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Abstract
The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo mag-
netometer experiment in particular provided strong evidence for a salty subsurface ocean
beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a
number of tectonic and geodynamic processes may operate today or have operated at some
point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake
formation.

The science objectives of the Europa Clipper mission include the characterization of
Europa’s interior; confirmation of the presence of a subsurface ocean; identification of con-
straints on the depth to this ocean, and on its salinity and thickness; and determination of
processes of material exchange between the surface, ice shell, and ocean.

Three broad categories of investigation are planned to interrogate different aspects of
the subsurface structure and properties of the ice shell and ocean: magnetic induction, sub-
surface radar sounding, and tidal deformation. These investigations are supplemented by
several auxiliary measurements. Alone, each of these investigations will reveal unique in-
formation. Together, the synergy between these investigations will expose the secrets of the
Europan interior in unprecedented detail, an essential step in evaluating the habitability of
this ocean world.
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1 Introduction

1.1 Background

Prior to the space age, knowledge of Europa, or of any of the Galilean satellites, was due to
telescopic studies. The Laplace resonance was known, along with general ideas of Europa’s
size, mass, and surface reflectivity (cf. Alexander et al. 2009). The 1960s and 1970s intro-
duced near-infrared reflectance spectroscopy, with the foundational detection of water ice on
Europa’s surface (Moroz 1965; Johnson and McCord 1971), along with the first spacecraft
observations of the jovian system by Pioneers 10 and 11, in 1973 and 1974, respectively.
The principal contribution of the latter, through low-resolution imaging and Doppler ra-
dio tracking, was the refinement of Europa’s size and mass, and hence its density (nearly
3000 kg m−3; Smith 1978). The Voyager missions that followed the Pioneers across the
asteroid belt employed highly capable, three-axis stabilized spacecraft to revolutionize our
view of Europa and its Galilean siblings, transforming them in a matter of days, in March
(Voyager 1) and July (Voyager 2) 1979, from objects of astronomical curiosity into fully
fledged geological worlds (Smith et al. 1979a,b). Indeed, the modern era of icy (and other)
satellite science was born in that year.

Europa was revealed to be a bridge world between the inner, hyper-volcanically active
Io, and the larger, icy but more heavily cratered Ganymede and Callisto (Lucchitta and
Soderblom 1982). Even though it was the least observed of all the Galilean satellites due to
the specific trajectories chosen (closest approach distance of Voyager 2 was 206,000 km),
Europa was clearly very lightly cratered with a surface rich in water ice. It did not possess
dark surface units similar to those on Ganymede and Callisto, but exhibited instead “discol-
ored,” reddish-brown mottled regions as well as a dense, intricate network of dark lineaments
interpreted as traces of tectonic faults and fractures of uncertain character. The mottling was
seen to be more widespread and intense on Europa’s trailing hemisphere, which came to
be understood as being due to the implantation of sulfur atoms from the Io torus (Johnson
et al. 2004; Carlson et al. 2009); this would not be the last time Europa’s interaction with the
Jovian magnetosphere would prove important. Additionally, the satellite’s topography was
observed to be very smooth at the kilometer scale (Steinbrügge et al. 2020b), certainly much
smoother than that of Earth’s moon. In all, Europa represented an enigmatic but certainly
geologically youthful icy satellite.

In terms of knowledge of its interior, Europa’s radius, volume, and mass were precisely
determined (to <1%; Burns 1986). Given its surface composition and bulk density (consid-
ered to be identical to its uncompressed density), it was natural to think of Europa as being
differentiated, possessing an ice shell overlying a rocky interior. The thickness and physical
state of this ice shell were the subject of several contemporary studies (e.g., Fanale et al.
1977; Cassen et al. 1979, 1980; Ransford et al. 1981; Finnerty et al. 1981; Wilson and Head
1984). It can be noted that the paper of Squyres et al. (1983) was remarkably prescient. This
work took as its cues the concept of tidal heating, similar to that occurring in Io, though
diminished greatly in intensity, and an improved understanding of subsolidus convection
(notably, still a work in progress), to argue for a subsurface ocean beneath a floating ice
crust some ∼15 km thick. This hypothesis could not be proven with the data in hand, but the
idea resonated, especially with the discovery (also in 1979) of deep-sea vent communities



Exploring the Interior of Europa with the Europa Clipper Page 3 of 44 46

on Earth (e.g., Corliss et al. 1979), well below the ocean’s photic zone. For the first time,
serious consideration of extraterrestrial life moved beyond Mars, where it had been parked
since Lowell’s time, to an icy satellite in the outer solar system.

The Galileo mission to Jupiter, the successor mission to the Voyagers, revealed that Eu-
ropa is truly an ocean world. Galileo explored the Jovian system between 1995 and 2003,
and made discoveries that dramatically increased our knowledge of Europa, with important
implications for its habitability. After several passes of Europa, Galileo was able to recover
Europa’s quadrupole gravity term, C22, indicating that Europa was a fully differentiated
body (ice/water shell over rocky mantle over metallic core; Anderson et al. 1998). But it
was the Galileo magnetometer experiment in particular that provided the strongest evidence
for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky mantle
(Kivelson et al. 2000). Galileo also revealed the geological complexity of Europa in full.
The mean age of its sparsely cratered surface was determined to be between 40 and 90 Myr
(Bierhaus et al. 2009), with several features indicating more recent if not ongoing activity,
while numerous geological analyses pointed to heat flows sufficient to maintain a floating
ice shell. Tectonic features were seen to be explainable by stresses arising from the tidal
flexing of an ice shell that is mechanically decoupled from the deep interior (i.e., by a global
subusrface ocean), but not by one that is grounded, and specific evidence has been presented
for wholesale reorientations of the ice shell, by both non-synchronous rotation about the spin
axis and true polar wander — both of which strongly suggest an ice shell decoupled from the
deep interior (see Daubar et al. this collection). In sum, the gravity, magnetic induction, and
tectonic evidence make a powerful case for the reality of Europa’s ocean. While an objective
of the Europa Clipper mission is to confirm the existence of the ocean, the prime focus of
the mission is to characterize this subsurface water layer and understand what it implies for
habitability of this world and others like it.

In detail, Galileo’s Doppler tracking data were used to carry out several analyses of
Europa’s gravity field. Anderson et al. (1998) reported on the analysis of the first four
dedicated flybys (E4, E6, E11, and E12, according to the numbering scheme used by the
Galileo project), combined with ground-based astrometric data and optical navigation ob-
servables from both Voyager and Galileo. By imposing the hydrostatic equilibrium con-
straint (J2/C22 = 10/3 for a relaxed, slowly synchronously rotating, satellite), the degree-2
gravity field coefficients yielded, using the classic Radau-Darwin relation, a mean dimen-
sionless Moment of Inertia (MoI) factor (C/MR2) of 0.346 ± 0.005 (Anderson et al. 1998),
where C is the polar MoI, and M and R are the mass and radius of Europa, respectively. Be-
ing substantially less than the 0.4 value for a uniform sphere, the conclusion was that Europa
must be differentiated. Given the evidence for an icy surface and geophysical arguments for
Europa’s likely internal thermal evolution, it was further concluded that Europa probably
had a metallic core surrounded by a rock mantle and a water–rich outer shell in a liquid or
solid state. An alternate analysis (Jacobson et al. 1999) used Galileo radiometric data up to
flyby E19, together with Earth-based astrometry and Pioneer and Voyager radiometric and
optical data, to produce quadrupole gravity coefficients for Europa values that were smaller
(0.341 ± 0.002) than those published by Anderson et al. (though within the error bars of the
original analysis). More recently, motivated by the new knowledge of the Jupiter system of-
fered by the Juno mission, Gomez Casajus et al. (2021) presented a reanalysis of the Galileo
tracking data acquired during the six best encounters with Europa, in terms of data quality
and availability (flybys E6, E11, E12, E14, E16, and E19). The estimated quadrupole grav-
ity field is compatible with hydrostatic equilibrium without imposing the a priori hydrostatic
equilibrium constraint, as done previously. It should be noted, however, that the uncertainty
in the gravitational flattening J2 is large. Moreover, the obtained C22 coefficient is slightly
larger than in previous papers and yields a normalized mean MoI factor of 0.3547 ± 0.0024.
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The static gravity field measurements are insensitive to the existence, much less the thick-
ness, of Europa’s ocean and to the size and density of any metallic core (these being uncon-
strained by knowledge of the density and MoI alone). Magnetic induction results break the
degeneracy regarding the existence of the ocean. As described in the review by Khurana
et al. (2009), during five close passes by Europa, Galileo detected the electromagnetic sig-
nature of a conducting layer near Europa’s surface, one whose electric currents generated a
dipole field approximately aligned with Europa’s orbit that cancelled out the variable com-
ponent of the Jovian magnetic field, as well as other complex magnetospheric interactions.
This cancelling field was not fixed in position or strength from pass to pass, but appropriate
to the forcing Jovian field, and was too strong to have been due to either Europa’s iono-
sphere (not conductive enough) or a metallic core (too deep). The high conductivity that
would be required of Europa’s upper rock mantle is simply unrealistic, leaving a conduc-
tive global ocean as the logical and most parsimonious explanation. Ongoing analysis (Tyler
2011; Vance et al. 2021a) suggests that flows within the ocean may influence the induction
response, although this is a relatively small contribution from the total induced field.

1.2 Objectives

One of the Europa Clipper’s Level-1 science requirements directly concern the interior of
Europa. This requirement can be mapped to four broad science themes: characterization of
the interior; confirmation of the presence of a subsurface ocean; identification of constraints
on the depth to this ocean, and on its salinity and thickness; and determination of processes
of surface–ice–ocean exchange. Three broad categories of investigation (augmented by sev-
eral auxiliary measurements) are planned to interrogate different aspects of the subsurface
structure and properties of the ice shell and ocean: magnetic induction, subsurface radar
sounding, and tidal deformation. Alone, each of these investigations will reveal unique in-
formation. The synergy among these investigations will expose the structure and dynamics
of the Europan interior in unprecedented detail, an essential step in evaluating the habitabil-
ity of this ocean world.

The science requirements, themes, and planned measurements designed to address them
are presented in Table 1, and the objective to characterize the ice shell and any subsurface
water is discussed in detail below. In Sect. 2, we summarize the science investigations indi-
cated in Table 1, with a focus on the particular measurements that will address the science
questions. For more detail on these investigations, the reader is referred to the individual
instrument papers. In Sect. 3, we discuss how the results of the individual investigations will
be synthesized to reveal key parameters on the interior of Europa: the ice shell thickness,
ocean thickness, and ocean salinity. Finally, in Sect. 4 we summarize how the integrated
interior science will achieve the science objective of the Europa Clipper mission.

1.2.1 Ice and Ocean Properties

Gravity measurements performed by the Galileo spacecraft (Anderson et al. 1998) put con-
straints on the total thickness of the hydrosphere (ice plus ocean), initially estimated between
80 km and 170 km depending on assumptions on the rocky interior structure (Anderson
et al. 1998; Sohl et al. 2002). Recent re-analysis of the Galileo data (Gomez Casajus et al.
2021) indicate that the hydrosphere may be thinner by 20–40 km than previous estimates,
but the relative thickness of the ice shell still remains unconstrained. Geologic and geody-
namic arguments predict that the ice shell thicknesses may range from a few km to >30 km
based on mechanical, thermodynamic, cratering, and other methods (see Billings and Kat-
tenhorn 2005, for a compilation). Although most interior models propose that ice shells
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Table 1 Interior Level-1 objectives and science questions

several tens-of-kilometers thick at present are most probable (Howell 2021), ice shells thin-
ner than ten kilometers cannot be ruled out, particularly if there is strong tidal heating in the
rocky interior (Greenberg et al. 2002; Sotin et al. 2009). Although lateral variations in ice
shell thickness at present are expected (Ojakangas and Stevenson 1989; Tobie et al. 2003;
Nimmo et al. 2007; Ashkenazy et al. 2018), they cannot account for the wide range of thick-
ness estimates published in the literature. This strong variability most likely represents a
record of the ice shell thickness at different geological times (e.g., Figueredo and Greeley
2004; Leonard et al. 2018). Changes in the magnitude of tidal heating due to interactions
with Io and Ganymede is indeed expected to affect the heat budget of Europa and hence the
thermal equilibrium of its ice shell (Hussmann et al. 2002). The interaction between these
moons takes the form of a resonance, in which Io (the innermost body) completes (almost)
exactly four orbits in the time that Europa completes two, and Ganymede completes one.
This 4:2:1 commensurability of the orbits is known as the Laplace resonance and is instru-
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Table 1 (Continued)

mental in maintaining the orbital eccentricity of Io and Europa, such that their orbits do not
circularize, and tidal dissipation can heat their interiors over geologic timescales.

The equilibrium thickness of the ice shell depends not only on the heat production (tidal
and radiogenic heating in the whole interior) but also on how internal heat is transported
through the ice shell, either by conduction or sub-solidus convection (e.g., McKinnon 1999;
Tobie et al. 2003; Moore 2006; Barr and Showman 2009; Allu Peddinti and McNamara
2019; Green et al. 2021; Howell 2021). Europa’s ice shell may have experienced multiple
transitions between conductive and convective states (Mitri and Showman 2005), and it
is unclear which state Europa occupies at present because predominantly convective and
predominantly conductive ice shell solutions can both be used to explain current inferences
and observations (e.g., Howell 2021). The objectives of the Europa Clipper mission include
precise determination of the present-day average ice shell thickness and lateral variations,
together with estimates of the near-surface thermal gradient. Knowledge of each of these
quantities to an uncertainty of ±50% will provide key constraints on the internal heat budget
of Europa and on the potential exchange between the ocean and the surface. Estimates of
past ice shell thickness and thermal structure from geological interpretation will also be
essential to reconstruct the hydrosphere evolution through time.

Magnetometer data from the Galileo mission confirmed the presence of a global saline
liquid ocean underneath the icy shell (Khurana et al. 1998; Neubauer 1998; Kivelson et al.
1997, 1999, 2000). In principle, magnetic induction can provide constraints on the electri-
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cal conductivity, depth beneath the surface, and thickness of the ocean (e.g., Zimmer et al.
2000; Khurana et al. 2002; Schilling et al. 2007; Saur et al. 2010; Seufert et al. 2011). Hith-
erto, estimating these parameters individually has not been possible because the Galileo
magnetometer investigation did not provide the temporal coverage of Europa’s induction re-
sponse sufficient to infer signals at frequencies other than the primary frequency associated
with Jupiter’s synodic period seen in the satellite’s rest frame. For instance, Schilling et al.
(2007) found magnetic field data are best explained by electrical conductivity values of �0.5
S/m with ocean thicknesses of 100 km. However, these numbers are not uniquely diagnostic
because other values rendering the same product of conductivity and ocean thickness agree
with the measurements comparably well. Published estimates bound the electrical conduc-
tivity of the ocean between ∼0.3 and 3 S/m (Zimmer et al. 2000; Schilling et al. 2007), which
results in large uncertainty in salt concentration estimates ranging from about 3 g/kgH2O

(brackish) up to 100 g/kgH2O (hypersaline; Hand and Chyba 2007; Khurana et al. 2009).
Observations at further inducing frequencies, such as those given by the orbital period of
the moon or harmonics of Jupiter’s synodic rotation frequency, or the solar rotation rate will
break the degeneracy between ocean conductivity, ocean thickness, and depth (e.g., Seufert
et al. 2011; Vance et al. 2021a). Even with this additional information, the inferred ocean
thickness and conductivity may have degenerate solutions. In addition to electric conductiv-
ity, the Europa Clipper mission will include identifying upper and lower bounds on ocean
density from static gravity field and tidal monitoring. This will provide further constraints
on the ocean composition and depth (e.g., Vance et al. 2018), complementary to magnetic
induction. Joint inversion of geophysical and geochemical measurements are required to de-
termine if Europa’s ocean is dominated by sulfates or is closer to Earth’s seawater or Ence-
ladus’ ocean water composition, which has major consequences for the thermo-chemical
evolution of Europa and the habitability of its ocean (Zolotov and Kargel 2009). Account-
ing for the temperature and pressure dependence of the electrical conductivity for candidate
ocean compositions can help (Vance et al. 2021a).

Understanding the ice–ocean–floor interaction by identifying constraints on the distri-
bution of salinity is a major science question of the mission (see Table 1, and Sect. 3.4).
Although the presence of salts in tectonic and chaotic terrains (e.g., McCord et al. 1998,
2002; Dalton et al. 2005; Carlson et al. 2009; Shirley et al. 2010; Prockter et al. 2017;
Trumbo et al. 2022) is indicative of material exchange with the subsurface, possibly with
shallow liquid reservoirs that are perched in the ice shell, or with the ocean, estimates of the
salt content in the ice shell remain poorly constrained, and the question of how represen-
tative these compositions are of the underlying ocean is a topic of vigorous debate (Kargel
et al. 2000; Zolotov and Shock 2001; McKinnon and Zolensky 2003; Pappalardo and Barr
2004; Han and Showman 2005; Zolotov and Kargel 2009; Buffo et al. 2018, 2020; Vu et al.
2020; Vance et al. 2021b; Wolfenbarger et al. 2022a). Interpretation of Europa’s ocean com-
position and salt content in the ice shell based on the composition of its surface and ejecta
grains is complicated by the speciation of surface salts due to freezing/refreezing process
within the shell (Vu et al. 2016, 2020) and by radiation (e.g., Hand and Carlson 2015), as
well as potential contamination by Io’s sulfur (see Becker et al. this collection, Sect. 6).
Detection of salt-rich layers and brine lenses, if present inside the ice shell by ice penetrat-
ing radar techniques (Blankenship et al. 2009; Pettinelli et al. 2015; Schroeder et al. 2016;
Kalousová et al. 2017), potentially correlated with fresh salt-rich deposits at the surface, will
be essential to evaluate the salt content and how brine formation and migration contributes
to the ice–ocean exchange processes in a variety of geodynamical contexts (e.g., Schmidt
et al. 2011; Kalousová et al. 2016; Steinbrügge et al. 2020a; Chivers et al. 2021; Hesse et al.
2021). The bulk salinity of the ice shell will influence the strength of a radar reflection from
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a eutectic interface by governing the amount of thermodynamically stable brine (Culha et al.
2020). Large, saline reservoirs, if present, will represent strong radar reflectors and may also
be potentially identified from magnetic induction signals and local gravity anomalies. Such
measurements, combined with geophysical constraints on ice shell thickness, thermal struc-
ture, and oceanic composition mentioned above, will put fundamental constraints on the salt
cycle on Europa and the chemical evolution of its hydrosphere.

1.2.2 Deep Interior

Our understanding of the deep interior of Europa comes primarily from Europa’s density
and gravitational quadrupole coefficients inferred from the Doppler shift of Galileo’s radio
communication signal during Europa flybys (Anderson et al. 1998; Sohl et al. 2002; Schu-
bert et al. 2009) and from theoretical modeling. As illustrated in Fig. 1, Europa is thought to
have differentiated into a metallic core, a silicate mantle, and a hydrosphere (Schubert et al.
2009). However, Europa’s bulk density and moment of inertia are the only gravitational
parameters that constrain the density and radius of each layer, so the problem is undercon-
strained. Furthermore, the inversion of the C22 coefficient inferred from Galileo data to yield
an estimate of Europa’s moment of inertia has in most studies relied on the assumption that
the moon is relaxed to hydrostatic equilibrium. The actual value of Europa’s moment of
inertia may be quite different, an uncertainty that the Europa Clipper gravity measurements
will address (see Mazarico et al. 2023).

Although a two-layer model consisting of a homogenous rock/metal core, topped with
a water/ice layer, could fit the existing gravity data, this would require the inner layer to
have a density higher than 3650 kg m−3 (Gomez Casajus et al. 2021). This value is higher
than the bulk density of nearby Io, ∼3528 kg m−3 (Schubert et al. 2009). However, it is
worth remembering that Io’s interior is far warmer than Europa’s, and Io has lost much of its
lighter volatiles. An enrichment in dense metallic phases relative to Io is unlikely, however,
considering the origin of the Galilean moons (Becker et al. this collection). Furthermore,
radiogenic heating in the silicates is expected to be sufficient to raise Europa’s interior tem-
peratures enough to cause differentiation leading to the formation of a metallic core such as
that found inside Ganymede (Greeley et al. 2004; Schubert et al. 2004, 2009). Sohl et al.
(2002) estimated that the core radius may range between 0.1 and 0.45 × Europa’s radius
depending on the assumed hydrosphere thickness and averaged mantle/core density. Recent
re-analysis of the Galileo data (Gomez Casajus et al. 2021) suggests a thinner hydrosphere
and less dense interior than initially estimated; the size, state, and even the existence of a
metallic core on Europa could not be conclusively identified by previous studies. Improved
and independent determination of J2 and C22 by Europa Clipper, as well as the pole obliquity,
will yield more accurate constraints on Europa’s density profile, although large uncertain-
ties will remain due to the large space of possible properties describing the core and mantle
materials.

The size and composition of Europa’s rocky mantle is unknown. Based on the bulk den-
sity and moment of inertia constraints, the rocky mantle could comprise either hydrated or
dehydrated silicates, or mixture of the two (Schubert et al. 2009). However, modest levels of
heating (radiogenic or tidal) could dehydrate the mantle (Greeley et al. 2004; Schubert et al.
2009), especially if it is not convecting, unless a process exists to move water back into Eu-
ropa’s rocky mantle (such as plate tectonics). The mantle is therefore expected to be mostly
dehydrated except potentially in the uppermost 25-50 km of the mantle where hydrothermal
circulation may occur (McKinnon and Zolensky 2003; Vance et al. 2007; Travis et al. 2012).
A cooler thermal evolution pathway is possible if a large fraction of the potassium (and thus



Exploring the Interior of Europa with the Europa Clipper Page 9 of 44 46

Fi
g.

1
T

he
le

ft
-h

an
d

si
de

of
th

e
fig

ur
e

sh
ow

s
a

cu
ta

w
ay

vi
ew

of
E

ur
op

a’
s

in
te

ri
or

.F
ro

m
th

is
im

ag
e

it
is

ev
id

en
tt

ha
td

es
pi

te
th

e
su

rfi
ci

al
ap

pe
ar

an
ce

,E
ur

op
a

is
no

tt
ru

ly
an

ic
y

m
oo

n.
R

at
he

r,
it

is
a

ro
ck

y
bo

dy
co

ve
re

d
in

ic
e.

T
he

ic
e

sh
el

la
nd

un
de

rl
yi

ng
oc

ea
n

fo
rm

a
th

in
(∼

10
0

km
th

ic
k)

ve
ne

er
of

vo
la

til
es

ov
er

ly
in

g
a

ro
ck

y
m

an
tle

an
d

m
et

al
lic

co
re

.
O

n
th

is
gl

ob
al

sc
al

e,
th

e
ke

y
ph

ys
ic

al
pr

oc
es

s
th

at
oc

cu
r

ar
e

th
e

tid
al

di
ss

ip
at

io
n

in
th

e
lo

w
er

ic
e

sh
el

l
an

d
m

an
tle

,
zo

na
l

an
d

m
er

id
io

na
l

flo
w

s
in

th
e

oc
ea

n,
an

d
th

e
in

du
ce

d
m

ag
ne

tic
fie

ld
ca

us
ed

by
th

e
bo

dy
’s

pa
ss

ag
e

th
ro

ug
h

Ju
pi

te
r’

s
va

ri
ab

le
m

ag
ne

tic
fie

ld
(s

ho
w

n
in

th
e

ba
ck

gr
ou

nd
).

L
oc

al
ly

,m
os

t
of

th
e

im
po

rt
an

t
fe

at
ur

es
an

d
pr

oc
es

se
s

oc
cu

r
in

th
e

ic
e

sh
el

l
an

d
oc

ea
n,

sh
ow

n
in

th
e

in
se

t.
H

er
e,

th
e

ic
e

sh
el

l
is

sh
ow

n
no

t
as

ho
m

og
en

eo
us

,b
ut

hi
gh

ly
va

ri
ab

le
.T

he
co

ld
br

itt
le

ic
e

ne
ar

th
e

su
rf

ac
e

lie
s

on
to

p
of

w
ar

m
er

,
du

ct
ile

m
at

er
ia

lb
el

ow
th

at
is

he
at

ed
un

ev
en

ly
by

tid
es

.T
hi

s
m

ay
dr

iv
e

su
bs

ol
id

us
co

nv
ec

tio
n

in
th

e
ic

e
sh

el
lr

es
ul

tin
g

in
up

w
el

lin
g

oc
ea

n
ic

e
di

ap
er

s,
fo

rm
at

io
n

an
d

re
-f

re
ez

in
g

of
m

el
tl

en
se

s,
an

d
di

ur
na

ls
tr

es
se

s.
T

he
se

pr
oc

es
se

s
m

an
if

es
ta

tt
he

su
rf

ac
e

in
th

e
fo

rm
of

cy
cl

oi
ds

,d
ou

bl
e

ri
dg

es
,a

nd
ch

ao
s

te
rr

ai
ns



46 Page 10 of 44 J.H. Roberts et al.

40K) originally in the rock was leached during an early phase of aqueous alteration (Engel
et al. 1994; Castillo-Rogez and Lunine 2010).

If an early episode of heating resulted in partial melting of the mantle, the formation
of a silicate crust is expected, partitioning radiogenic material into the crust and limiting
present day heat sources in the rocky mantle (Moore and Hussmann 2009; Běhounková
et al. 2021). The likelihood of present-day activity in Europa’s rocky mantle is of great
interest, because hydrothermal activity at the seafloor could provide a source of energy for
life (Hand et al. 2009; Vance et al. 2016) and enhance mixing within the ocean that would
promote rock-ocean-ice exchange necessary for redox reactions (e.g., Soderlund 2019). If
the top of Europa’s silicate crust is thermally and mechanically similar to the surface of Io,
the expected mantle heat flux would be roughly 100 mW m−2 (Greenberg et al. 2002) and
would produce a conductive ice shell roughly 6 km thick. On the other hand, a cold, stiff
mantle would produce no tidal heat. In reality, thermal-orbital coupling could have resulted
in Europa oscillating between hot and cold mantle states (Hussmann and Spohn 2004). Still
more recent work (Běhounková et al. 2021) demonstrated that a combination of radiogenic
heating and tidal dissipation could result in magma production throughout much of Europa’s
history.

Although these models are instructive, they are not conclusive. No observational evi-
dence exists that supports or refutes the existence of a source of heat or fresh rock at Eu-
ropa’s seafloor. The objectives of the Europa Clipper mission include the acquisition of a
combination of geophysical measurements (e.g., gravity data, Mazarico et al. 2023), chem-
ical analysis, and thermal images of recently active areas on Europa’s surface and any asso-
ciated plumes (see Becker et al. this collection), which may imply present-day activity on
Europa’s seafloor and/or a warm interior.

1.2.3 Exchange Processes

Heat flow into the ocean from the seafloor combined with heat loss through the overly-
ing ice shell is expected to drive thermal convection globally in the ocean, modulated by
compositional buoyancy associated with salinity gradients that may enhance the vigor of
convection (positive gradient) or have a stabilizing effect (negative gradient) (e.g., Soder-
lund et al. 2014; Ashkenazy et al. 2018; Soderlund 2019; Soderlund et al. 2020; Wong et al.
2022). Ocean flows may also be driven mechanically through tides, libration, and/or pre-
cession (e.g., Lemasquerier et al. 2017) and electromagnetically through interactions with
Jupiter’s magnetosphere (Gissinger and Petitdemange 2019). This global ocean circulation
may be influenced locally by hydrothermal plumes rising above seafloor hotspots, if any
(e.g., Goodman et al. 2004), or potentially the release of brines from the ice shell due to
englacial melting events (e.g., Nimmo et al. 2002; Sotin et al. 2002; Schmidt et al. 2011)
and associated draining to the ocean. By modulating the heat flux at the ice–ocean interface,
the oceanic circulation is expected to influence the interface evolution and hence the ice
shell dynamics. In return, melting and freezing along the ice–ocean interface should create
salinity gradients, which may drive meridional currents if the ice thickness varies from pole
to equator (Zhu et al. 2017; Ashkenazy et al. 2018). Vertical gradients in salinity, for exam-
ple due to changing ice thickness, may lead to double-diffusive convection within the bulk
ocean of potential interest for creating energetic niches for life (Vance and Goodman 2009).
However, numerical models indicate that such interfaces (also known as thermohaline stair-
cases) dissipate relatively quickly, possibly within 10 kyr after the source/sink for salinity
disappears (Travis et al. 2012), though other circumstances may prolong a double-diffusive
state for geologically significant periods (Wong et al. 2022).
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The objectives of the Europa Clipper mission include acquiring knowledge of the global
exchange processes between the ocean and ice shell, and on the pattern of oceanic heat flux
as has been done for Titan and Enceladus (Kvorka et al. 2018; Čadek et al. 2019). Estimates
of lateral variations in ice–ocean interface depths, using gravimetric, topographic, magnetic,
and radar sounding techniques, will be essential towards identifying these constraints. Radar
observations may also be able to detect regions of accreted marine ice to further test ocean
circulation and heat flow hypotheses (e.g., Blankenship et al. 2009). Preliminary assessments
further suggest that oceanic flows may be constrained from the magnetic induction response
(Tyler 2011; Vance et al. 2021a), which would put key constraints on the oceanic dynamical
regime.

The variety of landforms observed on Europa’s surface are specific records of the internal
evolution processes and lithospheric structure at the time of formation (e.g., Doggett et al.
2009; Nimmo and Manga 2009; Schenk and Turtle 2009). Each type of landform (ridges,
bands, pits, domes, chaos, impacts, etc.) implies specific local stress and thermal conditions
in the ice shell. The objectives of the Europa Clipper mission include comprehensive map-
ping of the surface landforms and understanding of the tectonic and cryovolcanic history
of Europa. The interpretation of individual landforms using both surface/subsurface obser-
vations and theoretical models (e.g., Howell and Pappalardo 2018) can provide insights on
the local mechanical structure of the ice shell as well as on the geodynamical process at
their origin. Global stratigraphy (e.g., Figueredo and Greeley 2004; Doggett et al. 2009),
using much better coverage than was achieved with Galileo, will also allow for a detailed
assessment of tectonic resurfacing and chaos terrain formation sequences, essential to re-
constructing the geodynamical history of the ice shell and the implications for exchange
processes (see Daubar et al. this collection, for more details). In particular, detailed map-
ping and resulting tectonic reconstruction may reveal areas of surface material recycling
(e.g., Mével and Mercier 2005; Kattenhorn and Prockter 2014; Culha et al. 2014). Detailed
geophysical and geological investigation of such identified areas will permit testing whether
crustal recycling zones on Europa mostly result from cold Earth-like subduction processes
(Kattenhorn and Prockter 2014; Johnson et al. 2017) or are rather associated with inter-
nal melting processes and brine drainage (e.g., Vance et al. 2021b); and whether sills can
explain the origin of domes and lenticulae (Michaut and Manga 2014). Understanding the
context of surface recycling on Europa is essential to constraining the dynamics of the ice
shell (Howell and Pappalardo 2019) and to assessing the amounts of surface material that
might be recycled in the ocean (e.g., Vance et al. 2016). Maps of surface temperature vari-
ation from infrared surface imaging (E-THEMIS), combined with geomorphology deter-
mined from visible imaging (EIS) and compositional variation (MISE) may also indicate
the relative age of surface features and inform turnover and exchange rates (Hayne et al.
2017) (see Becker et al. this collection, for more details). Detection of shallow structures
and liquid water and brines by ice-penetrating radar could support evaluation of hypothe-
sized surface–ice exchange mechanisms (Blankenship et al. 2009), and spatial variation in
sounding depths may differentiate zones of relatively colder (downwelling) ice indicative of
convection (McKinnon 2005; Kalousová et al. 2017).

The origin of the putative eruptive surface plumes identified in Hubble observations
(Roth et al. 2014; Sparks et al. 2016, 2017; Giono et al. 2020) and in Galileo magnetometer
and plasma wave data (Jia et al. 2018) is unclear. If Europa’s plume material originates in
the subsurface ocean, this would suggest a complicated, subsurface plumbing system. As
stress states in the ice shell may not allow for fractures to extend directly from the surface to
the subsurface ocean, plume material may transfer to the surface in a series of fractures that
are connected to one or more discrete fluid pockets in the ice shell (Muñoz-Iglesias et al.
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2014). Such a configuration would be similar to terrestrial magmatic systems, in which
magma is rarely transported from its source to the surface for eruption along a single frac-
ture or path (kimberlite pipes being a notable exception). Rather, terrestrial magmas travel
a somewhat convoluted path in which fractures connect the magma source to many small
magma pockets perched at increasingly shallow depths in the crust en route to the surface
(e.g., see Cashman et al. 2017, and references therein). Plumes may also have relatively
shallow sources (Daubar et al. this collection), such as subsurface lenses below chaos ter-
rains (e.g., Schmidt et al. 2011) and associated with cooling impact craters (Steinbrügge et
al. 2020a). An objective of the Europa Clipper mission is to search for and investigate these
plumes in order to constrain the properties of their source(s). The Europa-UltraViolet Spec-
trometer (Europa-UVS) will conduct a plume search. The mass spectrometer (MASPEX)
will constrain the timing and scale of chemical fluxes in the mantle-ocean-ice–shell system.
Sampling of plumes and fresh surface deposits (by MISE, Europa-UVS, and SUDA) can
be used to evaluate potential ocean compositions. Although there are clear implications of
the potential plume sources for interior science, the focus of the plume investigation is on
current activity. This is described in more detail in Vance et al. (this collection).

2 Investigations

The science questions for Europa’s interior science are highly interdisciplinary and can-
not be answered with a single investigation. Fortunately, Europa Clipper carries a highly
diverse payload of ten instruments plus a gravity and radio science investigation enabled
by the telecommunications subsystem that target the objectives in an integrated manner.
Three investigations in particular are focused on interior science, making observations that
will constrain the ice shell thickness, ocean thickness, and ocean salinity, as well as illumi-
nating the exchange processes between the ocean and the surface. The magnetic induction
experiment using the Europa Clipper Magnetometer will result in coupled solutions for the
thickness and the conductivity of the subsurface ocean. The sounding experiment using the
Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) instrument
will constrain the thickness of the ice shell, and map the vertical subsurface structure, as
well as constrain its tidal deformation. Observations of the tidal deformation of the ice shell
from the gravity and radio science (G/RS) investigation will recover the combined strength
and thickness of the ice shell. These three investigations are supported and supplemented by
several other investigations from the entire payload that will be used to resolve ambiguities
and degeneracies.

In addition to the instrumentation, the investigations are enabled by Europa Clipper’s
unique trajectory. Rather than placing the spacecraft in orbit about Europa, where it would
be subject to an inhospitable radiation environment, it enters a highly eccentric orbit about
Jupiter, and spends most of its time at a larger (and safer) distance from the planet. The
Europa Clipper will execute 49 close flybys of Europa itself, with closest approach distances
less than 1000 km, and sometimes within 25 km of the surface. This tour design has multiple
advantages over an orbital campaign. Less propellant is needed to enter a Jupiter orbit than
an orbit about Europa itself. The spacecraft is able to make several encounters much closer
to the surface than could be safely done while in orbit. By spending most of its time outside
the high radiation environment near Jupiter, the mission lifetime is extended substantially;
the baseline tour is 4.3 years long. Finally, the investigations will be able to characterize the
ambient Jovian plasma and magnetic environment far from Europa, so that the observations
at Europa can be placed in the context of the larger system. The tour has been designed to
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Fig. 2 Map of Europa from USGS (Image source: https://astrogeology.usgs.gov/maps/europa-voyager-
galileo-global-mosaics) with Europa Clipper groundtracks and closest approach points for the baseline tra-
jectory at the time of publication (Rnd7_T1_E49)

provide robust geographic coverage. An example of the distribution of close flybys is shown
in Fig. 2. For more details on the mission design, please see the Mission System Overview
paper in this collection.

In this section, we summarize the key contributions of each investigation to the interior
science, and in the following section we discuss how the disparate datasets are synthesized
into a coherent story about Europa’s interior.

2.1 Magnetic Induction

A magnetic field that varies in time generates a curling electric field in accordance with
Maxwell’s law of induction. In the presence of a conducting material such as a salty ocean,
this curling electric field will drive electric currents that generate a secondary, induced mag-
netic field that opposes the variation in the external field. When the body has spherical sym-
metry and the oscillating external magnetic field is uniform across it, the induced magnetic
field consists of a dipole oscillating in response to the driving field (e.g., Saur et al. 2010).
The magnitude and phase delay of the induced field are determined both by the radial con-
ductivity structure of the body and the frequency of the oscillating external field, providing
a means to probe Europa’s interior. For example, a perfectly conducting layer generates the
maximum induction response, fully excluding the time-variable field from the interior of the
conductor. The maximum induction amplitude therefore occurs at the pole of the induced
dipole and is equal to the amplitude of the oscillating external field. In this idealized case,
the observed induction field reveals the distance from the spacecraft to the surface of the
conducting layer, enabling determination of the thickness of the non-conducting ice shell.
On the other hand, measuring the induced field from a perfect conductor provides no infor-
mation on the thickness of the conducting, liquid water layer. In contrast to this idealized
case, actual oceans have finite conductivity and yield smaller induction amplitudes with a
phase delay between the external and induced fields, but the dependence on Europa’s internal
structure is generally not unique—many plausible oceans can produce the same induction

https://astrogeology.usgs.gov/maps/europa-voyager-galileo-global-mosaics
https://astrogeology.usgs.gov/maps/europa-voyager-galileo-global-mosaics
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signature. To break this degeneracy and characterize the subsurface ocean, Europa Clipper
will observe the induced response at multiple frequencies.

The external magnetic field at Europa varies at multiple frequencies as a result of Jupiter’s
rotation, Europa’s orbital motion, and the interaction of the Jovian magnetosphere with the
solar wind (e.g., Seufert et al. 2011). The largest variation (∼200 nT) occurs at the 11.2 h
synodic period, principally due to the 9.6° tilt of Jupiter’s dipole axis with respect to its spin
axis. The Galileo spacecraft recorded the induced dipole produced in response to this varia-
tion (e.g., Khurana et al. 1998; Kivelson et al. 2000), but owing to the degeneracy described
above, subsequent work has only succeeded in bounding the possible ocean parameters (e.g.,
Hand and Chyba 2007; Khurana et al. 2009). However, variations at the orbital (85.2 h, ∼20
nT) and second harmonic of the synodic period (5.6 h, ∼20 nT) are expected to produce ap-
preciable induction responses, which can break the single-frequency degeneracy, revealing
a unique combination of ice shell thickness, ocean thickness, and ocean conductivity that
fits the data (Khurana et al. 2002; Seufert et al. 2011; Vance et al. 2021a). The geometry of
the Jovian magnetic field and the induced field at Europa are illustrated in Fig. 3.

These measurements will be performed by the Europa Clipper Magnetometer (ECM),
which consists of three fluxgate magnetometers mounted on an 8.5-m-long boom. Over the
course of the mission, ECM measurements of Jupiter’s magnetic field far from Europa (�3
REuropa) will be combined with data taken during close approaches to determine the driving
and induced field amplitudes for at least two frequencies with a precision of ±1.5 nT. For the
expected driving field amplitudes and plausible ocean structures, this is sufficient to charac-
terize Europa’s internal structure (see Biersteker et al. 2023; Kivelson et al. this collection).
Comparing ECM measurements with more complex models of Europa’s internal structure
could, in principle, offer a more detailed description of the Europan ocean. These models
may include complex radial conductivity structure informed by the bulk properties, geo-
physics, and laboratory measurements of materials under pressure, the magnetic signature
of ocean currents (Tyler 2011; Vance et al. 2021a), and the effect of asymmetry in the over-
lying ice shell (Styczinski et al. 2022). An even more granular picture of Europa’s interior
can be obtained by combining magnetometry with complementary measurements obtained
by the gravity investigation, which can constrain Europa’s density structure, and REASON’s
radar sounding, which can bound the ice shell thickness.

Fruitful analysis of the induced magnetic fields from the interior of Europa, however,
requires constraining other contributions to the magnetic field perturbations around Europa.
These contributions can stem from magnetic field perturbations in the magnetospheric field
of Jupiter, magnetic fields caused by the interaction of magnetospheric plasma with Europa’s
ionosphere, and induced magnetic fields in Europa’s ionosphere (Schilling et al. 2007; Saur
et al. 2010). Consequently, observations of the magnetic field near Europa must be corrected
for these effects. The distribution of plasma near Europa is spatially and temporally variable
and is not well-constrained by existing measurements or models. Few ionospheric observa-
tions exist—just ten electron density profiles from Galileo radio occultations (Kliore et al.
1997; McGrath et al. 2009). Due to the temporal variability of the interaction, the plasma
properties need to be determined during the times of the Europa flybys.

Measurements and modeling by Europa Clipper will provide these required corrections
for plasma effects. During each flyby, the PIMS instrument (Westlake et al. this collec-
tion) will provide the plasma density, velocity and temperature moments for low-energy
ion species and electrons, while ECM monitors the ambient magnetic environment. Each
flyby transects the plasma interaction region, sampling the upstream environment, Alfvén
wing structure, and Europa’s ionosphere. These measurements serve as the basis for inputs
into multi-fluid (ions and electrons) magnetohydrodynamic (MHD) models, such as that
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Fig. 3 Geometry of Jovian magnetic field and induced magnetic field at Europa. (Top) As Jupiter rotates,
the magnetic field in Europa’s frame varies at the 11.2 hour synodic period of Jupiter (i.e., the time re-
quired for Jupiter to return to the same geographic longitude as observed from Europa) due to the 9.6° tilt
of Jupiter’s magnetic axis with respect to its rotation axis. (Bottom left) Because the synodic variation is
primarily confined to Europa’s orbital plane, the induced magnetic moment, and the associated dipolar field,
rotates approximately in Europa’s equatorial plane at the 11.2 hour period. (Bottom middle) Europa’s orbital
eccentricity causes additional variation in the magnetic field at its 85 hour orbital period, which generates an
induced magnetic moment, and associated dipolar field, approximately aligned with or against Europa’s spin
axis. (Bottom right) The total magnetic field at Europa consists of Jupiter’s strong time-varying magnetic
field and Europa’s induced dipolar magnetic field at multiple frequencies. Not pictured is the magnetospheric
plasma corotating with Jupiter near the magnetic equator, which sweeps past the moon from the trailing side
and complicates the interpretation of the measured magnetic field

of Harris et al. (2021), which self-consistently simulate the plasma interaction at Europa.
The magnetic perturbation arising from the moon-plasma interaction can be estimated from
these MHD models and subsequently subtracted from the ECM data to isolate the induc-
tion signal. In addition to PIMS, REASON will measure the total electron content along the
line of sight between the spacecraft and the surface of Europa (Grima et al. 2015; Scanlan
et al. 2019; Peters et al. 2020), while radiometric Doppler observations made by the space-
craft’s radiofrequency subsystem during occultations of the Earth by Europa will result in
total electron counts along the line of sight (Park et al. 2011; Mazarico et al. 2023). The ag-
gregated electron density measurements from REASON and ion density from PIMS, when
compared to the ionosphere simulated by the MHD model, provides a means of model val-
idation. For a more in-depth description of how plasma effects will be accounted for in the
magnetometer data see Kivelson et al. (this collection).

2.2 Subsurface Sounding

Cold ice is largely transparent at radio frequencies, a fact that has allowed for the radar
sounding of ice masses on Earth and Mars (Schroeder et al. 2020; Picardi et al. 2005). De-
rived from this heritage, the REASON radar sounder on Europa Clipper will characterize the
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vertical structure of the ice shell and surface–ice shell-ocean exchange, constrain the depth
of the ice–ocean interface, and determine the structure of the near-surface (Blankenship et al.
2009; Daubar et al. this collection). We address the first three goals here.

Unlike other investigations on Europa Clipper, REASON is an active remote sensing
system, which generates its own radio-frequency photons. Energy must propagate out and
back through space, the surface, and into the subsurface medium, and returning echoes are
recorded. Given the large dimensions of radio wavelengths (1–100 m for the HF and VHF
bands), REASON must record individual echoes coherently (i.e., preserve phase and ampli-
tude information) to meet resolution requirements. After the data are downlinked, these
echoes are summed on the ground through a process known as coherent integration or
“stacking”, which increases the signal to noise ratio (Peters et al. 2005).

Radar waves reflect from interfaces marking contrasts in dielectric permittivity, but they
are attenuated by the electrical conductivity of the ice. For subsurface echoes, an ice–water
interface will reflect over 75% (−1 dB) of incoming energy, while a cold salt–ice interface
(an example of ice shell structure) will reflect less than 1.5% (−18 dB). However, as the
ice is warmer (and more electrically conductive) near an ice–water interface, the salt–ice
interface echoes can easily appear brighter to radar than the ice–water interface due to atten-
uation by the overlying warm ice. To resolve this ambiguity in echo strength in the context
of unknown signal attenuation, complementary data are required, especially altimetry, to de-
termine whether interfaces are in flotation over a liquid. From REASON altimetry profiles,
we can predict (for a given buoyancy contrast) the shape of the subsurface interface. This
approach requires minimum ground track lengths depending on the target; for icebergs in
the shallow subsurface (based on typical lengths scales seen in the Conamara chaos terrain
on Europa), 10 km length scales should be sufficient; testing for the ice–ocean interface re-
quires hemispheric-scale ground tracks. REASON is also sensitive to surface and volume
scattering, which is a function of wavelength, surface roughness, and subsurface structure.
For a given radar wavelength, roughness or subsurface porosity at that scale can degrade the
coherence of the returning energy.

REASON uses two complementary radar arrays: a low resolution 9 MHz high frequency
(HF) array for sounding that is relatively insensitive to surface and volume scattering and
that is intended to penetrate more reliably into Europa’s ice crust, and a 60 MHz very high
frequency (VHF) dual-channel interferometric array for both sounding and altimetry with
high resolution. The latter is intended to limit the impact of Jovian radio-frequency noise and
plasma dispersion, but it is more sensitive to scattering losses (see as described in the REA-
SON investigation publication in this collection). The HF and VHF echoes reflected from
Europa and received by the REASON instrument are organized into 2-D slices of detected
energy that are termed “radargrams”; where the X-axis represents the along-track direction
and the Y-axis represents time delay relative to signal transmission. With appropriate cor-
rections to account for different speeds of propagation inside different media, depth images
can be derived (Blankenship et al. 2009).

For these radargrams, an important complication for interpretation for any orbiting
sounder is off-nadir “clutter” echoes with the same time delay as nadir subsurface echoes
directly below the spacecraft, but coming from discrete targets that actually arrive at the
spacecraft at an angle. Europa Clipper employs five approaches for dealing with clutter. For
along-track clutter, REASON must collect enough coherent echoes to track the changing
distance to surface scatterers at the wavelength scale as it passes overhead, allowing echoes
only from directly below the spacecraft to be selected (Scanlan et al. 2021).

The discrimination of clutter from the side (cross-track clutter) requires one of the other
approaches. For the deep ice shell, where resolution requirements are low, REASON repro-
jects its radargrams assuming all observed echoes are reflections from cross-track surface
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clutter. By comparing this reprojection with global surface mosaic images that will be col-
lected by the EIS camera system, echoes that align with surface topographic features can be
discriminated (Holt et al. 2006). For the shallow ice shell, it is possible to produce “clut-
tergrams” predictions of what the surface generated energy looks like from the perspective
of REASON (Ferro et al. 2012), using stereo digital elevation models (DEMs) generated by
the EIS Wide Angle Camera (WAC; Turtle et al. this collection).

In the absence of DEMs, off-nadir clutter can also be discriminated from shallow sub-
surface echoes using the interferometric capacity of REASON’s VHF band (Castelletti et al.
2017; Haynes et al. 2018a,b, 2020). The phase difference between echoes received by the
VHF antennas on either solar array can be tracked, and compared to the phase difference
of echoes expected to emanate from directly below the spacecraft. To test hypotheses for
individual features in the radargram, this phase difference is compared with the predicted
phase difference for surface clutter; and the features are thus determined to be at nadir and
at depth, or off nadir and to the side. Lastly, the trajectory is designed such that each ground
track has multiple intersections. As radar is highly anisotropic, the different directions over
the same region can be very revealing. With the combination of WAC DEM data and inter-
ferometry, hypotheses regarding the complex 3D structure of Europa’s landforms may be
inferred.

2.3 Tidal Deformation

As Europa travels along its eccentric orbit, the tidal forcing imposed by Jupiter on Europa
varies in magnitude, which is reflected in Europa’s response. The tidal response takes the
form of deformation of Europa’s surface and internal redistribution of mass. The degree
of density distribution is characterized by the gravitational Love number k, which can be
described as the ratio of the gravitational potential arising from the tidal bulge to the tidal
forcing itself (in this case the gravitational potential due to Jupiter as seen from the surface
of Europa). Of particular interest is k2 the Love number at spherical harmonic degree 2,
corresponding to the dominant wavelength of the tidal potential. The magnitude of k2 is a
function of the effective rigidity of the entire body. An infinitely rigid body would not deform
at all in response to tidal forcing, and k2 would be zero. A uniform fluid body would deform
with no resistance for a maximum k2 of 1.5. A more realistic body would have intermediate
values. Because k2 depends on the interior structure, its measurement by Europa Clipper
can provide constraints on the physical state of Europa, particularly the ocean and ice shell.
The presence or absence of a subsurface ocean is a strong control on the magnitude of the
Love number. An ice shell that is decoupled mechanically from the interior by a fluid layer
will have a much larger k2 than an ice shell that is locked onto the silicate mantle. Thus, the
detection of a high value for the Love number (k2 > 0.15) would be conclusive evidence of
the existence of an ocean (Park et al. 2011, 2015; Mazarico et al. 2015; Verma and Margot
2018). In the presence of an ocean, k2 varies inversely with the thickness of the ice shell.
Tidal deformation alone cannot provide a unique determination of the ice shell thickness,
however, because the Love number is also a function of the rigidity of the ice shell and it
is influenced by the ocean density (Mazarico et al. 2023). There is a tradeoff between these
parameters for any value of k2.

The time variations of Europa’s gravity field at degree 2 can be determined by accurately
tracking the Europa Clipper spacecraft at multiple points along its orbit as it flies by Europa,
that is, over a range of orbital phases. As illustrated in Fig. 4, radio signals from the NASA
Deep Space Network (DSN) received and retransmitted by the spacecraft communication
subsystem enable precise observations of the Doppler-shifted signal frequency, and thus of
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Fig. 4 Graphical representation of the Doppler tracking of the Europa Clipper flight system using the DSN,
including sources of radio noise

the spacecraft line-of-sight velocity with respect to the radio stations on Earth. This tech-
nique was successfully used by the Cassini mission to determine the long-wavelength static
gravity field of several icy satellites of Saturn (Thomas et al. 2007; Mackenzie et al. 2008;
Iess et al. 2010, 2014; Tortora et al. 2016: Zannoni et al. 2020) and, for Titan, the time-
variable field as well (Iess et al. 2012). The Doppler tracking data that will be obtained close
to Europa will allow the determination of key static and time-variable gravity field param-
eters over the course of the entire Europa Clipper mission. Simulations conducted with the
expected Doppler observation accuracy show that the tidal Love number k2 can be recovered
to an accuracy of < 0.05. For more details, see Mazarico et al. (2023).

A better constraint on Europa’s interior and in particular on the ice shell thickness and
rheology can be obtained if k2 is combined with the tidal Love number h2, which is an
expression of the radial tidal deformation. Measuring both tidal Love numbers comes with
the advantage of mitigating some of the ambiguities that arise from only one Love number
alone (Wahr et al. 2006; Park et al. 2015).

The Europa Clipper mission will use the VHF component of the radar sounder REASON
as an altimeter. The VHF antenna has a wavelength of 5 m and an inherent range resolution
of 15 m in free space. During the tour, the spacecraft groundtracks over the surface of Europa
intersect, leading to “cross-over” points. If the individual flybys occur at different positions
of Europa in its orbit around Jupiter, i.e., at different true anomalies, then the position of the
surface at these intersections will have shifted between groundtracks. In the presence of a
subsurface ocean, the expected radial tidal deformation is on the order of 30 m, predomi-
nantly dependent on ice shell thickness. Since a radar sounder is illuminating a large area of
the surface (on the order of several to tens of km2), the radar returns have some ambiguity
in the presence of surface topography. To mitigate this uncertainty and actually exploit the
multiple returns from different locations, stereo imaging of the cross-over points is needed.
This knowledge of the topography will allow Europa Clipper to perform multiple altimetry
measurements simultaneously and, assuming that these are statistically independent, to in-
crease the measurement accuracy below that of the inherent range resolution (Steinbrügge
et al. 2018). The h2 measurement will therefore be a combined measurement between REA-
SON and EIS). Simulations accounting for the tour geometry and the radar performance
estimate the accuracy to which h2 can be recovered to about 0.1, but this estimate depends
strongly on the surface roughness (Steinbrügge et al. 2018).
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2.4 Auxiliary Measurements

2.4.1 Static Gravity

In addition to the time-varying gravity field (i.e., tides), the Gravity and Radio Science
investigation will measure the static components of the long-wavelength, global potential
field (primarily spherical harmonic degree 2). Because of the rapidly varying spacecraft
altitude, regional to local gravity anomalies are better constrained by line-of-sight residuals
(e.g., James 2016). Doppler shifts of the radio signal during individual flybys arise from
along-sight accelerations caused by mass anomalies on and below the surface. After known
sources of acceleration are removed, the remaining line-of-sight residuals can be tied to
these gravity anomalies. Mass anomalies hundreds to thousands of km across on Ganymede
were detected during relatively distant (hundreds to thousands of km) flybys by the Galileo
spacecraft (Anderson et al. 2004; Palguta et al. 2006, 2009); Europa Clipper’s flybys will be
closer, with commensurately finer resolution.

Localized gravity anomalies will arise from internal mass density anomalies and topog-
raphy at the interfaces between layers with different densities. Because of Europa’s com-
positional structure, the largest density contrast exists at the rock–water interface, though
distance will attenuate the shortest scale component of that signal (e.g., Pauer et al. 2010;
Dombard and Sessa 2019). The surface also represents a strong density contrast, though this
signal could in principle be removed via gravity predicted from corresponding topographic
profiles measured by Europa Clipper, perhaps revealing the near-surface density of the ice
shell. Beyond that, mass density anomalies such as frozen or liquid brine pockets within the
ice shell might be detected; such anomalies may be compared against other Europa Clipper
data (e.g., radar, geology from imagery, surface composition) for interpretation.

If Europa behaves like a static fluid, i.e., is hydrostatic, then its shape or gravity can be
used to determine its MoI directly via the Darwin-Radau relationship, which relates the MoI
of a hydrostatic body to its rotational speed and shape. An important goal of the Gravity
and Radio Science investigation is to measure the low-degree (particularly degree-2) gravity
moments to determine how close Europa is to hydrostatic equilibrium. Most approaches to
date have used the hydrostatic assumption to derive Europa’s MoI from the estimated C22

coefficient and assuming a ratio of J2/C22 equal to 10/3 (e.g., Schubert et al. 2009). Gomez
Casajus et al. (2021) recently re-analyzed the Galileo data and retrieved coefficients C22 and
J2 independently, finding that these are compatible with a body in hydrostatic equilibrium
within an uncertainty of 1-σ . Precise independent estimates of the two main coefficients will
tell us with more rigor whether Europa is hydrostatic (Tricarico 2014).

Cold silicate objects like Vesta and the Moon show pronounced departures from hydro-
static equilibrium, while icy bodies like Titan or Enceladus depart slightly from this state.
For the latter two bodies, correlations between the gravity and surface topography have been
used to infer not only the moment of inertia, but also the degree of compensation (and hence
the thickness) of the ice shell (Hemingway et al. 2013; Iess et al. 2014). It may be possible to
apply this approach at Europa, but it is also possible that non-hydrostatic components arise
from the silicate interior (e.g., Dombard and Sessa 2019). In this case, one would not expect
any correlation between the surface topography and gravity, and thus the Titan/Enceladus
approach cannot be used. Nonetheless, in such a case, one might be able to draw inferences
about whether Europa’s silicate interior was relatively cool and rigid with limited tidal dis-
sipation or whether there are low-degree signals arising from convection within the silicate
mantle. The accumulation of flyby Doppler data should allow determination of Europa’s
static gravity field up to at least degree 5. More detail on the Europa Clipper Gravity and
Radio Science investigation can be found in Mazarico et al. (2023).
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2.4.2 Geodesy

Geodetic observations provide critical constraints to characterize and understand Europa’s
interior structure, including its radial mass distribution and ice shell properties. Fundamen-
tal properties like shape, gravity, and rotation state will be assessed by the Europa Clipper
mission and will provide the frame for many investigations. Many of these observations
will be multi-instrument investigations, as the global shape model will be derived from vis-
ible and ultraviolet imaging (EIS, Europa-UVS) and radar altimetry (REASON) data. The
geodetic information that is of particular interest for interior science includes tidal deforma-
tion, shape-determination, librations, obliquity, as well as local gravity anomalies. The tidal
response of Europa has been addressed in the previous section. The remaining observations
are briefly described here.

The shape of Europa provides insight into the structure and thickness of its ice shell (e.g.,
Nimmo et al. 2007) and the distribution of tidal heating (e.g., Ojakangas and Stevenson
1989). Europa Clipper will determine Europa’s shape through a combination of REASON
altimetry profiles, EIS limb profiles, and Europa-UVS occultation measurements (Abrahams
et al. 2021). REASON altimetry profiles have an accuracy on order of 10 m (Steinbrügge
et al. 2018). Due to the flyby nature of Europa Clipper trajectory, REASON altimetry mea-
surements are concentrated near Europa’s sub- and anti-Jovian hemisphere, which limits the
spherical harmonic degree to which Europa’s shape can be determined. EIS limb images at
spatial scales as low as ≤1 km/pixel will be acquired by the EIS NAC and WAC cameras.
Limb profiles can be derived from these images with a precision of ∼0.1 pixels (Thomas
et al. 2007), resulting in shape information with an accuracy on the order of 100 m. Although
the EIS profiles are an order of magnitude lower in resolution compared to the REASON
altimetry profiles, they are more spatially extensive. Abrahams et al. (2021) has shown that
these gaps can be filled by Europa-UVS stellar occultation measurements, substantially in-
creasing the achievable spherical harmonic degree – from 8 to 13 for very conservative
assumptions about REASON performance and without limb profiles. The UVS measure-
ments have timing accuracy of as low as 1 ms, depending on the instrument operating mode
and desired precision, which for Europa-Spacecraft relative velocities of ∼1 km/s equate to
measurements of chords across the body of Europa with a precision of ∼1 m (Abrahams
et al. 2021).

The amplitude and period of Europa’s libration potentially provides information about
the thickness and rigidity of the ice shell. On average, Europa presents the same face toward
Jupiter, but the eccentricity of its orbit leads to a variable orbital velocity, and hence libration.
The forced libration, which is the component due to Jupiter’s gravitational torque on the
dynamic figure of Europa, is of interest in potentially providing geophysical information.
However, while the libration amplitude can be large (130 m; Bills 2005), the sensitivity to
the ice shell thickness is poor except in the case of a very thin crust (Van Hoolst et al. 2013).

The EIS NAC will acquire a geodesy dataset of 50–100 m/pixel framing images, covering
all longitudes and obtained as much as possible near the extrema of libration. Nevertheless,
achieving the required measurement precision of between 5–10 m would be challenging for
the mission. Therefore, determination of the libration is of less interest than other methods
for determining ice shell thickness. A somewhat coarser measurement (better than 50 m
precision) in principle might be sufficient to determine whether the crust is decoupled from
the silicate mantle (Verma and Margot 2018). However, since the solid Europa libration
amplitude is ∼135 m, right in the middle of the predicted values for a Europa with an ocean
and ice shell, even here a libration measurement appears unfortunately not to be diagnostic.

Longer-period librations (>10 days) driven by the Laplace resonance can be even larger;
the maximum amplitude is over 1 km at a 482-day period (Rambaux et al. 2011; Fig. 5).
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Fig. 5 Spectrum of the forced
libration of Europa. Adapted
from Rambaux et al. (2011)

Although these forced librations are not sensitive to the properties of the interior structure,
it is essential that they be tracked so that surface features can be accurately located. Radar
ranging crossovers can be used to improve the accuracy of the spacecraft position and orbit,
but the crossover points need to be co-registered with the imaging data.

The radial mass distribution of a planetary interior can be estimated from measurements
of the MoI. However, non-hydrostatic components of Europa’s gravity field arising from
the mass distribution in the deep interior may complicate the determination of the MoI.
An alternative approach to retrieve Europa’s internal mass distribution involves the accu-
rate estimation of the pole obliquity, ε, which is the angle between a body’s spin axis and
orbit-plane normal (Bills and Nimmo 2008). This procedure assumes that the body is in
a Cassini state, a state of minimum energy that accounts for the coplanarity of spin, orbit
precession, and orbit angular velocity (Peale et al. 2002). By combining measurements of
Europa’s ephemeris and orientation, Europa Clipper will allow us to confirm whether the
icy moon is in a Cassini state, and thus whether we can measure the polar moment of inertia
directly from the measured obliquity, which is expected to be ∼0.05° (Chen et al. 2014). Ra-
diometric Doppler data collected by Europa Clipper during all close encounters will provide
critical information on Europa’s ephemerides. Doppler data acquired near the pericenter are
very sensitive to the relative position of the spacecraft with respect to the moon. Gravita-
tional torques exerted on the ice shell by an asymmetric silicate interior should provide a
strong coupling mechanism on the long timescales of the pole precession (Van Hoolst et al.
2008). Visible imaging (discussed in the REASON investigation publication in this collec-
tion) and gravity science data (Mazarico et al. 2023) are then expected to provide consistent
measurements of Europa’s obliquity with these independent investigations.

One of the key factors affecting the Jovian system’s dynamics is the tidal interaction
between Jupiter and the Galilean moons (Ojakangas and Stevenson 1986; Hussmann and
Spohn 2004). The orbital energy dissipation due to the tides that Europa, Io, and Ganymede
raise on Jupiter significantly perturbs the orbital semi-major axis of these moons which may
lead to substantial changes over the long term. There is no consensus on the contribution
of this dissipation mechanism to the dynamics of the Galilean moons, as current results
disagree both in order of magnitude and sign (Lainey et al. 2009; Jacobson 2015). That
is, not only is the scope of the tidal interaction uncertain, but even whether the moons are
accelerating (i.e., moving toward Jupiter) or decelerating (i.e., drifting away from it) and
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moving in or out of resonance. It is therefore equally unclear if Europa is in equilibrium. The
oscillation of Europa’s eccentricity can take place on the order of 100 million years which
would lead to episodical variations in the intensity of tidal heating for all satellites bound in
the Laplace resonance. In this scenario, the ice shell thickness of Europa would vary between
3 and 70 km (Hussmann and Spohn 2004), and phases of quasi-steady evolution would
alternate with phases of heating and cooling, potentially even leading to resurfacing events
as has been suggested for Ganymede’s past (Showman and Malhotra 1997). To address the
question of equilibrium the amount of tidal dissipation must be measured as well as the
change in semi-major axis (see e.g., de Kleer et al. 2019). Alternatively, using astrometric
observations of the Europa Clipper mission in concert with JUICE observations, the stability
of the Laplace resonance could be verified by a measurement of the migration timescale of
all three satellites within the Laplace resonance (Dirkx et al. 2017).

2.4.3 Surface Heat Flux

Because of Europa’s young surface age, geological activity is expected and some forms
of activity (e.g., rifting, subsurface intrusions, plume eruptions) may lead to surface ther-
mal anomalies. Double ridges in particular are promising locations for thermal anomalies
(Nimmo et al. 2002; Dombard et al. 2013). The detectability such activity depends on the
area of the anomaly, the anomaly lifetime, and the mechanism for the activity. Preliminary
analysis suggests that surface eruptions could be detectable for a few hundred years after
the eruption, while concentrated subsurface heat sources like the Enceladus tiger stripes
(Spencer et al. 2006; Howett et al. 2011) would be readily detectable (Hayne et al. 2017).

In contrast to the well characterized plume at the south pole of Enceladus (Howett et al.
2011; Postberg et al. 2018), the extent to which plume activity on Europa will be accompa-
nied by thermal anomalies is still unclear (Rathbun and Spencer 2020). Nevertheless, given
the stress conditions within the ice shell, it is likely that any plume material on Europa orig-
inates in discrete fluid pockets perched at shallow levels in the ice shell, rather than directly
from the ocean ((Fagents et al. 2000; Fagents 2003; Manga and Wang 2007)). The heat
given off by such a reservoir would produce detectable thermal anomalies as long as the
source depth was <1 km (Hayne et al. 2017). Recent modeling suggests that liquid reser-
voirs perched in Europa’s ice shell could undergo cooling for at least tens of thousands of
years before completely freezing (Quick et al. 2021, 2022). Even if not currently active or
associated with a detectable surface thermal anomaly, recent plume activity might be iden-
tified by fresh plume deposits (Quick and Hedman 2020). Plume fallout may have distinct
thermal properties at the surface: plume deposits might be composed of smaller ice particles
than the typical Europa surficial material and may result in detectably lower thermal inertia
units.

2.4.4 Topographic Constraints on Ice Shell Thickness

Constraining Europa’s average ice shell thickness is one of Europa Clipper’s baseline sci-
ence objectives; however, detecting regional variations in its thickness is also of high science
value. Material exchange between Europa’s surface and ocean is critical for maintaining a
habitable ocean environment, and such exchange may occur more easily in thinned por-
tions of the ice shell. Ice shell thinning may also reveal the existence of water perched in
the ice shell (Schmidt et al. 2011), and constrain, at broader scales, thermal structure and
heat transport mechanisms (e.g., Nimmo et al. 2007). REASON sounding measurements
are the principal method for constraining ice shell thickness; however, the surface topog-
raphy itself provides additional constraints, especially in the limit of a thick shell. In the



Exploring the Interior of Europa with the Europa Clipper Page 23 of 44 46

absence of elastic stresses (true over regional length scales), isostatic adjustment of the ice
shell will result in thinner portions of the shell lying topographically lower than thicker
portions. Topographic stresses should drive flow which removes ice–shell variations over
time, so the existence of thickness variations implies on-going geologic processes and/or a
very thin shell (Stevenson 2000). Current observations of Europa’s long-wavelength topog-
raphy suggest that the ice shell has relatively uniform thickness, implying that either the
shell thickness variations are not detectable with current observations (and the ice shell is
relatively thin) or that the ice shell is indeed uniform, and lateral flow is efficient or the ice
shell is convecting (Nimmo et al. 2007). Topography measurements by Europa Clipper can
distinguish between these possibilities by refining our knowledge of Europa’s regional-scale
topography. The principal method of acquiring such topography is REASON altimeter, EIS
WAC three-channel stereo (NAC targeted stereo is also possible), and limb profiles. All of
these datasets must be controlled to each other and co-analyzed for the best results.

The measurement of transects across topographic elevations either from digital terrain
models or by the collection of REASON altimetry groundtracks or limb profiles allows
determination of the thickness of the elastic portion of the ice shell. On terrestrial as well
as on icy bodies, the topography at short baselines is often supported by the flexure of the
cold upper layer of the crust. By measuring this flexure from the elevation profiles and by
assuming a range for the rheological properties of the ice, the effective elastic thickness of
the shell can be inferred. This technique has been applied to Europa and Ganymede based
on Galileo images (e.g., Williams and Greeley 1998; Nimmo et al. 2002, 2003a). Current
best estimates for the elastic thickness of Europa range from 0.2–3 km as measured from the
blocks inside Conamara chaos (Williams and Greeley 1998) and a few hundred meters from
double ridges (Billings and Kattenhorn 2005), up to 4–11 km as inferred from a prominent
plateau southwest of Cilix crater (Nimmo et al. 2003a). Since the elastic strength of the ice
depends on the temperature structure, which itself depends on the entire ice shell, additional
assumptions about the thermal state further lead to constraints on the ice shell thickness
itself (Nimmo et al. 2003a).

2.4.5 Surface Composition

MISE, EIS, and Europa-UVS will map Europa’s surface composition at global and re-
gional scales at unprecedented resolution (> 70% of the surface at 10-km/pixel scale) over
a 0.1–5 µm spectral range. EIS color data can reveal color centers characteristic of irra-
diated chlorides. Oceanic material that erupted onto the surface (e.g., at chaos regions or
condensed as cryovolcanic plume fallout) will be sputtered by high-energy particles and
then sampled by MASPEX and SUDA. Together with Europa-UVS, these instruments will
measure the abundance of key exospheric species (e.g., H2O, O2, H2) and trace organics
and salt derivatives (Na and K). MASPEX measurements of the composition of low-weight
organic volatiles as well as potential ice grains may point to the presence of clathrate hy-
drates in the crust (see Becker et al. this collection). These observations will support various
interior investigations, in particular that of ECM. Compositional data on endogenic salts
and H2/CO2/H2O ratios in plumes would constrain the composition of suboceanic rocks
(Becker et al. this collection) and yield indirect constraints on Europa’s density profile. EIS
and E-THEMIS bring geological context in order to infer the processes involved in the em-
placement of surface salts and organics and distinguish between compounds of endogenic
vs. exogenic origin (such as implanted sulfur from Io vs. oceanic sulfates) (see Becker et al.
this collection). MASPEX, Europa-UVS, PIMS, and SUDA measurements will also provide
a better understanding of the particles entering the exospheric region from other (most likely
Io) sources.
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3 Synthesis

3.1 Synergy

In a broad sense, there are three unknown interior quantities that the Europa Clipper mis-
sion will determine: the ice shell thickness, ocean thickness, and ocean salinity, and three
primary investigations to address them: magnetic induction, subsurface sounding, and tidal
deformation. The electromagnetic induction response of Europa’s ocean takes the form of
an induced magnetic field, which can be expressed in terms of an amplitude (often called the
normalized amplitude) and a phase delay. This response depends on three parameters: the
depth to the ocean, the electrical conductivity of the ocean, and the ocean thickness. In order
to obtain all three ocean parameters, the response of the ocean at three widely separated
frequencies is required. Indeed, nature does provide strong signals at three frequencies, the
synodic rotation period of Jupiter (11.2 h, signal strength ∼200 nT), the second harmonic of
the synodic rotation period (5.5 h, signal strength ∼15 nT) and the orbital period of Europa
(85.2 h, signal strength ∼15 nT) that can be used to determine the properties of the ocean.

The normalized amplitude (see Fig. 6) varies strongly as a function of all three parame-
ters. In general, ocean thickness only modestly affects the amplitude of the response at the
synodic frequencies. However, the depth of the ocean below the surface and the conduc-
tivity of the ocean strongly affect the amplitude response. For ocean conductivities >∼1.0
S/m, the amplitude response, which is dipolar, approaches unity at the surface of the ocean
and drops off with the cube of distance outwards towards the surface. Figure 7 shows the
amplitude response of Europa at two of these frequencies (the synodic and orbital period fre-
quencies) as a function of ocean conductivity and thickness. In certain optimum conditions
(large thickness and high conductivity), both of these parameters can be obtained uniquely
from these responses, if the amplitudes can be determined with a precision of 1.5 nT or
better. In order to constrain ocean parameters for all conditions, further constraints on one
of the parameters from other experiments is desired. For example, if the ice is thin and that
thickness can be accurately measured from the ice penetrating radar measurements, Fig. 7
shows that the ocean conductivity can then be inferred quite accurately (further improve-
ment is possible with the 5.5 h signal, but this is much lower amplitude than the full synodic
period signal). If, on the other hand, the ocean conductivity can be obtained independently
from mass spectrometry of the salt components of an ocean plume, very accurate estimates
of the ice thickness can be obtained from Fig. 7.

In an idealized case, these three investigations alone would provide us with a solution to
the three quantities identified in the Europa Clipper’s Level-1 science requirements. How-
ever, such precision would require both that the measurements themselves have zero un-
certainty (which is an unrealistic scenario) and that the equations are linearly independent.
Additional information to resolve this potential inherent nonlinearity is provided in the form
of the auxiliary measurements described in Sect. 2.4. These additional datasets can provide
context, which can serve to narrow the parameter space and simplify the relationships.

Although no single instrument can fully characterize the ice shell, a combination of mea-
surements provides a much more complete picture. Figure 8 provides a hypothetical exam-
ple of how this synergy can work in practice. In this example, the “true” ice shell thickness
(global averages) is assumed to be 20 km, with a 6 km rigid lid sitting above a convecting
interior, while the ocean beneath is 60 km thick and has a conductivity of 1 S/m.

Static gravity coefficients constrain the moment of inertia (especially when hydrostatic
equilibrium pertains) and thus the combined thickness of the ice shell plus ocean (Schubert
et al. 2009). The uncertainties in this tradeoff (grey swath) arise mainly from uncertainties
about the density of the core and mantle.
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Fig. 6 The amplitude response as
a function of ocean conductivity,
ocean thickness, and ice shell
thickness for a three-layer model.
The range of response factor
deduced by Schilling et al.
(2004) are marked by horizontal
dotted lines. The upper limit
imposed on the conductivity of
the solution from saturation
effects are marked by the two
vertical lines. Figure reproduced
from Hand and Chyba (2007)

Fig. 7 The dipolar surface
induction field created by the
interaction of Europa with
Jupiter’s varying field at the two
principal frequencies (T = 11.1 h
and T = 85.2 h) for a range of
conductivities and ocean shell
thicknesses.

The tidal response of k2 = 0.245 can be used to infer a rigid shell thickness, but only
if the shell rigidity is known. The real rigidity of the shell depends on the viscosity and
porosity structure, so here a range of 1–3.5 GPa is considered (red box). Uncertainties in the
ice shell or ocean density will contribute further uncertainty, but can be mitigated to some
extent if h2 can also be measured (Wahr et al. 2006). The actual measurement uncertainties
in k2 are insignificant compared to these other sources of uncertainty.

In the particular hypothetical model of Europa depicted in Fig. 8, radar sounding will not
penetrate to the base of the ice shell because of the strong attenuation of radio waves in the
warm ice in the lower shell. However, it will penetrate close to the base of the cold, rigid lid,
providing a lower bound on the shell thickness of 6 km (yellow box).

Finally, for the particular parameters assumed here, the mutli-frequency magnetic sound-
ing technique will allow the conductivity, ocean thickness, and total shell thickness to be de-
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Fig. 8 Overlapping
measurements combine to
constrain the ice shell and ocean
thickness. In the example
illustrated here, the “true” mean
ice shell thickness is 20 km, the
upper 6 km of which is rigid. The
subsurface ocean is 60 kim thick
and has a conductivity of 1 S/m.
See text for additional details.

termined independently. Assuming a measurement uncertainty of ±1.5 nT, the error bars are
±30 km for the ocean and ±5 km for the shell (blue boxes). Unlike the k2 or static gravity
techniques, here the measurement errors dominate the uncertainty in the derived parameter
values.

In this particular example, it is the combination of static gravity and magnetometry that
together provide the main constraints on the shell and ocean thickness, giving combined
uncertainties of ±5 km and ±10 km, respectively. But in other hypothetical examples, other
techniques will become important. For instance, if the ice shell is thin (<10 km) then the
magnetometer uncertainties will prevent a useful shell thickness estimation, but in this case
the radar may be more likely to penetrate to the base of the shell and provide a direct mea-
surement. Multiple measurements also provide some redundancy in case of unanticipated
instrument failure.

Auxiliary measurements, not shown in Fig. 8, may also prove useful. For instance, a
thin shell would result in a high heat flux, potentially detectable by E-THEMIS. Conversely,
in the case of a thick, rigid shell, gravity and topography measurements might be able to
determine the thickness of the rigid, upper shell.

Although more challenging, multiple measurement techniques may also provide insight
into the deeper interior. Local magnetic anomalies would be evidence for the existence of
a core, while departures from hydrostatic equilibrium and/or large gravity anomalies could
be indications of a cold, rigid interior. Conversely, a shell only a few km thick would imply
a highly deformable interior; this would also give rise to a significant lag in the k2 tidal
response.

While multiple investigations directly constrain the ice shell thickness, they address dif-
ferent aspects of it. As an example, magnetic induction looks at the depth to the ocean, which
depends on the total ice shell thickness. Subsurface sounding could provide this measure-
ment if unambiguous detection of the ice–ocean interface was possible, which is however
unlikely (Blankenship et al. 2009). Instead, it is likely to be more sensitive to the thick-
ness of the conductive layer. Tidal deformation is sensitive to a combination of the total ice
thickness and the rheology; or in some sense the thickness of the elastic portion of the ice
shell. These different aspects of the shell thickness can be reconciled using auxiliary data.
The long-wavelength static gravity measurements will tell us if the ice shell is in hydrostatic
equilibrium, placing a minimum bound on the ocean thickness. Surface heat flux can be used
to estimate the thickness of the conducting portion of the ice shell. The elastic thickness can
be independently estimated using along-track topography profiles. In this way, much more
detailed information is gathered about the structure of the ice shell than its overall thickness.
In the following sections, we explore the geological, geophysical, and geochemical context
that will be used to place constraints on the interior structure of Europa.



Exploring the Interior of Europa with the Europa Clipper Page 27 of 44 46

3.2 Geology and Geophysics

The average surface age of Europa’s icy shell is estimated to be between 40 and 90 Myr
(Bierhaus et al. 2009). Thus, the surface of Europa is one of the youngest in the solar sys-
tem, and indicates recent or current geologic activity that erases or replaces older terrains
through resurfacing processes. The terrains associated with resurfacing are fully discussed
in Daubar et al. (this collection), and can roughly be broken up into tectonic processes and
the processes that result in the formation of chaotic terrains. Because these landforms are
the surface expression of processes occurring deep within the ice shell, their characteriza-
tion and associated observations can reveal information about the interior state, structure,
and evolution of the ice shell and ocean.

Europa’s surface deforms along convergent (e.g., Kattenhorn and Prockter 2014), strike-
slip (e.g., Nimmo and Gaidos 2002), and extensional (e.g., Prockter et al. 2002; Howell and
Pappalardo 2018) tectonic boundaries between semi-rigid plates that have been likened to
plate tectonic processes on Earth, except that extension appears to dominate far more on
Europa than on Earth (Prockter et al. 2002; Kattenhorn and Prockter 2014). Additionally,
Europa’s surface is heavily modified by the formation of chaotic terrains, which comprise
regions of tilted and rotated blocks of pre-existing terrains in a fine hummocky matrix of ice
(e.g., Greenberg et al. 1999). The interior processes associated with the formation of chaos
terrain may involve hot diapirism of solid ice, in situ melting, and/or brine injection from
the subsurface ocean (e.g., Collins and Nimmo 2009; Head and Pappalardo 1999; Schmidt
et al. 2011).

The surface expression of interior deformation is controlled by the thermal and mechan-
ical state of the ice shell, which in turn depends on the composition and heat budget of the
deeper interior. The global heat budget is largely driven by radioisotope decay within the
silicate mantle and the dissipation of gravitational tidal energy as heat within the ice shell,
ocean, and mantle. Landform geology can be characterized through geologic mapping, mor-
phological characterization of DEMs, and heat flow analyses (Daubar et al. this collection),
with additional context provided by compositional mapping (Becker et al. this collection),
These analyses provide constraints on the ranges of plausible brittle and elastic behaviors,
thermal and mechanical properties of the ice shell, and the geodynamic state of the inte-
rior. Landform geology can therefore help to elucidate the sources of energy that support
resurfacing on Europa to maintain its young average surface age.

The geologic processes occurring within Europa’s icy shell, ocean, and rocky interior
facilitate the transport of materials and energy throughout the body, and are key to estab-
lishing and maintaining chemical disequilibria (Hand et al. 2007). Thus, geologic transport
processes within Europa’s interior directly affect habitability and the potential for life to
emerge and persist (Vance et al. this collection). Within the icy shell, tectonism, convection,
diapirism, cryovolcanism, and impacts each may contribute to material transport. Thermal
convection within the ice shell may be driven by both the temperature differential between
the warm subsurface ocean (e.g., McKinnon 1999) and cold surface and the volumetric gen-
eration of heat associated with dissipated tidal energy (e.g., Vilella et al. 2020), with salts
potentially playing a role as well, in the form of compositional buoyancy (e.g., Pappalardo
and Barr 2004). Europa is likely in a stagnant lid regime, with a crust that is not experi-
encing continuous overturn (Howell 2021). Thus, convection is expected to play a primary
role in transporting material between the ocean and the base of the conductive lid, and later-
ally across the length scale of convective cells, on timescales of 104–105 yr (Showman and
Han 2004). Additionally, thickness gradients in the ice shell may cause ductile and convect-
ing ice to participate in meridional flow, potentially transporting materials over great lateral
distances (Ashkenazy et al. 2018).
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Extensional tectonics associated with band formation may locally thin the mechanical
lithosphere of the icy shell, increasing the surface heat flow locally (Daubar et al. this col-
lection), and permitting the surface exposure of warm ice from deep within the ice shell
(Howell and Pappalardo 2018). Ice recently frozen into the ice shell from the subsurface
ocean may be transported to the surface, and exposed on timescales of <1 Myr (Howell
and Pappalardo 2018). Convergent processes on Europa are relatively rare, and/or difficult
to locate in Voyager and Galileo observations of Europa (Sarid et al. 2002). These processes
may be associated with cold thermal anomalies resulting from the local deepening of cold
isotherms and corresponding reduction in surface heat flow. Convergence associated with
the “subsumption” of warm ice – defined as the downward penetration and resorption of icy
slabs into the ice shell – may similarly be critical for surface–to–ocean material exchange
(Kattenhorn and Prockter 2014). While observations of convergent processes on Europa are
rare, Culha et al. (2014) showed that some compression is being accommodated at double
ridges. Sustained subsumption could permit the downward transport of surface material to
the subsurface ocean on timescales of 106–107 yr (Kattenhorn and Prockter 2014).

The possibility of direct vertical transport of subsurface ocean water into the ice shell
through sill injection has been explored in depth for Europa (e.g., Manga and Wang 2007;
Michaut and Manga 2014). However, this process is controversial due to mechanical argu-
ments related to the viscous relaxation of cracks and difficulty in generating the stresses
required for sill injection (e.g., Collins and Nimmo 2009; Michaut and Manga 2014; Craft
et al. 2016). Water that is injected into the elastic portion of the ice shell at depth, and po-
tentially water formed by in situ melting, may create an overpressure when recrystallizing
and cause vertical transport (e.g., Schmidt et al. 2011) and surface eruption of subsurface
material (e.g., Lesage et al. 2020). In the absence of overpressure, exsolution of volatiles
(Crawford and Stevenson 1988) may be able to drive eruptions. Alternatively, in situ melt-
ing beneath frictionally heated tectonic boundaries or chaos regions may result in dense
water filled pores that sink rapidly to the ocean in discrete “porosity waves” (Kalousová
et al. 2014).

The subsurface ocean may also play a major role in the global transport of materials
within Europa’s interior, influencing the ice shell composition and state at the ice–ocean
interface (e.g., Vance et al. 2019), and potentially participating in hydrothermal activity and
redox reactions at the seafloor (e.g., Vance et al. 2007). Due to a moderate rotational in-
fluence, convection in Europa’s ocean is thought to produce few zonal jets and Hadley-like
overturning circulations with a maximum heat flux near the equator (Soderlund 2019). This
regime may help drive geologic activity via thermo-compositional diapirism in the ice shell
(Soderlund et al. 2014). In contrast, electromagnetic pumping may lead to a single westward
jet that may contribute to non-synchronous rotation and ohmic dissipation that is concen-
trated in a thin layer near the ice–ocean interface near the poles (Gissinger and Petitdemange
2019). Additional flows will be driven by tidal forcing and libration of the ice shell, some
of which will focus enhanced currents along internal shear layers in the ocean (e.g., Rovira-
Navarro et al. 2019; Hay et al. 2021). Enhanced vertical mixing is likely to occur along
these layers, although heat generation through viscous dissipation does not seem to be a
significant contributor. Vertical transport and mixing in the ocean may also be influenced by
the salinity. Fresh water near the melting point has a negative coefficient of thermal expan-
sion. However, if the ocean salinity exceeds 2.2%, the thermal expansion coefficient may
turn positive. In this scenario, hydrothermal vents could generate buoyant plumes of water,
which would drive convection in a thick ocean layer below a colder, stratified layer described
above (Kang 2022; Kang et al. 2022; Bire et al. 2023). Europa Clipper measurements will
constrain ocean flows and test these hypotheses as described in Sect. 1.2.3.
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The mechanical properties and thermal state of the ice shell may be inferred by a com-
bination of geological and geophysical measurements. A preliminary essential assessment
concerns the total ice shell thickness, which can be retrieved by combining magnetic in-
duction (Sects. 2.1, 3.1), radar sounding (Sects. 2.2, 3.1), tidal monitoring (Sects. 2.3, 3.1),
and geodesy (Sect. 2.4) techniques. Once the average thickness is constrained, inversion
of static gravity and long-wavelength topography data will allow the determination of lat-
eral thickness variations, using an approach that has been successfully applied to Saturn’s
moons using the Cassini data (e.g., Nimmo and Bills 2010; Nimmo et al. 2011; Lefevre
et al. 2014; Beuthe et al. 2016; Hemingway et al. 2018; Čadek et al. 2019). Lateral varia-
tions in the ice shell thickness will be a key diagnostic to determine whether Europa’s ice
shell is currently in a convective or conductive state (Nimmo et al. 2007), to understand
the global stress balance (e.g., Howell and Pappalardo 2019), and to assess potential heat
flux anomalies from the ocean. This approach has previously been applied to Titan and
Enceladus, based on Cassini data (Kvorka et al. 2018; Čadek et al. 2019). Interpretation of
magnetic sounding measurements from close flybys may also be able to provide constraints
on induced quadrupole moments, which may then be used to constrain the shape of the con-
ducting ocean layer (Styczinski and Harnett 2021). If marked lateral variations in ice shell
thickness are in fact present, several investigations are likely to provide converging lines of
evidence to support their detection. The rheology of the silicate mantle is not well known,
and the mantle cannot be as easily observed as the ice shell. However, if the silicate mantle
is as dissipative as Io, tidal heating in the large silicate portion of the body may be substan-
tial. Within the rocky interior, tidally induced magmatism may continue episodically to the
present day, transporting volatiles from the rocky interior to the seafloor through volcanism
(Běhounková et al. 2021).

Local and regional topography can be combined with morphological interpretation to
provide constraints on the near surface mechanical (elastic/brittle) properties, and indi-
rectly on the near-surface thermal gradients. Such a technique has already been applied
to the Galileo data. However, detailed topography data is available only for a limited set
of sites (e.g., Nimmo et al. 2003a; Billings and Kattenhorn 2005), and complementary in-
formation on the near-surface ice properties is not available. Radar sounding will constrain
near-surface porosity (Sect. 2.2) and potentially the depth of porosity closure (Nimmo et al.
2003b) and thickness of the conductive lid (Kalousová et al. 2017), which will be essential
to reconstruct the thermal profile and its lateral variations. Detection of potential subsurface
liquid reservoirs from radar sounding (Sect. 2.2) and anomalous thermal emission anoma-
lies (Sect. 2.4.3) may also reveal local upwellings and heat source anomalies, which will be
essential to assess the level of present-day thermal activity of the ice shell and efficiency of
exchange with the subsurface ocean. Large, saline reservoirs may also have an influence on
magnetic induction signals (Sect. 2.1), especially for the closest flybys. Magnetic induction
may provide an additional line of evidence to support the detection of such reservoirs.

Long-wavelength topography and gravity can be used to constrain the lateral variations
in shell thickness, providing the thermal state and global dynamics of the ice shell. In combi-
nation with heat production within the ice shell that is expected to vary laterally (Ojakangas
and Stevenson 1989; Tobie et al. 2003), strong heat flux anomalies coming from the seafloor
and heat flux patterns due to oceanic circulation and tidal dissipation can lead to a mod-
ulation of the ice–ocean interface. Local and regional thinning of the ice shell may reveal
active seafloor hotspots or at least an anomaly in the global oceanic circulation, which may
have various origins (e.g., Hay and Matsuyama 2019; Soderlund et al. 2020). Local ice shell
thinning combines with gravity anomalies and detection of local enhancement in H2, CH4,
and other volatile gases may confirm the existence of ongoing seafloor volcanic activity
(Běhounková et al. 2021).
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3.3 Surface Material Emplacement

Material on the surface of Europa is believed to have been emplaced in a variety of ways,
such as intrusions through fractures, cryovolcanism, diapirism, and deposition of plume ma-
terial. Furthermore, surface material may have been modified since exposure. Space weath-
ering may alter the nature of salt compounds on a surficial scale (millimeters to a few cen-
timeters). On the other hand, gardening by micrometeorites locally exposes fresh material
on a similar scale, which can help entangle surficial effects and reveal the true nature of
material sourced from the deep interior. The composition of most materials should be pre-
served in the ejecta blanket, except maybe for fragile material like organics (e.g., Bowling
et al. 2020).

Recent models leveraging knowledge developed for terrestrial sea ice suggest various
mechanisms for introducing salts into Europa’s ice shell. Buffo et al. (2020) have explored
the dependence of salt trapping in the crust as a function of thermal gradients. Wolfen-
barger et al. (2022a) expand on the work of Buffo et al. (2020) to examine how different
mechanisms of ice accretion can influence salt entrainment at the low temperature gradients
expected at the ice–ocean interface. Salts may be transported further into the ice shell (e.g.,
via convective plumes) and concentrated in the shallow subsurface. The salts may evolve
during their journey toward the surface, and this evolution is not well understood (see Vance
et al. 2021b). For example, the salts may interact with clathrate hydrates (e.g., Méndez et
al. 2017) and evolve under reheating from tidal energy (e.g., Muñoz-Iglesias et al. 2019) or
other sources. In general, the chemical evolution of salts trapped in the shell is an area of
active investigation, as elaborated by Vance et al. (2021b). Studies of chemical fractionation
in both natural and artificial ice have shed some light on processes that may alter the chem-
istry of oceanic material entrained through freezing and have been used to hypothesize the
enrichment and depletion of certain impurities in an ice shell (Wolfenbarger et al. 2022a).

Salts trapped in the shell may contribute to local melting in the shallow crust, resulting
in a variety of surface expressions, such as lenticulae and microchaos (e.g., Schmidt et al.
2011; Chivers et al. 2021; Muñoz-Iglesias et al. 2019). The source of plumes is likely from
brine pockets in the shallow subsurface, although sourcing from the deep ocean cannot be
ruled out (Sect. 2.1). Steinbrügge et al. (2020a) show that brine could locally concentrate
following impact-produced heat and melting; pressurization of such a local melt pocket
could trigger the eruption of a plume. Clathrates in the crust could potentially release gas
upon heating or impacting, which could also trigger the ascent of local melt by increasing
buoyancy (e.g., Quick et al. 2020). Geological and thermal context provided by EIS and
E-THEMIS, combined with subsurface reflections detected by REASON, is critical to de-
termine the source depth of the material and process by which it was transferred through the
crust (e.g., cryovolcanism, intrusion in faults, diapirism (Daubar et al. this collection)).

A potentially confounding parameter for interpreting the composition of Europa’s deep
interior is the possible implantation of material of exogenic origin, especially sulfur re-
leased by Io. Data from PIMS may constrain our knowledge of the extent to which Io-born
material (S, Na, K, and Cl) is introduced into Europa’s exosphere (Becker et al. this col-
lection). Exogenic material may find a way to the shallow subsurface by mechanisms such
as resurfacing, burying by plume ejecta, impacts, and potentially subduction (Kattenhorn
and Prockter 2014). If the ice shell is permeable, the melt could be transported downward
through percolation (Kalousová et al. 2014; Hesse et al. 2022). Convection could further
transport exogenic material throughout the ice shell interior if resurfacing processes extend
beyond the conductive lid (Howell and Pappalardo 2018). Evidence of material transport
may manifest at the surface as compositional heterogeneities observed by MISE, variation
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in geology observed by EIS, and structural heterogeneities or water bodies in the subsurface
observed by REASON.

Geological interpretation (e.g., Figueredo and Greeley 2004) and thermal–orbital evo-
lution models (e.g., Hussmann and Spohn 2004) predict that the ice shell thickness should
vary on a timescale of tens to hundreds of millions of years. Changes in ice shell thickness
imply changes in ocean chemistry (Zolotov and Kargel 2009; Travis et al. 2012; Bouquet
et al. 2019) and in chemical exchange between the ice shell and the ocean (Zolotov and
Kargel 2009; Soderlund et al. 2020). Because the thickness of the combined water layer
(liquid water plus ice) will be relatively well constrained by the moment of inertia derived
from Doppler tracking (Mazarico et al. 2023) the ice shell thickness derived from com-
bined measurements by GRS, REASON, and ECM will provide constraints on the current
ocean thickness. A thin ocean would be more concentrated in the more volatile compounds
that freeze below the eutectic zone. The recent generation of formation models for Europa
suggest the moon’s content in volatiles beside water could be richer than considered in the
past (see Becker et al. this collection). Hence, partial pressures in gas species with small
kinetic diameters (e.g., CO2, CH4) could have been sufficiently high for clathrate hydrates
to form in abundance (Bouquet et al. 2019). Vertical stratification resulting from changes
in salt assemblages and clathrate hydrate species could potentially reveal different stages of
the coupled ocean–ice system, if the contrast in dielectric properties is large enough to be
resolved. Mapping of the diversity of salt and hydrate compounds from remote-sensing tech-
niques and in-situ analysis of ejected materials and their correlation with geological units
associated to different periods of the ice–ocean system cycle will provide key information
on how Europa’s ocean and ice shell composition has evolved over time.

3.4 Implications for Habitability

An environment that contains the chemical ingredients and physical conditions clement for
life is defined as habitable (see Vance et al. this collection). Typically, habitable environ-
ments contain “extended regions of liquid water, conditions favorable for the assembly of
complex organic molecules, and energy sources to sustain metabolism” (Des Marais et al.
2008). Assessment of habitability in the various environments of Europa requires concomi-
tant measurements of the chemical, physical and geologic characteristics of these locales,
as well as an understanding of their formation, longevity, and the interconnections between
them. Through the complex array of geophysical and geochemical measurements conducted
by Europa Clipper and their interpretation, interior science plays an important role in provid-
ing the scaffolding on which a carefully reasoned picture of habitability can be assembled
for this enigmatic moon. Here, we address how interior science can contribute to constrain-
ing the properties and interrelationships of possible habitable environments at Europa from
the bottom up, starting with the seafloor and subsurface ocean and moving through the ice–
ocean interface to the ice shell and eutectic zone.

Ocean depth and salinity are important drivers for habitability, as these inform ocean
composition and constrain the chemical pathways available for a putative biosphere. While
Europa Clipper is not able to measure the composition of fluids directly at the seafloor, sur-
face compositional measurements (see Becker et al. this collection) and magnetic induction
measurements will be able to estimate the salinity of the ocean and provide insights to the
current pH and redox state (see Vance et al. this collection). This will result in a narrower
range of models for pore fluid composition by constraining the initial composition before
the fluid moves downward into the mantle, as well as inform habitability investigations by
constraining ocean composition and thermo-chemical evolution (Zolotov and Shock 2004;
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Zolotov and Kargel 2009). Crustal fluids have the capability to cycle nutrients from the
deeper mantle up to the ocean and water–rock interface, providing a potential geochemi-
cal flux of biologically relevant molecules (i.e., hydrogen, methane, carbon dioxide) (Sohl
et al. 2010; Vance et al. 2016; Bouquet et al. 2017). Some of these volatile species may
have been transported to the surface ice over time in the form of clathrates (Bouquet et al.
2019), which Europa Clipper could identify through various lines of investigation such as
composition derived from MISE, MASPEX, and SUDA observations.

If properties of the ice shell allow radar sounding to penetrate to the base of the ice
shell (Sects. 1.2, 2.2), Europa Clipper may enable direct characterization of the ice–ocean
interface, a potential habitable environment where strong chemical gradients may persist
over geologic time (Boetius et al. 2015; Buffo et al. 2021b, 2022; Wolfenbarger et al. 2022a).
Gradients in basal ice depth (e.g., basal crevasses or meridional gradients), mapped by the
radar, could drive an “ice–pump” (Lewis and Perkin 1986; see also Soderlund et al. 2013;
Wolfenbarger et al. 2022a) where ice that is deeper and hence at higher pressure can melt
along the freezing point depression curve and re-accrete as an accumulation of individual
ice crystals where the ice shell is thinner. This mechanism of ice formation is distinct from
the directional thickening of the ice shell that results from cooling of the interior, and could
promote heterogeneities in ice shell properties at depth that may produce radar reflections
(Wolfenbarger et al. 2022a). Radar mapping of accretion and ablation are important for
constraining sub-ice ocean circulation, which may be important for nutrient cycling between
the ice–ocean and ocean–rock interfaces.

More broadly, constraints on, and variations in, the total ice shell thickness through radar
sounding, magnetic induction, and gravity science (Sects. 1.2 and 2.2) are important for
understanding potential geophysical transport processes and material exchange between the
surface, ice shell, and ocean. Specifically, this may control the timescales of ice shell–ocean
recycling through solid-state convection of the ice shell (e.g., Allu Peddinti and McNamara
2015) or subsumption of the ice crust (e.g., Kattenhorn and Prockter 2014). These timescales
will constrain rates of delivery of key species into the ocean such as oxidants, sulfates, or
nutrients from the surface (i.e., Greenberg 2010), which crucially inform Europa’s global
habitability (Sect. 3.2, Vance et al. this collection).

The total ice shell thickness is, in part, a function of the planetary heat budget, which
is an important parameter in constraining the energy available for life (see Vance et al. this
collection). Models suggest that the rocky mantle is likely to be primarily dehydrated at the
present day (Kuskov and Kronrod 2005; Castillo-Rogez and Lunine 2010), with possible
cyclic upwelling of melt in the past (Travis et al. 2012; Běhounková et al. 2021; Gomez
Casajus et al. 2021). However, theoretical models of rock fracturing due to thermal cooling
(Vance et al. 2007) suggest that the upper tens of kilometers of the mantle may be permeable
to liquid water from the ocean at the present day. If so, aqueous alteration of the near-surface
mantle as well as alteration of pore fluids may occur.

Relatively large brine reservoirs (potentially ∼105 km3) within the upper ∼5 km of the
surface have been suggested to form chaos features on Europa’s surface (Daubar et al. this
collection). They are potentially formed by injection (e.g., Michaut and Manga 2014) or the
melting in situ of the ice shell (e.g., Schmidt et al. 2011). Recent models suggest that even
smaller reservoirs (∼ 100–103 km3) may remain liquid for >103 years (Chivers et al. 2021;
Quick et al. 2021), potentially serving as transiently habitable environments (e.g., Schmidt
2020; Chivers et al. 2021) analogous to the base of terrestrial sea ice (e.g., Arrigo 2014)
or ice–covered Antarctic lakes (e.g., Murray et al. 2012), where microbial communities
have adapted several strategies for cold and hypersaline environments. The existence of
these reservoirs may be confirmed by REASON subsurface sounding through detections of
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internal reflections caused by liquid water (e.g., Blankenship et al. 2009; Culha et al. 2020),
or layers of hydrated salts left behind after freezing (e.g., Buffo et al. 2020; Chivers et al.
2021).

Smaller-scale reservoirs (∼10−6 m3), such as brine pockets within the ice shell, may also
be detectable by radar sounding. Below the depth where the ice shell thermal profile ex-
ceeds the eutectic temperature (i.e., eutectic zone, see Culha et al. 2020), brine pockets are
thermodynamically stable within the ice (Buffo et al. 2021a,b; Wolfenbarger et al. 2022b).
However, the characteristics of the radar reflection from this dielectric contrast will be sen-
sitive to the parameters that govern the brine volume fraction (temperature, pressure, solute
composition, and salinity), as well as properties of the ice overlying the eutectic zone, which
govern signal attenuation (e.g., temperature, and electrical conductivity). The eutectic zone
may correspond to the boundary between a convective and conductive layer in the ice shell,
the warmer basal region of a conductive ice shell, or the relatively warm head of an up-
welling diapir. Radar observations of the eutectic zone will help constrain interior processes
that may govern the distribution of habitable regions within Europa.

4 Summary

The Level-1 science objectives for the Europa Clipper mission describe three global param-
eters that are of particular interest to characterize the interior of Europa: the global mean
thickness of the ice shell, the mean thickness of the subsurface ocean, and the salinity of
the ocean. Measuring each of these quantities to an uncertainty of ±50% or less will enable
evaluation of the habitability of this ocean world.

In pursuit of these measurements, the payload on Europa Clipper includes three main
investigations that are sensitive to combinations of the above parameters. The magnetic in-
duction experiment will provide constraints on the extent and conductivity of the ocean,
and the depth of the ocean below Europa’s surface. These can translate into constraints on
the ice shell thickness and the salinity of the ocean. The subsurface sounding experiment
characterizes the shallow subsurface and will constrain the thermophysical structure of the
ice shell. These will result in an estimate of the minimum thickness of Europa’s ice shell
and narrow down the thickness of the conductive portion of the ice. The tidal deformation
measurements are sensitive to a combination of the thickness of the ice shell and its rigidity,
providing an additional independent constraint on the thickness of the elastic portion of the
ice shell.

While each of these investigations alone will reveal critical information about the in-
terior of Europa, none of them can provide a comprehensive view. Together, they support
each other and are highly complementary. Combining multiple datasets is a powerful way
of characterizing the interior of Europa and habitability of its subsurface ocean. These in-
vestigations are supplemented by a variety of ancillary investigations that can further reduce
ambiguity and provide a unique view of the interior of one of the most compelling ocean
worlds known to planetary science.
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