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Abstract We present PEANUTS (Propagation and Evo-
lution of Active NeUTrinoS), an open-source Python pack-
age for the automatic computation of solar neutrino spectra
and active neutrino propagation through Earth. PEANUTS
is designed to be fast, by employing analytic formulae for
the neutrino propagation through varying matter density, and
flexible, by allowing the user to input arbitrary solar models,
custom Earth density profiles and general detector locations.
It provides functionalities for a fully automated simulation of
solar neutrino fluxes at a detector, as well as access to individ-
ual routines to perform more specialised computations. The
software has been extensively tested against the results of the
SNO experiment, providing excellent agreement with their
results. In addition, the present text contains a pedagogical
derivation of the relations needed to compute the oscillated
solar neutrino spectra, neutrino propagation through Earth
and nadir exposure of an experiment.
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1 Introduction

Solar neutrinos represent the most abundant source of neu-
trinos on Earth, with a flux of the order of 6 x 1010 cm=2 s~!
[1]. Even though only a small fraction of this flux is actually
detectable, due to many production channels resulting in neu-
trinos with energies below the typical experimental detection
thresholds [2], solar neutrinos provide an invaluable source of
information for the study of neutrino properties, solar dynam-
ics and Earth internal structure. Historically, solar neutrinos
provided the first hints for the non-conservation of leptonic
flavours in neutrino propagation [3], when in 1968 the Home-
stake experiment reported far less solar electron neutrino
events [4] than the number expected from the recently devel-
oped solar models [5—13]. This so-called solar neutrino prob-
lem was only solved in 2001, when the SNO collaboration
released [14] the measurement of the total flux of active 5B
neutrinos, that resulted in a close agreement with solar mod-
els predictions and implied that the origin of the discrepancy
had to be tracked to new physics effects in the neutrino sector.
It is now firmly established that the deficit is due to neutrino
oscillations [15-17], with oscillation parameters as inferred
by solar neutrino experiments well in agreement with data
from other neutrino sources [18-20].
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Nowadays, solar neutrinos continue providing invaluable
information, being the only known probes that can directly
test the interior structure and dynamics of the Sun, thereby
providing strong constraints on the solar models parameters
[21-23], or probe the internal solar dynamics on long time-
scales [24]. More exotic production mechanisms such as neu-
trino emission during intense solar flares [25,26], neutrino
production from cosmic-rays scattering in the solar atmo-
sphere [27] and neutrinos from dark matter annihilation in
the Sun [28] can also be probed. On the other hand, the the-
oretically established solar models allow to study and con-
strain neutrino properties, from standard oscillation param-
eters [29,30] to more hypothetical scenarios such as non-
standard interactions [31] or finite magnetic moment [32].

In all these scenarios, an important wealth of statistical
information is encoded in the energy spectra for the indi-
vidual neutrino flavours. Due to neutrino oscillations, how-
ever, the spectra on Earth generally differ from the ones
at neutrino production, and a proper account of the oscil-
lation dynamics is mandatory in order to compare a theo-
retical model with data. The oscillation dynamics is in gen-
eral non-trivial, including three different regimes and cor-
responding matter effects [33,34]: propagation within the
slowly-changing' matter density within the Sun, propaga-
tion in vacuum between Sun surface and Earth, and propaga-
tion within Earth featuring a fastly-evolving matter density
profile.

In this work we present PEANUTS (Propagation and
Evolution of Active NeUTrinoS), an open-source, fast and
flexible package to compute the neutrino oscillation dynam-
ics in all the above-mentioned regimes. The emphasis in
developing the software has been put on both performance
and flexibility: PEANUTS computes the coherent neutrino
propagation inside Earth analytically, completely removing
the need for time-consuming numerical integrations. More-
over, the user can input any arbitrary solar model, as well as
any custom Earth matter density profile, and simulate exper-
iments at any latitude and underground depth. The software
can perform the full chain of computations to simulate the
expected neutrino spectra for a given solar model, Earth mat-
ter density and detector location, or its modules can be called
individually, to compute for instance the evolved neutrino
state after Earth crossing given an arbitrary initial (coher-
ent or incoherent) state, or the solar angle distribution for
an experiment taking data between two arbitrary days of the
year. PEANUTS? is provided as an open-source Python
package, under the GPL-3.0 license. It can be run standalone
in various different ways, as well as interfaced from other
frameworks. Details of the various software requirements

L' Slow or fast here refers to the importance of variation of matter density
over a neutrino oscillation length scale.

2 https://github.com/michelelucente/PEANUTS.
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and dependencies, as well as instructions on how to use
PEANUTS can be found in Sect. 6, whereas the specific
functions and classes that perform the computations will be
scattered through whenever the physical quantity computed
isintroduced. We have extensively validated our implementa-
tion against the results of the SNO experiment [35,36], details
of which will also be located where useful, including a final
comparison of likelihood contours for our simulation of the
experiment with the probabilities computed by PEANUTS.

This document is thus structured as follows. Section 2
describes the theoretical background for the computation of
the solar neutrino flux and the propagation of the neutrinos
from the Sun. In Sect. 3 we describe the effect of Earth regen-
eration of the neutrino flux, i.e. the propagation of neutrinos
through the Earth, followed by a detailed explanation of our
fast approximation for the neutrino propagation Hamiltonian
in Sect. 4. Section 5 details the time integration over the
exposure of a given experiment. For interested users, Sect. 6
provides a quick start guide to PEANUTS and a explana-
tions on how to reproduce our validation procedure. Lastly,
we provide our conclusions and outlook in Sect. 7.

2 Solar neutrino flux
2.1 Neutrino survival probability at Sun surface

Solar neutrinos are produced over a wide region within the
Sun, making the incertitude over the production point much
larger than the typical detectors size (in fact, much larger than
the Earth itself. See e.g. Fig. 1) [37]. This feature implies
that the solar neutrino flux at Earth is given by an incoherent
superposition of neutrino mass eigenstates [38,39], whose
composition remains constant as the flux propagates in vac-
uum.? If the neutrino oscillation length-scale is much smaller
than the scale over which matter density varies significantly,
neutrino oscillations in matter proceed adiabatically [41];
the values of the neutrino oscillation parameters inferred by
global fits of neutrino data [18-20] imply that the adiabatic
regime is realised for solar neutrinos as they propagate from
the production point towards the Sun surface. In the adia-
batic approximation, the neutrino flavour composition at the
Sun surface only depends on the matter effects at neutrino
production point.

Given U = U (612, 013, 623, §) the PMNS mixing matrix
in vacuum (cf. Egs. (15, 16)), it is possible to define an anal-
ogous matrix 7' that diagonalises the neutrino Hamiltonian
in matter by simply replacing the vacuum values of 612, 613

3 The oscillation dynamics would be different in case of a coherent flux
[40].
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Fig. 1 Solar density (left) and fraction of solar neutrinos produced (right), as a function of relative radius r = R/Rg, from Solar model
BS05(AGS,0P) [2]
with their matter-rotated ones [42,43]*: where the wavenumber k is useful in the relation
~ (cos 26013 — A/Am2,) A _ 2V2EG e _Vv 9)
cos 203 = \/ » FYNEIIRY , @) Am2 A2 e
cos — m sin - . . . .
( 13 [Ame)" + 13 The probability of producing a neutrino mass eigenstate i
cos 201y = in matter is thus |Ty; (E, n.)|%, where « is the flavour of the
(cos20y, — A’/ Am%]) charged lepton entering the neutrino production vertex.
6 A A2 2 + sin? 28 2o ’ PEANUTS assumes the validity of the adiabatic regime
\/(COS 12— A'/Am3y)” + sin” 2013 cos™ (013 — 013) when computing the solar neutrino flux, as this guarantees
(2)  a fast computation and is an excellent approximation for

where 601>, 013 are the PMNS mixing angles in vacuum,
012, 013 the corresponding ones in matter,

A =2EV =2V2EGpn, 3)

represents the matter potential for a neutrino with energy E
travelling in a medium with electron density n., G is the
Fermi constant,

A’ = A cos? 013 + Am?2, sin® (013 — 6013) (4)

is the #13-modified matter potential and

Am?, = cos® 012 Am3, + sin® 61, Am3,. Q)
The matrix T is then simply defined as

T (E,ne) = U(B12, 613,603, 9). ©)

Notice that the matrix 7 depends both on local matter density
and energy of the produced neutrino.
Numerically (cf. eqs. 4.17, 4.18 in [46])

3.868 x 1077 ,
V = v2Grn, = X X — %
m mol/cm3
Am? 2533  Am? MeV
k = = X X , ®)
2F m eV?2 E

4 See also [44,45].

the neutrino oscillation parameters realised in the standard
3-flavour mixing scheme [35,47-50]. Hence, it provides a
function for the computation of the matrix 7 in Eq. (6), with
signature

Tei(thl2,thl3,DeltamSg2l,DeltamSg3l, E,ne)

where the arguments correspond, respectively, to 612, 613,
Am3, (eV?), Am3, (€V?), E (MeV) and n, (mol/em?).
Note that in PEANUTS the input variable Am3, has dif-
ferent meanings according to the ordering of neutrino mass
eigenstates. In normal ordering (NO) I = 1, and thus
Am%l = Am%e and Am%2 = Am%e — Am%l, whereas
for inverted ordering (I0) [ = 2, so Am%2 = Am%e and
Am3, = Am3, + Am3,. PEANUTS also provides accessi-
ble functions for the mixing angles in matter 61, and 63, as
well as useful quantities such as Am2, and the ratio V/k, in
the form of the functions

thl2_M(thl2,thl3,DeltamSg2l,DeltamSg31l,E, ne)
thl13_M(thl2,thl3,DeltamSg21l,DeltamSg31l, E, ne)

DeltamSgee (thl2,DeltamSg21l,DeltamSg31)
Vk (Deltam2, E, ne)

In the adiabatic approximation neutrinos evolve as pure
mass eigenstates within the Sun. For a fixed value of neutrino
energy E, the flux composition at Sun surface is given by
the average over the neutrino production points inside the
Sun. Assuming spherical symmetry, if f(r) is the fraction
of neutrinos produced at point » = R/Rg, where R is the

@ Springer
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solar radius and R the distance from the center of the Sun,
the probability of a solar neutrino with energy E to emerge
as mass eigenstate i is

1
PO, (E) = fo dr [Tei (E, no(r) I £, (10)

with the normalization

1
/ drf@r) = 1. (11)
0

The computation of f(r) assumes a specific solar model.
In our validation of PEANUTS we use the BSO5(AGS,0OP)
model [2],° which is one of the models assumed by the SNO
collaboration in their neutrino oscillation fit [35]. Figure 1-
left shows the value of solar matter density n,(r) as a function
of solar radius r in the BSO5(AGS,OP) model, while Fig. 1-
right shows the neutrino production fractions for different
production chains. Note that the lelectron density in [2] is

1 mo

given in units of — Vi T e 6022105

The choice of a particular solar model is encoded in
PEANUTS as the Python class solarModel. Through the
constructor of the class, of signature,

SolarModel (solar_model_file=None, flux_file=
None, spectrum_files=None, fluxrows=

None, fluxcols=None, fluxscale=None,
distrow=None, radiuscol=None,
densitycol=None, fractioncols=None)

one can select the location of a file describing the chosen solar
model with the optional argument solar_model file. By
default, when no other file location is provided, PEANUTS
will assume the use of the BS16(AGSS09) model [51]. At
the time of publication, PEANUTS can also work out of the
box with the B16 (GS98) [51] model, the BSO5(AGS,OP) and
BSO05(OP) models [2], and the BPOO [37] solar model. The
user is nevertheless encouraged to implement their own solar
model (and thus neutrino fraction distribution f(r)), by pro-
viding a custom solar model file via the solar model file
optional argument and/or flux file with f1ux_file (they will
be assumed to be the same if the latter argument is missing),
but in such case one must also specify the rows and columns
where the relevant information in the files can be located. The
options fluxrows and fluxcols sets the rows and columns
in £lux_file where one can find the total neutrino flux per
fraction, which can be either dictionaries or real numbers, but
at least one of the two must be a dictionary with the names of
the fractions of interest and the corresponding row or column.
If the fluxes must be rescaled, the option f1uxscale can be
provided, which can be a real number, for blanket rescaling
of all fluxes, or a dictionary with different rescaling for each
fraction. The option distrow points to the first row of the
tablein solar model_ file containing the distributions, i.e.

3> Numerical data are available at http://www.sns.ias.edu/~jnb/.
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the radius, density and fraction samples, whose columns must
also be specified with the options radiuscol, densitycol
and fractioncols, respectively, with the latter a dictionary
of names and columns of the fractions of interest. Naturally
all of these optional arguments must be provided if the solar
model file is not known to PEANUTS.

In addition to allowing the selection of different solar mod-
els, PEANUTS also allows the use of different energy spectra
for the various neutrino fluxes. By default, the following are
provided and taken from: pp and hep [52], 8B[53],13N, 150
and ' F [54],7 Be [55]. Different spectra can be provided via
the optional argument spectrum_files in the constructor
for the solarmodel class. It should be noted that spectra are
assumed in PEANUTS to be normalised to 1, so the user
should make sure to renormalise the spectrum accordingly,
as it is the case, for instance for the 8 B spectrum from [56],
which is normalized to 1000.

In addition to the neutrino fraction distributions and fluxes,
the solarModel class in PEANUTS provides the density of
the Sun at various radius samples, necessary for comput-
ing the probability of neutrinos at Sun exit from Eq. (10).
This probability, or equivalently the weight of neutrino
mass eigenstates in the surface of the Sun, is computed by
PEANUTS with the function

solar_flux_mass(thl2, thl3, DeltamSqg2l,
DeltamSg31l, E, radius_samples, density,
fraction)

2.2 Neutrino propagation from the Sun

Being it an incoherent flux, the fraction of mass eigenstates
within the solar neutrino flux remains constant as long as
neutrinos propagate in the vacuum, on their path from Sun
surface to Earth. Here we adopt the convention that the uni-
tary PMNS mixing matrix U defines the change of basis
between mass and flavour neutrino fields

Vo (x) = Ugi vi(x), 12)

with @« = e, u, T the flavour indexes, i = 1, 2, 3 the mass
ones. With this convention, a neutrino state produced at the
origin results from the linear superposition of mass states®

[vg, x = 0) = Uy; |vi, x =0), 13)

implying that the probability of observing a neutrino of
flavour o from a mass eigenstate i is given by |U}; 2. Thus,
the probability for a solar neutrino to manifest as flavour «
is given by

Py, (E)=|UsIPP2_,, (), (14)

6 See [46] for a comprehensive discussion on the relations between
fields, plane waves and momentum eigenstates.


http://www.sns.ias.edu/~jnb/

Eur. Phys. J. C (2024) 84:119

Page 50f22 119

and we assume throughout this paper that repeated indexes
are summed.

In PEANUTS the PMNS matrix is implemented as the
puNs class, which is constructed from the mixing angles 6;;
and CP phase dcp as

PMNS (thl12, thl3,th23,d)

This pvns provides accessor functions for all mixings
parameters, as well as other useful quantities such as the
orthogonal/unitary matrices Rj2, Ri3, Ry3 and A, which
allow the PMNS mixing matrix U to be expressed as

U = R;3AR13A™ Ry, (15)

and are defined as

1 0 O c13 0513
Ry3 =10 c3 s3], Riz= 0 10 ],
0 —s23 23 =513 0 c13
ci2 5120 100
Ro=| —sppc20]), A=1010 |. (16)
0 01 00 ¢

This decomposition of the PMNS matrix will be useful
further down when computing the propagation Hamiltonian
through Earth. Finally, in order to compute the solar proba-
bility for flavour eigenstates with PEANUTS, one can use
the function

PSolar (pmns, DeltamSg21,DeltamSqg3l, E,
radius_samples,density, fraction)

which simply implements Eq. (14) using a pMys object and
calling the solar_ flux mass function, and returns a list of
the probability for each flavour eigenstate.

3 Neutrino propagation through Earth
3.1 Probability of transition through matter

If the neutrino flux from the Sun crosses the Earth (or any
finite density matter in general) the probabilities are modi-
fied, since the propagation eigenstates in matter differ from
the vacuum ones.

In general, a generic neutrino state at time’ ¢ can be
expressed in terms of the state at time 7y by evolving it with
an appropriate evolutor operator Ui, 19)

7

v, £) = U, to) |v, to) . (17)

7 Since we always assume ultrarelativistic neutrinos, we can inter-
changeably use traveled distance x or elapsed time ¢ to identify the
evolved neutrino state.

The generic state |v, ¢) can be expressed as a linear superpo-
sition of pure flavour eigenstates,

v, 1) = cal) |va) (18)

where ¢, (#) are complex numbers, implying that the prob-
ability of it to interact as a neutrino with flavour « at time
t will be given by |cy (t)|2. From Eq. 17 it follows that the
evolved probability amplitudes are given by

ca(t) = (Valv, 1) = (va| U(2, 10) [vg) (vpIv, 10)
= Unp (2, t9)cp(t0), (19)

where Uyp (¢, 1o) are the matrix elements of the evolutor oper-
ator in flavour basis. The determination of the evolutor oper-
ator U is in general a non-trivial problem, and will be dis-
cussed in detail in the following sections; for the moment let
us assume we know a closed form expression for it.

A mass eigenstate expressed as linear combination of
flavour eigenstates is

i) = UL [vg) = Ui Ive) (20)

which implies a transition amplitude from (evolved) mass to
flavour eigenstate

(valvi, t) = Uap(t, to)Ugi. 2D

Putting everything together, the final probability for a solar
neutrino to manifest as « flavour while crossing the Earth is
given by

2
PSE(t, E) = |Uap(t, 10) Ugi | PP (E), (22)

where f is defined at the time of neutrino crossing the Earth
surface. The interpretation of Eq. (22) is the following: Ug;
are the coefficients of the mass eigenstate i expressed as
linear combination of flavour eigenstates, |v;) = Ug; |Vﬂ>,
and Uup(t, t0)Ugi = (va|vi, t) is the transition amplitude
from the evolved mass eigenstate i to interaction eigenstate
o. Finally, each probability | (v |v;, 7) |* is multiplied by the
weight of the mass eigenstate i in the incoherent solar flux,
Po_, (E).

The probability of oscillation for each flavour eigenstate
in Eq. (22) is implemented in PEANUTS by the function
pearth, with signature

Pearth (nustate, density, pmns,
DeltamSg31l, E, eta, depth,
mode="analytical", massbasis=True,
full_oscillation=False, antinu=False)

DeltamSg21l,

which takes as arguments the neutrino state, nustate, an
instance of the Earth density class (see Sect. 3.3 below),
density, an instance of the PMNS class, pmns, the mass
splitting parameters, Del tamSqg21 and DeltamSq31, the neu-
trino energy, E, the nadir angle of the incoming neutrino, eta,
and the depth of the experiment at which the probability is
to be computed, depth.

@ Springer
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The optional argument massbasis defines the basis of
the neutrino state. If massbasis=rFalse the initial state is
assumed to be a coherent one, expressed in flavour basis, with
nustate defining the complex coefficients ¢, in Eq. (18),
and final probabilities computed by squaring the coefficients
evolved as in Eq. (19). If massbasis=True, the initial state
is assumed to be an incoherent superposition of mass eigen-
states, with nustate defining the real weights PS_M(E)
and final probabilities computed as in Eq. (22). To compute
the probability for an antineutrino, one can set the optional
argument antinu=True (False by default).

One can also optionally select the evolution mode to be
either numerical or analytical (default) by providing the
optional argument mode with either option. The function
pearth thus splits into two functions for each of the meth-
ods, Pearth_numerical and Pearth_analytical, whose
details and differences will be described below in Sect. 4.
Lastly, one can request the full evolution of the probabil-
ity with the optional argument full_oscillation (defaults
to False), returned as a list of probability values for each
flavour eigenstate and certain discrete coordinate locations
along the path of the neutrino. Note that the full oscillation
can only be provided via the numerical evolution mode, so
if selected along with the analytical mode, PEANUTS will
provide a warning and simply compute the final probabilities.

In addition, if one wishes to know the final evolved com-
plex coefficients ¢, (¢) from a coherent (flavour basis) initial
neutrino state, from Eq. 19, they can be obtained with the
function

evolved_state(nustate, density, pmns,
DeltamSg2l, DeltamSg3l, E, eta, depth,
mode="analytical", full_oscillation=
False, antinu=False)

which has the same arguments as Pearth, except the basis as
this is only available for neutrino states in the flavour basis.
As with the probability function, this function splits into
evolved_state_numerical and
evolved_state_analytical according to the selected
mode.

3.2 Evolutor operator
The evolutor operator U is defined by the equations
v, 1) = U, 10) v, to),  withU(to, 10) = 1. (23)

The equation of motion for u (¢, tp) can be derived from the
Schrodinger equation

d A d ~

= H(OU(t, 10) |v, 1o) , (24)

@ Springer

implying
i%zfm, t0) = HOU(t, 1) withl(t, 1) =1.  (25)
The Schrédinger equation in flavour basis takes the form
i% (Va|v, t) = (vy| ﬁ(t) |vﬁ)<v,3|v, t)
= i%ca(t) = Hyp(t)cp(t). (26)

The explicit expression for Hyg(f) can be readily derived in
vacuum (where there is no time dependence)

Hypg = (vy| H lvg) = (il UaiI:IU;j lvi)
= UaiU;;j (Vi| I:I |l)j> = UaiU;;/.Ej(Sij
= [vdiag(E0U"] . @7)
ap

where E; is the energy of the mass eigenstate |v;). In the
presence of matter the Hamiltonian matrix elements receive
an additional (time dependent) term, cf. Sect. 4; Eq. (27)
determines its vacuum CP-structure, following the definition
of the neutrino fields/states in Eqgs. (12, 13).

In PEANUTS the probability of oscillation through vac-
uum, and its evolved state, are computed with the functions

Pvacuum (nustate, pmns,
DeltamSqg31l, E, L,
massbasis=True)

vacuum_evolved_state (nustate, pmns,
DeltamSg2l, DeltamSg3l, E, L, antinu=
False)

DeltamSqg21,
antinu=False,

with similar arguments as pPearth above, with the notable
difference of the oscillation length or baseline 1, to be pro-
vided in km.

Once the Hamiltonian matrix elements are known, they
can be used to derive the evolutor ones. The formal solution
is

.ot ’ ’
Ut to) =T [e’ Jip % ”")} , (28)

where 7 is the time-order operator. Equation (28) does not
generally admit an analytic closed form, except for very spe-
cial cases, for instance if the Hamiltonian at different times
does commute.

A well known approach to the problem is the Dyson series
[57]

S (_l-)n t t t
U(t,z0)=11+2 /dtlfdt2~~~/ dr,

n! 7 1 1

n=1 0 0 0

xT[H@)H @) H(t)], (29)

which allows for an approximate solution obtained by trun-
cating Eq. (29) at finite values of n, if the series is expected
to be perturbative. We will return to this approximation in
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Table 1 Values of the parameters for the electron density expressed as N;(r) = o + f jrz + yjr4 with [N] = mol/cm?, for each of the Earth
internal shells, as derived in [39]. The radial distance r is normalised to the radius of Earth

Jj Shell [rj—1, rjl o Bj Vi

1 Inner core [0, 0.192] 6.099 —4.119 0.000
2 Outer core [0.192, 0.546] 5.803 —3.653 —1.086
3 Lower mantle [0.546, 0.895] 3.156 —1.459 0.280
4 Transition zone [0.895, 0.937] —5.376 19.210 —12.520
5 Upper mantle [0.937, 1] 11.540 —20.280 10.410
Sect. 4, where we will derive an approximated analytical ;,,o

expression for the evolutor.
3.3 Earth matter regeneration

Due to the incoherent nature of the solar neutrino flux, its rel-
ative weights in mass eigenstates components, P‘fﬁ v (E),
are constant while travelling from Sun to Earth in vacuum.
However, before arriving at a terrestrial detector, a solar neu-
trino can cross the Earth itself, along which path the matter
potential makes the propagation eigenstates different from
the vacuum ones. This results in coherent neutrino oscilla-
tions inside the Earth that, on average, result in a regeneration
of v, with respect to the vacuum case [38].

The electron density inside Earth can be parametrised by
5 shells, within which the density itself varies smoothly as
[39]

Ni(r)=a; + ﬂjr2 + yjr4, with [N] = mol/cm?,
(30)

and where r is the radial distance normalised to the Earth
radius. The numerical values of the parameters are reported
for convenience in Table 1.

The parametrisation in Eq. (30) is valid for radial trajec-
tories, i.e. paths crossing the center of the Earth. For a path
forming a nadir angle n with the radial trajectory (cf. Fig. 2),
the parametrisation is functionally invariant, with modified
coefficients

Nj(x) = o + Bjx* + yjx, (31)
o =aj+ B sin? 7 + p; sin* 7, (32)
= B, +2y;sin’n, (33)

Yi =Yj (34)

where the trajectory coordinate x is defined as the distance
from the trajectory mid-point, i.e. x = /r2 — sin® 7. The
Earth density profiles for some example values of the nadir
angle 7 are reported in Fig. 3.

This parametrisation assumes a nadir angle defined for a
detection at the surface of Earth. If the detector is located

x=MP

Fig. 2 Earth section showing the different shells and the path of a
solar neutrino having nadir angle 7. The trajectory coordinate x is also
schematised

Density [mol/cm3]

X

Fig. 3 Earth density profile for different values of the nadir angle »,
following the parametrisation in [39]
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¥ vo (7 < 7/2)

MD = OD cos 7
MS = cosn’
MO = siny’

0S=1

e

n’ = arcsin(OD sin 17)

Fig. 4 Schematic representation of Earth shell and “detector shell” for
an underground detector

underground, we can define a “detector shell” at the detector
radial distance. For instance, SNO was placed H = 2 km
underground, so we can define rgo.y = rsno = 1 — H/Rg =
1 — h, where Rg is the (not rescaled) Earth radius, R =
6.371 - 10% km. There are two modifications for the scenario
of an underground detector with respect to the treatment in
[39]: the first is that the measured nadir angle # differs from
the angle n’ = arcsin(r4,, sin ) that one would measure at
the Earth surface, for same neutrino trajectory, cf. Fig. 4.
This implies that it is the n’ angle that should be used in
Eq. (31) to compute the value of the electron density profile
along the neutrino trajectory, and not the value n measured
by the experiment. The second modification is that matter
effects are present even for values of n > /2, if the detector
is underground. The contribution to the trajectory from the
outer layer (between Earth surface and detector shell) is given
by

—Fgercosn + /1 —rjetsinzn for0 <n <7,
Fdercosn + /1 —r3, sin?p

Ax(n) =
for 7 <n <

2

(35)

Ax reduces to h for n = 0, 7, and attains the maximum
value /(2 — h) for n = /2 (this is approximately 160 km
for SNO).

In general, not every shell is crossed by solar neutrinos:
a shell i is crossed by a neutrino trajectory with nadir angle
n if r; > rger sin n. The value of the trajectory coordinate at
each shell crossing is given by

X; = rl.2 — rjet sin?n, for i such that

ri > Tge SINN. (36)
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PEANUTS implements the Earth density as a Python
class called EarthDensity, with signature

EarthDensity (density_file=None,
tabulated_density=False, custom_density=
False)

where the  optional  arguments
tabulated density and custom density allow the user
to supply any Earth density profile. If supplied by file, using
the density file argument, the density profile is either
expected as a table with columns {r;, «;, B;, y;}, following
Eq. (30) (additional optional columns 82" with n > 3, are
allowed, corresponding to higher orders in the polynomial
expansion of the density); or if tabulated density=True
it is expected as a two-column table of radii and density,
where each entry will be treated as a new layer of constant
density. Consequently PEANUTS can work with an arbi-
trary number of shells and arbitrary densities. In addition
to supplying the density profile by file, it is also possible
to provide an analytical expression for the density. Upon
selecting the optional argument custom_density=True in
the EarthDensity constructor, PEANUTS will use the earth
density computed by the member function custom_density
(r), where a user can implement their own analytical density
profile. However, custom density profiles and higher orders
in the polynomial expansion are only fully used when com-
puting the oscillation probabilities numerically; the analyti-
cal computation, described below in Sect. 4.1, relies on the
density described as in Eq. (30), and thus any density pro-
vided will be Taylor expanded and truncated to fit that form,
when used for the analytical computation of the oscillation
probability. Regardless of the source and form of the density
profile, the Earthbensity class provides methods to com-
pute the value of the density at given coordinate x, as well
as, when appropriate, the modified coefficients oz}, ﬁ} and

density_file,

ny (and 8;2" if needed), corresponding to each Earth shell,
from the radii and nadir angle n using Eq. (31) (or modified
to accommodate higher orders).

4 Neutrino propagation Hamiltonian
The propagation Hamiltonian for an ultrarelativistic neutrino

propagating in a medium with electron density 7n.(x) is, in
the flavour basis [46]

H, = Udiag(k)U" + V (x) diag(1, 0, 0), (37)
HO vy
with
m2
ki = —L 38
Y (38)
V(x) = V2G pne(x). (39)
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For antineutrinos, the same Eq. (37) holds, with the replace-

ments

U—U", (40)

V> —V. (41)
To streamline computations and statistical analysis, it is

more convenient to redefine the Hamiltonian by subtracting
a constant term

H, — H, - U (k;1)U", (42)

with j = 1 for normal ordering (NO) and j = 2 for inverted
ordering (I0), such that

ky 1 0
k> —kl=—| Aamj for NO,
2E 2
k3 Ams3,
(43)
ki 1 —Am3,
ko —kl=— 0 for 10,
2E 2
k3 Angz
(44)

so that we can use as free parameters Am%] > 0 and Am%e,
with £ = 1 for NO (Am3; > 0) and ¢ = 2 for 10 (Am3, <
0). In the following we keep using the notation diag(k) for the
general expressions, valid for any choice of mass ordering. A
specific scenario can then be easily recovered by specifying
the structure of this diagonal matrix, e.g. in Eqs. (43, 44).

With the parametrisation in Eq. (15) and using [A, R12] =
[Vy, Ra3] = [V, A] = 0, the propagation Hamiltonian can
be rewritten as

H, = RisAHA*RYL, (45)
with
H = Ri3R2diag(k) R, RT, + v (x)diag(1, 0, 0). (46)

Notice that H does not depend on 63, §.

Given that R»3 and A do not depend on position, they can
be factorised in the time-ordered definition of the evolutor
operator

U = Te—i [d&H®

=14+ RpAT [—i f de:I,,(x)] A*RE, 47)

1 - -
+5R23AT (—i)Z/dxldszu(xl)A*RzTgRBA H,(x2)
—_—

=1

A*RY, (48)
+ - - - (other terms of the Dyson series for n — 00) (49)
= Ry AT [ WA | A*RE, = Ry AUA*RY;. (50)

A numerical solution for the evolutor can be obtained by
solving Eq. (50) or by resolving the differential equation in

Eq. (25). PEANUTS offers a numerical evaluation of the
evolutor, via the function

Pearth_numerical (nustate, density, pmns,
DeltamSg2l, DeltamSg3l, E, eta, depth,
massbasis=True, full _oscillation=False,
antinu=False)

and the evolved coefficients from a coherent neutrino state,
with

evolved_state_numerical (nustate, density,
pmns, DeltamSg2l, DeltamSg3l, E, eta,
depth, full_oscillation=False, antinu=
False)

These computations, however, can be extremely time-
consuming, and thus it is convenient to find an approximated
analytical expression by performing a perturbative expansion
of the Hamiltonian.

4.1 Perturbative expansion of the neutrino propagation
Hamiltonian

We are interested in an expression for the operator in Eq. (50)
U=T[et[IA0], (51)

where [ is the coordinate along the neutrino path. We nor-
malise distances to the Earth radius Rg, by defining x =
1/RE. The Hamiltonian H can be divided in a kinetic and a
matter dependent terms

H(x) = Hy + V2G pn.(x)diag(1, 0, 0), (52)

where H; does not depend on x.

To work out a perturbative expression for &3 it is conve-
nient to express the electron density as a perturbation along
its mean value along the path [39]

1 X2
Re(x) = fie + 8n(x), i, = / dr (), (53)
X2 — X1 X1
from which it follows
X2
/ dx $n(x) = 0. (54)
x1

We can analogously divide the Hamiltonian into a zeroth
order term and a perturbation

H(x) = Hy + v2G pi.diag(1, 0, 0)

Hy
++/2G pén(x)diag(1, 0, 0), (55)

SH(x)

8 For now we drop the tilde from the “reduced” evolutor U for conve-
nience, and to avoid confusion with the average ¢/. We will recover the
notation at the end of the section when computing the full evolutor.
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where again Hy does not depend on x.
The evolutor can thus be expressed as [39]

X2

U(xz, x1) = Z/_l(xz,xl)—i/ dx U(xa, x) SH(x) U(x, x1)

X1

+OBH?), (56)

where I/ is the evolutor for constant matter density 7.
The evolutor for a constant Hamiltonian H can generally
be expressed in a closed form [58]

3
. 3.0 1
o [(02+e1) 1+ 2T +77]
a=1 a 1
3 .
— 6 e, 57)
a=1

where T = H — Tr(H)1/3 is a traceless matrix and A, are
the roots of the characteristic equation

A4 cih+co=0, (58)
with

c1 =TTy — T + T T35 — Ti3T31 + 122133

—T3T32, (39)
co = —detT.
(60)
Finally
$ = oin "D ©61)
By noticing that the full dependence on x in e~ Hx is now

contained within the scalar functions e~** | the first order
correction in Eq. (56) can be computed as

X
UV (xz, x1) = —i

x|

2 _ ~ -

dx U(xa, x) §H(x) U(x, x1) (62)
3 X2 -
= —i Z /I dxe*’)m(XZ*X)Ma

a,b=1 X

x diag (fzc #on(x), 0, 0) Mye— =30 (63)
=i 23: M, diag (ﬁcFla,,(xz,xl), 0, 0) M,
a,b=1 o
where iy = Ag + Tr(H)/3 and we defined
Loy (X2, 1) = /xz dx e~ a2=2) 550y gD (65)
X1
For a path fully contained within one shell we can parametrise

sn(x) =a + B'x* + y'x*, (66)
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where @' = o — n,, implying that I,5(x2, x;) can be
expressed analytically in closed form.

Summarising, we can perturbatively expand the evolutor
operator as

Uxz, x1) = U (2, x1) + UV (2, x1) + OGH?),  (67)

_ 3
Z/I(O)(xz, x1) = e tH(2—x1) _ ¢ Z e~ i2=xDhapr (68)

a=1

3
UD @y, xp) = =i Y My diag (ﬁGFlab(xz,xl),o, 0) M.
a,b=1
(69)

In PEANUTS we implement these perturbative expres-
sions to compute I/ in Eq. (51) at first order in perturbation
theory, using a “reduced” mixing matrix U=R 13R 12, with
he function

Upert (DeltamSqg21l,
b, ¢, antiNu)

DeltamSg31l, E, x2, x1, a,

which depends on the neutrino mass differences squared
DeltamSqg21 and Deltamsqg31, the PMINS matrix pmns, neu-
trino energy E, the start and end points of the shell along the
neutrino path x2 and x1, as well as the density parameters
of the traversed shell, with 2 = o, b = § and ¢ = y. The flag
anitNu labels whether the computation is to be done for a
neutrino (antiNu=False) or antineutrino (antiNu=True).

The procedure outlined above allows to express the evo-
lutor at 1st order in § H, for a path fully contained within one
shell. In general, the full evolutor on a generic path (xp, x2)
can be expressed as a time-ordered product of evolutors along
the same path

U(x2, x1) = U(x2, xi)U (xi, x1), (70)

where x; is a generic point x| < Xx; < xp contained on the
original path. It can be shown that [39]

UO, —x) = U(x, 0)T. (71)

The consequences of Egs. (70, 71) are twofold: first, for a
path starting at x = x;, with 0 < x; < x1, crossing n shells
with boundaries at trajectory coordinate (0, x1, x2, ..., X,),
and ending at the point x = x 7, with x,—1 < x5 < x,, the
full evolutor can be expressed as

Uxr,xi) =UKF, xp—DUKXp—1, Xp—2) ... U2, X1)
U(xt, x;). (72)

Second, for detectors placed at surface, the Earth spherical

symmetry implies that the electron density is symmetric with

respect to the trajectory midpoint at x = 0; thus we only need
to compute the evolutor on one half-path (cf. Fig. 2)

Uxr, x1) =UxF, OUO, —xF) = U(xr, OU(xF, 0)".
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(73)

Notice that the final evolutor is only a function of 5, since
both the density profile and travelled distance within Earth
are a function of the nadir angle.

If the detector is placed underground at trajectory coordi-
nate xg.; < X, we distinguish two cases. For 0 < n < 7/2

u(xdelv -xI) = u(xdelv O)u(09 _.XF)
o)
- 2

= Uxger, OUxE, O,
where Xg.; = rgercosn. For m/2 < n < m the electron
density can be approximated to a constant value, since the
neutrino path is never deeper than H and density variations
are negligible for realistic detectors. For instance, taking the
SNO reference value H = 2 km,

N(Rg) — N(Rg — H)
N(Rg)+ N(Rg — H)
We fix for simplicity the electron density value to the one at

Earth surface, n; = 1.67 mol/cm3. Having assumed constant
density along the path, the evolutor is simply given by

(74)

=10"%. (75)

Uy = iR Ax(n)(ﬁ0+diag<ﬁGFnl,0,0))

<%§n<rr>. (76)

To obtain the full dynamics and thus the full evolutor U,
PEANUTS computes the time-ordered product of “reduced”
evolutors ¢/ from above, and inputs it in Eq. (50) to re-
introduce the dependence on 6,3 and 8. The PEANUTS func-
tion that implements these two steps is

FullEvolutor (density,
DeltamSg3l, pmns, E,

DeltamSg21l,

eta, depth, antiNu)

with dependency also on the mass differences squared,
PMNS matrix and neutrino energy, but also on the full Earth
density profile densi ty, the nadir angle eta and experiment
depth depth. This full evolutor is finally used to compute the
probability of oscillation at the detector by the function

Pearth_analytical (nustate, density, pmns,
DeltamSg2l, DeltamSg3l, E, eta, depth,
massbasis=True, antinu=False)

and the evolved coefficients with

evolved_state_analytical (nustate, density,

pmns,
depth,

DeltamSg2l, DeltamSqg3l, E, eta,
antinu=False)

5 Time integration and exposure

Solar neutrino experiments typically collect data over a finite
interval of time. As such, the measured survival probability

is averaged over exposure

Z))
S dra [ o) dey P (1t )

le
4 Thy (Ta)
] > dzg Thy (Ta) dy

(Pg) = , (77)

where 7, is the dally time, 75, the hourly time and 7 the Sun
nadir angle at detector location. The integration in Eq. (77) is
typically not the most convenient choice for practical appli-
cations; a more effective option is to transform the double
integral into a single one over 1 [39]

(Pr) = /0 dnW () P (n), (78)

where W (n) is a normalized weight function representing
the fraction of time in which the experiment collected data at
nadir angle n. For real experiments, W (1) must be provided
by the collaboration, taking into account the actual times at
which the detector collected data or has been offline. It is
nevertheless possible to compute W () analytically, for the
ideal case of an experiment continuously taking data between
days 74, and 4, [39]. This is done by changing integration
variables

Thy (Td)
/ dry / dry Pe (17(2a. Th))

Thy (Td)
:/‘ drdf h( Td, 77) Pr () (79)
T4
=/ﬂanE<n>/ zdrdw
0 T, n
- fo dnPE (D W (). (80)

By normalising the daily and hourly times to the interval
[0, 2]
day hour
T = —21 T =
365 24
with 7; = 0 at winter solstice and t; = 0 at the middle of
the night, it is possible to express

sin(A) sin(8s) + cos(n))

— 2 (81)

cos(A) cos(Ss) (82)

with X the detector latitude and 8 the Sun declination, given
by

Tj = arccos (

8s = arcsin (— sin(i) cos(zy)) , (83)

with i = 0.4091 rad being the Earth inclination. With these
definitions it is possible to perform the integral defining W (1)
in Eq. (80); it is convenient to restrict 77 within the interval
[0, ] (the alternative case can be easily derived from this
one by using the symmetry of the orbit) and to change the
integration variable from 7; to T = cos(ty). The resulting
indefinite integral is expressed in terms of elementary func-
tions and of the incomplete elliptic integral of the first kind;
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its analytic expression is not particularly illuminating but can
be easily evaluated numerically. Some care must be taken
in defining the range of integration for the definite integral,
as this is given by the intersection of three distinct inter-
vals: (i) T € [—1, 1] is the interval where T = cos(ty) is
defined, (ii) T € [sin(A —n)/ sin(i), sin(A+n)/ sin(i)] is the
range where T can take values for fixed values of n, A, i, (iii)
T € [cos(tg,), cos(ty,)] is the observation time. If the inter-
section of the three intervals is null then W () will vanish
for that given combination of A, 1 values.

The exposure function W () is computed in PEANUTS
by the function

dl=0, d2=365, ns=1000,
from_file=None, angle

NadirExposure (lam=-1,
normalized=False,
="Nadir")

which has no required arguments, but either the latitude of
the experiment, 1am, or an exposure file from file, must
be provided. It returns tabulated values of the function W (n)
for ns samples (default 1000) in nadir angle n, assuming an
exposure from day d1 to day d2, where d1=0 corresponds to
the northern hemisphere winter solstice. The exposure may
be selected to be normalized with the option normalized
(defaults to False).
Under default conditions, the function NadirExposure
computes analytically the ideal exposure function per-
forming the integral in Eq. (80), which is implemented in
PEANUTS by the function

IntegralDay(eta, lam, dl=0, d2=365)

which depends on the nadir angle eta, latitude 1am and day
interval {d1,d2}. We plot in Fig. 5 the exposure function
W (n) for one full year of exposure for three ideal detectors
located at latitudes A = 0, 45°, 89°.

In a realistic case, the exposure must be provided by
the experiment. For this purpose, one can provide an
exposure file via the option from file of the function
NadirExposure, which shall contain the tabulated values
of the exposure. By default it is assumed that the exposure is
tabulated in values of the nadir angle 5, but in some cases,
the experiments provide the exposure tabulated in either the
zenith angle 6 or cos 6. In those cases, one must specify which
angle is used for the tabulation with the options angle="
Zenith" Or angle="CosZenith", respectively. If an expo-
sure file is provided, the latitude is no longer required, and
if the argument lam is provided it will be ignored. Note
that irrespective of the original tabulated values, the func-
tion NadirExposure only returns values tabulated in 7.

Lastly, PEANUTS provides the averaged probability of
oscillation at detector location taking into account the finite
time exposure, as in Eq. (78), with the function

density, pmns,
depth, mode="

Pearth_integrated (nustate,
DeltamSg2l, DeltamSg3l, E,
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Annual nadir exposure for an experiment at various latitudes

— A=0°
A =45°
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Nadir anglen/n

Fig. 5 Weight of the nadir angle exposure for an ideal experiment
located at latitude A, taking data continuously over a full year. The
coloured regions represent the nadir angles subtending the Earth internal
shells as parametrised in Table 1, for a detector located at the Earth
surface

analytical", full_oscillation=False,
antinu=False, lam=-1, dl1=0, d2=365, ns
=1000, normalized=False, from_file=None,
angle="Nadir", daynight=None)

which has the same arguments as the pearth function, but
without the nadir angle eta, and adds the same optional
arguments as NadirExposure, with the final addition of an
optional argument daynight to select integrating only the
nadir angles corresponding to the night period n < m/2,
with daynight="night", or the day period n > 7 /2, with
daynight="day". Note that this function requires the input
neutrino state to be on the mass basis, since the integration
is performed for an incoming incoherent flux of mass eigen-
states, and thus it is not possible to provide a state on the
flavour basis.

6 Quick start guide

PEANUTS is an open-source software written in Python,
and as such we expect it to run seamlessly in every Python 3
environment, irrespective of the architecture. Nevertheless it
has been tested thoroughly on Linux and Mac OS X systems.
An example installation guide using the conda environment
can be found in Appendix A. PEANUTS is optimised to run
fast with minimal I/O operations, in order to allow effortless
interface with other frameworks. Hence, it uses extensively
the pre-compile numpy package as well as just-in-time com-
pilation from numba. The full list of required and optional
packages is as follows

— numpy: fast pre-compiled array operations
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— numba: just-in-time compilation of functions and
classes’

— os: file paths

— copy: shallow and deep copies of objects

— time: timing information

— math, cmath, mpmath: mathematical operations

— ScCipy: integration and interpolation routines

pyinterval: define integration intervals

decimal: output formatting

— pandas: reading of csv files

pyyaml: reading of yaml files Optional

pyslha: reading of slha files Optional

— gitpython: extract git tags Optional.

There are two operational modes of PEANUTS, which
we will call the simple and expert modes. The simple mode
allows PEANUTS to be run just from the command line,
appending the input parameters as arguments to the com-
mand. Naturally this is a more limited mode as only pro-
vides a fraction of the functionalities, but it is a fast way
to run PEANUTS just from the command line. The expert
mode uses all of the functionalities in PEANUTS, and thus
requires a configuration file, in YAML format, to be written.

In the simple mode one can run one of two provided
SCI‘iptS run_prob_sun.py and run_prob_earth.py. The
first script computes the probability of neutrinos at the sur-
face of the Sun, and has a signature

run_prob_sun.py [options] <energy>

<fraction> [<thl2> <thl3> <th23>
<delta> <dm21> <dm31>]

where <energy> and <fraction> are mandatory arguments
that refer to the neutrino energy, in MeV, and fraction respec-
tively. The list of available neutrino fractions is ["pp",
"hep", "7Be", "8B", "13N", "1s50", "17F"1.10 With
no options provided, the remaining arguments are required
to populate the PMNS matrix and the mass splittings. How-
ever, if the option -i/--in_slha <slha_ file>isprovided,
a file location is expected after the flag, corresponding to a
SLHA file where the neutrino parameters are defined, and
thus only two arguments are required. Note that this method
only works if the package pyslha is installed. Other options
are -s <solar_model> for a different solar model file, -
v/--verbose for verbose output and -h/--help to print
usage information.

9 The Python package numba is an experimental package and thus
prone to errors. In spite of that, numba is required to run PEANUTS,
since computational speed is one of the main goals. As of the release
version, PEANUTS works smoothly with numba 0.56. Some conda
environments have shown issues with versions > 0.57. In those cases,
we recommend reverting back to 0.56, which should work effortlessly.

10 The default 7 Be spectrum comes from ground-state transitions,
which can also be provided as " 7Beground". One can alternatively
use the transitions from the excited 7 Be state with " 7Beexcited".

The second script run_prob_earth.py computes the
probability of neutrinos at a given experimental location
below the Earth’s surface. It is used in the following way

run_prob_earth.py [options] -f/-m <state>

<energy> <eta> <depth> [<thl2> <thl3>
<th23> <delta> <dm21l> <dm31>]

where, as before, one can provide the full PMNS parame-
ters and mass splittings explicitly, or as an SLHA file (with
the -i/--in slha <slha file> option). In addition one
must provide the initial neutrino state with the option -f
/--flavour <state> in the flavour basis, or -m/--mass
<state> in the mass basis for an incoherent incoming flux.
The neutrino state must be given as comma-separated list of
three real or complex numbers, without spaces in between
them, e.g.

run_prob_earth.py -f 0.1+40.03j,0.6+0.057
,0.09-0.97

Other necessary arguments are the neutrino energy <energy
>, in MeV, the nadir angle, <eta>, in radians, and the depth
of the experiment <depth>, in meters. Additional options
include -d/--density <density> to provide a different
Earth density file, --antinu to perform the computations
for antineutrinos, --analytical or --numerical to select
either analytical or numerical evolution, -v/--verbose for
verbose output and -h/--help to print usage information.

The expert mode allows the user to exploit all the func-
tionalities of PEANUTS. It requires writing a configuration
file in YAML format, hence this mode is only available if the
optional pyyaml module is installed. For a given YAML file,
the expert mode can then be used by using the run_peanuts
.py executable in the following way

run_peanuts.py -f <my_vyaml_file>

Since most of the options are provided in the YAML file,
this command only takes the options -v/--verbose for ver-
bose output and -h/--help to print usage info. An example
YAML file to compute the probability at the surface of the
Sun can be seen below

Energy: 15

Neutrinos:
dm21: 7.42e-05
dm31: 2.51e-03
thetal2: 5.83638e-01
theta23: 8.5521e-01
thetal3: 1.49575e-01
delta: 3.40339
Solar:
fraction: "hep"
flux: true
spectrum: "distorted"
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The YAML file must contain the Energy and Neutrinos
nodes, as well as either the vacuum, Solar or Earth nodes.
The solar and Earth nodes can appear simultaneously to
combine the effects, whereas the vacuum node cannot be
combined with either. The Energy node must simply con-
tain a real number representing the neutrino energy in MeV.
The Neutrinos node can either contain a map of the neutrino
parameters, as in the example above, or a single string with
the location of a SLHA file (provided pyslha is installed),
always relative to the location of the run_peanuts.py exe-
cutable, in the following way

Neutrinos: "examples/example_slha.slha2"

The solar node must contain a map with at least an entry
for the neutrino fraction fraction. As above, the list of
available neutrino fractions is ["pp", "7Be", "
8B", "13N", "150", "17F"]. By default, this will com-
pute and print the probabilities of oscillation at Sun exit for
all flavour eigenstates, but it can be disabled with the entry
probabilities: false. Additionally, one can choose to
print the total flux with flux:true (defaults to false)
and the distorted or undistorted spectrum with spectrum: "
distorted" Or spectrum: "undistorted", both of which
are disabled by default. Lastly one can select the specific solar
model to use with the entry solar_model, the flux file with
flux_file and the spectrum files with the entry spectra.
Note that if the solar model is not known to PEANUTS, in
addition to the path to the relevant files, one must provide
the location within those files where the information can be
found, that is the entries fluxrows, fluxcols, fluxscale,
distrow, radiuscol, densitycol and fractioncols, in
the format described above in Sect. 2.

The Earth node must contain a map with necessary
entries to compute the probability at some location on
Earth. Consequently, it requires an entry for the depth under
the Earth’s surface, depth, and either a nadir angle eta
or a latitude. In addition, if the Solar node is not
present in the YAML file, a neutrino state is required as
the state entry (see below for an example), as well as an
entry to specify in which basis it is, basis: "flavour"
(coherent) or basis: "mass" (incoherent). If the entry
antinu: True is select, the computations will be per-
formed for an antineutrino. One can provide a user-defined
Earth density profile by providing a density file with the
entry density, and indicate whether the density comes
from tabulated data, with the entry tabulated density

or from a custom analytical expression, with the entry
custom_density. It is also possible to choose either the
numerical or analytical computation of the evolutor with

n hep ",

evolution: "numerical" Or evolution: "analytical
" (the latter being the default). Lastly, if the entry latitude
is present, the probabilities will be computed integrated over

exposure, and thus one provides entries to modify the nor-
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malization, days interval, number of samples, exposure file
and exposure angle (see Sect. 5 for the meaning of these
quantities) with the options exposure _normalized (True
OrFalse),exposureitime le,dZ]L exposure_samples
(number of samples), (path) and
exposure_angle ("Nadir", "Zenith" or "CosZenith"),
respectively. An example YAML file with only the earth node
can be seen below

exposure_file

Energy: 20

Neutrinos:
dm21: 7.42e-05
dm31l: 2.51e-03

thetal2: 5.83638e-01
theta23: 8.5521e-01
thetal3: 1.49575e-01
delta: 3.40339

Earth:
state: [0.4, 0.2, 0.6]
basis: "flavour"
eta: 0.8
depth: 3000

The vacuum node must contain the minimal requirements
to compute oscillations in vacuum. This means it requires an
input neutrino state and its basis, as for the earth oscil-
lations above. It must also contain the distance traveled as
baseline, in km. Lastly, optionally one can request vac-
uum oscillations for antineutrinos with antinu: True, and
to switch on or off the printing of the probabilities or the
evolved state with the probabilities and evolved state
options, respectively.

By default, the results of a PEANUTS run will be printed
to screen, but one can redirect the output to a file by adding
the output node to the YAML file. This node must contain a
single string corresponding to the output file location, which
will be created if it does not exist, or "stdout" to print to
screen (default). As an example, in order to redirect output
to a file called out .dat in the same directory as the exe-
cutable, the following node must be added to the YAML file

Output: "out.dat"

Finally, PEANUTS allows the possibility to run simple
grid scans of the input parameters provided in the YAML
file. This can be achieved easily by providing a range of
values instead of a single real value for the parameters. This
range can be provided as [min, max, step], where a specific
step size is selected, or [min,max], where the step will be
computed so that a total of 10 samples for the parameter are
produced. For instance, to scan over the energy between 20
and 100 MeV, with a step of 10 MeV, one could add the
following to the YAML file.

Energy: [20,100,10]
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Fig. 6 Survival probability at the surface of the Sun for 8B (left) and hep (right) neutrinos. The solid lines are the PEANUTS predictions, the
dashed lines are the digitised curves for the SNO experiment, from Fig. 6.3 in [35]

PEANUTS can perform such simplistic grid scans on the
neutrino energy (as seen above), as well as on any neutrino
parameter (Am%l, Am%l, 612, 613, 623 and 8),“ and on the
nadir angle eta. Furthermore, one can scan a parameter in
log scale by setting the parameter entry in the YAML file as
[min,max, step, "log"], in which case min, max and step
are taken to be in log scale too. As these are crude grid scans,
we do not recommend using this functionality for thorough
scans of the full neutrino parameter space. For that purpose
one should use smart sampling algorithms (see [59]), which
can be easily interfaced with PEANUTS.!2

6.1 Validation

We have validated the results from PEANUTS with those
published by the SNO experiment [35,36], both against their
predictions, e.g. fluxes and spectra, and their measured data,
e.g. exposure and observed events. Here we document some
of the validation tests that were performed. These can be
reproduced by running the run_ SNO_test.py file shipped
with PEANUTS, in the following way

run_SNO_test.py [options]

which allows for additional options to be supplied, such as
-s/--solar <file> to add a custom solar model, -d/--
density <file> to add a custom earth density profile, -
f/--file <file> to modify the default neutrino parame-
ters with an SLHA file, and the ever present options -v/--
verbose for debug output and -h/--help for usage info.

1 Although it is technically possible to specify a range for Am%l that
includes negative and positive values, we do not recommend doing so,
as the meaning of parameter changes from negative to positive (as the
ordering of mass eigenstates change), which is statistically inconsistent.
Hence we recommend scanning negative and positive values separately.

12 This was used, for instance, in an upcoming global study of neutrino
oscillations by the GAMBIT neutrino working group [60].

In order to compare the probability results with those from
SNO, we use the same input values for the neutrino param-
eters, 012, 613, Am%1 and Am%l = Am%l. The values of 63
and § are, for the most part, irrelevant for this comparison,
but required by PEANUTS to build the full PMNS matrix,
so for those we take the values found in [18]. Thus, the values
used here are

tan® 01, = 0.469, sin®6;3 = 0.01, 63 = 0.85521,

5 = 3.4034
Am3; =79 x 1075, Am3; =2.46 x 1073, (84)

With these values, we can compare in Fig. 6 the prediction
from our code with the SNO survival probabilities at the
surface of the Sun for the 8B and hep neutrinos, digitised
from Fig. 6.3 in [35]. Naturally, for the same Solar model, the
predictions of PEANUTS for each neutrino fraction match
very well that reported by the SNO experiment.

In addition to comparing the survival probability, we can
compare the distorted (i.e. including oscillations) energy
spectrum of neutrinos at the surface of the Sun. Figure 7
shows the effect of the oscillation distortion on the electron
neutrino spectrum, as well as the comparison with the spec-
trum distorted by the SNO survival probability. For this com-
parison we have used the spectra in [53] for the 3 B fraction
and [52] for the hep fraction.

In addition to validating the results against those of the
SNO experiment, we have also validated our analytical
approximation from Sect. 4.1 against the full numerical cal-
culation described at the beginning of Sect. 4. Figure 8 shows
the oscillation pattern of the neutrino flavour eigenstates for
a neutrino crossing all Earth shells, n = 0 (left), and for a
neutrino coming from the horizon, n = /2 (right), starting
from a pure mass neutrino eigenstate v, = Uyy. As expected,
only in the first case the oscillations are significant, since the
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Fig. 8 Oscillations of neutrino flavour eigenstates for n = 0 (left) and n = 7 /2 (right). The error quoted is the difference between the analytical

and numerical results

neutrinos traverse the whole Earth before reaching the detec-
tor, whereas in the second case the neutrino path only crosses
part of Earth’s crust between the surface and the detector, and
thus only minimal oscillation occurs. Since only the numer-
ical computation can provide the full trajectory, the oscilla-
tions shown in Fig. § correspond exclusively to the numerical
mode. However, for the same choice of parameters we have
also used the analytical computation for the final probabil-
ities, and the error reported in the figures precisely corre-
sponds to the relative difference between the numerical and
analytical models.'® The difference is almost negligible, of
the order of 10~ for the night period (left), and effectively

13 Given (c, ¢y, cr) the complex coefficients defining the final
(evolved) state (cf. Eq. 18), the relative error is defined here as the
norm of the difference between the numerical and analytical values of
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zero during the day period. The left panel in Fig. 9 confirms
this by showing the relative error as a function of the energy
for the worse case of the ones above (i.e. during the night)
for n = 0, where it can clearly be noticed that the error
is small for all values of the energy, and only approaches
~ 1072 at the worst for E, ~ 10> MeV. This comparison
serves as a validation that the approximated analytical solu-
tion is a very good approximation and, since it is much faster,
can be used in place of the full numerical evaluation.'* For

it, divided by the norm of their sum. This ensures that errors in both real
and imaginary parts of the solution are correctly taken into account.

14 Notice that, at energies above the TeV scale, neutrino inelastic scat-
tering becomes relevant for Earth-type densities [61]. PEANUTS does
not currently include such effects. Figure 9 only compares the coherent
forward scattering computed numerically and analytically.
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Fig. 9 Relative error between the numerical and analytical computa-
tions of the probability after Earth regeneration as a function of the
energy for a chosen value of n = 0 (left). Speed comparison of the

completeness, for the production of Fig. 9, the unitarity of
the evolution matrix was confirmed, and no unphysical solu-
tions were found. Figure 9 also shows a comparison with the
results from the state-of-the-art tool for neutrino oscillations
nuSQuIDS [62], where it can be seen that the agreement
is also good with a relative error consistently below 1072
Therefore, the massive increase in computational speed pro-
vided by PEANUTS certainly justifies the small loss in pre-
cision.

To quantify this speed increase gained with the analytical
implementation, we show in the right panel of Fig. 9 the com-
putational time of the numerical and analytical computations
as a function of number of evaluations, for two values of the
neutrino energy E, = 10 MeV and E, = 100 MeV. For
small number of evaluations the computational time is very
similar between the analytical and numerical methods, but for
anumber of evaluations N 2 10, the computational time for
the numerical method increases drastically and soon becomes
computationally unfeasible. In contrast the total CPU time of
the analytical method remains constant for increasing num-
ber of evaluations, and it is mostly dominated by the overhead
of the initialisation step. Only for N > 103 the computation
time starts to increase noticeably, but still remains manage-
able up to large N. To emphasise further the increase of speed
with the analytical implementation, the relative error shown
on the left-hand panel of Fig. 9 required over 9.2 x 103 sec-
onds of CPU time to perform the numerical computations

15 We choose not to compare our results with other neutrino tools, such
as GLoOBES [63,64], Prob3++ [65] or nUCRAFT [66], as their main
purpose is not solar neutrinos, but rather long baseline experiments,
for the first two, and atmospheric neutrinos, for the latter, whereas
nuSQuIDS is a general purpose tool.

Scaling of computation with number of evaluations
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analytical and numerical computations by PEANUTS and the compu-
tations by nuSQuIDS for two values of the neutrino energy (right)

for all energies on a 2,3 GHz Intel Core i7 quad-core, com-
pared to 5 s with the analytical method. Lastly, the right panel
of Fig. 9 also shows a comparison with nuSQuIDS. For
low number of evaluations, nuSQuIDS clearly outperforms
PEANUTS, by virtue of being written in C++, but for large
number of evaluations, as early as N = 5 for low energies
and N = 50 for high energies, the analytical implementation
of PEANUTS becomes significantly faster and, again, is the
only feasible option for these large number of evaluations. It
is worth noting that this comparison is done in the worst case
scenario, where n = 0 and the neutrino path crosses almost
the whole Earth. In less extreme scenarios, the computational
speed of the numerical implementation of PEANUTS and
the computations by nuSQuIDS are somewhat faster than
shown.

Section 5 showed how to compute the ideal exposure time
for a hypothetical experiment. For specific experiments, how-
ever, the exposure is often provided tabulated in bins of either
the nadir angle 7, the zenith angle 8 or cos 6. In the case of the
SNO experiment, the exposure is provided in bins of cos 8,
hence we convert it into bins of 7 in order to match fit our
computations of the probability. We then show in Fig. 10 the
exposure of the SNO experiment compared to the ideal case.
As SNO is located at a latitude of 46.475°, we can see that
it matches very well the ideal exposure at 46°, with a slight
under-exposure during the day and a slight over-exposure,
during the night, which is consistent with the livetime of the
SNO experiment.'®

Finally, in order to match the computations of PEANUTS
with that of the SNO experiment, we reproduce the statistical

16 This pattern is due to most of the maintenance and calibration oper-
ations taking place during daytime [35].
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Annual nadir exposure for an experiment at various latitudes
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Fig. 10 Exposure of the SNO experiment in nadir angle n (red), com-
pared to the ideal exposure for hypothetical experiments at various lat-
itudes. Coloured bands are as in Fig. 5

fit of the oscillation parameters 61, and Am%1 performed by
the SNO experiment. Figure 11 shows the results of the fit as
a profile likelihood ratio. The dark purple star corresponds
to the best fit point as found using PEANUTS, while the red
star is that reported by the SNO collaboration. Similarly the
purple and blue shared contours correspond to the 68% and
95% confidence intervals around the best fit point for our
results, whereas the red dashed contours are the same from
the SNO results. Note that this comparison, both our results
and those from the SNO experiment, corresponds only to
Phase I of the experiment [36], and for normal ordering of
neutrino masses.'” Details about this comparison will appear
in a global fit by the GAMBIT Neutrino working group [60].
The results show a decent match with those reported by the
SNO collaboration, with the best fit points laying very close
to each other. The shape and reach of the contours is larger
in our study, which can be attributed to a slight difference on
the treatment of systematic uncertainties. It is crucial here to
emphasize that a parameter scan of this magnitude is only
feasible with the analytical implementation of PEANUTS,
due to the large number of evaluations required. For refer-
ence, the scan sampled around 380k parameter points, each
of which performed, on average, around 5k evaluations of
the probability.

7 Conclusions and outlook

We have presented in this paper PEANUTS, a fast and flex-
ible software to automatically compute the energy spectra of

17 We have repeated the fit for inverted ordering and found the results to
be almost identical to that of normal ordering, which is expected given
that the oscillation of solar neutrinos is largely independent of Am%l,
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Fig. 11 Profile likelihood ratio for the results of a statistical fit of the
oscillation parameters 61> and Am% , using PEANUTS (purple-blue)
compared to the results reported by the Phase I of the SNO experiment
(red). The fit was performed using GAMBIT [67] and the figure was
generated with pippi [68]

solar active neutrinos, for arbitrary solar models and custom
Earth density profiles. PEANUTS assumes adiabatic prop-
agation of neutrinos within the Sun, and provides analytic
computation for the coherent evolution of active neutrinos
while crossing the Earth, thus completely avoiding any time-
consuming numerical integration. This, together with exten-
sive use of pre-compiled and just-in-time compilation opti-
misations, makes the software extremely fast and optimised
for large-scale parameter scans.

PEANUTS provides algorithms to automatically perform
the full chain of computations to simulate a solar neutrino
experiment, as well as easy individual access to the mod-
ules and functions for specific computations. These include,
for instance: mixing parameters in matter, incoherent flux
at Sun surface, evolved neutrino state after Earth crossing,
Earth density profile for given nadir angle, evolutor operator
for given neutrino energy and nadir angle, nadir exposure
for an experiment between two arbitrary days of the year,
integrated probability of oscillation over a finite observation
time. In the present version of PEANUTS we focused on pro-
viding automatisation for solar neutrinos, but the modularity
of PEANUTS also allows a user to employ, for example, the
function pearth_analytical to compute the evolution of
an atmospheric neutrino, or simulate the evolved spectra for
hypothetical neutrinos produced in solar flares.

PEANUTS can be run in simple mode, for quick compu-
tations directly from the command line, as well as in expert
mode, in which case the user provides a set of comprehensive
instructions in the form of a YAML file. The expert mode is
thus ideal for scripting, as it exploits all the possible function-
alities of PEANUTS, and to perform simple explorations of
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the parameter space, as it natively allows the scanning of
various input parameters on a grid.

We extensively validated PEANUTS against the results
of the SNO experiment, and provide ready-to-run scripts to
reproduce our results. We observed excellent agreement for
the survival probability at Sun surface, distorted neutrino
spectra for the 8 B and hep channels, annual nadir exposure
and ability to reproduce the profile likelihood of the Phase I
of the experiment for the parameters 61, and Am% 1- We also
validated our analytic computation of the evolved neutrino
state with a numerical solution, and find excellent agreement
on a wide range of energies. We performed a quick estima-
tion of the CPU time scaling of the analytical and numerical
computations with the number of evaluations, and conclu-
sively found our analytical implementation to significantly
outperform the numerical one for as few as O(10) evalua-
tions. We also compared our results with those of nuSQuIDS
and found good agreement as well. As with the numerical
implementation, we found that our analytical solution vastly
outperforms NUSQUIDS in terms of the computational time.
PEANUTS thus presents a very fast alternative to exist-
ing tools without appreciable loss of precision. Therefore,
due to its speed and user-friendly interface, we argue that
PEANUTS is a very capable and useful tool for the compu-
tation of the propagation of neutrinos in the Sun and through
Earth and a crucial addition to the software toolbox of the
neutrino physics community.

Concerning the limitations of the software, the current
PEANUTS version assumes adiabatic evolution within the
Sun, which provides an excellent approximation for solar
neutrino energies given the currently allowed range of oscil-
lation parameters; the user is thus encouraged to check the
validity of this regime if working in non-standard scenarios.
We also stress that the code assumes coherent forward scatter-
ing for the propagation of neutrinos in matter: for Earth-type
densities, inelastic scattering becomes important at energies
above the TeV scale, and such effects must thus be taken
into account. We plan to incorporate a more general routine
for the arbitrary evolution of neutrinos in the Sun in a future
version of PEANUTS. For inelastic scattering, other soft-
wares are currently available, cf. e.g. [62,69-73]. Though
PEANUTS v1.0 does not yet provide all the functionalities
that other software tools have, it vastly outperforms them in
speed, which can be a critical factor in e.g. global studies,
where the number of evaluations is very large.

Further improvements that will extend the scope of
PEANUTS are under investigation, most notably the imple-
mentation of algorithms for the automatic computation of the
atmospheric neutrino flux at a given location, as well as the
simulation of accelerator neutrinos beams.
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Appendix A: Installation guide with the conda environ-
ment

In this Appendix we provide a short guide to install and run
PEANUTS from scratch in a system-agnostic way, using the
conda [74] and pip [75] package managers.

First of all the user shall create a separate working envi-
ronment, to avoid conflicts with existing packages:

conda create -n peanuts python numpy numba
scipy pandas mpmath pyyaml matplotlib
gitpython

conda activate peanuts

pip install pyinterval pyslha

The first line will create a new conda environment named
peanuts, simultaneously installing in it the listed packages
ensuring mutual compatibility in their versions. The second
line activates this environment, while the third one installs the
additional required packages that are not currently available
via conda, using instead the pip package manager.

The user can now download PEANUTS and move to the
folder containing its Py thon scripts:
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git clone https://github.com/michelelucente/
PEANUTS
cd PEANUTS

At this point PEANUTS should be installed and ready to
run. The user can test it on the provided example input files,
for instance:

python run_peanuts.py -f examples/
solar_earth_test.yaml

The above-described procedure installs the latest version
of the packages that are mutually compatible at a given time.
It has been successfully tested at time of publication, and the
resulting environment is provided in the PEANUTS folder as
peanuts_env.yml. The user can reproduce this installa-
tion by running

conda env create -f peanuts_env.yml

This command will take care of installing both the pip and
conda packages with versions as defined in
peanuts_env.yml.
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