
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Reducing distance computations for distance-based outliers / Angiulli, Fabrizio; Basta, Stefano; Lodi,
Stefano; Sartori, Claudio. - In: EXPERT SYSTEMS WITH APPLICATIONS. - ISSN 0957-4174. - STAMPA. -
147:(2020), pp. 113215.1-113215.11. [10.1016/j.eswa.2020.113215]

Published Version:

Reducing distance computations for distance-based outliers

Published:
DOI: http://doi.org/10.1016/j.eswa.2020.113215

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/812328 since: 2023-05-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.eswa.2020.113215
https://hdl.handle.net/11585/812328

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Angiulli, F., et al. "Reducing Distance Computations for Distance-Based Outliers." Expert Systems with
Applications, vol. 147, 2020.

The final published version is available online at:
https://dx.doi.org/10.1016/j.eswa.2020.113215

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1016/j.eswa.2020.113215

Reducing distance computations
for distance-based outliers

Fabrizio Angiullia, Stefano Bastab, Stefano Lodic, Claudio Sartoric

a
DIMES Department, University of Calabria, Via P. Bucci 41C, 87036 Rende (CS), Italy.

E-mail: f.angiulli@dimes.unical.it.
b
Institute of High Performance Computing and Networking, Italian National Research

Council, Via P. Bucci 8-9 C, 87036 Rende (CS), Italy.

E-mail: stefano.basta@icar.cnr.it.
c
Department of Computer Science and Engineering, University of Bologna, Viale

Risorgimento 2, 40136 Bologna, Italy.

E-mail: {stefano.lodi,claudio.sartori}@unibo.it.

Abstract

The mining task of outlier detection is essential in many expert and intelligent

systems exploited in a wide range of applications, from intrusion detection to

molecular biology. In some of such applications the ability to process large

amounts of data in a very short time can be critical, for instance in intrusion and

fraud detection. This paper explores a solution for the optimisation of an exact,

unsupervised outlier detection method by avoiding unnecessary computations,

and therefore reducing the running time and making the method usable also

in settings where response times are crucial. In particular, we enhance the

SolvingSet-based approach by using a mechanism that exploits the knowledge

learned during the algorithm execution and avoids a large amount of distance

computations. We demonstrate the strength of the proposed solution, named

FastSolvingSet , through both theoretical and experimental analysis.

Keywords

Distance-based outliers; outlier detection; parallel and distributed algorithms.

1. Introduction

It is well known that dealing with Big Data poses some challenges, sum-

marised by the so-called ”four v’s”. The problems are even harder when we

Preprint submitted to Elsevier December 28, 2019

*Manuscript
Click here to download Manuscript: paper-elsarticle-review-apa.pdf Click here to view linked References

http://ees.elsevier.com/eswa/download.aspx?id=990012&guid=c738793e-d7f8-49fd-be5d-65d6e6d0cd32&scheme=1
Claudio
Published version:https://doi.org/10.1016/j.eswa.2020.113215
CC License

require to a system an intelligent behaviour, as it is for most of the so–called

data mining tasks. In this application area, the aim is to build systems whose

intelligent decisions are driven by the data, often with little or no information

from the human experts, therefore requiring that the expertise is derived by the

system directly from the data.

In this paper, we deal with the problem of unsupervised outlier detection and

improve an already available solution considering the problems deriving from

volume and velocity. In particular, we seek performance improvements exploit-

ing the distinctive features of a method for labelling outliers to save a number

of useless distance computations without introducing any approximation.

Outlier detection is a fundamental intelligent task which consists in the iden-

tification of observations which deviate substantially from the rest of the ob-

servations, raising the hypothesis that they were not generated by the same

mechanism (Han et al., 2011). The usefulness of outlier detection is apparent in

many application domains, in particular in those which require reaction within a

predefined time, such as medical anomaly detection, sensor networks, industrial

damage detection, cyber-intrusion detection, fraud detection, image processing,

and textual anomaly detection (Chandola et al., 2009).

Methods for outlier detection can be supervised, semi-supervised, and unsu-

pervised. In supervised methods, a set of examples labeled as normal and ab-

normal is available; the problem is then approached as a classification problem.

In semi-supervised methods, only a small subset of the data is labeled, normal

or abnormal, possibly consisting of normal or abnormal objects. Finally, unsu-

pervised approaches to outlier detection are able to discriminate each datum as

normal or abnormal when no training examples are available.

Among the unsupervised approaches, in distance-based methods the evalua-

tion of the outlier status of an object involves the computation of the distances

to its nearest neighbours (Knorr & Ng, 1998; Ramaswamy et al., 2000; Bay &

Schwabacher, 2003; Angiulli & Pizzuti, 2005; Angiulli et al., 2006; Tao et al.,

2006; Ghoting et al., 2008; Angiulli & Fassetti, 2009). The approaches di↵er

in the way the evaluation is carried out; however, most methods associate an

2

object with a weight or score, which is a nondecreasing function of its k nearest

neighbours distances, quantifying the overall dissimilarity between the object

and its neighbours.

In this work, we introduce FastSolvingSet , an unsupervised algorithm that

represents a notable optimization of the SolvingSet algorithm to detect distance-

based outliers (Angiulli et al., 2006).

The reason to pursue this optimisation derives from the observation than

whenever an intelligent system becomes the engine of a mission critical activity

the contrast between time constraints and computation times can set a threshold

between useful and useless solutions. Applications of outlier detection such as

intrusion and fraud detection can have very strict time constraints and a solution

able to reduce the computation times without introducing approximations can

be of high value.

Let us come now to some detail of our solution.

In SolvingSet a top-n distance-based outlier in a data set is an object having

weight not smaller than the n-th largest weight, where the weight of a data set

object is computed as the sum of the distances from the object to its k nearest

neighbours. SolvingSet uses, as a base for the optimisation of the solution, the

generation of an outlier detection solving set (in short solving set). The solving

set is a subset S of the dataset D that includes a su�cient number of objects

from D to allow considering only the distances among the pairs in S ⇥ D to

obtain the top-n outliers. The solving set is a learned model that can be seen

as a compressed representation of D. It has been shown that it can be used to

predict if a novel object q is an outlier or not by comparing q only with the

objects in S, instead of considering all the objects in D. Since the solving set

contains at least the top-n outliers, computing the solving set permits to solve

the outlier detection task simultaneously.

As a matter of fact, we demonstrate that it is possible to find out a solving

set using a number of distances among dataset objects that is remarkably lower

than that one computed by the original algorithm. This outcome guarantees

better performance because for the discovery of the distance-based outliers, the

3

cost of calculating distances generally dominates the algorithm time complexity.

The contributions of the work can be summarised as follows:

• we present a mechanism that allows to considerably reduce the compu-

tation of the distances among the pairs in S ⇥D, by exploiting only the

partial results achieved. As detailed later, this mechanism bases on an

e�cient evaluation of a reverse triangle inequality, and it does not com-

promise the quality of final output, that is no approximation must be

introduced;

• the proposed optimization is suitable to be used both for the sequential

and the distributed version of the base algorithm (Angiulli et al., 2013);

• by using this novel strategy, we can run SolvingSet-based algorithms ob-

taining significant computation savings;

• as the secondary e↵ect, thanks to this variant, we can e�ciently run the

SolvingSet-based approach even when the dataset (or some portion of a

distributed dataset) could be so large that it would be impractical storing

it on the main memory of the machine in use. Indeed in these cases the

cost of calculating the distance becomes more expensive, as it requests to

retrieve data from mass storage, and this strengthens the advantage of the

FastSolvingSet algorithm with respect to the base version.

The rest of the paper is organized as follows. Section 2 overviews the litera-

ture on distance-based outlier detection. Section 3 presents preliminary defini-

tions, recalls the SolvingSet-based approach for the outlier detection, details the

FastSolvingSet algorithm, and provides the cost analysis. Section 4 discusses

the experiments. Finally, Section 5 outlines the conclusions of the work and the

future research directions.

2. Related work

Distance-based outlier detection methods are mostly based on the assump-

tion of correlation between the sparseness of an object’s neighbourhood and its

4

outlier status. The methods however di↵er as to the definition of neighbour-

hood, its relation to outlier status, generally defined in terms of an outlier score,

and the approaches to possibly avoid a full scan of the dataset to compute it.

Knorr & Ng (1998) consider a neighbourhood of parametric radius D; an

object is an outlier when at least a fraction p of all the objects is contained in

the complement of the neighbourhood. They present a block nested-loop (NL)

algorithm with a worst-case O(N2) time complexity. Full scan of the dataset

for an object is avoided by continuing with the next object when the number of

objects within distance D exceeds the threshold. They also present two variants

of NL with O(N) time complexity; the dependence on dimensionality is how-

ever exponential. With respect to FastSolvingSet , NL is simpler to implement,

minimizes I/O block reads, and reports valid outliers according to the defini-

tion before the execution has terminated. However, distances between objects

are computed multiple times, thereby increasing computation time significantly

with dimensionality. In addition, the definition of outliers does not involve any

ranking, and therefore enables pruning with respect to the parameters only.

Ramaswamy et al. (2000) consider a k-nearest neighbourhood, whereas the

objects having the top n distance values to their k-th neighbour have outlier

status. The first proposed algorithm is a block nested loop join similar to NL.

Its refinement is an index-based join: Full scans are avoided by recurring to

spatial access methods which support minimal bounding rectangles, such as the

R⇤-tree, for the retrieval of an object’s neighbourhood. Subtrees enclosed by

rectangles located at a minimal distance larger than the k-th neighbour distance

of the object are pruned. Further pruning is obtained by discarding objects hav-

ing a current k-th distance which is exceeded by the smallest one in the top-n

list. Finally, the authors propose a third algorithm that partitions the data us-

ing clustering and uses minimal bounding rectangles to prune partitions which

cannot contain outliers. The remaining partitions are input to an index-based

join. The pruning method which excludes objects with k-th distance smallest

than the worst known distance is similar to the one adopted in FastSolvingSet .

Index-based or partition based pruning are not used in FastSolvingSet , whereas

5

metric space properties are not used directly in Ramaswamy et al. (2000), al-

though they could be used in the spatial access method. The main di↵erence

between the proposal and FastSolvingSet lies however in the definition of outlier

score as the k-th neighbour distance, which on one hand enables geometric com-

parisons that are essential for the pruning strategy, on the other is less robust

than the sum of the distances from the k-nearest neighbours.

The the latter outlier score has been introduced in Angiulli & Pizzuti (2002)

together with the HilOut algorithm exploiting space-filling curves for a fast

computation of the distance-based outliers.

Bay & Schwabacher (2003) abstract from a specific relation between neigh-

bourhood and outlier status, and propose a nested-loop algorithm to com-

pute top-n outliers using a generic outlier score function which must be anti-

monotonic with respect to inclusion of sets of neighbour distances. Objects are

loaded into memory in blocks, and for each block the dataset is scanned once to

compute the k-nearest neighbours of the block’s objects. At the end of a scan,

the current list of the top-n outliers and a cuto↵ threshold set to the lowest

outlier score among the top-n ones are updated. Although worst-case complex-

ity is quadratic, pruning of objects having a score below the lower bound in the

current top-n outlier set achieves a near linear performance in practice on ran-

domized datasets. In the experiments, outlier status is defined as membership

in the set of the objects having the top-n average k nearest neighbour distances.

This work describes a general nested-loop outlier detection framework in which

block loading is analogous to candidate selection in FastSolvingSet , which how-

ever ensures the selection of the objects with the highest provisional scores.

Therefore, the cuto↵ score increases more rapidly in FastSolvingSet , enabling

a more aggressive pruning. Another di↵erence is that the reported execution

times have been obtained after a randomization preprocessing step.

Ghoting et al. (2008) presents the two-phase algorithm RBRP (Recursive

Binning and Re-Projection). RBRP adopts the distance to the farthest neigh-

bour as the score of outlier strength and assume the same outlier status as

Ramaswamy et al. (2000). In the first phase it partitions the data into bins

6

in such a way that close objects are likely to be in the same bin and parti-

tion members have roughly the same size. A fixed number of k-means steps

is executed, and the resulting partition is recursively refined: if a the size of a

partition member is smaller than a threshold, the member is sorted by principal

component; otherwise, the algorithm is recursively called on the member. In

the second phase, one bin at a time is searched for outliers; after each bin is

processed the list of the top-n outliers is updated, and a cuto↵ c is set to the

smallest k-th neighbour distance in the list. In each bin, for each object a se-

quential search for k approximate nearest neighbours is performed. The search

scans the current bin first, then the remaining bins in order of proximity, until

either the k-th neighbour distance is smaller than c, or all the bins have been

scanned. The best and average case complexity of the first phase is O(N logN),

whereas the worst case complexity of both phases is O(N2). However, in prac-

tice RBRP finds approximate neighbours quickly because it processes objects

by closeness, and thus can prune the search space earlier. In comparison to Bay

& Schwabacher (2003), RBRP execution time is experimentally shown to be

smaller by a factor ranging from a few units to an order of magnitude. There

are marked di↵erences between this work and ours. The adopted definition of

outlier score is the k-th neighbor distance instead of the sum of the distances

from the k-nearest neighbours. The first phase with its final ordering of objects

along the principal component axis has no analogue in FastSolvingSet , whereas

the nested loop in the second phase of Ghoting et al. (2008) is structured essen-

tially the same way as the one in Bay & Schwabacher (2003), thus omitting to

create or update the neighborhoods of the visited objects in the inner loop for

comparing them to the cuto↵ as FastSolvingSet does.

Vu & Gopalkrishnan (2009) define the outlier score as the cumulative dis-

tance to the k nearest neighbours, and outliers as objects having the top-n

scores. As in Ghoting et al. (2008), the algorithm, named MIRO (MultI-Rule

Outlier), operates in two phases: a k-means clustering phase and a nested-loop

phase. With respect to RBRP, k-means operates similarly, but has been op-

timized and modified to use an additional parameter, which sets the expected

7

number of objects in each cluster. Additionally, lower and upper bounds for the

score of objects and clusters are computed by exploiting the closeness of objects

in neighbouring clusters; then, clusters are picked in order of decreasing lower

bound, until n objects have been picked; the last lower bound is used as a cuto↵

to prune all clusters having a smaller upper bound. Finally, the upper bounds

of objects in the remaining clusters are individually tested. The nested-loop

phase is similar to that of Ghoting et al. (2008), but the initial score cuto↵ is

taken from the first phase, and the triangle inequality is used to further prune

objects. Theoretical analysis and experiments show that the quadratic overhead

of the first phase due to the search for neighbouring clusters is amortized by

savings in she second phase, resulting a linear execution time in practical cases.

Overall the algorithm’s structure is similar to the one of Ghoting et al. (2008),

thus again the main di↵erence is the omission of neighborhood processing for

the visited objects in the inner loop over clusters in the final processing. Con-

cerning the added optimizations, notably the computation of an initial lower

bound for outlier scores, and the usage of the triangle inequality for pruning

objects which cannot be top outliers, the former optimization cannot apply to

FastSolvingSet owing to the absence of a clustering phase; as to the latter, the

triangle inequality is used in FastSolvingSet to reduce the number of distance

computations, rather than to prune non-outliers. Thus, it is more likely to be

e↵ective as dimensionality grows.

Bhaduri et al. (2011) propose an evolution of the algorithm in Bay & Schwabacher

(2003), named iOrca, which initially picks an object at random as a reference

and computes an in-memory index based on the ordered distances between the

reference and the objects in the dataset. Objects are then processed in decreas-

ing order of distances to the reference. When the sum of the distance between

the current object and the reference and the k-th neighbour distance of the

reference is smaller that the cuto↵, an application of the triangle inequality al-

lows to prove that the current object and all objects following it in the index

order cannot be top-n outliers, thus the algorithm can be stopped immediately.

Besides providing an e↵ective early stopping rule, the index also accelerates the

8

retrieval of k-neighbourhoods for not pruned objects: index entries are visited

in order of increasing position di↵erence in the index, possibly stopping if the

cuto↵ exceeds the score. Experiments on real datasets show improvements in

runtime up to an order of magnitude over Bay & Schwabacher (2003). Pro-

cessing objects in order of decreasing distance to a random reference object in

Bhaduri et al. (2011) and FastSolvingSet ’s selection of candidates by highest

provisional score achieve a similar result, that is, true outliers are more likely to

be processed early, thereby increasing the cuto↵ rapidly. The di↵erence between

the techniques lies in the availability of the strength of the potential outlier: it

is readily available in Bhaduri et al. (2011) because the index is computed at

the beginning, whereas in FastSolvingSet the information gradually emerges as

more candidates are processed. The index, the triangle inequality and the def-

inition of outlier score as the k-th neighbor distances are used in a synergy in

Bhaduri et al. (2011) to apply an early stopping rule; in FastSolvingSet the

same goal is achieved by the removal of all objects from the active set.

Summarizing, all approaches, except the one in the seminal paper (Knorr

& Ng, 1998), search for top-n outliers and exploit a basic pruning rule known

as Approximate Nearest Neighbour Search, or ANNS (Angiulli & Pizzuti, 2002;

Bay & Schwabacher, 2003; Angiulli et al., 2006; Orair et al., 2010): an object

is discarded if its current approximate neighbourhood implies a score upper

bound that is lower than the cuto↵ worst known score. Additional strategies

prune the search space during neighbour search, or try to improve the e↵ective-

ness of ANNS, either by ranking candidate neighbours, or by ranking candidate

outliers, thus increasing the cuto↵ faster. The triangle inequality is used by a

minority of approaches to date to prune a candidate outlier (and, in Bhaduri

et al. (2011), to halt the algorithm). Although all the SolvingSet-based al-

gorithms employ ANNS, the specific algorithm of the present work does also

employ the reverse triangle inequality to greatly reduce the number of distance

computations between candidate outliers and dataset objects, exploiting the

already computed distances stored in the neighbourhood lists of objects.

9

3. Algorithms

In this section, first we briefly recall the key concepts of the SolvingSet-based

approach, which was used in Angiulli et al. (2006) to predict novel outliers, and

then we introduce the new algorithm and discussing it from the computational

point of view.

3.1. Weights and outliers

In the following, we assume a dataset D of objects is given, which is a finite
subset of a certain metric space.

Definition 3.1 (Outlier weight) Given an object p 2 D, the weight wk(p,D)
of p in D is the sum of the distances from p to its k nearest neighbours in D.

Definition 3.2 (Top n outliers) Let Top be a subset of D having size n. If
there not exist objects x 2 Top and y in (D\Top) such that wk(y,D) > wk(x,D),
then Top is said to be the set of the top n outliers in D. In such a case,
w

⇤ = minx2Top wk(x,D) is said to be the weight of the top n-th outlier, and
the objects in Top are said to be the top n outliers in D.

3.2. The SolvingSet-based approach

Now we recall the notion of solving set and the SolvingSet and the Dis-

tributedSolvingSet algorithms. The description provided in this section is largely

taken from Angiulli et al. (2016), which is also a descendant, along a di↵erent

research thread, of Angiulli et al. (2006).

Definition 3.3 (Outlier Detection Solving Set) An outlier detection solv-
ing set S is a subset S of D such that, for each y 2 D \ S, it holds that
wk(y, S) w

⇤, where w
⇤ is the weight of the top n-th outlier in D.

A solving set S always contains the set Top of the top n outliers in D. Further-

more, a solving set can be used to predict novel outliers (Angiulli et al., 2006).

Our goal is to compute both a solving set S and the set Top.

The SolvingSet algorithm (Angiulli et al., 2006) is shown in Figure 1 and its

working logic is described below. At each iteration (let us denote by j the generic

iteration number), the SolvingSet algorithm compares all dataset objects with

a selected small subset of the overall dataset, called Cj (for candidate objects),

and stores their k nearest neighbours with respect to the set C1[. . .[Cj . From

10

Input: Dataset D, a distance function dist(·, ·), integer number n of outliers, integer number
k of nearest neighbours, integer number m of candidate points.
Output: Solving set of D, set of the top-n outliers of D.

(1) SolvingSet(D, dist, n, k,m) {
(2) PointSet SolvSet = new PointSet();
(3) PointSet C = new PointSet(m);
(4) MinHeap Top = new MinHeap(n);
(5) MinHeap NextC = new MinHeap(m);
(6) for i = 1 to D.length
(7) D.get(i).NN = new MaxHeap(k);
(8) C.set(D.RandomSelect(m));
(9) while C.length 6= 0 {

(10) SolvSet.append(C);
(11) D.drop(C);
(12) for i = 1 to C.length {
(13) p = C.get(i);
(14) for j = 1 to C.length {
(15) q = C.get(j);
(16) d = dist(p, q);
(17) p.NN.updateMin(d);
(18) if i 6= j then q.NN.updateMin(d);
(19) }
(20) }
(21) for i = 1 to D.length {
(22) p = D.get(i);
(23) for j = 1 to C.length {
(24) q = C.get(j);
(25) if max(p.NN.weight(), q.NN.weight()) � Top.min() {
(26) d = dist(p, q);
(27) p.NN.updateMin(d);
(28) q.NN.updateMin(d);
(29) }
(30) }
(31) if p.NN.weight() � Top.min() then NextC.updateMax(p, p.NN.weight());
(32) }
(33) for i = 1 to C.length {
(34) q = C.get(i);
(35) Top.updateMax(q, q.NN.weight());
(36) }
(37) C.set(NextC.get());
(38) }
(39) return(hSolvSet,Top.getElements()i);
(40) }

Figure 1: The SolvingSet algorithm.

11

these stored neighbours, an upper bound to the true weight of each data set

object can thus be obtained. Moreover, since the candidate objects have been

compared with all the dataset objects, their true weights are known. The objects

having weight upper bound lower than the n-th greatest weight associated with

a candidate object, are called non active (since these objects cannot belong

to the top-n outliers), while the others are called active. At the beginning,

C1 contains m randomly selected objects from D, while, at each subsequent

iteration j, Cj is built by selecting, among the active objects of the dataset not

already inserted in C1, . . . , Cj�1 during the previous iterations, the m objects

having the maximum current weight upper bounds. During the computation,

if an object becomes non active, then it will not be considered anymore for

insertion into the set of candidates, because it cannot be an outlier. As the

algorithm processes new objects, more accurate weights are computed and the

number of non active objects increases. The algorithm stops when no more

objects have to be examined, i.e. when all the objects not yet selected as

candidates are non active, and thus Cj becomes empty. The solving set is the

union of the sets Cj computed during each iteration.

The DistributedSolvingSet algorithm (Angiulli et al., 2013) makes the Solv-

ingSet strategy exploitable in parallel/distributed scenarios. It consists of a

main cycle executed by a supervisor node, which iteratively schedules the fol-

lowing two tasks: (i) the core computation, which is simultaneously carried out

by all the other nodes; (ii) the synchronization of the partial results returned by

each node after completing its job. The computation is driven by the estimate of

the outlier weight of each data point and of a global lower bound for the weight,

below which points are guaranteed to be non–outliers. The above estimates are

iteratively refined by considering alternatively local and global information.

It is worth to observe that several mining algorithms deal with distributed

dataset by computing local models which are aggregated in a general model

as a final step in the supervisor node. The DistributedSolvingSet algorithm is

di↵erent, since it computes the true global model through iterations where only

selected global data and all the local data are involved.

12

The core computation executed at each node consists in the following steps:

(i) receiving the current solving set objects together with the current lower

bound for the weight of the top n-th outlier, (ii) comparing them with the local

objects, (iii) extracting a new set of local candidate objects (the objects with

the top weights, according to the current estimate) together with the list of local

nearest neighbours with respect to the solving set and, finally, (iv) determining

the number of local active objects, that is the objects having weight not smaller

than the current lower bound. The comparison is performed in several distinct

cycles, in order to avoid redundant computations. These data are used in the

synchronization step, from the supervisor node, to generate a new set of global

candidates to be used in the following iteration, and for each of them the true

list of distances from the nearest neighbours, to compute the new (increased)

lower bound for the weight.

3.3. The FastSolvingSet algorithm

As previously outlined, the goal of the FastSolvingSet algorithm is to consid-

erably reduce the number of distance computations required by the SolvingSet

algorithm to find out a solving set S for a dataset D. We note that SolvingSet

algorithm computes at most |S ⇥ D| distances among the data objects. Why

O(|S ⇥ D|), and not exactly |S ⇥ D|, distances are computed, is that during

the algorithm iterations some distances from the candidate data object q to

the data object p are skipped when both q and p have been classified as non

active objects. The idea adopted by the FastSolvingSet algorithm is that while

the algorithm works, the so far learned knowledge can be exploited to pick out

distances which would not provide any contribution and hence to avoid calcu-

lating them. In other words, when the uselessness of comparing q with p is

derivable, the distance separating q from p will be not computed. How this

idea is implemented is explained below. During the cycle where each point is

compared with each candidate point (lines (21)–(32) in Figure 1), it is possible

to skip the comparison of a certain point p with a specific candidate point q if

the knowledge of distances of p from the previous candidates (these distances

13

are stored in the NN heap of p during the previous iterations) su�ces to infer

the impossibility for p to have q as one of its knn set and vice versa. This con-

dition is ensured by the application of a criterion based on the reverse triangle

inequality. Specifically, by looking at the aforementioned cycle, we have that at

the time the current cycle iteration starts, the following holds:

• let p 2 D and q 2 C are a generic point of the dataset and a generic

candidate point, respectively, such that at least one is an active point,

otherwise we would not have any interest in finding their nearest neigh-

bours. We note that while p point may be non-active, the q point is always

initially active since it has been chosen as a candidate. However it may

became non-active during the loop as a result of the comparisons with

other dataset points;

• let q0 2 S be the point of S currently closest to p in its NN heap;

• let d⇤ be the distance of q from its current k-th nearest neighbour (that is,

the farthest of the current k nearest neighbours); d⇤ has been computed

during the previous iterations and stored in the heap NN(q); we note that

d
⇤ is equal to infinite in the case k neighbours of q have not been found

yet;

• let d
⇤⇤ be the distance of p from its current k-th nearest neighbour; d⇤⇤

has been computed during the previous iterations and stored in the heap

NN(p);

We can omit the computation of d(p, q) if the following inequalities are true:

8
><

>:

d(p, q) > d
⇤ =) p /2 {k nearest neighbours of q}

d(p, q) > d
⇤⇤ =) q /2 {k nearest neighbours of p}

(1)

By exploiting the reverse triangle inequality to the triangle having the points

p, q, q
0 as vertices (we refer to this specific triangle, for example preferring it

to its symmetric triangle having vertices on p, q, q
00, where q

00 is the candidate

14

nearest to q, because in this way could use the distance d(q, q0) multiple times),

we derive that

d(p, q) � |d(q, q0)� d(p, q0)| (2)

and then the conditions in (1) are true if the following ones hold

8
><

>:

|d(q, q0)� d(p, q0)| > d
⇤

|d(q, q0)� d(p, q0)| > d
⇤⇤

(3)

Moreover, it is useful add to the above conditions the test to verify that the

involved point (p or q) cannot be non-active; in fact, in this case, it is unnecessary

to find out the true k nearest neighbours of the point at hand. The conditions

in (3) can be rewritten as follows

8
><

>:

NOT active(q) OR |d(q, q0)� d(p, q0)| > d
⇤

NOT active(p) OR |d(q, q0)� d(p, q0)| > d
⇤⇤

(4)

Ultimately, when the conditions in (4) are satisfied, we are can avoid to calculate

d(p, q). The above conditions are still correct during the whole execution of the

current cycle iteration.

We finally note that the described optimized strategy is also suitable to be

used in the case of a distributed scenario, hence defining the FastDistributed-

SolvingSet algorithm, where the reverse triangle inequality works in the local

dataset and guarantees both the e↵ectiveness and e�ciency of the computation.

Drawing the conclusions, we remark that the next result immediately follows

from the above discussion.

Theorem 3.4 The FastSolvingSet (FastDistributedSolvingSet, respectively) al-
gorithm computes the top n outliers of the input dataset D.

3.4. Cost analysis

Not all the distances employed in the cut-condition are necessarily known at

the time the condition is evaluated. In particular, d(p, q0) and d
⇤⇤ are stored in

the NN heap of p, and d
⇤ is stored in the NN heap of q. As for d(q, q0), despite

this distance could have been computed during the previous iterations when q
0

15

was included in the set of candidates, it is not necessarily stored in the current

NN heaps of q and q
0.

Thus, the distance d(q, q0) is computed the first time it is required to evaluate

a cut-condition. We note that if we simply replaced the computation of distance

d(p, q) with the computation of the distance d(q, q0), the above depicted strategy

would not provide any temporal advantage. With this aim, whenever a distance

d(q, q0) is computed, it is then stored in a temporary data structure allowing

constant access time (e.g., an hash table) to be reused in other evaluations of

the cut-condition. Thus, if another dataset point p
0 has q

0 as current nearest

neighbour in its NN heap, then we can evaluate the cut-condition without the

need to compute new distances, by retrieving the value d(q, q0) in constant time

from the above data structure.

Next we analyze the cost of the strategy in terms of distances computed.

Let m be the number of candidates at each iteration (m ⌧ |D|), and let

St denote the solving set at the beginning of the main t-th iteration of the

algorithm.

At each iteration, the worst case number of distances d(q, q0) is given by

O(m · |St|), that is the product of the number of current candidates m and the

number of distinct old candidates q0 stored in the current solving set St. These

distances may allow to save at most O(m · |D \ St|) distances d(p, q).

By ignoring the O(|S|2) distances overall computed at the end of the algo-

rithm between each pair of objects belonging to the solving set, the number of

distances computed is:

• without the cut-condition: m · |D\St| at the t-th iteration, and |S| · |D\S|

in total;

• with the cut-condition:

– in the best case, we have that q
0 is the same for all points p and

that the condition is always satisfied, then only one distance d(q, q0)

is computed for each candidate q and no d(p, q) is computed: m

distances are computed at the t-th iteration, and |S| distances in all;

16

– in the worst case, we have that the q
0s are all distinct and that

the conditions are never satisfied, then all the distances d(q, q0) and

d(p, q) are computed: m · |St| +m · |D \ St| distances are computed

at the tth iteration, and O(|S|2) + |S| · |D \ S| distances in all.

Thus, by using the FastSolvingSet algorithm the best case in terms of distances

saved is |S| · |D \S|� |S|, while the worst case in terms of additional distances is

O(|S|2). It can be concluded that the worst case additional number of distances

required to incorporate the cut-condition in the solving set strategy does not

modify the asymptotic cost of the base algorithm, which is already O(|S|2) +

|S| · |D \ S|. Indeed, in the worst case the optimized algorithm replicates the

computation of the O(|S|2) distances between each pair of solving set objects.

While both the two above depicted bounds are theoretical, in the practice

we note that the probability that two or more dataset objects share the same

nearest neighbour q0 in their NN heaps is not negligible, due to the fact that S

is a small subset of the whole dataset. Moreover, the cut-condition has in real

data a non-negligible probability to be satisfied. We refer to the experimental

section for the analysis of the e↵ectiveness of the above strategy.

We also point out that m · |D \ St| is an upper bound to the number of

distances computed during a single main iteration of the algorithm, since the

algorithm can avoid the computation of the distance d(p, q) even when both p

and q are non-active. In general, the number of such distances is significant.

3.5. Strengths and weaknesses of the approach

The cost analysis of the FastSolvingSet algorithm shows that this approach

can achieve significant savings in terms of distances to be computed in order

to determine the true top outliers. This behavior is particularly advantageous

in the presence of large and high-dimensional data. As far as the dataset size

is concerned, the achievable absolute time savings grow with the number of

objects to be processed. As far as the dataset dimensionality is concerned, the

heaviest the distance cost, the greater the advantages o↵ered by this strategy.

17

Experimental confirmations of these tendencies are provided in the subsequent

Section 4.

The above also clarifies the scenarios in which this strategy may result less

e↵ective. Indeed, in the presence of a limited number of objects the advantages

in terms of computed distances are likely to be counterbalanced by the addi-

tional cost associated with cut-conditions computations. A similar behavior is

expected if distance computations are cheap.

Moreover, another di�culty may be represented by the intrinsic dimension-

ality of the data, that is, roughly speaking, the number of statistically indepen-

dent attributes of the feature space used the represent objects. It is known that

as this number grows, the discrimination between distances becomes more and

more feeble, also known as the distance concentration phenomenon(Angiulli,

2018). This problem a↵ects all the data analysis approaches based on distances

and, hence, also the present one. Nonetheless, it must be said that real data

attributes tend to show correlations and, as such, are less subject to the above

phenomenon, which instead shows its full presence on synthetically generated

independent data.

As for the FastDistributedSolvingSet algorithm, an important property of

the here introduced strategy is that it requires only local per-node evaluations

in that it does not introduce any communication costs or additional calculations

in the supervisor node. Since the basic distributed strategy has both a modest

communication cost and a limited computation for managing the local results, a

key point of the FastDistributedSolvingSet is that it is able to e�ciently process

natively distributed data.

4. Experiments

In this section, we present the experiments performed by using the Fast-

SolvingSet strategy. The section is organized as follows: Section 4.1 describes

the experimental setting and the datasets employed; Section 4.2 and Section 4.3

show the comparison of the sequential and distributed algorithms, respectively.

Finally Section 4.4 discusses the performances of the optimized approach when

18

datasets with increasing data objects number and dimensionality need to be

handled.

4.1. Experimental setting and datasets

To outline the e↵ectiveness of the proposed approach, we evaluated the per-

formance of the algorithms through several experiments on large datasets.

In order to guarantee a great level of generality, the algorithm is written in

Java and supports communication through the Java libraries implementing the

TCP sockets. Further, we conducted our experimentation using a normal-profile

hardware platform; more precisely, we used 20 workstations, each equipped with

an Intel(R) Xeon(R) CPU E5-2670 2.60GHz and 4GB of RAM, interconnected

by an Ethernet network with a nominal rate of 100 Mbit/s.

For the centralized experiments, we mainly considered the following five

datasets:

• G3d is synthetic and contains 500,000 3D real vectors obtained by the

union of the objects of three 3-d normal distributions having di↵erent

mean vectors and the unit matrix as covariance matrix;

• Covtype includes the quantitative attributes of the real data set Cover-

type available at the Machine Learning Repository of UCI (Asuncion &

Newman, 2007); it consists of 581,012 instances of 10 attributes;

• G2d is a synthetic collection of 1,000,000 vectors generated from a 2-d

normal distribution having the origin as mean vector and the unit matrix

as covariance matrix;

• Poker is obtained from the real dataset PokerHands, available at UCI

repository, by removing the class label; then Poker consists of 1,000,000

instances of 10 attributes;

• 2Mass contains data from the NASA/IPAC Infrared Science Archive1

(IRSA). Specifically, the dataset is composed of 1,623,376 instances ob-

1See http://irsa.ipac.caltech.edu/.

19

tained from the database 2MASS Survey Atlas Image Info of the 2MASS

Survey Scan Working Databases catalog. Each instance consists of three

quantitative attributes associated with JHK filters.

For the distributed runs, we used the datasets obtained by randomly parti-

tioning the above centralized datasets. Furthermore, we also built and exploited

some variations of the previous datasets in order to highlight the characteristics

of the algorithms. In particular, these variations have been obtained by increas-

ing the dimensions of Covtype and G2d, or by increasing the number of objects

of G2d.

In the sequel, if not otherwise stated, the values for the detection task param-

eters, are n = 10, k = 10, and m = 100. We considered also other combinations

of values for the above parameters. These additional results are not included

in the paper, since they are similar to the reported experiments and they were

used to assess the expected behavior of the algorithms.

For the sake of brevity, in the sequel we shorten algorithm names as fol-

lows: SolvingSet as SS, FastSolvingSet as FSS, DistributedSolvingSet as DSS,

FastDistributedSolvingSet as FDSS.

4.2. Comparison of sequential versions

In this section we compare FSS with SS. Table 1 reports the number of

the distance computations and the runtime for both the algorithms. It shows

that the FSS guarantees notable reduction concerning the number of computed

distances.

Let dSS and dFSS denote the number of the distances computed respectively

by SS and FSS, then gain(d) = dSS�dFSS
dSS

% denotes the distance computations

gain of FSS with respect to SS. According to the results in the Table 1, gain(d)

ranges from 72.4% (for G2d) up to 95.3% (for Covtype).

This advantage of FSS allows appreciable time savings with respect to SS.

Let rSS and rFSS are the runtime respectively of SS and FSS, then gain(r) =

rSS�rFSS
rSS

% denotes the runtime gain of FSS with respect to SS. From the data

in the Table 1, gain(r) ranges from 11.9% (for G2d) up to 49.3% (for Covtype).

20

dataset
SS FSS

distances runtime distances runtime
G3d 0.47 35.29 0.07 29.21

Covtype 6.91 449.85 0.32 227.94
Poker 7.77 577.65 1.09 365.55
G2d 0.42 45.46 0.12 40.07
2Mass 5.65 322.69 0.36 221.12

Table 1: Distance computations (in billions) and runtime (in seconds).

Specifically we note that the lowest runtime gain values occur in the smallest

datasets (G2d and G3d).

From the results above reported, there is an appreciable di↵erence between

the gain(d) values and the gain(r) ones. This fact mainly depends on two fac-

tors: the former is the foreseeable temporal overhead due to the execution of the

code that implements the optimization in FSS; the latter is due to how compu-

tationally heavy the distance calculation is and hence it obviously depends on

the performances of the available hardware but also on the quantitative charac-

teristics of the dataset at hand.

To exemplify the relationship between gain(r) values and the dataset fea-

tures, we ran specific experiments where a higher distance cost is due to the

increasing number of the data attributes. Table 2 shows the runtimes of the

algorithms executed on datasets obtained by replicating, respectively, 5, 10, 15,

25, and 50 times all the dimensions of Covtype. For example, Covtype*5 de-

notes the variant of Covtype obtained by replicating 5 times its attributes. The

five datasets have a number of attributes ranging from 50 to 500. Furthermore,

these datasets retain by construction the same characteristics of Covtype, that is

they have the same outliers and the SolvingSet-based algorithms discover them

by computing the same number of distances required for the original dataset

(6.91 billions and 0.32 billions, respectively for SS and FSS, as reported in Table

1). Therefore, by observing the results in the above tables, we can state that

(i) the increase in runtime comes from the growing of the number of data di-

mensions since it depends exactly on the greater computational load necessary

21

dataset
runtime

SS FSS
Covtype*5 1084.57 257.82
Covtype*10 1898.86 299.34
Covtype*15 2755.38 340.06
Covtype*25 4406.83 463.17
Covtype*50 8442.24 622.45

Table 2: Runtime (in seconds).

for the calculation of the distances and (ii) the larger the computational cost

associated with distance calculations, the more appreciable the savings o↵ered

by FSS; in fact, the value of gain(r) rises from 49.3% in the case of Covtype up

to 92.6% for Covtype*50.

4.3. Comparison of distributed versions

When the detection task involves huge or distributed datasets and paral-

lel/distributed hardware is available, then the more suitable solution to detect

outliers is the use of the distributed algorithm DSS, as it allows significantly

shorter computing times with respect to the centralized algorithm SS. Thus, we

implemented the optimized distributed version FDSS and ran it to evaluate the

impact of optimization on the distributed algorithm. The key outputs of this

experimentation are summarized in the following.

Figure 2 and Figure 3 show the results obtained when running the distributed

algorithms on a number of computing nodes ranging from 1 up to 20. The plots

display the performances of the algorithms compared to that achieved by the

centralized base version SS.

As for the distance computations, Figure 2 depicts the ratio between the

number of the distances computed by SS and the number of the equivalent dis-

tances computed by each distributed algorithm (DSS and FDSS). The equivalent

distances measure plays in the distributed execution the same role of the num-

ber of distance computations in a centralized run. More formally, the number

of the equivalent distances is defined as
P

i maxj{di,j}, where di,j is the number

of distances computed by node j during the i-th iteration. In other words, the

22

curves showed in Figure 2 represent the distance computations speedup of the

distributed algorithms. We denote it as speedup(d)DSS and speedup(d)FDSS ,

respectively. The results put in evidence that FDSS guarantees always a better

performance than DSS: in fact, DSS (dashed lines) overcomes SS by reaching

a distance computation speedup close to linear with respect to the number of

nodes, while FDSS (solid lines) gets a larger improvement than DSS for all the

datasets. Let gain(speedup(d)) = speedup(d)FDSS�speedup(d)DSS

speedup(d)DSS
% be the distance

computations speedup gain of FDSS with respect to DSS. Then, by considering

the experiments on 20 nodes, the gain(speedup(d)) ranges from 273.0% for

Poker up to 1357.4% for 2Mass.

Concerning the runtime speedups, the values achieved by DSS and FDSS, re-

spectively denoted by speedup(r)DSS and speedup(r)FDSS , are shown in Figure

3. We can note that FDSS outperforms always DSS and the improvement is sig-

nificant in several cases. Let gain(speedup(r)) = speedup(r)FDSS�speedup(r)DSS

speedup(r)DSS
%

be the runtime speedup gain of FDSS with respect to DSS. Then, if we look at

the execution with 20 nodes, for 2Mass and Covtype the speedup(r)FDSS values

are 21.9 and 16.5, corresponding to a gain(speedup(r)) values of about 42.5%

and 24.4% since the speedup(r)DSS values are 15.4 and 13.3.

The experimental behavior of FDSS confirms the overall e�ciency of the

optimization even in parallel/distributed domain. This was not a foregone con-

clusion. First, given that the optimization works locally at each node, it could

have a lower quantitative impact, bacause in some nodes it could save less com-

putations. Second, as the execution is distributed, the part of the algorithm

that is accelerated by the optimization has a less temporal cost. Neverthless,

the above experimental results suggest that other factors supporting the fast

version intervene: the first is that the overhead of the optimization is better

cushioned with respect to the centralized version; the second is that if it is

true that the computational weight of what is accelerated by the optimization

decreases in absolute terms, it is also true that it increases in relative terms

due to the fact that the distribution of the remaining computation carried out

by the algorithm results to be predominant compared to it. Ultimately, the

23

0 5 10 15 20
0

50

100

150

200

250

300

Number of nodes

G3d by DSS
G3d by FDSS
Covtype by DSS
Covtype by FDSS
Poker by DSS
Poker by FDSS
G2d by DSS
G2d by FDSS
2Mass by DSS
2Mass by FDSS

Figure 2: Distance computations speedup.

0 5 10 15 20
0

5

10

15

20

25

30

Number of nodes

G3d by DSS
G3d by FDSS
Covtype by DSS
Covtype by FDSS
Poker by DSS
Poker by FDSS
G2d by DSS
G2d by FDSS
2Mass by DSS
2Mass by FDSS

Figure 3: Runtime speedup.

24

0 5 10 15 20
0

50

100

150

200

250

300

Number of nodes

G2d by DSS
G2d by FDSS
10G2d by DSS
10G2d by FDSS
100G2d by DSS
100G2d by FDSS

Figure 4: Distance computations speedup.

optimization ensures lower runtimes than the base version.

4.4. Analysis for increasing dataset size

In this section, we show that the optimized algorithm can increase its ad-

vantage over the base version when the detection task addresses datasets with

a larger number of objects or with objects characterized by a greater number

of dimensions. We employed two groups of datasets with increasing number of

objects and/or number of dimensions: the first group collects datasets gener-

ated in the same manner as G2d, whereas the second one gathers the datasets

originating from Covtype already described in 4.2.

4.4.1. Analysis for increasing dataset objects number

We used the three datasets G2d, 10G2d, and 100G2d where the last two

have 10 and 100 times the objects as G2d, respectively, and ran the algorithms

by using up to 20 nodes.

Figure 4 shows the distance computations speedup of DSS and FDSS with

respect to SS. As we can see, speedup(d)FDSS has a growing trend larger than

25

0 5 10 15 20
0

5

10

15

20

25

30

35

40

Number of nodes

G2d by DSS
G2d by FDSS
10G2d by DSS
10G2d by FDSS
100G2d by DSS
100G2d by FDSS

Figure 5: Runtime speedup.

speedup(d)DSS by increasing the number of objects. For example, in the case of

20 nodes, gain(speedup(d)) rises of a factor equal to 457.4%, 992.6%, 1272.5%

for G2d, 10G2d, and 100G2d, respectively.

Figure 5 presents the speedup obtained by using the two algorithms. FDSS

is always faster than DSS, although the advantage of the former is not vast as

for the distance computations. Indeed, for 20 nodes, gain(speedup(r)) values

are 9.1%, 13.3%, and 6.7% for G2d, 10G2d, and 100G2d, respectively. This

behaviour can be justified because these datasets are composed of two dimen-

sions and therefore the cost of calculating the distances among the objects is

quite limited. Furthermore, as far as the two largest datasets are concerned,

we observe that the speedup of both algorithms grows faster than any linear

one. This trend is a side e↵ect since the centralized execution required the use

of an extra management of the data in main memory, so that it has slowed to

the point of making superlinear the performances of the distributed algorithms.

This fact contributed to cushion the runtime speedup gain powered by FDSS,

26

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

200

Number of nodes

10G2d by DSS
10G2d by FDSS
10G5d by DSS
10G5d by FDSS
10G10d by DSS
10G10d by FDSS

Figure 6: Distance computations speedup.

in particular for 100G2d for which the impact of the superlinearity is greater.

4.4.2. Analysis for increasing dataset dimensionality

In the first experiment, we employed the three datasets 10G2d, 10G5d, and

10G10d, having the same number of objects, but a di↵erent number of dimen-

sions.

In Figure 6, the distance computations speedup of the two distributed algo-

rithms with respect to the centralized one is drawn. We note that, even in this

case, FDSS allows to notably reduce the computed distances with respect to

DSS: for example, when 20 nodes are used, for 10G2d speedup(d)FDSS is equal

to 193.6 whereas speedup(d)DSS is equal to 17.7, for 10G5d speedup(d)FDSS =

143.0 against speedup(d)DSS = 11.8, and lastly for 10G10d speedup(d)FDSS

is 69.3 whereas speedup(d)DSS takes 14.3. These results correspond to the

following values for gain(speedup(d)): 992, 6%, 1109, 2% and 384, 4% respec-

tively for 10G2d, 10G5d, and 10G10d. We observe that for the 10-dimensional

dataset, the speedup(d)FDSS grows less than the other ones. This tendency is

27

0 5 10 15 20
0

5

10

15

20

25

30

Number of nodes

10G2d by DSS
10G2d by FDSS
10G5d by DSS
10G5d by FDSS
10G10d by DSS
10G10d by FDSS

Figure 7: Runtime speedup.

an e↵ect of the well-known curse of dimensionality problem (Beyer et al., 1999;

François et al., 2007; Angiulli, 2018). In short, by increasing the number of the

dimensions, it is more likely the number of times the cut-condition is verified

to be lower, hence the optimization introduced in FDSS could be less e↵ective.

Nevertheless, we put in evidence that also for 10G10d FDSS shows a distance

computations speedup value that improves by 384.4% that of DSS.

From Figure 7, we can observe that for all the examined datasets the speedup(r)FDSS

always improves that of DSS; in particular, the greatest improvement occurs for

10G5d: for example, if we consider the values obtained with 20 nodes, we have

that gain(speedup(r)) is equal to 13.3%, 29.7%, and 26.2% for 10G2d, 10G5d,

and 10G10d, respectively. This behaviour is clarified by taking into account two

trends. The first, in favor of FDSS, derives from the fact that, by increasing

the number of dimensions, the calculation of the distance between two objects

becomes more expensive, and therefore the computational saving allowed by

FDSS gets more appreciable. The second, in favor of DSS, derives from the

28

fact that, as mentioned above, by increasing the number of dimension, the op-

timization introduced in FDSS reduces its e↵ectiveness. Ultimately, there is a

trade-o↵ between these two trends, but if the number of dimensions is such as

not to trigger the e↵ects of the curse of dimensionality, then FDSS can guarantee

greater e�ciency.

In the second experiment, we used the five variants of Covtype described in

4.2. This experiment is useful to isolate the impact of the distributed optimized

strategy when the increasing of data dimensions does not a↵ect the number of

the distance computations necessary to find out the outliers; in fact, as said

previously, these datasets present the same outliers and each algorithm detects

them computing the same number of distances with to respect the same dataset

partition. Practically, in this case, there is not a grow of computational e↵ort

due to the curse of dimensionality problem. So the outcome we get just depends

on the optimization.

Concerning the computed distances, from Figure 8 we note that the all the

solid/dashed lines overlap, that is the obtained values for each algorithm are

practically independent of the number of attributes, as it was expected. At the

same time we observe that, for each dataset, all the solid lines are above the

dashed ones, which implies that the reduction of distance computations of FDSS

with respect to DSS is always significant. In the case of 20 nodes, we have that

gain(speedup(d)) is about 366%.

As for the runtime, the speedups are shown in Figure 9. We can clearly

see how the advantage of using FDSS is improved by increasing the cost of the

distance calculation due to the increment of the data attributes. For example, we

have, for 20 nodes, for Covtype*5 speedup(r)DSS = 14.8 and speedup(d)FDSS =

30.7, then gain(speedup(r)) = 107%, whereas for Covtype*50 speedup(r)DSS =

16.0 and speedup(d)FDSS = 61.4, then gain(speedup(r)) = 282.7%.

Before concluding, it is also important to underline that if the size of the

dataset is such that it requires a mechanism for retrieving data from the disk,

then the average cost for calculating a distance would be higher, further favoring

the use of FDSS over DSS.

29

0 5 10 15 20
0

10

20

30

40

50

60

70

80

Number of nodes

Covtype*5 by DSS
Covtype*5 by FDSS
Covtype*10 by DSS
Covtype*10 by FDSS
Covtype*15 by DSS
Covtype*15 by FDSS
Covtype*25 by DSS
Covtype*25 by FDSS
Covtype*50 by DSS
Covtype*50 by FDSS

Figure 8: Distance computations speedup.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

Number of nodes

Covtype*5 by DSS
Covtype*5 by FDSS
Covtype*10 by DSS
Covtype*10 by FDSS
Covtype*15 by DSS
Covtype*15 by FDSS
Covtype*25 by DSS
Covtype*25 by FDSS
Covtype*50 by DSS
Covtype*50 by FDSS

Figure 9: Runtime speedup.

30

5. Discussion and Conclusions

The outlier detection problem is critical for many intelligent applications,

such as intrusion or fraud detection, and there is demand for e↵ective solu-

tions in on-line settings and for huge datasets. In the past several researchers,

including the authors of this paper, proposed e�cient solutions based on the

exploitation of massive parallelism. Here we focus on the distance-based outlier

detection problem and propose an optimisation which, exploiting the geomet-

rical properties of the problem, substantially reduces the number of distance

computations with respect to previous solutions.

Experimental analysis allowed us to obtain confirmation about the expected

behaviour of the strategy. Specifically, the reduction in distances computed

has been thoroughly noticeable and the temporal advantages amplified by the

high-dimensionality of the data.

Experiments conducted on distributed environments showed the e↵ective-

ness of the method on natively distributed data, a key requirement for all the

emerging intelligent applications dealing with Big Data.

We note that the SolvingSet computation outputs a reduced version of the

original dataset that can be used for prediction purposes, that is in the semi-

supervised anomaly detection setting. Having a reduced set allows to reduce the

spatial cost associated with storing the reference dataset and the temporal cost

associated with the process of retrieving the nearest neighbours, thus favouring

all the applications where near real-time answer or limited resources represent

strict requirements, as in IoT systems.

With reference to future research directions, the expert and intelligent sys-

tems applications are expected to need a constant improvement in speed and

e↵ectiveness, in order to keep up with increasing amounts and speed of data.

The availability of fast, data driven, unsupervised methods for fast finding of

outliers could be a success factor. We are exploring several directions of improve-

ment of our techniques. The most relevant are listed next: investigating about

a reduction of the gap between the distance computations savings and the asso-

31

ciated temporal savings; introducing approximate solutions, for a best trade-o↵

between quality of the result and time response; designing on-line strategies,

for dealing with incremental or data streaming data; evaluating impact of the

distance measure, for the best quality in various application environments.

References

Angiulli, F. (2018). On the behavior of intrinsically high-dimensional spaces:

Distances, direct and reverse nearest neighbors, and hubness. Journal of

Machine Learning Research, 18 , 1–60.

Angiulli, F., Basta, S., Lodi, S., & Sartori, C. (2013). Distributed strategies

for mining outliers in large data sets. IEEE Transactions on Knowledge and

Data Engineering , 25 , 1520–1532.

Angiulli, F., Basta, S., Lodi, S., & Sartori, C. (2016). GPU strategies for

distance-based outlier detection. IEEE Transactions on Parallel and Dis-

tributed Systems, 27 , 3256–3268.

Angiulli, F., Basta, S., & Pizzuti, C. (2006). Distance-based detection and pre-

diction of outliers. IEEE Transactions on Knowledge and Data Engineering ,

18 , 145–160.

Angiulli, F., & Fassetti, F. (2009). Dolphin: An e�cient algorithm for mining

distance-based outliers in very large datasets. ACM Transactions on Knowl-

edge Discovery from Data, 3 .

Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in large high-

dimensional data sets. In Proceedings of the 6th European Conference on

Principles and Practice of Knowledge Discovery in Databases (pp. 15–26).

Helsinki, Finland.

Angiulli, F., & Pizzuti, C. (2005). Outlier mining in large high-dimensional data

sets. IEEE Transactions on Knowledge and Data Engineering , 2 , 203–215.

32

Asuncion, A., & Newman, D. (2007). UCI machine learning repository. URL:

http://archive.ics.uci.edu/ml.

Bay, S. D., & Schwabacher, M. (2003). Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. In Proceedings

of the 9th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (pp. 29–38). New York, NY, USA.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., & Shaft, U. (1999). When

is ”nearest neighbor” meaningful? In Proceedings of the 7th International

Conference on Database Theory (pp. 217–235). Jerusalem, Israel.

Bhaduri, K., Matthews, B. L., & Giannella, C. R. (2011). Algorithms for speed-

ing up distance-based outlier detection. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data Min-

ing (p. 859–867). San Diego, California, USA.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey.

ACM Computing Surveys, 41 , 1–58.

François, D., Wertz, V., & Verleysen, M. (2007). The concentration of fractional

distances. IEEE Transactions on Knowledge and Data Engineering , 19 , 873–

886.

Ghoting, A., Parthasarathy, S., & Otey, M. E. (2008). Fast mining of distance-

based outliers in high-dimensional datasets. Data Mining and Knowledge

Discovery , 16 , 349–364.

Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques.

(3rd ed.). Elsevier.

Knorr, E., & Ng, R. (1998). Algorithms for mining distance-based outliers in

large datasets. In Proceedings of the 24rd International Conference on Very

Large Data Bases (pp. 392–403). New York City, NY, USA.

33

http://archive.ics.uci.edu/ml

Orair, G. H., Teixeira, C. H., Meira Jr, W., Wang, Y., & Parthasarathy, S.

(2010). Distance-based outlier detection: consolidation and renewed bearing.

Proceedings of the VLDB Endowment , 3 , 1469–1480.

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). E�cient algorithms for mining

outliers from large data sets. In Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data (pp. 427–438). New York, NY,

USA.

Tao, Y., Xiao, X., & Zhou, S. (2006). Mining distance-based outliers from large

databases in any metric space. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (pp. 394–

403). Philadelphia, PA, USA.

Vu, N. H., & Gopalkrishnan, V. (2009). E�cient Pruning Schemes for Distance-

Based Outlier Detection. In W. Buntine, M. Grobelnik, D. Mladenić,

& J. Shawe-Taylor (Eds.), Machine Learning and Knowledge Discovery in

Databases (pp. 160–175). Lecture Notes in Computer Science, vol 5782.

Springer, Berlin, Heidelberg.

34

HIGHLIGHTS

- The paper introduces the FastSolvingSet algorithm to discover outliers.
- This algorithm computes the distance based outliers with no approximation.
- The experiments outline that a large amount of distance computations is saved.
- FastSolvingSet is suitable to be used in parallel/distributed scenarios.

*Highlights (for review)

LaTeX Source Files and figure files (eps format)
Click here to download LaTeX Source Files: source_files.zip

http://ees.elsevier.com/eswa/download.aspx?id=990013&guid=2c28beff-997e-42c2-b05b-2a56938b5c5a&scheme=1

CRediT author statement

Fabrizio Angiulli: Conceptualization, Methodology, Software, Formal analysis, Writing - Original
Draft, Visualization. Stefano Basta: Conceptualization, Methodology, Software, Investigation,
Writing - Original Draft, Visualization. Stefano Lodi: Conceptualization, Methodology, Software,
Writing - Original Draft, Visualization. Claudio Sartori: Conceptualization, Methodology, Software,
Writing - Original Draft, Visualization.

*Credit Author Statement

*Conflict of Interest

	Copertina_postprint_IRIS_UNIBO(2)
	ESWA-D-19-02678_R1-w-ref-to-pub-and-cc

