmin, pmax) ≥ 1 given in Theorem 4.4. We choose c = c(n, pmin, pmax, L)

positive in such a way that

w =
{
0, on ∂ B 4

5
(x̄0)

1, on ∂ Br3(x̄0)

and we extend w to 1 in Br3(x̄0).
Now set ψ = 1 − w and, for t ≥ 0,

vt (x) = U (xn + σ − ε

2
c0ψ(x) + tε), x ∈ B 4

5
(x̄0). (4.17)

Then,

v0(x) = U
(

xn + σ − ε

2
c0ψ(x)

)
≤ U (xn + σ) ≤ u(x) x ∈ B 4

5
(x̄0).

Let t̄ be the largest t ≥ 0 such that

vt (x) ≤ u(x) in B 4
5
(x̄0).

We want to show that t̄ ≥ c0
2 . Then we get the desired statement. Indeed,

u(x) ≥ vt̄ (x) = U (xn + σ − ε

2
c0ψ + t̄ε) ≥ U (xn + σ + cε) in B1/2 ⊂⊂ B 4

5
(x̄0)

with 0 < c = c(n, pmin, pmax, L) < 1. In the last inequality we used that there holds
‖ψ‖L∞(B1/2) = c1(n, pmin, pmax, L) < 1.

Suppose t̄ < c0
2 . Then at some x̃ ∈ B 4

5
(x̄0) we have

vt̄ (x̃) = u(x̃).

We show that such touching point can only occur on Br3(x̄0). Indeed, since w ≡ 0 on
∂ B 4

5
(x̄0), from the definition of vt we get that for t̄ < c0

2

vt̄ (x) = U (xn + σ − ε

2
c0ψ(x) + t̄ε) < U (xn + σ) ≤ u(x) on ∂ B 4

5
(x̄0).

We now show that x̃ cannot belong to the annulus A.
Indeed, from Theorem 4.4 it follows that in A+(vt̄ )

�p(x)vt̄ > ε2 min{1, α pmax−1} ≥ ε2 min{1, β pmax−1} ≥ ‖ f ‖∞

for ε1 = ε1(n, pmin, pmax, L). An analogous computation holds in A−(vt̄ ).

Finally,

(v+
t̄ )2ν − (v−

t̄ )2ν = 1 + ε2
c20
4

|∇ψ |2 − 2ε
c0
2

ψn on F(vt̄ ) ∩ A.

Thus,

(v+
t̄ )2ν − (v−

t̄ )2ν > 1 on F(vt̄ ) ∩ A,
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since

− c̃1 ≤ ψn ≤ −c̃2 < 0 on F(vt̄ ) ∩ A, (4.18)

with c̃1 and c̃2 universal constants. This can be verified from the formula for ψ , for ε ≤ ε2,
with ε2 universal (see, for instance, Lemma 5.1 in [22]).

Thus, vt̄ is a strict subsolution to (1.7) in A which lies below u. Hence, by the definition
of viscosity solution, x̃ cannot belong to A.

Therefore, x̃ ∈ Br3(x̄0) and

u(x̃) = vt̄ (x̃) = U (x̃n + σ + t̄ε) ≤ U (x̃n + σ) + αt̄ε < U (x̃n + σ) + α
c0
2

ε.

This contradicts (4.16).
Case (ii). Now suppose |∇u(x̄)| ≥ α

4 . By exploiting the C1,γ̃ regularity of u in B 1
40

(x̄),

we know that u is Lipschitz continuous in B 1
40

(x̄), as well as there exists a constant 0 < r0 =
r0(n, pmin, pmax, L), with 8r0 ≤ 1

40 , and C = C(n, pmin, pmax, L) > 1 such that

1

8
≤ |∇u| ≤ C in B8r0(x̄).

In addition, since (4.14) holds, it followsbyProposition 3.4 in [22], thatu ∈ W 2,n(B4r0(x̄))

and it is a solution to the linear uniformly elliptic equation

Lh = f in B4r0(x̄),

where

Lh = Tr(A(x)D2h(x)) + 〈b,∇h(x)〉,
A(x) := |∇u|p(x)−2

(
I + (p(x) − 2)

∇u(x)

|∇u(x)| ⊗ ∇u(x)

|∇u(x)|
)

,

and

b(x) := |∇u|p(x)−2 log |∇u(x)|∇ p(x).

Hence A ∈ C0,γ̃ (B4r0(x̄)), b ∈ C(B4r0(x̄)) andL has universal ellipticity constants (depend-
ing only on n, pmin, pmax, L). Moreover, ||b||L∞(B4r0 (x̄)) ≤ Cε1+θ , C universal, because

||∇ p||L∞(B1) ≤ ε1+θ min{1, β pmax−1} (see (4.11)).
In this way, denoting again q(x) = α(xn + σ), we conclude that u − q ≥ 0 in B4r0(x̄)

and satisfies

Tr(A(x)D2h(x)) + 〈b,∇h(x)〉 = f − α〈b, en〉 in B4r0(x̄).

Then, applying Harnack’s inequality (see, for instance, [27, Chap. 9]) and recalling again
(4.11), we obtain

u(x) − q(x) ≥ C1(u(x̄) − q(x̄)) − C2(|| f ||L∞(B4r0 (x̄)) + ||b||L∞(B4r0 (x̄)))

≥ C1α
ε

2
− C2(ε

2 + Cε1+θ ) ≥ α
c0
2

ε,
(4.19)

for every x ∈ Br0(x̄), for 0 < ε ≤ ε3. Here ε3, C1, C2 and c0 are positive universal constants.
At this point, we can repeat the same argument of Case (i) around the point x̄ , considering
the annulus B 4

5
(x̄) \ B̄r0(x̄). This completes the proof. ��

We can now prove our Theorem 4.1.
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Proof of Theorem 4.1 Assume without loss of generality that x0 = 0, r = 1. First observe
that assumption (4.1) gives that

Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + a0 + ε) in B1, (4.20)

since b0 ≤ a0 + ε. We distinguish three cases.
Case 1. a0 ≤ −1/20. In this case it follows from (4.20) that B1/25 ⊂ {u < 0} if ε < 1/100

and

0 ≤ u(x) − β(xn + a0) ≤ βε in B1/25.

Then, denoting û = u − βa0, we have

�p(x)u = �p(x)û = f in B1/25.

Recalling (4.20) and (4.2) and observing that ||û||L∞(B1) ≤ 2β ≤ 2L , we obtain from
the application of Theorem 1.1 in [18] to û, that u ∈ C1,γ̃ in B1/40, where γ̃ =
γ̃ (pmin, pmax, L, n) ∈ (0, 1) and ||∇u||C0,γ̃ (B1/40)

≤ C , with C = C(pmin, pmax, n, L) ≥ 1.

We denote q(x) = β(xn + a0) and we now distinguish two cases: u(0) − q(0) ≥ βε
2 or

u(0) − q(0) ≤ βε
2 .

Assume that

u(0) − q(0) ≥ βε

2
,

(the other case is treated similarly). We will proceed as in the proof of Lemma 4.5.

If |∇u(0)| <
β̂
4 , we argue as in Case (i) of Lemma 4.5. In fact, we choose r1 > 0,

r1 = r1(pmin, pmax, n, β̂, L) ≤ 1/40 such that |∇u(x)| ≤ β̂
2 in Br1 . In addition, there exists

a constant 0 < r2 = r2(r1) = r2(pmin, pmax, n, β̂, L) < r1 such that (x − r2en) ∈ Br1 , for
every x ∈ Br1/2. We observe that ṽ = u − q ≥ 0 in B1/25 and satisfies

div(|∇ṽ + βen |p(x)−2(∇ṽ + βen)) = f in B 1
25

. (4.21)

We now apply Theorem 4.3 to the function ṽ = u − q in B4r3 , where r3 = min{ r1
4 , r2

8 ,
β̂
2 r2}.

In particular we obtain from (4.3) that

u(x) − q(x) ≥ C−1(u(0) − q(0)) − r3 ≥ εβ

2C
− r3,

for x ∈ Br3 . Here C = C(n, pmin, pmax, L) is a universal constant because we have
|| f ||L∞(B1) ≤ ε2 min{1, β pmax−1} and ‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1}, see (4.2), and
||ṽ||L∞(B1) ≤ L .

On the other hand, for all x ∈ Br3 we obtain

βε

2C
− r3 ≤ u(x) − q(x) = u((x − r2en) + r2en) − q((x − r2en) + r2en)

= u((x − r2en) + r2en) − q(x − r2en) − βr2

≤ u(x − r2en) − q(x − r2en) + β̂

2
r2 − βr2.

As a consequence, denoting c0 = C−1 and x̄0 := −r2en , we get for all x ∈ Br3(x̄0)

β
c0
2

ε = βε

2C
≤ βε

2C
− r3 + β̂

2
r2 ≤ βε

2C
− r3 − β̂

2
r2 + βr2 ≤ u(x) − q(x).
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We now choose r4 > r3 universal (making r3 and r2 small, if necessary) such that we
have

B1/40 ⊂⊂ Br4(x̄0) ⊂⊂ B1/25.

We now let

A := Br4(x̄0) \ Br3(x̄0),

and define w in A as in Lemma 4.5. Then, arguing as in that proof, we obtain

u(x) ≥ Uβ(xn + a0 + cε) in B1/40, (4.22)

with 0 < c < 1, if ε ≤ ε̄, ε̄ and c universal.

If |∇u(0)| ≥ β̂
4 , we proceed as in Case (ii) of Lemma 4.5 and we consider, for ε ≤ ε3, ε3

universal, the barrier w in

A := B1/25 \ Br0 ,

with r0 > 0 universal and small. We thus obtain again (4.22).
Case 2. a0 ≥ 1/20. In this case it follows from (4.20) that B1/25 ⊂ {u > 0} and

0 ≤ u(x) − α(xn + a0) ≤ αε in B1/25.

Then, denoting q(x) = α(xn + a0), we obtain the result by applying similar arguments
as those in Case 1. We here use that 1 ≤ α ≤ √

1 + L2.
Case 3. |a0| < 1/20. Recall that (4.2) and (4.20) hold. We now distinguish two cases:

u(x̄) ≥ Uβ(x̄n + a0 + ε
2 ) or u(x̄) ≤ Uβ(x̄n + a0 + ε

2 ), where x̄ = 1
10en .

Assume that

u(x̄) ≥ Uβ

(
x̄n + a0 + ε

2

)
, x̄ = 1

10
en

(the other case is treated similarly). Then, by Lemma 4.5, if ε ≤ ε̄,

u(x) ≥ Uβ(xn + a0 + cε) in B 1
2
,

for some universal 0 < c < 1, which gives the desired improvement. ��

5 Improvement of flatness

In this section we prove our key “improvement of flatness" lemma for problem (1.7).
We assume that our solution u is trapped between two translations of a two-plane solution

Uβ with β > 0. We show that when we restrict to smaller balls, u is trapped between closer
translations of another two-plane solution (in a different system of coordinates).

Lemma 5.1 (Improvement of flatness) Let u be a solution of (1.7) that satisfies

Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1, 0 ∈ F(u), (5.1)

for some

0 < β̂ ≤ β ≤ L, (5.2)

with
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‖ f ‖L∞(B1) ≤ ε2 min{1, β pmax−1},
‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1}, 1

2
< θ ≤ 1,

(5.3)

‖p − p0‖L∞(B1) ≤ ε. (5.4)

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r, then

Uβ ′
(

x · ν1 − r
ε

2

)
≤ u(x) ≤ Uβ ′

(
x · ν1 + r

ε

2

)
in Br , (5.5)

with |ν1| = 1, |ν1 − en | ≤ C̃ε, and |β − β ′| ≤ C̃βε for a universal constant C̃ .

Proof We divide the proof of this lemma into three steps.
Step 1—Compactness. Fix r ≤ r0 with r0 universal (the precise r0 will be given in Step 3).
Assume by contradiction that we can find a sequence εk → 0 and a sequence uk of solutions
to (1.7) in B1 with right hand side fk and exponent pk satisfying (5.3) and (5.4) with ε = εk

and β = βk , such that uk satisfies (5.1), i.e.,

Uβk (xn − εk) ≤ uk(x) ≤ Uβk (xn + εk) for x ∈ B1, 0 ∈ F(uk), (5.6)

with β̂ ≤ βk ≤ L , but uk does not satisfy the conclusion (5.5) of the lemma.
Set (α2

k = 1 + β2
k ),

ũk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk(x) − αk xn

αkεk
, x ∈ B+

1 (uk) ∪ F(uk)

uk(x) − βk xn

βkεk
, x ∈ B−

1 (uk).

Then (5.6) gives

−1 ≤ ũk(x) ≤ 1 for x ∈ B1.

From Corollary 4.2, it follows that the function ũk satisfies

|ũk(x) − ũk(y)| ≤ C |x − y|γ̂ , (5.7)

for C, γ̂ universal and

|x − y| ≥ εk/ε̄, x, y ∈ B1/2.

From (5.6) it clearly follows that F(uk) converges to B1∩{xn = 0} in the Hausdorff distance.
This fact and (5.7) together with Ascoli-Arzela give that as εk → 0 the graphs of the ũk

converge (up to a subsequence) in the Hausdorff distance to the graph of a Hölder continuous
function ũ over B1/2. Also, up to a subsequence

βk → β̃ ≥ β̂ > 0

and hence

αk → α̃ =
√
1 + β̃2.

Step 2—Limiting Solution. We now show that ũ solves the following linearized problem
(transmission problem){

Lp0 ũ = 0 in B1/2 ∩ {xn �= 0},
a(ũn)+ − b(ũn)− = 0 on B1/2 ∩ {xn = 0}, (5.8)

123



Regularity of flat free boundaries for two-phase p(x)-Laplacian… Page 21 of 43   132 

in the sense of Definition 3.1, with a = α̃2 > 0, b = β̃2 > 0, where p0 is a constant such
that 1 < pmin ≤ p0 ≤ pmax < ∞, and

Lp0 ũ := �ũ + (p0 − 2)∂nnũ.

(i) Let us show that Lp0 ũ ≤ 0 in B1/2 ∩ {xn �= 0}, in the viscosity sense (the other
inequality follows analogously).

In fact, let P(x) be a quadratic polynomial touching ũ at x̄ ∈ B1/2 ∩ {xn �= 0} strictly
from below. We need to show that Lp0 P ≤ 0.

We first assume that x̄ ∈ B1/2 ∩ {xn > 0}.
Since ũk → ũ in the sense specified above, for k large there exist points xk ∈ B+

1/2(uk),
xk → x̄ and constants ck → 0 such that

ũk(xk) = P(xk) + ck (5.9)

and

ũk ≥ P + ck in a neighborhood of xk . (5.10)

From the definition of ũk , (5.9) and (5.10) read

uk(xk) = Qk(xk)

and

uk(x) ≥ Qk(x) in a neighborhood of xk,

where

Qk(x) = αkεk(P(x) + ck) + αk xn .

For notational simplicity we will drop the sub-index k from Qk .
We first notice that

∇Q = αkεk∇ P + αken,

thus,

∇Q(xk) �= 0, for k large.

Since Q touches uk from below at xk , and∇Q(xk) �= 0, we nowdefine σk = min{1, β pmax−1
k }

and we get

σkε
2
k ≥ fk(xk) ≥ �pk (xk )Q(xk)

= |∇Q(xk)|pk (xk )−2�Q + |∇Q(xk)|pk (xk )−4(pk(xk) − 2)
n∑

i, j=1

Qxi (xk)Qx j (xk)Qxi x j

+ |∇Q(xk)|pk (xk )−2〈∇ pk(xk),∇Q(xk)〉 log |∇Q(xk)|
= αkεk |∇Q(xk)|pk (xk )−2�P

+ αkεk |∇Q(xk)|pk (xk )−4(pk(xk) − 2)
n∑

i, j=1

Qxi (xk)Qx j (xk)Pxi x j

+ |∇Q(xk)|pk (xk )−2〈∇ pk(xk),∇Q(xk)〉 log |∇Q(xk)|.
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Using that |∇ pk(xk)| ≤ ε1+θ
k σk , we obtain

σkεk ≥ αk |∇Q(xk)|pk (xk )−2�P

+ αk |∇Q(xk)|pk (xk )−4(pk(xk) − 2)
n∑

i, j=1

Qxi (xk)Qx j (xk)Pxi x j

− |∇Q(xk)|pk (xk )−1| log |∇Q(xk)||σkε
θ
k .

Now, passing to the limit k → ∞ and recalling that

∇Q(xk)

αk
→ en, pk(xk) → p0, εk → 0,

αk → α̃ > 0, σk → min{1, β̃ pmax−1},
we conclude that Lp0 P ≤ 0 as desired.

In case x̄ ∈ B1/2 ∩{xn < 0}, we next proceed in a similar way with points xk ∈ B−
1/2(uk),

xk → x̄ . We get instead

σkεk ≥ βk |∇Q(xk)|pk (xk )−2�P

+ βk |∇Q(xk)|pk (xk )−4(pk(xk) − 2)
n∑

i, j=1

Qxi (xk)Qx j (xk)Pxi x j

− |∇Q(xk)|pk (xk )−1| log |∇Q(xk)||σkε
θ
k ,

and

∇Q(xk)

βk
→ en, pk(xk) → p0, εk → 0,

βk → β̃ > 0, σk → min{1, β̃ pmax−1}.
Thus we obtain again Lp0 P ≤ 0.

(ii) Next, we prove that ũ satisfies the boundary condition in (5.8) in the viscosity sense
of Definition 3.1. Let φ̃ be a function of the form (γ a specific constant to be made precise
later)

φ̃(x) = A + px+
n − qx−

n + B Qγ (x − y)

with

Qγ (x) = 1

2
[γ x2n − |x ′|2], y = (y′, 0), A ∈ R, B > 0,

and

ap − bq > 0.

Then we must show that φ̃ cannot touch ũ strictly by below at a point of the form x0 =
(x ′

0, 0) ∈ B1/2.

The analogous statement by above follows with a similar argument.
Suppose that such a φ̃ exists and let x0 be the touching point. Let

�γ (x) = 1

2γ
[(|x ′|2 + |xn − 1|2)−γ − 1],
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where γ is sufficiently large (to be made precise later), and let

�
γ

k (x) = 1

Bεk
�γ (Bεk(x − y) + ABε2k en).

Now, call

φk(x) = ak�
γ+
k (x) − bk�

γ−
k (x) + αk(d

+
k (x))2ε

3/2
k + βk(d

−
k (x))2ε

3/2
k

where

ak = αk(1 + εk p), bk = βk(1 + εkq),

and dk(x) is the signed distance from x to ∂ B 1
Bεk

(y + en( 1
Bεk

− Aεk)).

Finally, let

φ̃k(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φk(x) − αk xn

αkεk
, x ∈ B+

1 (φk) ∪ F(φk)

φk(x) − βk xn

βkεk
, x ∈ B−

1 (φk).

By Taylor’s theorem,

�γ (x) = xn + Qγ (x) + O(|x |3) x ∈ B1,

thus it is easy to verify that

�
γ

k (x) = Aεk + xn + Bεk Qγ (x − y) + O(ε2k ) x ∈ B1,

with the constant in O(ε2k ) depending on A, B, and |y| (later this constant will depend also
on p, q).

It follows that in B+
1 (φk) ∪ F(φk) (Qγ,y(x) = Qγ (x − y))

φ̃k(x) = A + B Qγ,y + pxn + Aεk p + Bpεk Qγ,y + ε
1/2
k d2

k + O(εk)

and analogously in B−
1 (φk)

φ̃k(x) = A + B Qγ,y + qxn + Aεk p + Bqεk Qγ,y + ε
1/2
k d2

k + O(εk).

Hence, φ̃k converges uniformly to φ̃ on B1/2. Since ũk converges uniformly to ũ and φ̃

touches ũ strictly by below at x0, we conclude that there exist a sequence of constants ck → 0
and of points xk → x0 such that the function

ψk(x) = φk(x + εkcken)

touches uk by belowat xk .We thus get a contradiction ifwe prove thatψk is a strict subsolution
to our free boundary problem. That is, we will see that

⎧⎨
⎩

�pk (x)ψk > ε2k min{1, β pmax−1
k } ≥ ‖ fk‖∞, in B+

1/2(ψk) ∪ B−
1/2(ψk),

(ψ+
k )2ν − (ψ−

k )2ν > 1, on F(ψk).

In fact, let us denote x̄ = x+εkcken . Letλ0 := min{1, pmin−1} and�0 := max{1, pmax−
1} be the constants defined in (2.2).
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For k large enough, say, in the positive phase of ψk (dropping the dependence on λ0,�0

of the Pucci operator that appears in (2.2)), we have

M−(D2ψk(x)) ≥ akM−(D2�
γ

k (x̄)) + αkε
3/2
k M−(D2d2

k (x̄)).

Proceeding as in Lemma 4.3 in [14], we see that for γ large enough, depending only on
n, λ0,�0, there holds that M−(D2�

γ

k (x̄)) > 0, for x ∈ B1/2 and large k.
More precisely, we choose

γ > γ̃ (n, pmin, pmax) := max

{
�0

2λ0
(n − 1) − 1

2
, 1

}
.

Moreover, in the appropriate system of coordinates,

D2d2
k (x̄) = diag{−dk(x̄)κ1(x̄), . . . , −dk(x̄)κn−1(x̄), 1},

where the κi (x̄) denote the curvature of the surface parallel to ∂ B 1
Bεk

(y + en( 1
Bεk

− Aεk))

which passes through x̄ . Thus,

κi (x̄) = Bεk

1 − Bεkdk(x̄)
.

For k large enough we conclude that M−(D2d2
k (x̄)) > λ0/2 and hence,

M−(D2ψk(x)) ≥ αkε
3/2
k

λ0

2
. (5.11)

Direct computations show that, for large k,

αkc1 ≤ |∇ψk | ≤ αkc2 in B+
1/2(ψk),

for positive universal constants c1, c2. Using that 1 ≤ αk ≤ √
1 + L2, we obtain, for k large,

c̄1 ≤ |∇ψk | ≤ c̄2 in B+
1/2(ψk), (5.12)

for positive universal constants c̄1, c̄2.
Then, recalling (2.2), for large k we get

�pk (x)ψk

≥ |∇ψk(x)|pk (x)−2 (M−(D2ψk(x)) + 〈∇ pk(x),∇ψk(x)〉 log |∇ψk(x)|)
≥ |∇ψk(x)|pk (x)−2M−(D2ψk(x)) − |∇ψk(x)|pk (x)−1| log |∇ψk(x)|||∇ pk(x)|
≥ c̃1αkε

3/2
k

λ0

2
− c̃2ε

1+θ
k min{1, β pmax−1

k }
> ε2k min{1, β pmax−1

k } ≥ ‖ fk‖∞ in B+
1/2(ψk),

as desired. Here c̃1, c̃2 are positive universal constants and we have used (5.11), (5.12) and
(5.3), with θ > 1

2 .

In the negative phase, using that 0 < ˆβ ≤βk ≤ L , we get

M−(D2ψk(x)) ≥ βkε
3/2
k

λ0

2
ĉ1 ≤ |∇ψk | ≤ ĉ2 in B−

1/2(ψk), (5.13)

for positive universal constants ĉ1, ĉ2 and we obtain again, for large k,

�pk (x)ψk > ε2k min{1, β pmax−1
k } ≥ ‖ fk‖∞ in B−

1/2(ψk).
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Finally, since on the zero level set |∇�
γ

k | = 1 and |∇d2
k | = 0, the free boundary condition

reduces to show that

a2
k − b2k > 1.

Recalling the definition of ak, bk we need to check that

(α2
k p2 − β2

k q2)εk + 2(α2
k p − β2

k q) > 0.

This inequality holds for k large since

α̃2 p − β̃2q = ap − bq > 0.

Thus ũ is a solution to the linearized problem.
Step 3—Contradiction. We proceed as in the proof of Lemma 5.1 in [13], using the regularity
estimates for the solution of the transmission problem from Theorem 3.3. In fact, according
to estimate (3.2), since ũ(0) = 0, we obtain that

|ũ(x) − (x ′ · ν′ + p̃x+
n − q̃x−

n )| ≤ Cr2, x ∈ Br ,

for all r ≤ 1/4 and with

α̃2 p̃ − β̃2q̃ = 0, |ν′| = |∇x ′ ũ(0)| ≤ C .

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get, for large k, that

|ũk − (x ′ · ν′ + p̃x+
n − q̃x−

n )| ≤ Cr2, x ∈ Br . (5.14)

Now, set

β ′
k = βk(1 + εk q̃), νk = 1√

1 + ε2k |ν′|2
(en + εk(ν

′, 0)).

Then,

α′
k =

√
1 + β ′

k
2 = αk(1 + εk p̃) + o(εk), νk = en + εk(ν

′, 0) + ε2kτ, |τ | ≤ C,

where to obtain the first equality we used that α̃2 p̃ − β̃2q̃ = 0 and hence

β2
k

α2
k

q̃ = p̃ + o(1).

With these choices we can now show that (for k large and r ≤ r0)

Ũβ ′
k
(x · νk − εk

r

2
) ≤ ũk(x) ≤ Ũβ ′

k
(x · νk + εk

r

2
), in Br

where again we are using the notation

Ũβ ′
k
(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uβ ′
k
(x) − αk xn

αkεk
, x ∈ B+

1 (Uβ ′
k
) ∪ F(Uβ ′

k
)

Uβ ′
k
(x) − βk xn

βkεk
, x ∈ B−

1 (Uβ ′
k
).

This will clearly imply that

Uβ ′
k

(
x · νk − εk

r

2

)
≤ uk(x) ≤ Uβ ′

k

(
x · νk + εk

r

2

)
, in Br ,
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for large k, and hence lead to a contradiction.
In view of (5.14) we need to show that in Br

Ũβ ′
k

(
x · νk − εk

r

2

)
≤ (x ′ · ν′ + p̃x+

n − q̃x−
n ) − Cr2

and

Ũβ ′
k

(
x · νk + εk

r

2

)
≥ (x ′ · ν′ + p̃x+

n − q̃x−
n ) + Cr2.

Let us show the second inequality (the other case can be argued similarly). In fact, in the
set where

x · νk + εk
r

2
< 0 (5.15)

by definition we have that

Ũβ ′
k

(
x · νk + εk

r

2

)
= 1

βkεk

(
β ′

k(x · νk + εk
r

2

)
− βk xn)

which from the formula for β ′
k, νk gives

Ũβ ′
k

(
x · νk + εk

r

2

)
≥ x ′ · ν′ + q̃xn + r

2
− C0εk .

Using (5.15) we then obtain

Ũβ ′
k

(
x · νk + εk

r

2

)
≥ x ′ · ν′ + p̃x+

n − q̃x−
n + r

2
− C1εk .

Thus to obtain the desired bound it suffices to fix r0 ≤ 1/(4C) and take k large enough. ��

6 Proof of themain theorems for problem (1.7)

In this section we prove our main results for problem (1.7) i.e., Theorems 1.1 and 1.2.

Proof of Theorem 1.2 For notational simplicity we assume that u satisfies our hypotheses in
the ball B2 and 0 ∈ F(u). We denote p0 = p(0).

Let us fix r̄ > 0 to be a universal constant such that

r̄ ≤ min{r0, 1/2pmax+1},
with r0 the universal constant in the improvement of flatness Lemma 5.1, when β in (5.1)
satisfies

0 <
β̂

2
≤ β ≤ 2L (6.1)

instead of (5.2).
Also, let us fix a universal constant ε̃ > 0 such that

ε̃ ≤ min

{
ε0(r̄),

1

2C̃
, min{1, (β̂/2)pmax−1}, log(2)

6C̃

}

with ε0, C̃ the constants in Lemma 5.1 when (6.1) holds.
Now, let

ε̄ = ε̃3.
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In view of our choice of ε̃, we obtain that u satisfies the assumptions of Lemma 5.1,

Uβ(xn − ε̃) ≤ u(x) ≤ Uβ(xn + ε̃) in B1, 0 ∈ F(u),

with (6.1) and

‖ f ‖L∞(B1) ≤ ε̃3 ≤ ε̃2 min{1, β pmax−1},
‖∇ p‖L∞(B1) ≤ ε̃3 ≤ ε̃1+θ min{1, β pmax−1}, 1

2
< θ ≤ 1,

‖p − p0‖L∞(B1) ≤ ε̃3 ≤ ε̃.

Thus we can conclude that (β1 = β ′)

Uβ1(x · ν1 − r̄
ε̃

2
) ≤ u(x) ≤ Uβ1

(
x · ν1 + r̄

ε̃

2

)
in Br̄ , (6.2)

with |ν1| = 1, |ν1 − en | ≤ C̃ ε̃, and |β − β1| ≤ C̃βε̃. In particular, by our choice of ε̃ we
have

0 <
β̂

2
≤ β

2
≤ β1 ≤ 2β ≤ 2L.

We can therefore rescale and iterate the argument above. Precisely, set (k = 0, 1, 2....)

ρk = r̄ k, εk = 2−k ε̃

and

pk(x) = p(ρk x), uk(x) = 1

ρk
u(ρk x), fk(x) = ρk f (ρk x).

Notice that each uk is a viscosity solution to (1.7) with right hand side fk and exponent pk

in B1.
Also, let βk be the constants generated at each k-iteration, which satisfy (β0 = β)

|βk − βk+1| ≤ C̃βkεk .

It follows that

βk

2
≤

(
1 − C̃ ε̃

2k

)
βk ≤ βk+1 ≤

(
1 + C̃ ε̃

2k

)
βk ≤ 2βk

and then,

β0

k−1∏
j=0

(
1 − C̃ ε̃

2 j

)
≤ βk ≤ β0

k−1∏
j=0

(
1 + C̃ ε̃

2 j

)
.

Thus,

log(β0) − 6C̃ ε̃ ≤ log(βk) ≤ log(β0) + 2C̃ ε̃,

e−6C̃ ε̃β0 ≤ βk ≤ e2C̃ ε̃β0,

and from our choice of ε̃,

0 <
β̂

2
≤ βk ≤ 2L.
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Then we obtain by induction that each uk , k ≥ 0, satisfies

Uβk (x · νk − εk) ≤ uk(x) ≤ Uβk (x · νk + εk) in B1, 0 ∈ F(u), (6.3)

with |νk | = 1, |νk − νk+1| ≤ C̃εk (ν0 = en),

‖ fk‖L∞(B1) ≤ ε2k min{1, βk
pmax−1},

‖∇ pk‖L∞(B1) ≤ ε1+θ
k min{1, β pmax−1

k }, 1

2
< θ ≤ 1,

‖pk − p0‖L∞(B1) ≤ εk .

This leads to the desired conclusion. ��
We now deduce

Proof of Theorem 1.1 Assumption (1.8) implies that

Uβ(xn − C ε̄) ≤ u(x) ≤ Uβ(xn + C ε̄) in B1,

with C a universal constant.
Then, we can apply Theorem 1.2 and obtain the result in the statement. ��

Remark 6.1 In most of our results there appears a constant θ , with 0 < θ ≤ 1 or 1
2 < θ ≤ 1.

Notice that in the proof of Theorem 1.2 we can choose θ = 1. Then, all the constants in the
previous results can be chosen independent of θ .

7 More general free boundary condition

In this section we analyze free boundary problem (1.4) and we prove our main results for
this problem, i.e., Theorems 1.3 and 1.4.

In fact, we study {
�p(x)u = f , in �+(u) ∪ �−(u),

u+
ν = G(u−

ν , x), on F(u) := ∂�+(u) ∩ �,
(7.1)

where f ∈ L∞(�) is continuous in �+(u) ∪ �−(u) and p satisfies (1.5).
We recall that, when dealing with the general problem (7.1), we assume the following

basic hypotheses on the function G:

G(η, x) : [0,∞) × � → (0,∞)

and, for 0 < β̂ < L ,

(H1) G(η, ·) ∈ C0,γ̄ (�) uniformly in η ∈ [ β̂
2 , 4L]; G(·, x) ∈ C1,γ̄ ([ β̂

2 , 4 L]) for every

x ∈ � and G ∈ L∞((
β̂
2 , 4 L) × �).

(H2) G ′(·, x) > 0 in [ β̂
2 , 4L] for x ∈ � and, for some γ0 constant, G ≥ γ0 > 0 in

[ β̂
2 , 4L] × �.

These assumptions are complemented with the following structural conditions:

(H3) There exists C > 0 such that 0 ≤ G ′′(·, x) ≤ C in [ β̂
2 , 4L] for x ∈ �.
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(H4) There exists δ > 0 such that

G(η, x) ≥ η
∂G

∂η
(η, x) + δ, for all

β̂

2
≤ η ≤ 4L and x ∈ �.

We present some interesting examples of functions satisfying (H1)–(H4) at the end of this
section (see Remarks 7.7 to 7.12).

We will now deal with problem (7.1). Let x0 ∈ F(u). Without loss of generality we
assume that x0 = 0. Also, for notational convenience we set p0 = p(0) and

G0(β) = G(β, 0).

Let Uβ be the two-plane solution to (7.1) when p(x) ≡ p0, f ≡ 0 and G = G0, i.e.,

Uβ(x) = αx+
n − βx−

n , β ≥ 0, α = G0(β).

The following definitions parallel those in Sect. 2.

Definition 7.1 Let u be a continuous function in �. We say that u is a viscosity solution to
(7.1) in �, if the following conditions are satisfied:

(i) �p(x)u = f in �+(u) ∪ �−(u) in the weak sense of Definition 2.1.
(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v)) ∩ C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v

touches u by below (resp. above) at x0 ∈ F(v), then

v+
ν (x0) ≤ G(v−

ν (x0), x0) (resp. ≥).

Next theorem follows as a consequence of our Theorem 2.2.

Theorem 7.2 Let u be a viscosity solution to (7.1) in �. Then the following conditions are
satisfied:

(i) �p(x)u = f in �+(u) ∪ �−(u) in the viscosity sense.
(ii) Let x0 ∈ F(u) and v ∈ C2(B+(v)) ∩ C2(B−(v)) (B = Bδ(x0)) with F(v) ∈ C2. If v

touches u by below (resp. above) at x0 ∈ F(v), then

v+
ν (x0) ≤ G(v−

ν (x0), x0) (resp. ≥).

We will also need

Definition 7.3 Wesay thatv ∈ C(�) is a (strict) comparison subsolution (resp. supersolution)
to (7.1) in �, if v ∈ C2(�+(v))∩ C2(�−(v)), ∇v �= 0 in �+(v)∪�−(v) and the following
conditions are satisfied:

(i) �p(x)v > f (resp. < f ) in �+(v) ∪ �−(v) (see Remark 2.8).
(ii) If x0 ∈ F(v), then

v+
ν (x0) > G(v−

ν (x0), x0) (resp. v+
ν (x0) < G(v−

ν (x0), x0)).

Observe that the assertions in Remarks 2.9 and 2.10 also apply to free boundary problem
(7.1).

From here after, most of the statements and proofs parallel those in the previous sections.
Thus, we will only point out the main differences.

In the present section a constant depending only on n, pmin, pmax, on β̂ and L (given in
Theorems 1.3 and 1.4), on [G(η, ·)]C0,γ̄ , ‖G(·, x)‖C1,γ̄ , ‖G‖L∞ , γ0 and the constants C and
δ in assumptions (H3)–(H4) will be called universal.

123



  132 Page 30 of 43 F. Ferrari, C. Lederman

The linearized problem corresponding to free boundary problem (7.1) will be again (3.1)
(with a = α̃ = G̃0(β̃) > 0 and b = β̃G̃ ′

0(β̃) ≥ 0), so we will apply again the results in
Sect. 3.

As in the case of free boundary problem (1.7), also in the present case we proceed by
obtaining an improvement of flatness lemma, that holds when the solution is trapped between
parallel two-plane solutions Uβ at ε distance, with β > 0, which requires first the proof of
Harnack inequality.

As in Sect. 4, Harnack inequality follows from the following basic lemma

Lemma 7.4 There exists a universal constant ε̄ > 0 such that if u is a solution of (7.1) and
satisfies

Uβ(xn + σ) ≤ u(x) ≤ Uβ(xn + σ + ε), x ∈ B1, |σ | <
1

20
, (7.2)

for some 0 < β̂ ≤ β ≤ L, with

‖ f ‖L∞(B1) ≤ ε2 min{1, β pmax−1, G0(β)pmax−1}, (7.3)

‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1, G0(β)pmax−1}, 0 < θ ≤ 1,

‖G(η, x) − G0(η)‖L∞(B1) ≤ ε2, for all β̂ ≤ η ≤ 2L, (7.4)

and in x̄ = 1
10en,

u(x̄) ≥ Uβ

(
x̄n + σ + ε

2

)
,

for some ε ≤ ε̄, then

u(x) ≥ Uβ(xn + σ + cε) in B 1
2
, (7.5)

for some universal 0 < c < 1. Analogously, if

u(x̄) ≤ Uβ

(
x̄n + σ + ε

2

)
,

then

u(x) ≤ Uβ(xn + σ + (1 − c)ε) in B 1
2
. (7.6)

Proof We argue as in the proof of Lemma 4.5 and we only point out the main differences.
We prove the first statement and for notational simplicity we drop the sub-index β from Uβ .

From (7.2) we have that u(x) ≥ U (xn + σ) in B1 and that B1/20(x̄) ⊂ B+
1 (u). Then,

�p(x)u = f in B1/20(x̄).

Thus, u ∈ C1,γ̃ in B1/40(x̄), where γ̃ ∈ (0, 1) and ||u||C1,γ̃ (B1/40(x̄)) ≤ C, with C ≥ 1. Here
γ̃ and C are universal constants depending only on pmin, pmax, n, L and G0(L). We have
used (7.3) and also that (7.2) implies that ||u||L∞(B1) ≤ 2max{L, G0(L)}.

We consider two cases:
Case (i). Suppose |∇u(x̄)| < α

4 . As in Lemma 4.5 we denote q(x) = α(xn + σ) and
obtain for all x ∈ Br3(x̄0)

α
c0
2

ε ≤ u(x) − q(x),
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with x̄0 := x̄ − r2en . The constants c0, r2, r3 are universal, chosen as in Lemma 4.5 and
depending only on pmin, pmax, n, L, G0(L) and γ0. In the present case we use that α =
G0(β) ≥ γ0 > 0 and we ask that r3 satisfies, in addition, that r3 ≤ γ0

2 r2.
For t ≥ 0 we define vt as in (4.17) and consider t̄ the largest t ≥ 0 such that

vt (x) ≤ u(x) in B 4
5
(x̄0).

Wewant to show that t̄ ≥ c0
2 . Then, arguing as in Lemma 4.5, we will get (7.5) for a universal

constant 0 < c < 1 depending only on pmin, pmax, n, L, G0(L) and γ0.
If we assume t̄ < c0

2 , we will get a contradiction exactly as in Lemma 4.5, if we show that
vt̄ is a strict subsolution to (7.1) in A. In fact, recalling (7.3), we obtain from Theorem 4.4
that in A+(vt̄ )

�p(x)vt̄ > ε2 min{1, α pmax−1} = ε2 min{1, G0(β)pmax−1} ≥ ‖ f ‖∞

and in A−(vt̄ )

�p(x)vt̄ > ε2 min{1, β pmax−1} ≥ ‖ f ‖∞

for ε1 = ε1(n, pmin, pmax, L, G0(L), γ0). Also, as in Lemma 4.5 (see (4.18)),

−c̃1 ≤ ψn ≤ −c̃2 < 0 on F(vt̄ ) ∩ A,

with c̃1 and c̃2 universal constants, for ε ≤ ε2, with ε2 universal. Then we have

k ≡ |en − ε
c0
2

∇ψ | =
(
1 − εc0ψn + ε2

c20
4

|∇ψ |2
)1/2

= 1 + k̃ε,

where 0 < c1 ≤ k̃ ≤ c2, with c1, c2 universal constants and moreover,

1 < k ≤ 2, (7.7)

if ε ≤ ε3 universal. We will show that, on F(vt̄ ) ∩ A, using (7.4), we can write,

(v+
t̄ )ν − G((v−

t̄ )ν, x) > 0,

as long as ε ≤ ε4 universal. In fact, recalling (7.4) and (7.7), we get

(v+
t̄ )ν − G((v−

t̄ )ν, x) = G0(β)k − G(βk, x)

≥ (1 + εk̃)G0(β) − G0(βk) − ε2.
(7.8)

Hence, there exists ξ ∈ (β, βk) such that (7.8) gives

(v+
t̄ )ν − G((v−

t̄ )ν, x)

≥ G ′
0(ξ)β(1 − k) + εk̃G0(β) − ε2 = −εk̃βG ′

0(ξ) + εk̃G0(β) − ε2

= ε
(

k̃(G0(β) − βG ′
0(ξ)) − ε

)
.

(7.9)

Since we have assumed (H3), now, using that G ′
0 is increasing in [β̂, 2L], from (7.9) we

obtain, for some η̃ ∈ (β, βk),

(v+
t̄ )ν − G((v−

t̄ )ν, x) ≥ ε
(

k̃(G0(β) − βG ′
0(βk)) − ε

)

= ε
(

k̃
(

G0(β) − (βG ′
0(β) + G ′′

0(η̃)εβ2k̃)
)

− ε
)

.
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Next, keeping in mind that 0 ≤ G ′′
0 ≤ C in [β̂, 2 L], we deduce

(v+
t̄ )ν − G((v−

t̄ )ν, x) ≥ ε
(

k̃
(

G0(β) − βG ′
0(β) − Cεβ2k̃

)
− ε

)
. (7.10)

Hence, since we have assumed (H4), there holds

G0(β) ≥ βG ′
0(β) + δ (7.11)

for some δ > 0, since 0 < β̂ ≤ β ≤ L . Then, from (7.10) and (7.11) we conclude that

(v+
t̄ )ν − G((v−

t̄ )ν, x) ≥ ε
(

k̃
(
δ − Cεβ2k̃

)
− ε

)
> 0,

if ε ≤ ε0 universal.
Thus, vt̄ is a strict subsolution to (7.1) in A as desired.
Case (ii). Now suppose |∇u(x̄)| ≥ α

4 . By exploiting the C1,γ̃ regularity of u in B 1
40

(x̄),

we know that u is Lipschitz continuous in B 1
40

(x̄), as well as there exists a constant 0 < r0,

with 8r0 ≤ 1
40 , and C > 1, r0 and C depending only on n, pmin, pmax, L, G0(L) and γ0 such

that
γ0

8
≤ |∇u| ≤ C in B8r0(x̄).

We now use (7.3) and combine the argument in Case (ii) of Lemma 4.5 with the ones above.
This completes the proof. ��

With Lemma 7.4 at hand, Harnack inequality and its corollary follow as in Sect. 4.

Corollary 7.5 There exists a universal constant ε̄, such that if u is a solution of (7.1) that
satisfies at some point x0 ∈ B2

Uβ(xn + a0) ≤ u(x) ≤ Uβ(xn + b0) in B1(x0) ⊂ B2,

for some 0 < β̂ ≤ β ≤ L, with

b0 − a0 ≤ ε,

and let (7.3)–(7.4) in B2 hold, for ε ≤ ε̄, then (α = G0(β))

ũε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x) − αxn

αε
in B+

2 (u) ∪ F(u)

u(x) − βxn

βε
in B−

2 (u),

has, in B1(x0), a Hölder modulus of continuity at x0, outside the ball of radius ε/ε̄. That is,
for all x ∈ B1(x0), with |x − x0| ≥ ε/ε̄,

|ũε(x) − ũε(x0)| ≤ C |x − x0|γ̂ .

Here C and 0 < γ̂ < 1 are universal.

We now extend the basic induction step towards C1,γ regularity at 0. We argue as in the
proof of Lemma 5.1.
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Lemma 7.6 (Improvement of flatness) Let u be a solution of (7.1) that satisfies

Uβ(xn − ε) ≤ u(x) ≤ Uβ(xn + ε) in B1, 0 ∈ F(u), (7.12)

for some

0 < β̂ ≤ β ≤ L, (7.13)

with

‖ f ‖L∞(B1) ≤ ε2 min{1, β pmax−1, G0(β)pmax−1},
‖∇ p‖L∞(B1) ≤ ε1+θ min{1, β pmax−1, G0(β)pmax−1}, 1

2
< θ ≤ 1,

‖p − p0‖L∞(B1) ≤ ε

and

‖G(η, x) − G0(η)‖L∞(B1) ≤ ε2, for all β̂ ≤ η ≤ 2L.

If 0 < r ≤ r0 for r0 universal, and 0 < ε ≤ ε0 for some ε0 depending on r, then

Uβ ′
(

x · ν1 − r
ε

2

)
≤ u(x) ≤ Uβ ′

(
x · ν1 + r

ε

2

)
in Br , (7.14)

with |ν1| = 1, |ν1 − en | ≤ C̃ε, and |β − β ′| ≤ C̃βε for a universal constant C̃ .

Proof We divide the proof into three steps.
Step 1—Compactness. Fix r ≤ r0 with r0 universal (the precise r0 will be given in Step 3).
Assume by contradiction that we can find a sequence εk → 0 and a sequence uk of solutions
to (7.1) in B1 with right hand side fk , exponent pk and free boundary condition given by Gk ,
with αk = Gk(βk, 0), that satisfies

‖ fk‖L∞(B1) ≤ ε2k min{1, β pmax−1
k , α

pmax−1
k },

‖∇ pk‖L∞(B1) ≤ ε1+θ
k min{1, β pmax−1

k , α
pmax−1
k }, 1

2
< θ ≤ 1

‖pk − p0‖L∞(B1) ≤ εk,

(7.15)

‖Gk(η, ·) − Gk(η, 0)‖L∞(B1) ≤ ε2k , for all β̂ ≤ η ≤ 2L, (7.16)

Uβk (xn − εk) ≤ uk(x) ≤ Uβk (xn + εk) for x ∈ B1, 0 ∈ F(uk),

with ˆβ ≤ βk ≤ L , but such that uk does not satisfy the conclusion (7.14).
Let us define the normalized functions

ũk(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk(x) − αk xn

αkεk
, x ∈ B+

1 (uk) ∪ F(uk)

uk(x) − βk xn

βkεk
, x ∈ B−

1 (uk),

that are given by the same formula as in Lemma 5.1. Up to a subsequence, Gk(·, 0) converges,
locally uniformly, to some C1-function G̃0, while

βk → β̃ ≥ β̂ > 0

and hence

αk → α̃ = G̃0(β̃) > 0.
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Moreover, byCorollary 7.5 the graphs of ũk converge in theHausdorff distance to aHölder
continuous function ũ over B1/2.

Step 2—Limiting Solution. We now show that ũ solves the linearized problem (transmission
problem) {

Lp0 ũ = 0 in B1/2 ∩ {xn �= 0},
a(ũn)+ − b(ũn)− = 0 on B1/2 ∩ {xn = 0}, (7.17)

in the sense of Definition 3.1, with

a = α̃ > 0, b = β̃G̃ ′
0(β̃) ≥ 0, (7.18)

where p0 is a constant such that 1 < pmin ≤ p0 ≤ pmax < ∞, and

Lp0 ũ := �ũ + (p0 − 2)∂nnũ.

In fact, the proof that Lp0 ũ = 0 in B1/2 ∩ {xn �= 0} follows exactly as in Lemma 5.1.

We need to define, in the present case, σk = min{1, β pmax−1
k , α

pmax−1
k } and observe that

σk → min{1, β̃ pmax−1, α̃ pmax−1}.
Next, we prove that ũ satisfies the transmission condition in problem (7.17)–(7.18) in the

viscosity sense.
Again we argue by contradiction. Let be γ a specific constant that will be chosen as in

Lemma 5.1 and let φ̃ be a function of the form

φ̃(x) = A + px+
n − qx−

n + B Qγ (x − y),

with

Qγ (x) = 1

2
[γ x2n − |x ′|2], y = (y′, 0), A ∈ R, B > 0

and

α̃ p − β̃G̃ ′
0(β̃)q > 0,

and assume that φ̃ touches ũ strictly from below at a point x0 = (x ′
0, 0) ∈ B1/2.

As in Lemma 5.1, let

φk(x) = ak�
γ+
k (x) − bk�

γ−
k (x) + αk(d

+
k (x))2ε

3/2
k + βk(d

−
k (x))2ε

3/2
k

where, we recall,

ak = αk(1 + εk p), bk = βk(1 + εkq)

and dk(x) is the signed distance from x to ∂ B 1
Bεk

(y + en( 1
Bεk

− Aεk)). Moreover,

ψk(x) = φk(x + εkcken)

touches uk from below at xk, with ck → 0, xk → x0.
We get a contradiction if we prove that ψk is a strict subsolution to our free boundary

problem. That is,{
�pk (x)ψk > fk in B+

1
2
(ψk) ∪ B−

1
2
(ψk),

(ψ+
k )ν − Gk((ψ

−
k )ν, x) > 0 on F(ψk).

In fact, if we proceed as in the proof of Lemma 5.1, we get

�pk (x)ψk > ε2k min{1, β pmax−1
k , α

pmax−1
k } ≥ ‖ fk‖∞, in B+

1/2(ψk) ∪ B−
1/2(ψk).
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Here we use (7.15) and that β̂ ≤ βk ≤ L and γ0 ≤ αk = Gk(βk, 0) ≤ C , where C is
universal, to get (5.12) and (5.13).

Finally, since on the zero level set |∇�
γ

k | = 1 and |∇d2
k | = 0 the free boundary condition

reduces to showing that

ak − Gk(bk, x) > 0.

Using the definition of ak, bk , we need to check that

αk(1 + εk p) − Gk(βk(1 + εkq), x) > 0.

From (7.16), it suffices to see that

αk(1 + εk p) − Gk(βk(1 + εkq), 0) − ε2k > 0.

This inequality holds for k large in view of the fact that

α̃ p − β̃G̃ ′
0(β̃)q > 0.

Thus ũ is a viscosity solution to the linearized problem.
Step 3—Contradiction. As in Lemma 5.1, since ũ(0) = 0 we obtain that

|ũ − (x ′ · ν′ + px+
n − qx−

n )| ≤ Cr2, x ∈ Br ,

for all r ≤ 1
4 and with

α̃ p − β̃G̃ ′
0(β̃)q = 0, |ν′| = |∇x ′ ũ(0)| ≤ C .

Thus, since ũk converges uniformly to ũ (by slightly enlarging C) we get that

|ũk − (x ′ · ν′ + px+
n − qx−

n )| ≤ Cr2, x ∈ Br .

Now, set

β ′
k = βk(1 + εkq), νk = 1√

1 + ε2k |ν′|2
(en + εk(ν

′, 0)).

Then,

α′
k = Gk(βk(1 + εkq), 0) = Gk(βk, 0) + βk G ′

k(βk, 0)εkq + o(εk)

= αk(1 + βk
G ′

k(βk, 0)

αk
qεk) + o(εk) = αk(1 + εk p) + o(εk),

since from the identity α̃ p − β̃G̃ ′
0(β̃)q = 0 we derive that

βk
G ′

k(βk, 0)

αk
q = p + o(1).

Moreover,

νk = en + εk(ν
′, 0) + ε2kτ, |τ | ≤ C .

With these choices, it follows as in Lemma 5.1 that (for k large and r ≤ r0)

Ũβ ′
k
(x · νk − εk

r

2
) ≤ ũk(x) ≤ Ũβ ′

k
(x · νk + εk

r

2
), in Br

which leads to a contradiction. ��
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We are now in position to prove the main results for our problem (7.1). We will prove
Theorem 1.4, which will then imply Theorem 1.3. A similar argument as that in Remark 6.1
also applies here.

Proof of Theorem 1.4 For notational simplicity we assume that u satisfies our hypotheses in
the ball B2 and 0 ∈ F(u). We denote p0 = p(0).

Let us fix r̄ > 0 to be a universal constant such that

r̄ ≤ min
{

r0, 1/2
pmax+1, (1/4)

1
γ̄

}
,

where γ̄ is as in (1.9), and r0 is the universal constant in the improvement of flatness
Lemma 7.6, when β in (7.12) satisfies

0 <
β̂

2
≤ β ≤ 2L (7.19)

instead of (7.13).
Also, let us fix a universal constant ε̃ > 0 such that

ε̃ ≤ min

{
ε0(r̄),

1

2C̃
, min

{
1, (β̂/2)pmax−1, G0(β̂/2)pmax−1}, log(2)

6C̃

}

with ε0, C̃ the constants in Lemma 7.6 when (7.19) holds.
Now, let

ε̄ = ε̃3.

In view of our choice of ε̃, we obtain that u satisfies the assumptions of Lemma 7.6,

Uβ(xn − ε̃) ≤ u(x) ≤ Uβ(xn + ε̃) in B1, 0 ∈ F(u),

with (7.19) and

‖ f ‖L∞(B1) ≤ ε̃3 ≤ ε̃2 min{1, β pmax−1, G0(β)pmax−1},
‖∇ p‖L∞(B1) ≤ ε̃3 ≤ ε̃1+θ min{1, β pmax−1, G0(β)pmax−1}, 1

2
< θ ≤ 1,

‖p − p0‖L∞(B1) ≤ ε̃3 ≤ ε̃

and

‖G(η, x) − G0(η)‖L∞(B1) ≤ ε̃3 ≤ ε̃2, for all
β̂

2
≤ η ≤ 4L.

Thus we can conclude that (β1 = β ′)

Uβ1

(
x · ν1 − r̄

ε̃

2

)
≤ u(x) ≤ Uβ1

(
x · ν1 + r̄

ε̃

2

)
in Br̄ ,

with |ν1| = 1, |ν1 − en | ≤ C̃ ε̃, and |β − β1| ≤ C̃βε̃. In particular, by our choice of ε̃ we
have

0 <
β̂

2
≤ β

2
≤ β1 ≤ 2β ≤ 2L.

We can therefore rescale and iterate the argument above. Precisely, set (k = 0, 1, 2....)

ρk = r̄ k, εk = 2−k ε̃
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and

pk(x) = p(ρk x), uk(x) = 1

ρk
u(ρk x),

fk(x) = ρk f (ρk x), Gk(η, x) = G(η, ρk x).

Notice that each uk is a viscosity solution to (7.1) in B1, with right hand side fk , exponent
pk and free boundary condition given by Gk . Moreover, the functions Gk satisfy (H1)–(H4)
in B1, with the same constants as G.

Also, let βk be the constants generated at each k-iteration, that satisfy (β0 = β)

|βk − βk+1| ≤ C̃βkεk .

As in Theorem 1.2, it follows that

βk

2
≤ βk+1 ≤ 2βk

and

0 <
β̂

2
≤ βk ≤ 2L.

Then we obtain by induction that each uk , k ≥ 0, satisfies

Uβk (x · νk − εk) ≤ uk(x) ≤ Uβk (x · νk + εk) in B1, 0 ∈ F(u), (7.20)

with |νk | = 1, |νk − νk+1| ≤ C̃εk (ν0 = en),

‖ fk‖L∞(B1) ≤ ε2k min{1, βk
pmax−1, G0(βk)

pmax−1},
‖∇ pk‖L∞(B1) ≤ ε1+θ

k min{1, β pmax−1
k , G0(βk)

pmax−1}, 1

2
< θ ≤ 1,

‖pk − p0‖L∞(B1) ≤ εk

and

‖Gk(η, x) − G0(η)‖L∞(B1) ≤ ε2k , for all
β̂

2
≤ η ≤ 4L.

This leads to the desired conclusion. ��
Remark 7.7 Let us present a family of functions G satisfying (H1)–(H4).

In fact, given p ∈ (1,+∞), we define G(η, x) : [0,∞) × R
n → (0,∞),

G(η, x) = G(η, 0) = G0(η), (7.21)

where

G0(β) = (1 + β p)
1
p . (7.22)

Then, for β ∈ (0,+∞),

G ′
0(β) = β p−1

(1 + β p)
p−1

p

< 1, G ′′
0(β) = (p − 1)

β p−2

(1 + β p)
2− 1

p

.

Let 0 < β̂ < L . Clearly, (H1)–(H2) are satisfied.
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Moreover, there exists C(β̂, L, p) > 0 such that

0 < G ′′
0(β) ≤ C(β̂, L, p), for 0 <

β̂

2
≤ β ≤ 4L.

Hence (H3) holds.

Now, since G ′
0(β) < 1, then G0(β)−G ′

0(β)β ≥ (1+β p)
1
p −β. Thus, in order to see that

(H4) holds, it is sufficient to prove that there exists δ > 0 such that for every β ∈ [ β̂
2 , 4L]

(1 + β p)
1
p ≥ β + δ.

Therefore, choosing δ such that

0 < δ ≤ min
[ β̂
2 ,4L]

(
(1 + β p)

1
p − β

)
,

we obtain that (H4) is satisfied.
The same result holds for

G0(β) = (γ̄0 + β p)
1
p , with γ̄0 > 0. (7.23)

Moreover, if in (7.23) we have 1 < pmin ≤ p ≤ pmax < ∞ and 0 < g0 ≤ γ̄0 ≤ g1,
then the constants γ0, C and δ in (H2), (H3) and (H4) can be chosen depending only on
β̂, L, pmin, pmax, g0, g1.

Remark 7.8 Notice that when p = 2 in (7.21) and (7.22), problem (7.1) becomes problem
(1.7).

Remark 7.9 Let us now show that our Theorems 1.3 and 1.4 apply to problem (1.1). In fact,
let us consider the function giving the free boundary condition in problem (1.1). That is,

G(η, x) = (g(x) + ηp(x))
1

p(x) .

Assume that g ∈ C0,γ̄ (B1), with 0 < g0 ≤ g(x) ≤ g1 for some constants g0, g1, and p
satisfies (1.5) in B1. Then, G(η, x) : [0,∞) × B1 → (0,∞).

Let 0 < β̂ < L . It is not difficult to see from Remark 7.7 that G satisfies (H1)–(H4) in
B1 with constants γ0, C, δ, depending only on β̂, L, pmin, pmax, g0, g1.

In addition, let us show that if ‖∇ p‖L∞(B1) ≤ ε̄ and [g]C0,γ̄ (B1)
≤ ε̄, then

[G(η, ·)]C0,γ̄ (B1)
≤ C ε̄, for all 0 <

β̂

2
≤ η ≤ 4L,

with C depending only on β̂, L, pmin, pmax, g0, g1. In fact, let us call

F(t, x, η) = (t + ηp(x))
1

p(x) ,

for x ∈ B1, g0 ≤ t ≤ g1 and 0 <
β̂
2 ≤ η ≤ 4L . Then we can write

G(η, x) = F(g(x), x, η).

In fact, there holds that | ∂ F
∂t (t, x, η)| ≤ C1, and | ∂ F

∂xi
(t, x, η)| ≤ C2‖∇ p‖L∞(B1), where C1

and C2 depend only on β̂, L, pmin, pmax, g0, g1. As a consequence

|G(η, x) − G(η, x̄)| ≤ C1[g]C0,γ̄ (B1)
|x − x̄ |γ̄ + C2‖∇ p‖L∞(B1)|x − x̄ |

≤ C3ε̄|x − x̄ |γ̄ ,
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where C3 depends only on β̂, L, pmin, pmax, g0, g1.

Remark 7.10 We will introduce another family of functions that satisfy assumptions (H1)–
(H4). In fact, let a, b and q be positive numbers, q ≥ 1.

We define G(η, x) : [0,∞) × R
n → (0,∞),

G(η, x) = G(η, 0) = G0(η), (7.24)

where

G0(η) = aηq + b. (7.25)

Let 0 < β̂ < L . Clearly (H1)–(H3) hold.
We want to show that (H4) holds for some δ > 0. In fact, we will prove that

G0(η) ≥ ηG ′
0(η) + δ, 0 ≤ η ≤ 4L. (7.26)

Inequality (7.26) is equivalent to

aηq + b ≥ aqηq + δ, 0 ≤ η ≤ 4L. (7.27)

If q = 1, we take 0 < δ < b and (H4) holds.
If q > 1 and the given L satisfies

L <
1

4

(
b

a(q − 1)

)1/q

,

we see that (7.27) holds for a constant δ > 0 small enough and therefore, (H4) holds.

Remark 7.11 We can define G satisfying (H1)–(H4), replacing the constants a, b and q in
(7.24) and (7.25) by suitable smooth functions defined in �, with arguments similar to the
ones in Remark 7.9.

Remark 7.12 Let G1 and G2 be functions satisfying (H1)–(H4). Let a1, a2 ∈ C0,γ̄ (�) be
such that there exist constants c̄, c with 0 < c̄ ≤ a1, a2 ≤ c for every x ∈ �. Then,

G(η, x) := a1(x)G1(η, x) + a2(x)G2(η, x)

satisfies (H1)–(H4) as well.

Appendix A: Minimizers of energy (1.2)

In this appendix we briefly discuss how free boundary problem (1.1), with free boundary
condition (1.3), appears when the energy functional (1.2) is minimized.

Let� be a bounded domain.We consider the energy functional (1.2), with p(x) as in (1.5)
and f ∈ L∞(�). We also assume that λ+ > λ− ≥ 0 are given constants, and q ∈ C0,γ̄ (�),
with 0 < q0 ≤ q(x) ≤ q1, for some constants q0, q1.

We first observe that the energy functional (1.2) can be written as

J (v) = J̃ (v) + C,

with

J̃ (v) =
∫

�

(
|∇v|p(x)

p(x)
+ q(x)(λ+ − λ−)χ{v>0} + f (x)v

)
dx,
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and

C =
∫

�

q(x)λ−dx .

Given φ ∈ W 1,p(·)(�), the existence of a minimizer u ∈ W 1,p(·)(�) of (1.2) among
functions v ∈ W 1,p(·)(�) such that v − φ ∈ W 1,p(·)

0 (�) follows from Theorem 3.1 in [35].
As in Theorem 3.2 in [35], we deduce that any local minimizer u ∈ W 1,p(·)(�) ∩ L∞(�)

of (1.2) satisfies that u ∈ C0,γ (�) for some 0 < γ < 1, γ = γ (n, pmin). Proceeding as in
Lemma 3.3 in [35], we see that

�p(x)u = f in {u > 0} ∪ {u < 0}.
If x0 ∈ F(u) is such that Br (x0) ∩ {u < 0} = ∅ for some r > 0, then u is a one-phase

solution to (1.1) in Br (x0) with free boundary condition given by (1.3) by Theorems 5.1 and
5.2 in [35] (see also Proposition 8.1 in [23]).

If x0 ∈ F(u) and Br (x0) ∩ {u < 0} �= ∅ for every 0 < r < r̄0, we will show that, under
additional assumptions on u, condition (1.3) is satisfied in a neighborhood of x0.

In fact, assume that F(u) is aC1,γ̃ surface in Br1(x0), for some r1 > 0 small, that separates
{u > 0} from {u < 0}. Then,

�p(x)u = f in B+
r1 (u) ∪ B−

r1 (u),

where we denote B+
r (u) = Br (x0) ∩ {u > 0} and B−

r (u) = Br (x0) ∩ {u < 0}. From
Theorem 1.2 in [18], we get that u ∈ C1(B+

r2 (u)) ∩ C1(B−
r2 (u)), r2 > 0 small. In particular

u is Lipschitz continuous in Br2(x0).
Assume moreover that ∇u+(x0) �= 0. Now consider ρk → 0 and uk(x) = u(x0+ρk x)

ρk
.

Then, uk → u0(x) = αx+
1 − βx−

1 , with α = |∇u+(x0)| > 0, β = |∇u−(x0)| ≥ 0, where

for simplicity we assumed that ∇u+(x0)
|∇u+(x0)| = e1.

Proceeding as in Proposition 3.2 in [35] we define, for r0 > 0,

Jr0,0(v) =
∫

Br0

( |∇v|p0

p0
+ λ0χ{v>0}

)
dx,

with

p0 = p(x0), λ0 = q(x0)(λ+ − λ−)

and we deduce that

Jr0,0(u0) ≤ Jr0,0(v),

for every v ∈ W 1,p0+δ(Br0) with v − u0 ∈ W 1,p0+δ
0 (Br0), for some δ > 0.

Then, reasoning as in Proposition 3.3 in [35], we obtain(
α p0 − α p0

p0

)
−

(
β p0 − β p0

p0

)
= λ0,

which gives

(u+
ν (x0))

p(x0) − (u−
ν (x0))

p(x0) = p(x0)

p(x0) − 1
q(x0)(λ+ − λ−).

We can now repeat the argument at every point close to x0 and thus, (1.3) is satisfied in a
neighborhood of x0, as claimed.
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Hence, we obtain that minimizers of (1.2) that change sign are solutions of free boundary
problem (1.1) with g(x) = p(x)q(x)

p(x)−1 (λ+ − λ−), under suitable assumptions.
Let us stress that under the present hypotheses, the function g above is in the situation of

Remark 7.9 and then the results in Sect. 7 apply to problem (1.1) for such a g.
Moreover, we point out that, proceeding as in [2, 3, 17], we can also show that minimizers

to (1.2) that change sign satisfy the free boundary condition (1.3) in the sense of domain
variations, under suitable assumptions.

Appendix B: Lebesgue and Sobolev spaces with variable exponent

Let p : � → [1,∞) be a measurable bounded function, called a variable exponent on �,
and denote pmax = esssup p(x) and pmin = essinf p(x). The variable exponent Lebesgue
space L p(·)(�) is defined as the set of all measurable functions u : � → R for which the
modular �p(·)(u) = ∫

�
|u(x)|p(x) dx is finite. The Luxemburg norm on this space is defined

by

‖u‖L p(·)(�) = ‖u‖p(·) = inf{λ > 0 : �p(·)(u/λ) ≤ 1}.
This norm makes L p(·)(�) a Banach space.
There holds the following relation between �p(·)(u) and ‖u‖L p(·) :

min
{( ∫

�

|u|p(x) dx
)1/pmin

,
( ∫

�

|u|p(x) dx
)1/pmax

}
≤ ‖u‖L p(·)(�)

≤ max
{( ∫

�

|u|p(x) dx
)1/pmin

,
( ∫

�

|u|p(x) dx
)1/pmax

}
.

Moreover, the dual of L p(·)(�) is L p′(·)(�) with 1
p(x)

+ 1
p′(x)

= 1.

W 1,p(·)(�) denotes the space of measurable functions u such that u and the distributional
derivative ∇u are in L p(·)(�). The norm

‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·)(�) a Banach space.
The space W 1,p(·)

0 (�) is defined as the closure of the C∞
0 (�) in W 1,p(·)(�).

For further details on these spaces, see [16, 31, 41] and their references.
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