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Expressions for 〈𝜷𝒁𝒁𝒁𝟐 〉, 〈𝜷𝒁𝑿𝑿𝟐 〉, 𝜸//, and 𝜷// in the molecular frame 

In the following equations, the molecular frame cartesian axes are labelled	𝜂, 𝜒 and 𝜉 while the 

laboratory frames axes 𝑋, 𝑌, 𝑍.  

The components of the hyperpolarizability tensor relevant for the HRS response are: 
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In the EFISHG response, 𝛽// and 𝛾// are also defined as combinations of molecular 

hyperpolarizability tensor elements. 𝛽// is related to the projection of the vectorial 

representation of the 𝛽 tensor, 𝜷, on the permanent dipole moment vector 𝝁.: 

𝛽//(−2𝜔;𝜔,𝜔) = 𝛽// =
/
0
𝝁#∙𝜷
4#

= /
0
∑ 4#$5$

4#'     (S3) 

where the hyperpolarizability vector components are defined as: 

𝛽' =
6
/
∑ (𝛽'77 + 2𝛽7'7)7     (S4) 

Analogously, 𝛾// corresponds to the isotropic invariant of the 𝛾 tensor: 

𝛾//(−2𝜔;𝜔,𝜔, 0) = 𝛾// =
6
60
∑ (2𝛾''77 + 𝛾'77')'7    (S5) 
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Convergence of Molecular Dynamics simulation averages 

Following a sequential MD+QM approach, one ends up with a discrete time series 𝐴(𝑡) of a 

physical property 𝐴 (here typically a function of the hyperpolarizability tensor components) of 

𝑁 values sampled at regular time intervals of period ∆𝑡. Its time average is then 〈𝐴〉 =

6
8
∑ 𝐴(𝑖∆𝑡)8
9:6 , its mean square is 〈𝐴&〉 = 6

8
∑ [𝐴(𝑖∆𝑡)]&8
9:6  and its variance 𝜎& = 〈𝐴&〉 − 〈𝐴〉&.  

Though, how to check whether 𝑁 × ∆𝑡 is long enough? Has equilibrium been reached and what 

is the error associated to averages? 

The mathematical problem of assessing the convergence of discrete time series is an important 

branch of the signal processing discipline. Here we refer the interested reader to textbooks while 

limiting our discussion to simple methods to quickly verify that simulation results are not too 

far from convergence, or in other words, that our time series does not contain strong 

correlations.1 This assessment is important for any simulation observable and particularly for 

quantities, like hyperpolarizabilities, that exhibit large fluctuations in time and space 

coordinates. 

To provide a practical example, we selected as a test system one azobenzene molecule in gas 

phase, and its 𝛽;<= as the physical property of interest. Azobenzene possesses an inversion 

center at its trans equilibrium geometry, hence its second-order NLO response should be strictly 

zero if dynamic effects are not considered. This is indeed the case at equilibrium geometries, 

as shown in Table S1 for DFT and two different force fields, where the small deviations from 

zero originate from numerical approximations (on the atomic Cartesian coordinates, and 

therefore on the symmetry). Adding the contribution of vibrational motions with MD 

simulations gives rise to a small but still sizable HRS signal, with standard deviations as large 

as the signal itself, which in turn are magnified in near resonance conditions with the second 
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harmonic wavelength when the dynamic response is calculated. Notice that, since occasional 

resonances give rise to some very large outliers, robust measures of scale such as the 

interquartile range are more adapted than standard deviation to characterize the shape of the 

distribution (Table S1, dynamic MD results). Always in Table S1, the considerably different 

results recorded with standard GAFF parameters and refined ones highlight the importance of 

the FF parameterization in the result.  

Coming back to the convergence of dynamics values, the crudest test is the visual inspection of 

the trends of cumulative moving averages, e.g. 𝐶𝑀𝐴(𝑡 = 𝑘∆𝑡) = 6
>
∑ 𝐴(𝑖∆𝑡)>?8
9:6 , which should 

reach a plateau at 〈𝐴〉 at long times (for 𝑘 → 𝑁, see e.g. Figure S1, blue line). This is an 

indication that the data set is large enough, i. e. that increasing 𝑁 will not change the value of 

the global average 〈𝐴〉. Obviously, longer times are required for the convergence of 〈𝐴&〉 and 

𝜎&. 

A more quantitative approach consists in computing block averages on 𝑀@ blocks of data of 

increasing size 𝐵 = 1, 2, … , 𝑁. Each block 𝑗 of size 𝐵 has average 𝐴A,@, and for each size, the 

variance of the block averages is evaluated as	𝜎@& =
6
B%
∑ S𝐴A,@ − 〈𝐴〉T

&B%
A:6 . It turns out that for 

large block sizes, 𝜎@/V𝑀@ is a good estimator of the standard deviation of the mean 𝜎〈D〉 (the 

uncertainty in the calculated value of 〈𝐴〉). Therefore, in the plot of 𝜎@/V𝑀@ vs 𝐵, a plateau is 

reached when 𝐵∆𝑡 is much larger than the correlation time, indicating convergence (blue curve 

in Figure S1b). A constant rising trend instead indicates a high level of correlation (red curve 

in Figure S1b), and finally a flat trend is synonym of absence of correlation. Notice that while 

the achievement of convergence of the estimator of 𝜎〈D〉 depends on the physics of the system 

through requirement of the total time span 𝑁 × ∆𝑡 being much larger than the correlation time, 

the specific converged value 𝜎〈D〉	value is statistically dependent on the dimension 𝑁 of the data 
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set and decreases as 1/√𝑁. This observation explains the different plateau values reached in 

Figure S1b for data sets of different dimensions. 

a) b) c) 

   

Figure S1: Convergence analyses of azobenzene 𝛽!"#	obtained from MD trajectories (GAFF model). a) 

instantaneous values, cumulative average and overall average for a set of 𝑁 = 14000 conformations, 

sampled every 10 fs.  b) normalized 𝜎$/*𝑀$ for 𝛽!"#, and in the inset, bare standard deviation of the 

mean 𝜎$, calculated for different block sizes 𝐵 and progressively increasing the dataset size 𝑁. c) 

Autocorrelation functions for different sizes 𝑁 and exponential fit of the decay at short times. 

 

Convergence and correlation times can be more comprehensively assessed from the decay of 

the autocorrelation function 𝐶DD, whose normalized version is given by the ensemble average: 

𝐶DD(𝑡) =
〈𝐴(𝜏)	𝐴(𝑡 + 𝜏)〉 − 〈𝐴〉&

𝜎&  

where the main term 〈𝐴(𝜏)	𝐴(𝑡 + 𝜏)〉 is averaged also over all the available time origins τ. 

Convergence is achieved when a plateau is reached with 𝐶DD(𝑡) = 0 (see Figure S1c). The area 

under the curve is instead the total correlation time, which often is the result of a 

(multi)exponential decay and can be obtained from a corresponding fit. Alternatively, one can 

obtain the full frequency power spectrum 𝑆D(𝜔) by exploiting the Wiener-Khinchin theorem 

(see e.g. Ref. 2): 𝑆D(𝜔) = ∫ 𝐶DD(𝑡)𝑒F9GH𝑑𝑡
I
FI . Though powerful, the computation of 

autocorrelation functions requires a good sampling at all the (unknown and system-dependent) 

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140

β
H

R
S
 (

a
.u

.)

time (ps)

 βHRS(t)
 CMA(t)
 average

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  500  1000  1500  2000

σ
B
 /

 M
B1
/2

 (
a

.u
.)

block size B

 N = 2000
 N = 5000
 N = 14000

 40

 80

 120

 0  50  100

σ
B
 (

a
.u

.)

B

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

C
β

H
R

S
β

H
R

S

time (ps)

 N = 2000

 N = 5000

 N = 14000

 e-t/0.047



 S6 

important frequencies, and consequently a more substantial computational effort with respect 

to the simpler cumulative and block averages. 

 

Table S1. Static and dynamic HRS response of azobenzene (a. u.) calculated at the M06-2X/6-311+G(d) level for 

different geometries. MD simulations were carried out with NAMD3 for a single azobenzene molecule in vacuum 

at 500 K using a Langevin thermostat with a damping factor of 0.2 ps-1. Simulation results are given as of 

average±standard deviation and, between parentheses, median±interquartile range. “min” stands for equilibrium 

geometries obtained by minimization with Gaussian16 or NAMD. GAFF is the well-known molecular mechanics 

force field, while mGAFF is a modified version tailored on azobenzene, in which the equilibrium bond length for 

the azo bond was adjusted from the default value of 1.2710 Å to the B3LYP/cc-pVTZ value of 1.2484 Å, and the 

torsional potentials for CNNC and CCNN dihedrals were also refitted against DFT calculations. Notice that with 

standard GAFF parameters (and B3LYP/cc-pVTZ atomic charges, in this case), the azobenzene equilibrium 

geometry is erroneously predicted with the NN bond lying on a plane perpendicular to the ones of the phenyl rings. 

Structures DFT  

min 

GAFF  

min 

mGAFF  

min 

GAFF  

MD, 140 ps 

mGAFF  

MD, 20 ps 

𝛽!"#, static 0.01 0.35 0.74 1.6 ∙ 10$ ± 1.1 ∙ 10$ 

(1.4 ∙ 10$ ± 1.6 ∙ 10$) 

1.2 ∙ 10$ ± 0.70 ∙ 10$ 

(1.0 ∙ 10$ ± 0.84 ∙ 10$) 

𝛽!"#, dynamic 

(𝜆 = 1064	nm) 

0.03 0.42 1.70 0.26 ∙ 10% ± 2.1 ∙ 10% 

(4.2 ∙ 10& ± 6.5 ∙ 10&) 

0.13 ∙ 10' ± 1.4 ∙ 10' 

(3.0 ∙ 10& ± 2.7 ∙ 10&) 
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Modeling the effects of the surrounding environment 

Besides explicit one-level treatments, which are restricted to small systems (including the 

chromophore with a few neighboring molecules) or to simplified methods (sTD-DFT), the 

surrounding can be described at a lower level of approximation. A very popular choice is the 

use of Polarizable Continuum Models (PCMs)4, that associate the solvent to a structureless 

polarizable medium characterized by, among other parameters, its macroscopic dielectric 

permittivity, which depends on the frequency of the applied field, while apparent surface 

charges on the solute-shaped cavity describe the self-consistent reaction field between the 

solute and the solvent. Alternatively, point charge embeddings (PCEs) treat the surrounding at 

atomic level and consider its electrostatic/polarization effects,5 either when it is a solvent or 

other molecules in more (SAMs) or less (NPs) organized supramolecular structures. Among 

these, the averaged solvent electrostatic configuration (ASEC) scheme,6 where the PC values 

are averages over the different snapshots, present practical advantages for describing the 

dynamical effects associated with the solvent. Further improvements also include the field-

induced effects on the surrounding, adopting polarizable embedding (PE) schemes using either 

induced dipoles7 or fluctuating charges.8 These PE schemes enable to account for both dynamic 

reaction field and effective local field contributions on the NLO responses, as well as for 

specific solute-solvent interactions like H-bonds. 

 

Quantum chemical calculations of b and the choice of (time-dependent) DFT 

Considering the size of the chromophores (with, if necessary, a few surrounding molecules, 

either solvent molecules or counterions) as well as the number of snapshots required for an 

adequate sampling, the range of first principles methods to calculate (electronic) 𝛽 is in practice 

restricted to (TD)-DFT and the related quadratic response methods.9 A key task is therefore to 
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find reliable approximations to the exchange-correlation (XC) energies, potentials, and kernels, 

which can be substantiated by comparisons with high-level wavefunction calculations on 

representative compounds. These reference calculations generally demonstrate that most of the 

electron correlation effects are included when employing Møller-Plesset second-order 

perturbation theory, which gives good agreement with coupled cluster (CC) methods including 

singles and doubles and a perturbative treatment of the triples, CCSD(T).10 These latter methods 

are enacted within the finite field approach, providing only comparisons for static quantities. 

For dynamic responses, as well as the related frequency-dispersion coefficients,11 reference 

calculations at the CC2 (second-order CC), CCSD, and CC3 (third-order CC) levels are scarce, 

usually restricted to much smaller molecules, yet demonstrating the general reliability of CCSD 

with respect to CC3.12 

Owing to the intrinsic nonlocal character of electric field effects and to the fact that the 𝛽 

response of push-pull π-conjugated compounds is associated with excitation-induced/field-

induced charge transfer, the XC functionals should contain a substantial amount of Hartree-

Fock (HF) exchange because it displays the correct −1/𝑟 asymptotic behavior. This condition 

can be (partially) fulfilled using global hybrids, where the amount of HF exchange does not 

depend on the interelectronic distance, provided this amount is large, like in the M06-2X XC 

functional (54%). The latter has been shown to well reproduce both experimental data and MP2 

reference values for a large set of merocyanines.13 Alternatively, range-separated hybrids 

(RSHs) can be employed, where i) the Coulomb operator is split into short- and long-range 

parts by using a smooth function and ii) the short-range part is associated with local/semilocal 

exchange and the long-range part with HF exchange. The value of the range-separating 

parameter, which defines the switch distance between the short- and long-range regions, can be 

either fixed or optimized to satisfy Koopmans’ theorem.14 Several studies demonstrated that 

RSHs perform better than local/semilocal functionals but i) the better reliability with respect to 
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global hybrids is not systematic and, ii) tuning the range-separating parameter does not 

necessarily improve the accuracy on 𝛽, contrary to that of the excitation energies (which is, 

however, of importance because these latter drive the frequency dispersion of 𝛽 

responses).13,15,16 Alternatives consist in using a modified version of the multiplicative scheme,17 

where frequency dispersion of the 𝛽 response is described at the TD-DFT level (with a tuned-

RSH TD-DFT) while the MP2 method is used to evaluate the static 𝛽 responses. Alternatively, 

the TD-DFT excitation energy of the dominant low-energy dipole-allowed excited state can be 

employed within a (damped) two-state approximation to describe the frequency dispersion.18 

A cost-effective alternative to TD-DFT calculations consists in using the simplified TD-DFT 

scheme (sTD-DFT)19 which can be applied to systems containing hundreds or thousands of 

atoms, therefore accounting either for aggregation or explicit surrounding effects. sTD-DFT is 

based on three approximations (simplified equations for two-electron integrals, truncation of 

the excited state manifold, and no exchange-correlation kernel) and requires system-specific 

parameterizations, which can be benchmarked on static and dynamic 𝛽 responses of 

representative compounds. A tight-binding implementation of the sTD-DFT method (sTD-

DFT-xTB), as well as a version restricted to valence molecular orbitals (sTD-DFT-vTB), have 

been also developed to further decrease the computational needs.  

Like any semi-empirical model, sTD-DFT inherits in principle the accuracy of the reference 

method used for the parameterization. The reliability of the sTD-DFT-xTB scheme has been 

recently investigated by its developers for the calculation of the first hyperpolarizabilities of 

three types of systems: push-pull p-conjugated compounds, fluorescent proteins (eGFP, 

SHardonnay, DsRed) and a collagen model. 20  For push-pull systems, sTD-DFT was shown to 

provide dynamic b values very similar to the TD-DFT ones when frequency dispersion effects 

are small, while further developments are still needed to improve the treatment of resonance 
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enhancements. In the case of for the fluorescent proteins, sTD-DFT-xTB was shown to 

outperform standard HF and BHandHLYP calculations with respect to reference MP2/6-

31+G(d) calculations, while it reproduced the trends obtained at the ONIOM MP2:HF level for 

the eGFP chromophore within its first shell of residues. For the collagen model, sTD-DFT-xTB 

was shown to reproduce the bHRS value from ONIOM LC-BLYP:HF calculations to within less 

than 10% error.  

Obviously, the choice of the right level of approximation is also key for computing third-order 

NLO contributions, i.e. second hyperpolarizabilities. It is for instance of particular relevance 

for computing EFISHG responses (γJKL=;M , equation 3 of the main text). When the second-

order response to γJKL=;M  is small, EFISHG becomes governed by its third-order response, 

𝛾//(−2𝜔;𝜔,𝜔, 0). The evaluation of the latter also requires careful description of electron 

correlation and frequency dispersion effects. However, there are fewer studies on the 

performance of DFT XC functionals for calculating 𝛾 of organic chromophores than on 𝛽, 

usually highlighting the importance of including appropriate amounts of HF exchange. 21,22,23 

 

Electronic versus vibrational hyperpolarizabilities 

Within the Born-Oppenheimer approximation, the effects of electric fields on the electronic and 

nuclear motions are considered sequentially rather than simultaneously, leading to the 

decomposition of the whole (hyper)polarizabilities into electronic and vibrational contributions. 

In their works, by employing perturbation theory, Bishop and Kirtman24 showed that the total 

response is divided into i) an electronic contribution involving a zero-point vibrational 

averaging over the vibrational wavefunction (e.g., 𝛽N + Δ𝛽%OPD) and ii) a pure vibrational 

contribution (𝛽QR).  
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The ZPVA corrections present therefore the same type of frequency dependence as the 

electronic term. Few calculations on organic chromophores have shown that Δ𝛽%OPD amounts 

to about 10% of the electronic contribution,25 while for Δ𝛾%OPD there are even fewer 

investigations and they tend to confirm this trend.26 Since these ZPVA contributions are small 

and computationally demanding (at first-order of anharmonicity, cubic force constants have to 

be evaluated, as well as first- and second-order derivatives of the hyperpolarizabilities with 

respect to the vibrational normal mode coordinates), they are usually not calculated for those 

conformers being minima on the potential energy surface (QM and QM-MB approaches of 

Figure 1). By definition, they are not included in the RB-MC calculations. On the other hand, 

the MD configurations sample, albeit classically, the different vibrational degrees of freedom 

and therefore the subsequent DFT calculations of the molecular properties account for their 

zero-point vibrational averaging. 

The pure vibrational contributions have different properties than the ZPVA ones: i) their 

frequency dispersions are small for optical frequencies below the electronic resonances of the 

chromophores while ii) their amplitudes in comparison to the electronic counterpart depend on 

the type of NLO process occurring. This is known as the infinite optical frequency27 or 

enhanced28 approximation. So, on the one hand, for all-optical phenomena (like SHG 𝛽) those 

contributions are small and usually neglected in calculations of the NLO responses of stable 

conformers of chromophores.29 Indeed, the all-optical pure vibrational contributions are 

damped by (𝜔S 𝜔⁄ )&T multiplicative factors (with 𝑛 ≥ 1; 𝜔S and 𝜔 are normal mode 

vibrational frequencies and frequency of the incident light, respectively). On the other hand, for 

NLO processes involving one or more static electric fields, the pure vibrational contributions 

can be of the same order of magnitude as their electronic counterparts and cannot be 

neglected.26,30 This is thus the case of 𝛾(−2𝜔;𝜔,𝜔, 0), of which the dominant pure vibrational 

contribution reads &'[𝜇𝛽]G:.
.  in the infinite optical frequency approximation.27 For typical push-
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pull π-conjugated chromophore, the &'[𝜇𝛽]G:.
.  contribution has been shown to be of the order 

of 10-20% of the static electronic counterpart. At optical frequencies, owing to the enhancement 

of 𝛾N(−2𝜔;𝜔,𝜔, 0) as a function of 𝜔 while &'[𝜇𝛽]G:.
.  can be assumed to be constant, the 

relative amplitude of the pure vibrational contribution decreases. All in all, for compounds with 

non-vanishing 𝜇.𝛽//(−2𝜔;𝜔,𝜔) responses, the 𝛾//(−2𝜔;𝜔,𝜔, 0) contribution to γJKL=;M  is 

small and its pure vibrational contribution even smaller. On this basis, reliable calculations of 

the γJKL=;M  responses do not need evaluating the pure vibrational counterpart. Nevertheless, 

there remains an interest to quantify this simplification, in particular when accounting for 

solvent effects (most of the studies on pure vibrational hyperpolarizabilities of chromophores 

concern isolated species). At the level of the QM and QM-MB approach, calculating the 

&
'
[𝜇𝛽]G:..  term is less cost-effective than calculating the ZPVA contribution to γ. It requires 

evaluating the first-order derivatives of the dipole moment (related to IR intensities) and of the 

first hyperpolarizabilities (related to hyper-Raman intensities) with respect to the vibrational 

normal mode coordinates.  
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Table S2: Recent studies employing sequential MD+QM calculations for evaluating the impact of structural 

fluctuations on the NLO responses of various molecules and aggregates.  

System MD QM Environment Property Reference 
Tetranitrotetra-
propoxycalix[4]arene 

CHARMm projection on 
reference structures 
of known 
INDO/CIS 
hyperpolarizability 

none HRS Kenis J. Am. Chem. 
Soc. 1998, 120, 7875 

Pyridine-pyrimidine and 
hydrazone-pyrimidine foldamers 

MMFF94 TDHF none HRS, 
EFISHG 

Méreau, J. Phys. 
Chem. A 2009, 113, 
6552 

Nitrobenzene/benzene solutions rigid-body Monte 
Carlo 

TDHF PCM, PCE, 
explicit 

HRS, 
EFISHG 

Hidalgo Cardenuto, J. 
Chem. Phys. 2014, 
141, 234104 

Indolino-oxazolindine/diarylethene 
biphotochromic switch 

rigid-body Monte 
Carlo 

TDHF PCM, PCE HRS Quertinmont, J. Phys. 
Chem. A, 2015, 119, 
5496 

Laurdan and C-Laurdan in DOPC 
lipid bilayers 

GAFF TD-DFT (CAM-
B3LYP) 

PCM TPA, 
EFISHG 

Osella, J. Chem. 
Theory Comput. 2016, 
12, 6169 

Disubstituted benzenes Amber 99ffSB-
ILDN 

TD-DFT (CAM-
B3LYP) 

PCE, PE HRS Giovannini, Theor. 
Chem. Acc. 2018, 137, 
74 

Indolino-oxazolidine photoswitches 
+ counterion for POF 

Amber 
(reparameterized) 

TDDFT (M06-2X) PCM HRS, 
EFISHG 

Pielak, J. Phys. Chem. 
C. 2018, 122, 26160 

SAMs based on indolino-
oxazolidine photoswitches 

Amber 
(reparameterized) 

TD-DFT (M06-2X) none SHG Tonnelé, Phys. Chem. 
Chem. Phys. 2018, 20, 
21590 

SAMs based on azobenzene 
photoswitches 

Amber 
(reparameterized) 

TD-DFT (M06-2X, 
CAM-B3LYP)  

none, PCE SHG Tonnelé, Chem. Mater. 
2019, 31, 6759 

Tryptophane-rich peptides and 
gramicidin A 

meta-dynamics/ 
GFN2-xTB and 
conformer 
selection using 
DFT 

sTD-DFT-xTB GBSA 
continuum  

HRS Seibert, J. Phys. Chem. 
B 2020, 124, 2568 

Stilbazolium ion pairs OPLS-AA 
(reparameterized) 

TDDFT (M06-2X) PCM HRS, 
EFISHG 

Ramos, J. Chem. Inf. 
Model. 2020, 60, 4817 

p-Nitroaniline  GAFF MP2 PCE, PE HRS, 
EFISHG 

Hrivnak, J. Phys. 
Chem. A 2020, 124, 
10195 

Dimeric aggregates of stilbazolium 
ion pairs  

OPLS-AA 
(reparameterized) 

TDDFT (M06-2X) IEF-PCM HRS, 
EFISHG 

Ramos, J. Phys. Chem. 
B 2021, 125, 3386 

Di-8-ANEPPS in 
phosphatidylcholine lipid bilayers 

GAFF 
(reparameterized) 

TDDFT (M06-2X) PCE + PCM SHG Bouquiaux, J. Phys. 
Chem. B 2021, 125, 
10195 

Organic nanoparticles based on 
push-pull chromophores 

Amber 
(reparameterized) 

sTDDFT  explicit HRS Lescos, Phys. Chem. 
Chem. Phys. 2021, 23, 
23643 
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