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Abstract
The management of IoT solutions is a complex task due to their inherent distribution 
and heterogeneity. IoT management approaches focus on devices and connectivity, 
thus lacking a comprehensive understanding of the different software, hardware, and 
communication components that comprise an IoT-based solution. This paper pro-
poses a novel four-layer IoT Management Architecture (IoTManA) that encompasses 
various aspects of a distributed infrastructure for managing, controlling, and moni-
toring software, hardware, and communication components, as well as dataflows and 
data quality. Our architecture provides a cross-layer graph-based view of the end-to-
end path between devices and the cloud. IoTManA has been implemented in a set of 
software components named IoT management system (IoTManS) and tested in two 
scenarios—Smart Agriculture and Smart Cities—showing that it can significantly 
contribute to harnessing the complexity of managing IoT solutions. The cross-layer 
graph-based modeling of IoTManA facilitates the implemented management system 
(IoTManS) to detect and identify root causes of typically distributed failures occur-
ring in IoT solutions. We conducted a performance analysis of IoTManS focusing on 
two aspects—failure detection time and scalability—to demonstrate application sce-
narios and capabilities. The results show that IoTManS can detect and identify the 
root cause of failures in 806ms to 90,036ms depending on its operation mode, adapt-
ing to different IoT needs. Also, the IoTManS scalability is directly proportional to 
the scalability of the underlying IoT Platform, managing up to 5,000 components 
simultaneously.

Keywords Internet of things · IoT management · Management architecture · IoT 
architecture
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1 Introduction

The Internet of Things (IoT) has an increasing development, mainly because of the 
continuous efforts of a wide community of scientists, developers, vendors, and, par-
ticularly, end-users. Due to the significant number of solutions and needs, different 
players identified that either the available commercial IoT-enabled products are not 
suitable to their demands, or there is no product for a specific requirement, lacking a 
generic solution that can be reused in different scenarios [1].

IoT solutions generate vast amounts of data, creating new demands for comput-
ing systems such as distributed storage, processing capacity, and communication. 
Cloud computing facilitates the deployment of IoT solutions by providing flexibility 
in resource allocation and centralized management [2]. However, IoT solutions have 
specific requirements and constraints, such as low latency for real-time applications, 
which the Cloud cannot solve alone. A potential solution is moving the intelligence 
of devices to the edge of the network, allowing storage, processing, and low latency 
capabilities closer to the IoT devices. This concept is known as Edge computing and 
is defined as any computing and networking resource between the IoT devices and 
the cloud [3].

Fog and mist computing are introduced as edge computing approaches, acting as 
crucial components to IoT solutions. Fog computing brings the concept of Cloud 
computing solutions closer to things, providing computing and communications 
resources. Mist is the hardware located closest to the devices, is the extreme edge 
of a network. The introduction of edge computing to an already complex IoT solu-
tion brings new challenges for managing an inherently distributed and heterogene-
ous solution. However, most IoT management approaches in the literature explore 
two aspects of the field: devices (sensors/actuators) and wireless communications 
(LoRa, Wi-Fi, 4G) [4]. The management of real-world IoT solutions faces unex-
pected issues since the end-to-end communication between the things and the cloud 
passes through potentially many intermediate software, hardware, and communica-
tion components [5].

Practical IoT operational problems arise when the end-to-end dataflow stops 
being updated at the end-user monitoring application. When this happens, there is 
no comprehensive management solution to pinpoint the exact failure location and 
cause, which may be in any software, hardware, and communication component 
along the path between the sensors and the dashboard. The hands-on experience 
gained by managing an IoT-based Smart Irrigation platform for more than three 
years [5] provided us with precious understanding of the fundamental problems suf-
fered by IoT systems and impelled us to provide innovative management solutions.

This paper presents a novel four-layer IoT management architecture (IoTManA) 
that can be applied to different smart applications, such as smart cities, smart agri-
culture, smart health care, and smart industry. The generic characteristic of IoT-
ManA makes it able to operate in different environments regardless of the infra-
structure or platform adopted by the IoT solution. Using a layer-based approach, IoT 
components are represented as Virtual Entities that can support different needs of an 
IoT environment, such as scalability, context awareness, and availability.
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The IoT management system (IoTManS) implements IoTManA for smart water 
management, developed to demonstrate how the IoTManA can be applied to manage 
IoT solutions in distributed locations. IoTManS ensures the availability of the data 
collected by the sensors, the proper operation of the infrastructure—hardware and 
software components, communication between components, and analyzing data-
flows and data quality by managing, monitoring, and evaluating each component 
in the end-to-end path. Here, we report a running version of IoTManS that man-
ages a Smart Irrigation IoT solution [5] showing how it obtains context information 
to monitor and manage applications, ensuring the control needs for a decentralized 
solution. Also, we show results of testbed experiments with smart irrigation and 
smart city scenarios to demonstrate the practical use of our management architecture 
and system and evaluate performance and scalability.

This paper brings three main contributions to the IoT management:

– A management architecture that allows mapping how the failure of components 
in one layer impacts components from upper layers.

– A graph-based view of the end-to-end path between devices and the cloud, con-
sidering all the components in between, such as software, hardware, and commu-
nication components.

– An architecture and modeling approach for facilitating an integrated monitoring 
and failure detection system to automatically detect and inform root causes.

We highlight that the purpose of our architecture is the management of IoT solu-
tions, which makes it different from existing IoT Architectures. Whereas there are 
different architectures for facilitating the understanding and development of IoT 
solutions [6–9], no similar IoT management architectures have been found in the 
literature. Existing IoT management approaches and architectures typically focus 
solely on device management [10].

This paper is organized as follow: Sect.  2 presents the background and related 
work. Section  3 details the proposed IoTManA and IoTManS. Section  4 presents 
the design, modeling and implementation of IoTManS and IoTManA based on an 
IoT smart agriculture solution. Section 5 presents a practical implementation of our 
architecture and system with examples and performance evaluations experiments. 
Section 6 presents and discusses the results of the performance evaluation experi-
ments. Finally, Sect. 7 provides a discussion and a summary of future works.

2  Background and Related Work

IoT Management is a complex task due to the distributed nature of such applications 
that can cover a large geographical area with various software, hardware, and com-
munication components. Therefore, a successful IoT Solution must provide manage-
ment features that consider high levels of heterogeneity, interoperability, and scal-
ability, thus needing a unifying architecture and middleware [11]. In this section, we 
present state-of-the-art IoT architecture and management efforts.
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2.1  IoT Architectures

The IoT concept is based on devices transmitting data through a communication 
channel, and since there is no current leading solution, most standardization efforts 
aim at meeting this concept. Yearbook et al. [12] analyzed several proposals that try 
to meet IoT architecture needs, such as scalability and security. Numerous efforts on 
designing new IoT architectures can be found in the literature focusing on software 
components [6–9]. Washizaki et al [13] surveyed different architectures and design 
patterns for IoT systems. With the same direction, the International Organization for 
Standardization (ISO) proposes in ISO/IEC 30141 [14] a reference model and a ref-
erence architecture to generic IoT solutions that meet the characteristics necessary in 
a multi-layer approach based on reusable designs and industry best practices.

A multi-layer architecture facilitates understanding roles, locations, and abstrac-
tion levels of different networking, hardware, and software components and is nowa-
days adopted by most IoT Platforms. An IoT platform—also known as IoT software 
platform [1] or IoT middleware [15, 16]—implements an IoT architecture providing 
a variety of building blocks to facilitate the development of an IoT solution, such as 
device connectivity, device management, data management, data analytics, security, 
and visualization [5]. IoT platforms collect data from devices and enable the devel-
opment of IoT solutions that control, monitor, and manage these devices. It is often 
composed of several middleware components, each of them focusing on a specific 
feature in a particular layer to provide an end-to-end platform involving data genera-
tion, transmission, storage, and processing.

The growing interest of different sectors of society in IoT technologies and the 
lack of standards opened up the opportunity for a breed of IoT platforms, amount-
ing to 650 IoT companies on the open market in 2019 [17]. A drawback of this rapid 
evolution is the proliferation of heterogeneous sensor networks that lack interoper-
ability [18]. One approach to this problem is the virtualization of fundamental com-
ponents into programmable objects and communication between them regardless 
of their communication methods [19, 20]. The virtual representation of the object 
can then be treated as an entity within the managed environment, making the sys-
tem itself also become an entity. The concept of virtualization of real components 
is explored in different areas. Girau et al. expand the concept of virtualization to the 
user, representing the user as a virtual entity that executes its tasks through functions 
[21].

Ray surveyed different architectures applied to specific domains such as device 
management, system management, heterogeneity management, data management, 
monitoring, and visualization [22]. The proposals target specific problems or sce-
narios and platforms, strengthened by recent IoT solutions that address specific 
domains. Frequent solutions manage devices [23, 24], applications [25, 26], security 
[27, 28], and many others specific aspects, such as interoperability [29].

Zyrianoff et al. [30] proposed a 5-layer IoT Architecture (IoTecture), that provides 
support for highly distributed data management functions and separates physical 
and data-driven models from application services. IoTecture objective is to help the 
deployment of IoT smart applications over different distributed locations in the mist, 
fog, and cloud implementing the concept of IoT computing continuum (IoTinuum) 
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proposed on the same work. IoTinuum considers the mapping of software compo-
nents into physical locations, that provides a clear view of the different deployment 
locations for architectural components, divided up into five stages, namely Thing 
(sensor/actuator), Mist, Fog, Cloud, and Terminal (the place where the end-user 
interacts with a smart application). The mist can be considered the lowest hierarchi-
cal edge computing system, the closest to the devices. Mist components are usually 
applied to create communication facilities such as LoRaWAN gateways and Wi-Fi 
access points, providing storage and processing capabilities [30]. The five stages 
of IoTinuum define the end-to-end information path, starting with data collected 
by sensors up to commands executed by actuators. These five stages might not be 
necessarily present in all configuration scenarios. Instead, depending on application 
characteristics, requirements and constraints, Mist, Fog, or Cloud stages may not be 
present.

IoTManA is an extension of IoTecture. While IoTecture provides a reference 
architecture to IoT Platforms and guidelines to deploy a Smart Application focus-
ing on data management, IoTManA is an architecture to manage IoT Platforms 
and Smart Applications that follow the IoTecture. In other words, IoTecture and 
IoTManA are both architectures, but the former aims at system development and 
deployment, whereas the latter aims at system management. IoTManA focuses on 
the data and managing components at different layers such as devices, networks, ser-
vices, and applications executed in the different IoTinuum stages.

Pena et al. proposed a similar approach of an architectural reference model focus-
ing on management, considering the different aspects of IoT Systems [10]. However, 
the proposal does not use a multi-layer approach, limiting the architecture to be used 
only by their own IoT Platform.

2.2  IoT Management

Besides inheriting management requirements from cloud and edge computing, IoT 
environments have specific challenges such as device, network, and application 
management that must yet consider problems of scalability and heterogeneity.

A typical research domain explored by IoT solutions is resource management in 
varied and distributed locations like the cloud, fog, or mist. Considering the edge 
components in their approaches, Mostafa et al. proposed an algorithm for the man-
agement and effective resource selection in fog computing [31]. Martinez et al. sur-
veyed the design, resource, and management of fog computing systems focusing 
on service and resource allocation [3]. The same efforts are found in [32–35], and 
other studies extend the resource management in approaches that consider the mist 
as a component on the edge [36, 37] into the deployment. Bouakouk et al. [38] sur-
veyed different paradigms towards Cloud-IoT, analyzing architectures and taxonomy 
focusing on the challenges in edge and cloud computing.

Elliot et al. [39] proposed an orchestrator to manage Docker containers between 
heterogeneous cloud service providers, considering the challenge of deploying dif-
ferent IoT Platform components . Jain et al. [40] propose a similar approach to design 
the whole distributed IoT application in one place, considering different application 
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components to be deployed at different edge nodes. Xu et al. [41] addressed the same 
concept applying a rule engine in a distributed hybrid cloud management platform 
considering the resource allocation between different cloud providers, treating the 
heterogeneity in the cloud level . Avasalcai et al. proposed a decentralized resource 
management technique and a technical framework to deploy latency-sensitive IoT 
solutions on edge devices [42]. Sinche et at. [43] surveyed IoT Management tech-
nologies, frameworks and protocols, focusing on devices and proposing a taxonomy 
for IoT devices management.

To the best of our knowledge, in the current literature, there is no architecture 
capable of providing manageability to an IoT solution in different layers simultane-
ously—software, hardware, connections, sensors—and considering a multi-location 
distributed infrastructure—cloud, fog, and mist. Most of the efforts in new architec-
tures are directed to IoT Applications.

Compared with existing IoT management approaches, our proposal is technology- 
and platform-agnostic and acknowledges critical aspects needed by any IoT solution, 
such as deploying cloud and edge components, infrastructure abstraction, availabil-
ity, and scalability. Our approach deals with data to implement solutions to different 
management problems. Here, we demonstrate how the architecture can be applied in 
a management system that allows failure detection while identifying the root cause, 
i.e., the process of identifying and isolating the main component responsible for the 
failure.

3  IoT Management Architecture (IoTManA)

The IoT Management Architecture (IoTManA) aims at managing different aspects 
of infrastructure (machines, devices, and communications), software components 
(brokers, databases, services), dataflow, and data quality, providing a manageable 
end-to-end environment. It can be applied to different areas due to the representation 
of components as virtual entities, being easy to model any IoT smart solution with 
heterogeneous devices and components. Also, it has been developed and extensively 
tested in the context of a smart irrigation solution [5].

IoTManA follows the IoT Computing Continuum (shortened to IoTinuum) [30] 
and uses a deductive to empirical approach, where the data was collected and mod-
eled repeatedly during the development of the smart irrigation platform until the 
proposal reaches a sufficiently satisfying level of conciseness [44].

Figure 1 depicts the IoTManA 4-layered architecture:

– Layer 1 (Infrastructure) manages devices (sensors and actuators), physical and 
logical hardware (i.e., bare metal and virtual machines or containers), and net-
work infrastructure. It includes the management of sensor, mist, fog, and cloud 
hardware components. The hardware components may be a simple Raspberry 
Pi, a computer, or a dedicated server. This layer also manages the links between 
the computing components, including LoRa or other wireless technology links 
between device and mist, a WLAN link (e.g., Wi-Fi) between mist and fog, and 
the Internet connection between fog and cloud.
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– Layer 2 (Software Components) manages software components (e.g., services or 
microservices) of the IoT Platform and Applications.

– Layer 3 (Dataflow) manages the availability of dataflows across hardware, soft-
ware, and network elements. The steps of an end-to-end dataflow may be moni-
tored indirectly rather than directly. For example, if data is received from a sen-
sor in the cloud, it can be safely assumed that dataflow is actively working.

– Layer 4 (Data Quality) analyzes the data quality from two perspectives of verac-
ity. A univariate data analysis performs simple checks of data ranges (e.g., maxi-
mum and minimum), periodicity (e.g., data received every x minutes), and the 
anomaly of one variable at a time (e.g., a substantial unexpected variation of a 
metric). A multivariate data analysis performs more complex analyses of multi-
ple variables (e.g., comparing rainfall with soil moisture).

To provide a manageable end-to-end environment, the data availability (Layer 3) 
and data quality (Layer 4) are critical components since we consider the endpoint 
of the flow as the availability of the data for consumption. These Layers differ since 
Layer 3 monitors the hop-by-hop dataflow, whereas Layer 4 monitors the end-to-end 
data quality.

IoTManA represents a conceptual view of layers that increase abstraction, scope, 
and softwarization level from the bottom up, allowing one layer to be mapped 
into the layer below to link effects and facilitate root cause detection. The coher-
ence between the four hierarchical layers is fundamental for guaranteeing that any 
adverse event (e.g., a failure) in a layer that affects components located in upper 

Fig. 1  IoT Management Architecture (IoTManA)
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layers will be immediately propagated to the management services in such a way for 
the cause-effect relationship to be understood so that appropriate corrective actions 
can be taken. Even though Layer 4 (Data Quality) is close to the analytical or data-
intensive models of particular IoT Solutions, it must also be connected to Layer 3 
(Dataflow) so that the problems in the latter can be mapped to the former. In other 
words, even though platforms may differ in terms of where and how components are 
placed, these layers must be interconnected. IoTManA can be implemented by dif-
ferent management platforms, such as our IoTManS presented in this paper.

4  IoT Management System (IoTManS)

This section presents the process of design, modeling, and implementation of the 
IoT Management System (IoTManS) using a use case based on a Smart Agricul-
ture, detailing each software component of the IoTManS and its functions. The same 
process is applied to a simple Smart City solution with a different IoT Platform in 
order to show how IoTManS is not technology-dependent and can manage diverse 
solutions.

4.1  IoTManS Design

IoTManS implements IoTManA, as depicted by Fig. 2, where the color of the boxes 
relate to the colors of IoTManA layers in Fig. 1. We adopt the same color pattern 
throughout this paper. Components represented by white boxes implement more 
than one layer. IoTManS is composed of a set of software components that imple-
ment the abstract functions within IoTManA. The key software components com-
prising IoTManS are:

– IoT Agent: monitors and controls the mist, fog, and cloud machinery (physical/
logical) and the software components running on them. Monitoring is a data col-
lection of hardware/software components functioning, such as fault or perfor-

Fig. 2  IoT Management System (IoTManS)
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mance, which is sent to the IoT Manager. There are two types of IoT Agents: 
(1) IoTAgent Infra—for obtaining information from the infrastructure and system 
metrics; and IoTAgent Software—for obtaining data from software components 
such as availability and status. Control means any actuation on hardware, soft-
ware, or communication components, such as turning on/off equipment or soft-
ware components and changing configurations. IoT agents can monitor Docker 
containers, processes, connections between hosts, CPU and memory usage, and 
application availability. Availability is monitored by different approaches to vali-
date the operating state of an application, such as sending a request to a health 
check endpoint in the software component (in case of a REST API available) or 
consuming the service (e.g., subscribing in a topic to the MQTT broker and then 
publish a message, receiving the same information in the form of a subscription).

– IoT Manager: is the core of IoTManS, responsible for monitoring, analyses, 
and actuation actions. The IoT Manager receives monitoring data from the IoT 
Agents and analyzes the end-to-end dataflows, handling the data and acting if 
necessary. It may also actuate remotely on IoT Agents, e.g., sending commands 
for changing the state of monitored components. The IoT Manager comprises 
two sub-components: (a) L1, L2, L3 Manager is responsible for the management 
of the three first layers on the IoTManA Layer; (b) L4 Manager that operates as a 
data quality analyzer; (c) Action Manager that allows changing the state of soft-
ware, hardware, and communication components automatically or manually.

– IoT entity observer: composed of an IoT entity editor (IoTEE) and an IoT entity 
visualizer. The IoTEE allows CRUD (creating, reading, updating, and deleting) 
functions over virtual entities, which correspond to managed physical entities. 
The IoT entity visualizer is a custom dashboard that allows end-user and opera-
tors to check the status and the historical values (time series) of the managed 
entities.

– IoT sensor setup (IoTSS) is used in field installations (and updates) of physical 
sensors and their association with virtual entities. IoTSS works in places where 
4G/Wi-Fi connectivity is not guaranteed due to limited coverage or shadow 
areas. The IoTSS binds the physical device and its digital representation in the 
system as a virtual entity, making it easy to install and manage new devices on a 
virtual level.

4.2  IoTManS Implementation and Operation Modes

IoTManS considers each virtual entity as a JSON representation of an entity to be 
managed, such as software, hardware, a communication component, a device, or 
a system. Virtual entities allow the IoT Manager to integrate and manage different 
aspects of the platform. For instance, sensors can be configured by the IoTSS using 
the virtual entity that contains attributes such as publish interval, operation method, 
format, and address that indicates where to publish the data.

The software components that compose IoTManS were initially deployed onto 
the FIWARE IoT Platform, using Orion Context Broker as the core component for 
receiving the management messages from the IoT Agents to the IoT Manager in a 
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Smart Irrigation solution, which was in turn replicated in a lab testbed to evaluate 
its performance, scalability, and effectiveness. Afterward, it was ported to store 
management messages in the ThingsBoard IoT platform, in an attempt to demon-
strate that: (1) Both IoTManA and its implementation IoTManS are not dependent 
on particular platforms; (2) The performance of IoTManS depend exclusively on 
the underlying platform and not on the management system.

In the FIWARE implementation, IoT Agents update the status of each compo-
nent to FIWARE Orion, which notifies the IoT Manager of each new data arrival. 
A similar approach is used in the ThingsBoard implementation, where IoT Agents 
update the status of each component as a device. Unlike FIWARE Orion that only 
receives the data and forwards it, ThingsBoard treats the data from the receiving 
to the time-series data storage, being necessary to use a plugin, also provided by 
the developer, to recover the data from the platform and forwards it to the IoT 
Manager. In other words, the IoT Manager operates as a data consumer of the IoT 
Platform. Therefore, the scalability of the IoT Manager is directly proportional to 
the scalability of the underlying IoT Platform it is implemented on.

The IoT Manager has two operation modes:

– Active mode: The IoT Manager periodically polls the graph-based structure, 
implemented by IoTManS to determine the state of each component, detecting 
and creating an event accordingly, updating the graph, and taking the corre-
sponding actions. The active mode allows the IoT Manager to handle compo-
nents that cannot be directed monitored (e.g., if the component has no inter-
face or monitoring endpoint). For instance, when IoT Agents cannot collect 
metrics directly from a specific component, the IoT Manager can use the graph 
to analyze the state of each known device that composes the end-to-end path 
between sensors and the cloud. In solutions that apply time-driven sensors, 
IoT Manager can establish a threshold of data samples in order to determine 
the state of a component or Agent. For example, if the sampling time is 60 
seconds and the threshold is three samples, after 180 seconds since the last 
message, the IoT Manager assumes that an IoT Agent is down.

– Passive mode: The IoT Manager does not actively check the graph and waits 
until a message from IoT Agents arrives with management data about the 
monitored components. In this method, the IoT Agent continuously monitors 
the components and notifies the IoT Manager when their state changes. This 
method can be applied in solutions that apply event-driven sensors, where the 
monitoring by sampling time is not relevant.

The active and passive modes can be combined for the real-time monitoring of 
certain components, allowing the IoT Manager to act and respond quickly upon 
changes at the monitored components, with no need to wait until the next graph 
polling. The combination of the passive and active modes allows the IoT Man-
ager to operate in highly heterogeneous IoT Solutions, as it is able to determine 
the state of components, devices, connections, software, and hardware that are 
compatible or not with the IoT Agents in a stable or unstable environment, and 
demanding real-time monitoring or not.
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Virtual entities are organized as a directed acyclic graph (DAG) where verti-
ces are the monitored components and edges represent a cause-effect relationship 
between components. The use of a DAG allows IoT Manager to organize and rep-
resent the architecture and allow an easy understanding of its components and their 
relationships. The graph approach also gives the IoT Manager the structure neces-
sary to detect and isolate failures.

4.3  Use Case

This section demonstrates the IoTManS operation in an IoT Smart Irrigation sce-
nario. Figure 3 illustrates the deployment of a Smart Irrigation Solution based on 
the FIWARE IoT Platform1 [5], applying the IoTinuum stages: Thing (soil moisture 
sensors and weather station), Mist (LoRaWAN gateway, Weather Station Collector), 
Fog (ChirpStack [45], MQTT), and Cloud (FIWARE components).

In this solution, the sensors transmit data to the LoRaPackageForwarder, a soft-
ware component that receives and forwards the messages to the LoRaGateway-
Bridge, which converts Packet Forwarder protocols into a ChirpStack data format. 
The Mist and the Fog implement a ChirpStack LoRaWAN server, an open-source 
software composed by Chirpstack Network and Application Servers, and Redis and 
PostgreSQL databases. ChirpStack is in charge of the communication and manage-
ment of LoRaWAN devices, using the Mosquitto MQTT broker to exchange infor-
mation between modules. The FIWARE IoT Agent (not the management IoT Agent, 
but the protocol translator) consumes data received by Mosquitto from ChirpStack 
and transforms it into the JSON NGSI [46] format used by FIWARE Orion and 
FIWARE Quantum Leap. Orion is a publish/subscribe broker responsible for creat-
ing, registering, updating, notifying, and subscribing to the FIWARE IoT Platform. 

Fig. 3  Use Case on a Smart Irrigation Solution

1 https:// www. fiware. org.
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Orion is the core of FIWARE, storing only the last state of virtual entities in a Mon-
goDB2 database. To preserve historical data, Orion must work with other software 
components that store data, i.e., databases, such as FIWARE Quantum Leap. The 
latter subscribes to an entity and is notified by FIWARE Orion each time this entity 
is updated, converting the data from JSON NGSI to the native CrateDB3 format.

4.4  Modeling

Figure 4a illustrates the representation of each component of the managed solution 
as a virtual entity. On Layers 1, 2, and 4, the numbering is on top, representing the 

Fig. 4  a Modeling a smart irrigation solution—b IoTManS components and DAG representation

3 https:// crate. io.
2 https:// www. mongo db. com.
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component itself. On Layer 3, the numbering is between components, since it repre-
sents the data flowing between them.

The components on Layer 1 represent the hardware elements and the state of the 
communication links between them: (a) Thing is a generic representation of any 
connected device; (b) LoRa represents the connection between Thing and the Mist; 
(c) Wi-Fi is the state of the local wireless connection between the Mist and Fog; (d) 
Internet is the component that represents the connectivity status between Fog and 
Cloud; (e) Cloud represents the hardware used to host the Application executed in a 
Cloud service provider.

On Layer 2, the numbers represent each software component necessary for the 
IoT environment to become operational, creating the end-to-end communication as 
described in Sect. 4.3.

On Layer 3, the numbers represent abstractions of the connectivity between pair-
wise components on Layer 2, creating an end-to-end dataflow. The network enti-
ties (such as Wi-Fi and Internet) represent the connectivity between two entities, 
storing data about latency and availability. In the Smart Irrigation scenario, a LoRa 
EndNode transmitting one packet every minute in a controlled environment checks 
the LoRa connection availability. Suppose the LoRa EndNode is transmitting data 
successfully. In that case, we can assume that the LoRa Radio connection is opera-
tional, so a failure in retrieving the data is located on the LoRa device or the Fog and 
its components.

The IoT Manager can check if the LoRa Connection is up by comparing the inter-
val between the current and last transmission time from the LoRa EndNode entity. 
Entities on Layer 3 can be monitored using sniffers or other techniques for moni-
toring the connection between two components. For example, Orion and Quantum 
Leap have counters that store the number of messages sent and received, which 
allow us to verify the correct operation of the end-to-end dataflow. Whenever the 
measurement of a specific connection is not straightforward, the state of Layer 3 
Components can be determined by the state of the components of each end of the 
connection.

On Layer 4, the Data Quality checks the arrival of each data to verify its integrity 
and usability.

Figure 4b follows the same numbering scheme to represent entities organized as 
a DAG, handling each layer and how each component affects other components on 
upper layers. Each entity, represented as a node, is self-contained with its attrib-
utes, such as hardware resources, process, and availability. Also, a cross-layer design 
allows relationships between entities from different layers in a bottom-up approach. 
For example, the failure of the mist node (e.g., a Raspberry Pi playing the role of 
a LoRaWAN gateway) causes the LoRa Packet Forwarder and the LoRa Gateway 
Bridge services to go down, which in turn interrupts the communication from the 
sensors with the following components.

In our approach, upper layers depend on lower layers to be operational. Layer 4 
analyses the database and messages received to determine the data quality, depend-
ing on the software and database components. Layer 3 represents the dataflow and 
depends on each software component (Layer 2) and communication infrastructure 
(Layer 1) to be available, and any failure will affect the whole dataflow since it is 
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continuous. Layer 2 components depend on entities that represent the infrastructure 
where they execute.

Layer 2 can also represent software dependencies, indicated by the edge con-
necting components 5 to 4 at L2 in Fig. 4b. Component 4 (ChirpStack Net Server) 
depends on component 5 that represents its database (RedisDB). If the database 
(5) fails, the ChirpStack Net Server (4) will not be operational, and the failure that 
started at component 5 propagates to component 4 that also fails.

In other words, our graph modeling approach represents dependencies between 
components within the same IoTManA layer or from layer N to layer N+1. By mak-
ing explicit the dependencies of each entity, the IoT Manager can analyze the rela-
tionship between components and correlate their status to determine the health of 
the platform. This approach also allows the IoT Manager to determine the impact 
of an individual software component in the platform, facilitating failure isolation, 
detection, impact analysis, and prevention.

Figure 5 represents the DAG illustrated on Fig. 4b in a failure scenario. Com-
ponent 3 on Layer 1 (Mist) presents a failed hardware status. Since it is a Layer 
1 failure, the IoT Manager can determine its impact on the whole platform even 
before other components detect the failure. The Layer 1 components are not directly 
impacted since there are no co-dependencies. However, the Layer 2 software com-
ponents (2 and 3) executed on the Mist will fail since they depend on the infrastruc-
ture. This behavior will expand the failure to components 1, 2, and 3 on Layer 3 and 
then the whole dataflow. In this scenario, the IoT Manager can create the reverse 
path to locate and isolate the failure and then pinpoint component 3 on Layer 3 as 
the root cause of the problem.

The failure of a component that affects the operational status of other components 
executing on upper layers—as the fog hardware causing the failure of all software 
components running on it—is known in the literature as a common mode failure. 
Current approaches do not consider edge components or IoT environments. For 
example, Cerveira et  al. deal with common mode failures on cloud environments 
[47] and Mauro et al. use containers to migrate services in case of failure [48]. The 

Fig. 5  Component Failure Representation
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IoTManS graph approach considers the end-to-end impact described on Layer 3 
dataflow, not only on the cloud but also on all IoTinuum stages.

The fourth Layer – Data Quality, is currently performed by the IoT Manager 
using univariate data analysis, periodically checking data ranges and anomalies on 
the sensor entity. Togneri et al. present a preliminary study using multivariate data, 
considering the end-to-end dataflow methods to identify relevant situations, such as 
sensor failures and the mismatch of contextual sensor information due to different 
spatial granularities during the data collection process [49].

IoTManA is generic enough to be adapted to different solutions, not being tech-
nology-dependent on the managed IoT solution. Porting it to other IoT solutions 
requires knowledge of its components, their dependencies, and the dataflows. Fig-
ure 6 illustrates the use of IoTManA in a generic solution that implements a LoRa 
Device sending data to a local LoRa Gateway connected to the TTN4 (The Things 
Network) LoRaWAN server that in turn forwards the data to a ThingsBoard IoT 
Platform5 hosted on an AWS Cloud Service Provider6, a simple IoT scenario where 
a device is transmitting data to an IoT Platform on the cloud. The Things Network 
is a collaborative IoT ecosystem that creates networks, devices, and solutions using 
LoRaWAN. It provides tools for developers to publish and consume data from vari-
ous sources and apply them to different IoT Solutions. Therefore, Fig. 6 does not 
represent any IoT solution in specific. However, this scenario aims at demonstrat-
ing that the modeling can be applied to different IoT Solutions, as long as there is 
prior knowledge of how the platform operates, its components, and the depend-
ence between them. Using this knowledge, Fig. 7 represents how the components 
numbered on Fig. 6 can be organized in order to describe their dependencies and 

Fig. 6  Modeling an LoRa-TTN-Thingsboard based solution- entity representation

4 https:// www. theth ingsn etwork. org/.
5 https:// thing sboard. io/.
6 https:// aws. amazon. com/.
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dataflow. Each component is dependent on the related components on layers below, 
as software is dependent on hardware where its executed. On L2, component 
"MQTT Broker" is dependent on the availability of the "ThingsNetworkServer" and 
Component 6 (ThingsBoard Server) is dependent on its database on component 7 
(Cassandra).

5  IoTManS Performance: Methodology

In order to evaluate the performance and scalability of the IoT Manager, we envi-
sioned two sets of experiments. The first set of experiments—failure detection—
aims at determining the IoT Manager performance regarding the failure detection 
time using the active and passive modes, also analyzing the time needed to isolate 
the failed component and determine the components affected by the failure in single 
and multiple failures scenarios, totaling four scenarios studied. The second set of 
experiments—Scalability—aims to evaluate the scalability of the IoT Manager in a 
Smart City scenario with a varying number of monitored components in two differ-
ent IoT Platforms.

5.1  Methodology

5.1.1  Failure Detection

Figure 8 illustrates the testbed used in the first set of experiments, failure detection 
on smart irrigation scenario, and shows the placement of each software component. 
The red arrows indicate the IoTMA Software and IoTMA Infra collecting the data 
from software and hardware, respectively, and publishing it to a FIWARE Orion that 
notify the IoT Manager of each data arrival. This scenario was deployed in a testbed 
implementation using four virtual machines representing IoTinuum stages (Thing, 

Fig. 7  Modeling an LoRa-TTN-Thingsboard based solution- DAG representation
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Mist, Fog, and Cloud), running a complete smart irrigation solution [5], but in a 
controlled testbed environment.

SenSE (sensor simulation environment) [50] is a simulator capable of generat-
ing synthetic traffic on a large scale, simulating thousands of devices transmitting 
LoRaWAN messages to the Mist, simulating an IoT Platform in operation. All soft-
ware components are deployed as Docker containers, namely Mosquitto, ChirpStack 
Network Server, Redis, PostgreSQL, ChirpStack Application Server, IoT Agent, 
FIWARE Orion, MongoDB, FIWARE Quantum Leap, and CrateDB. The testbed 
executes an IoT Platform in execution with simulated data from SenSE, and its data-
flow is numbered on Fig. 8 originating on SenSE through the Mist and Fog until the 
storage on the Cloud.

The command injector is a software component used in the experiments to send 
a command to a specific software component, starting or stopping the Docker con-
tainer and storing the timestamp when the command was sent. Thus, the IoT Man-
ager runs in an individual virtual machine, not being affected by changes in the 
monitored environment.

The connections between the Mist, Fog, and Cloud stages are emulated using a 
WANem [51] (Wide Area Network emulator) installation to simulate latency in the 
Wi-Fi and Internet connections with delays of 45ms each. Only the latency param-
eter is considered. In addition to the platform components, an instance of the IoT 
Agent is executed in each virtual machine, monitoring the four stages of the IoT 
Computing Continuum: Thing, Mist, Fog, and Cloud. The IoT Agents monitor the 

Fig. 8  IoT agent and IoT manager deployment
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entities and send their status to the IoT Manager every 60 seconds. In this scenario, 
the manager operates the active method every 60 seconds. Since we are dealing with 
multiple virtual machines, we synchronized the machine clocks using an NTP (Net-
work Time Protocol)7, thus avoiding affecting the results. The components are rep-
resented in Fig. 9, and the DAG used by the IoT Manager to manage the components 
is illustrated in Fig. 10. Layer 4 is not considered in these scenarios.

Based on real data collected by the IoT Agents during five months of operation 
from the SWAMP Platform [5] deployed with FIWARE, we use a Weibull distribu-
tion to determine the lifetime of each component. Using this knowledge, we create a 
timeline with the lifetime of each component, determining the time of failure and its 
order. When the time is reached, the command injector sends a command to stop the 
Docker container of the correspondent software component storing the timestamp. 
Using the presented structure and components, the first set of experiments evaluates 
the behavior of the IoT Manager in four scenarios considering the main factor the 
detection time:

– Failure detection on active mode: when the IoT Manager detects a failure, first 
it creates an alarm, checking, in turn, the DAG to determine the root cause and 
evaluate which components will be affected by the failure. The operation time is 
determined by comparing the timestamp generated by the IoT Manager on the 
failure detection alarm and the timestamp generated by the command injector.

– Failure detection on passive mode: the IoT Agents check the monitored compo-
nent every second, notifying the IoT Manager only on state changes.

– Operation recovery active mode: the command injector sends a command to start 
a component, whose timestamp is stored and compared to the timestamp of the 
IoT Manager when it detects for the first time after the fail that the state of the 
component was changed to normal.

– Operation recovery passive mode: the IoT Agents check the monitored compo-
nent every second, notifying the IoT Manager only on state changes
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7 http:// www. ntp. org/.
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5.1.2  Scalability

IoTManS, like any IoT management system, must be scalable to keep up with the 
massive number of sensors and software, hardware, and communication components 
involved in any effective IoT solution. Figure  11 illustrates a Smart City solution 
that uses sensors (1) connected to a mist (2) located on a light street pole collecting 
temperature and air quality data. The data is transferred by a software component 
running on the mist that collects it from the sensors and forwards it to a Fog node 
(3) located nearby through Wi-Fi to be stored and processed. The fog node sends 
the data to the cloud (4) using an Internet connection, so the data is available to be 
consumed by different applications. The number of connected devices, sensors, and 
even Fog nodes scattered around the city may vary, and IoTManS needs to be pre-
pared to meet these needs.

Fig. 10  Failure detection testbed—DAG representation

Sensors

Mist Mist

Fog

Cloud

Sensors

Fig. 11  IoT smart city solution
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The scenario described can be represented in IoTManS as illustrated in Fig. 12, 
where each end-to-end path is described. Figure  13 illustrates the DAG used to 
manage the smart city solution. Each new component—sensor, device, connection, 
fog—can be readily added as a virtual entity and attached to the DAG. Similarly, if 
one component needs to be removed, it can be achieved by removing the node, the 
branch related to it, and the edges connecting it to other independent nodes that can 
be reused by different components, like the fog in this example.

Scalability is evaluated for the passive mode since the active mode consists of 
polling the graph at predetermined time intervals, and the IoT Manager does not 
react to them in between polling events. In other words, the IoT Manager only 

Sensor 1 Sensor N Mist WiFi Fog Internet

Cloud
1b 2b 3b 4b 5b 6b

7

L1
Sensor 1 Sensor N Mist WiFi Fog Internet

1a 2a 3a 4a 5a 6a

CrateDB

L2
Sensor 1 Sensor N Data 

Publisher
MQTT 
Broker

FIWARE
IoTAgent

MongoDB FIWARE 
Orion

FIWARE 
QuantumLeap

MongoDB

1a 2a 3a 4a 5a 6a 7 8

9 10
Sensor 1 Sensor N Data 

Publisher
MQTT 
Broker

FIWARE
IoTAgent MongoDB

1b 2b 3b 4b 5b 6b

CrateDBL3
Sensors Data

Publisher
MQTT 
Broker

FIWARE
IoTAgent

FIWARE 
Orion

FIWARE 
QuantumLeap

MongoDB

1a 2a 3a 4a

5

6 7

Sensors Data
Publisher

MQTT 
Broker

FIWARE
IoTAgent1b 2b 3b 4b

Fig. 12  Scalability test—components

1b 2b 3b 4b 5b 6b

7

L1
1a 2a 3a 4a 5a 6a

L2 1a 2a 3a 4a 5a 6a

7 8 9 10

1b 2b 3b 4b 5b 6b

L3 1a 2a 3a 4a

5

6 7

1b 2b 3b 4b

Fig. 13  Scalability test—DAG



1 3

Journal of Network and Systems Management (2022) 30:35 Page 21 of 30 35

considers the graph state when it starts the polling, ignoring changes even if they 
occur during the processing time. This experiment evaluates the scalability of the 
IoT Manager operating in the passive mode, where it receives multiple messages 
from different monitored components, detects failures, updates the DAG, and then 
creates alerts. The purpose of the experiment is to determine the number of compo-
nents that can be managed simultaneously. The scenario for the Smart City solution 
illustrated in Fig.  13 was simulated varying the number of components—sensors, 
Mist nodes, Fog nodes—where IoT Agents send monitoring data simultaneously.

The performance of the underlying platform hosting IoTManS interferes with the 
results since the IoT Manager is a consumer of the IoT Platform and treats each com-
ponent as an entity. The experiments evaluate the performance of the IoT Manager 
using both FIWARE and ThingsBoard platforms managing 1000, 1500, and 5000 
components for the scenario depicted by Fig. 13. Due to the number of devices, we 
use simulated components sending data every 60 seconds using the Poisson distribu-
tion with 8, 10, and 40 messages per second. These numbers represent, respectively, 
low, medium, and high traffic and were chosen based on our experience on perfor-
mance evaluations of IoT environments explored in [52, 53] and [30].

Each component has a 5% chance to fail in every message. When a component 
fails, a notification is generated with a failure timestamp and sent to the IoT Platform 
that forwards it to the IoT Manager. The IoT Manager handles the message, updates 
the graph, and creates an alert storing the current timestamp. The experiment evalu-
ates the maximum number of managed components that the IoT Manager can handle 
before losing data using two IoT Platforms. The processing time is the main factor 
analyzed, comparing the timestamp of the failure to the timestamp when IoT Man-
ager detects and handles the failure.

6  Results

We present here the results of the two sets of experiments. Each experiment was 
executed 50 times with an asymptotic confidence interval of 95%.

6.1  Failure Detection

Table 1 presents the results of the first set of experiments, Failure Detection.

Table 1  Failure detection results
Processing time Confidence interval

Failure detection on active mode 90036 ms 5.64 ms
Failure detection on passive mode 806 ms 6.6 ms
Operation recovery active mode 94056 ms 2.98 ms
Operation recovery passive mode 820 ms 7.3 ms
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– Failure detection on active mode: after the Docker stop command executed 
by the command injector, the IoT Manager detects the malfunction of a com-
ponent, creates the alarms, determines the root cause, and determine which 
components will be affected by the failure in 90.36 s with a 5.64 confidence 
interval. Figure  14 illustrates the DAG shown in 10 failure in the Layer 2 
component PostgreSQL located on the Fog before the failure, changing to the 
representation on Fig. 15 after the detection time. Whenever an interruption 
on the dataflow is detected in the active mode, the IoT Manager searches the 
graph in the reverse path to isolate and locate the root cause of the failure. 
After detecting the root cause, in the next iteration (60 s), the IoT Manager 
identifies that the ChirpStack Application Server also fails since it depends on 
PostgreSQL. In other words, the IoT Manager can detect the failure in other 
components before the effective detection by the IoT Agents, since the Chirp-

Fig. 14  Management graph on the dashboard before failure

Fig. 15  Management graph on dashboard after failure
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Stack Application Server will try to reconnect to PostgreSQL for some time, 
not necessarily going down at the same time of PostgreSQL.

– Failure detection on passive mode: After the failure is injected, the IoT Man-
ager detects and processes the notification in 806 ms with a confidence inter-
val of 6.6ms.

– Operation recovery active mode: after the system recovered from a failure 
state, the IoT Manager needs 94.56 s with a confidence interval of 2.98 s to 
detect that the system is fully operative again. The results are similar to the 
Failure detection on active mode since both scenarios identify state changes in 
the system.

– Operation recovery passive mode: the IoT Manager detects and processes the 
notification in 820 ms with a confidence interval of 7.3 ms.

The difference between the significantly lower processing time needed by passive 
mode and active mode can be explained by the fact that the passive mode operates 
as event-driven while the active mode operates as time-driven. In event-driven oper-
ations, the notification occurs immediately after the fail, reducing the processing 
time. In the time-driven operation, the IoT Agent operates on a fixed time interval, 
being necessary to wait that time to publish the data. On the other hand, the passive 
mode IoT Agent needs to interact directly with the managed device to determine 
their state, which, since IoT Solutions are highly heterogeneous, is not always a pos-
sibility. The active mode can operate on devices that do not allow direct interaction 
by considering the states of other components connected to these devices. The com-
bination of active and passive modes demonstrates how the system can fulfill the 
needs to operate on complex and heterogeneous IoT solutions.

Regarding the processing time in both passive and active modes, IoTManS 
demands a time slightly lower than the sampling time, making it adaptable to dif-
ferent IoT solutions and needs. In comparison with fault detection techniques such 
as fall-curve [54], which analyzes the behavior of the devices to detect a failure, the 
IoTManS performs better since it does not demand specific hardware and several 
samples to detect the fault. Fault tree analysis techniques adopted in [55] depend on 
historical data to create a minimally valid fault detection mechanism. According to 
Power and Kotonya, a Complex Event Processor technique operating in a distributed 
manner takes an average of 100 ms to process 100 events [56]. Besides having a 
lower failure detection time, IoTManS processing time also includes the diagnosis 
since it can identify the root cause and how the fault impacts the system.

Fault diagnosis includes three tasks: (i) fault detection—detect a fault or malfunc-
tion in the systems determining when it occurs; (ii) fault isolation—to determine 
the location of the faulty component; (iii) fault identification—determine the type, 
shape, and size of the fault [57]. In this experiment, IoTManS successfully imple-
mented the three tasks of fault diagnosis with success using a signal-based fault 
diagnosis. The information gathered by IoTMan Agents can be used in future work 
to implement more robust fault diagnosis techniques in different components such 
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as surveyed in [57] and [58], and specific techniques focused on software repair as 
surveyed in [59].

6.2  Scalability

Figure 16 shows the results obtained on the scalability experiments. Even though the 
FIWARE implementation of the IoT Manager had a lower processing time, the plat-
form is more affected by the increasing number of components. For example, the 
processing time is significantly affected from the 1000 scenario to the 1500 scenario 
(88.13–273,79ms), compared to the variation on the exact scenarios for the Things-
Board (3053.44–3085.32ms).

With 1500 components, FIWARE starts to refuse 10% of the messages received. 
This behavior occurs due to the dependence of FIWARE Orion on the MongoDB data-
base, which demands a lot of computational resources for the continuous handling of 
messages creating a rapid shortage of resources. This behavior and limitation of the 
FIWARE platform were also identified in [5] and [30] that analyze the performance 
of the FIWARE platform in different Smart Irrigation scenarios, identifying the Mon-
goDB as the bottleneck of the FIWARE platform. Furthermore, FIWARE Orion also 
lacks efficient message management and message queuing, simply rejecting messages 
that cannot be dealt with immediately. As a result, FIWARE was not able to execute the 
scenario with 5000 components.

The ThingsBoard Platform implementation of the IoT Manager requires consider-
ably more time to handle the messages than FIWARE since the platform operation is 
different, not just forwarding the message but internally processing, storing, and for-
warding the message using a plugin. On the other hand, it reveals higher stability in 
supporting a large number of components. The Things Boards platform was able to 
handle 5000 components sending data every 60 seconds without losing data. In both 
implementations, the IoT Manager received and handled all messages without any loss. 
In other words, the IoT Platform drops data when its limits are reached.
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7  Conclusion

Our IoTManA and IoTManS approach for the management, deployment, con-
figuration, monitoring, and maintenance of IoT solutions is a generic approach 
applied to different applications, such as Smart Agriculture, Smart Cities, Smart 
Health Care, and Smart Industry. The abstraction obtained with the virtualiza-
tion of the components organized in a multi-layer architecture can provide man-
agement at levels such as system, application, device configuration, deployment, 
monitoring, and failures, automatically informing root causes of problems. Fur-
thermore, the graph representation and visualization allow the understanding and 
mapping of the complexity and components and how components relate in an IoT 
solution.

Direct acyclic graphs are a generic method to correlate different components 
in an inherently distributed, complex, and heterogeneous IoT environment. This 
approach could be modeled in a way that allows entities to be dependent on their 
characteristics. For example, an application requiring a minimum free disk space 
to operate correctly can depend on its virtual entity and monitor the available disk 
space needed to be available, creating alarms or taking actions to guarantee its 
execution. In addition, the graph-based approach can increase context awareness 
to IoT Manager. The IoT Management Architecture and IoT Management System 
are successfully implemented in a real IoT Solution using different IoT Platforms 
as its core, managing with success at multiple IoT solutions levels and showing 
that the proposal is generic, scalable, and no technology dependent on the man-
aged environment or in a specific IoT Platform to manage the messages.

Future work intends to explore the data collected by IoT Agents and managed 
by IoT Manager to develop mist, fog, and cloud awareness and placement, deploy-
ment, and resource management techniques. Finally, we intend to explore tech-
niques applied in the data quality analysis necessary to Layer 4. Finally, applying 
the concepts proposed in this paper, we intend to develop a generic self-managed 
system.

Funding Funding was provided by ministério da ciência, tecnologia e inovações and h2020 industrial 
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