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Abstract: A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly
contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly
responsible for severe phenotype and genes related to innate immune response seem critical host
determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lyso-
some functions, is highly expressed in myeloid cells and is involved in immune functions, regulating
the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide
repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD)
and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high sys-
temic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are
more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and
intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we
sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19.
Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19
pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by
harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to
having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI)
1.04–5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical
outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients.
These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more
severe COVID-19 phenotypes.
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1. Introduction

A large non-coding hexanucleotide repeat expansion (HRE) in the C9orf72 gene
(>30 up to 1000 units) is the main genetic cause of frontotemporal dementia (FTD) and amy-
otrophic lateral sclerosis (ALS) [1,2], both characterized by neuroinflammation and high
systemic levels of interleukin-6, interleukin-1β and tumor necrosis factor-α [3]. Healthy
people harbor alleles ranging from 2 to 30 repeat units, but a real cut-off has not been
determined and HREs of intermediate length (9–30 units), although rare, seem to be more
frequent in neurodegenerative, neuropsychiatric and autoimmune disorders [4–12]. Gain
of functions linked to the presence of the large HRE, resulting in nuclear RNA foci and
cytoplasmic aggregation of dipeptide repeat proteins, are the main pathogenic mechanisms
of neurodegeneration in FTD and ALS, but C9orf72 haploinsufficiency is assumed to play a
role in the underlying neuroinflammation [13].

The C9orf72 gene is involved in vesicular trafficking, autophagy regulation and lyso-
some functions [13]. C9orf72 protein forms a complex with the Smith–Magenis chromo-
some region candidate 8 (SMCR8) and WD repeat domain 41 (WDR41) proteins [14]. Both
C9orf72 and SMCR8 seem to act as guanine-nucleotide (GDP-GTP) exchange factors for
several Rab GTPases, a family of proteins each of which localizes on a specific type of cellu-
lar membrane compartment and organelle and is involved in trafficking of specific vesicles.
Interacting with Rab5, Rab7, Rab11 and Rab7L1, the C9orf72-SMCR8-WDR41 complex
regulates the endocytic trafficking and release of extracellular vesicles, while engaged by
Rab1, Rab8, Rab39, Rab5 and Rab7 the complex is involved in recruiting the unc-51 like
autophagy activating kinase 1 (ULK1) to the phagophore to initiate autophagy, in delivery
of cargos to autophagosomes, autophagosome closure and fusion with lysosomes [15–19].
The C9orf72-SMCR8-WDR41 complex also regulates lysosome acidification, regeneration
and exocytosis [20–24].

C9orf72 is ubiquitously expressed in the body with highest levels in myeloid cells.
This gene is also differentially expressed with regard to the type of transcript among the 3
described variants and the use of differential transcription start sites for each transcript
variant in the brain and myeloid cells, suggesting cell and/or tissue specific functions [25].
Considering the crucial role of autophagy in inflammation and immunity [26], these obser-
vations opened the possibility that C9orf72 loss of function might affect not only neurons
but also the innate immune system [25]. Complete loss of the gene in C9orf72−/− knock-out
mice results in the release of proinflammatory cytokines, splenomegaly, lymphadenopathy
and production of autoantibodies, indicating the appearance of autoinflammation and
autoimmunity [27–29]. Importantly, even hemizygous C9orf72+/− mice show altered in-
flammatory response, suggesting that also haploinsufficiency could lead to unbalanced
immunity in mice. More recent work has corroborated these findings, showing that a
defective C9orf72-SMCR8-WDR41 complex in murine myeloid cells causes prolonged Toll-
like receptor (TLR) signaling and hyperactive type I interferon (IFN) response, due to the
disrupted degradation of stimulator of IFN response cGAMP interactor 1 (STING) [30,31].

As stated above, C9orf72 full mutation results in haploinsufficiency, observed in blood
cells and post-mortem brains and spinal cord of ALS/FTD patients [1,32]. C9orf72 HREs of
intermediate length also seem to modulate gene expression. Expansions of more than 8
repeats mainly occur within a 110 kb FTD/ALS risk haplotype, that is more common in
individuals of Northern European ancestry [33]. This haplotype was found associated with
slightly higher expression of C9orf72 transcript variants 1 and 3 (both having the HRE region
within intron 1) and lower expression of the most abundant transcript variant 2 (with the
HRE located in the promoter), with more marked effect in the case of homozygosity for the
risk haplotype [25]. Similar findings were described by Cali and colleagues [10], who found
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the risk alleles significantly associated with increased C9orf72 expression across several
tissues, with the largest effect in neural tissues. The same authors also demonstrated the
increase in transcript variant 3 and protein levels in induced pluripotent stem cells edited
with intermediate HREs and differentiated into neural progenitor cells [10]. In contrast,
Gijselinck and colleagues [34] found that repeat length from 7 to 24 unit resulted in slightly
higher methylation degree in comparison with shorter repeats in humans, particularly in
the homozygous state, and observed a decrease of C9orf72 promoter transcriptional activity
with increasing number of repeats from 7 to 24 units in HEK293T and SH-SY5Y cells.

Both decrease and increase of C9orf72 expression have been found to impair au-
tophagy [10,35,36]. We hypothesized that this effect may also reflect in host immune
response to infections and that harboring C9orf72 HREs of intermediate length may then
modulate this response. It has been recently found that gut microbiota may influence the
autoinflammatory phenotype of C9orf72−/− mice [37] and that Herpes Simplex Virus-2
(HSV-2) infection in spinal cord of mice results in the decrease of C9orf72 protein [38].
Apart from the above observations and the described role of C9orf72 in regulating TLR
and type I IFN signaling in mice, there is no evidence of an involvement of the gene in host
response to infectious diseases in humans.

Since 2020, we have faced the coronavirus disease 2019 (COVID-19) pandemic caused
by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite
enormous efforts of the scientific community, there is still a lack of knowledge on the
pathogenic mechanisms of this new virus. Excessive inflammation, autoimmune phenom-
ena and defective antiviral type I IFN signaling are believed to significantly contribute to
COVID-19 severity [39–43]. Genetic background contributes to susceptibility to autoim-
mune and infectious diseases in humans and genetic variants associated with those diseases
are often found in genes involved in immune response and inflammation, including genes
related to the autophagy pathways [44,45]. Furthermore, a multifactorial risk score for
COVID-19 severity based on a polygenic model and including autophagy genes has been
recently proposed [46].

In view of the above, in the present study we have explored the hypothesis that
normal, but in the upper range, HREs in the C9orf72 gene could represent a risk factor for
the development of more severe COVID-19 forms.

2. Results

In the present study, we initially included 240 patients with severe COVID-19 defined
by SARS-CoV-2 positive molecular test and pneumonia that requires hospitalization. Dur-
ing hospitalization, 92 out of 240 (38.3%) patients received mechanical ventilation (MV) or
non-invasive ventilation (NIV). Need of MV or NIV was used to define the most severe
degree of COVID-19 in further analyses.

In order to explore our hypothesis, we compared C9orf72 repeat size, allele distribution
and frequency with those observed in a historical cohort of genetically characterized
patients with ALS (n = 93), harboring no C9orf72 pathogenic large expansions, without
clinically defined disorders related to immune dysfunctions, mostly Caucasian and from the
same geographical region (Lombardy, Italy) of COVID-19 patients. Indeed, no significant
differences in the distribution of repeat size, allele distribution and frequency have been
observed between C9orf72 expansion-negative ALS cases and healthy controls in published
studies [1,2,4,8,47–50], while the length of the HRE may depend on the genetic ancestry,
being expansions of more than 8 repeats linked to the chromosome 9 Finnish founder ALS
risk haplotype that is common in individuals of Northern Europe ancestry [33]. Therefore,
the cohort of C9orf72 expansion-negative ALS patients from the same geographical area of
COVID-19 patients can be considered as representative of the population of that region
regarding the genetic background relative to the C9orf72 gene and used to compare COVID-
19 patients. Demographic data of all patients are described in Table 1. No differences in
sex, age and ethnicity were found between the two sub-cohorts.
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Table 1. Demographic data and C9orf72 hexanucleotide expansions in the cohort of 240 coronavirus
disease 2019 (COVID-19) and 93 amyotrophic lateral sclerosis (ALS) patients.

COVID-19 (n = 240) ALS (n = 93) p *

Sex, female (%) 147 (61.25 %) 55 (59.13 %) 0.125
Mean age ± SD 64.30 ± 12.18 64.74 ± 13.22 0.774

Age range 30–95 33–89
Caucasian ethnicity 230 (95.83%) 91 (97.85%) 0.376

Average number of repeats ± SD 4.37 ± 3.15 4.61 ± 2.89 0.378
Median number of repeats

[interquartile range] 2 [2–6] 5 [2–7]

Range 2–18 2–19
Patients with >10 repeats (%) 27 (11.25%) 4 (4.30%) 0.050
Alleles with >10 repeats (%) 27 (5.63%) 4 (2.15%) 0.056

SD: standard deviation. * Fisher’s exact test or Chi-square test for categorical variables and Student’s t-test for
continuous variables were applied as appropriate.

Genetic analysis for C9orf72 HREs in the 240 COVID-19 patients did not reveal the
presence of large (>30 repeats) expansions. Alleles with 2, 5, and 8 repeat units were
the most frequent HREs in both sub-cohorts (Figure 1), as previously reported in several
populations of both ALS patients and healthy controls [1,2,4–12,47–50].
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Figure 1. (a) Histogram showing the distribution and frequency (%) (Y-axis) of the number of C9orf72
hexanucleotide repeats (X-axis) in ALS (black bars) and COVID-19 (white bars) patients’ alleles.
(b) Frequency (%) and number (n) of intermediate alleles for each repeat length >8 repeat units in
ALS and COVID-19 patients. Both for ALS and COVID-19 patients, the % and n for repeat length > 8
units are in red; for COVID-19 patients, % and n with a clear difference in comparison with ALS
patients are also highlighted in red.

Based on a preliminary size cut-off of >8 and ≤30 repeat units to define intermediate
lengths, which was determined on the basis of previous studies [12] (see Materials and
Methods section for more details), we found C9orf72 intermediate HREs in 39 out of 240
(16.25%) hospitalized COVID-19 patients and 8 out of 93 (8.60%) ALS patients, with a trend
towards a higher prevalence of intermediate expansions in hospitalized COVID-19 vs. ALS
patients, despite comparable average, median number and range of repeat units (Table 1).
Intermediate HREs were present on both alleles in only one COVID-19 patient and only
one ALS patient. Comparing the overall number of intermediate alleles, we then found 40
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out of 480 (8.33%) intermediate alleles in hospitalized COVID-19 patients and 9 out of 186
(4.84%) in ALS patients (Figure 1). The ALS patient with both intermediate alleles is an
Italian female (age 70 years) that started with spastic dysarthria onset and predominant
involvement of motor neuron I and evolved in anarthria as main clinical characteristic.
Currently she wears percutaneous endoscopic gastrostomy (PEG) and is employing night-
time NIV. The COVID-19 patient with both intermediate alleles is a Caucasian male (age
36 years) with negative anamnesis that during hospitalization received MV and dialysis
due to acute immune-mediated glomerular disease and tubular injury.

Considering data shown in Figure 1 and in order to find the number of C9orf72
hexanucleotide repeats that may better distinguish between COVID-19 and ALS patients,
we conducted univariate logistic regression analysis at each repeat length >8 repeat units
(Figure 2) and found that patients hospitalized for COVID-19 had an odds ratio (OR) of
2.82 (p = 0.06) of having more than 10 repeats, when compared to the ALS patients.
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Moreover, 27 out of 240 (11.25%) COVID-19 patients had at least one allele with
more than 10 repeats compared to 4 out of 93 (4.30%) ALS patients (p = 0.050) (Table 1).
Comparing the overall number of intermediate alleles with > 10 repeats, we found 27 out
of 480 alleles (5.63%) with more than 10 repeats in COVID-19 patients vs. 4 out of 186
(2.15%) in ALS patients (p = 0.056) (Table 1).

Univariate logistic regression analysis (Table 2) reveals that COVID-19 patients with
more than 10 repeats in at least one allele are younger than patients with shorter expansions
[mean age (±SD) 60.67 (±13.37) vs. 64.76 (±11.98), p = 0.090] and required more frequently
MV or NIV (56% vs. 36%, p = 0.053), although differences did not reach the statistical
significance. We also analyzed routine laboratory parameters, however no significant
differences in terms of mean values were found, except for D-dimer levels (p = 0.02)
(Table 2).

Multivariate regression analysis further suggested the presence of more than 10 repeats
in at least one allele as a possible risk factor for NIV or MV requirements independently of
age in patients with COVID-19 pneumonia (OR 2.36, 95% confidence interval (CI) 1.04–5.37,
p = 0.040] (Table 3).
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Table 2. Univariate regression analysis for the considered parameters in the severe COVID-19 sub-
cohort (n = 240) with >10 or ≤10 repeats in the C9orf72 hexanucleotide repeat expansion (HRE) region.

Normal
Values

≤10 Repeats
(n = 213)

>10 Repeats
(n = 27) p

Age, year
Mean (±SD) 64.76 (± 11.98) 60.67 (± 13.37) 0.090

AST, U/L
Mean (±SD) 10–50 79.73 (± 79.88) 73.40 (± 46.01) 0.690

ALT, U/L
Mean (±SD) 18–39 74.60 (±94.05) 59.913 (±29.86) 0.458

Ferritin, ug/L
Mean (±SD) 30–400 1334.82 (±1541.88) 1125.73 (±756.03) 0.525

Creatinine, mg/dL
Mean (±SD) 0.7–1.2 1.40 (±1.35) 1.54 (±2.33) 0.651

Urea, mg/dL
Mean (±SD) 17–49 75.97 (±6.06) 101.00 (±27.67) 0.228

D-dimer, ng/mL
Mean (± SD) <232 1623.84 (±290.31) 4552.09 (±2753.16) 0.020

Albumin, g/L
Mean (±SD) 31.0–52.0 32.70 (±0.41) 33.24 (±0.90) 0.649

WBC, ×103/uL
Mean (±SD)

4.0–10.8 14.32 (±46.77) 10.28 (±6.27) 0.679

Lymphocytes,
×103/uL

Mean (±SD)
0.9–4.0 1.94 (±0.16) 1.82 (±0.24) 0.791

CRP, mg/L
Mean (±SD) <5.0 88.71 (±79.32) 71.78 (±49.39) 0.299

Platelets, ×103/uL
Mean (±SD)

130–400 343.01(±162.10) 338.10 (±144.42) 0.889

MV or NIV, n (%) 77/213 (36%) 15/27 (56%) 0.053
SD: standard deviation; ALT: alanine aminotransferase; AST: aspartate aminotransferase; WBC: white blood cells;
CRP: C-reactive protein; MV: mechanical ventilation; NIV: non-invasive ventilation.

Table 3. Multivariate regression analysis for the probability to receive invasive mechanical ventilation
(MV) or non-invasive ventilation (NIV).

Variables OR (95% CI) P

Repeats > 10 2.36 (1.04–5.37) 0.040
Age, years 1.01 (0.99–1.04) 0.142

OR, odds ratio; CI, confidence interval.

Finally, we replicated our analysis in an independent cohort of 201 SARS-CoV-2 in-
fected individuals from the GEN-COVID Multicenter Study [51]. This replication cohort
included 101 severely affected COVID-19 patients who received MV or NIV during hospi-
talization and 100 non-hospitalized subjects (asymptomatic or with very mild symptoms).
Demographic data of patients are described in Table 4. As expected, severely affected COVID-
19 patients were mostly males and older in comparison with non-hospitalized patients.

As in the first cohort of COVID-19 patients, we did not find large (>30 repeats) C9orf72
expansions. Based on the results obtained with the first cohort, we chose a cut-off value of
more than 10 repeats and stratified patients by disease severity. We found 16 out of 101
(15.84%) subjects with at least one C9orf72 allele with more than 10 repeats in COVID-19
patients treated by either MV or NIV and 6 out of 100 (6%) in non-hospitalized SARS-CoV-2
infected subjects (p = 0.025). In this cohort we did not find subjects with more than 10
repeats in both C9orf72 alleles. When considering the overall number of alleles, we found
16 out of 202 alleles (7.92%) with more 10 repeats in the first group (patients treated by
MV or NIV) and 6 out of 200 (3%) in the second group (asymptomatic or with very mild
symptoms) of SARS-CoV-2 infected patients (p = 0.030) (Table 4).
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Table 4. Demographic data and C9orf72 hexanucleotide expansions in the validation cohort.

MV/NIV
(n = 101)

Non-Hospitalized
(n = 100) p *

Sex, female (%) 23 (22.77%) 49 (49%) 0.0001
Mean age ± SD 63.94 ± 9.07 51.97 ± 12.17 0.0001

Age range 33–86 18–81
Caucasian ethnicity 97 (96.03%) 100 (100%) 0.1213

Average number of repeats ± SD 4.86 ± 3.64 4.47± 3 0.408
Median number of repeats

[interquartile range] 3 [2–8] 3 [2–6]

Range 2–19 2–20
Patients with >10 repeats (%) 16 (15,84%) 6 (6%) 0.025
Alleles with >10 repeats (%) 16 (7.92%) 6 (3%) 0.030

SD: standard deviation. * Fisher’s exact test or Chi-square test for categorical variables and Student’s t-test for
continuous variables were applied as appropriate.

Figure 3 shows the distribution and frequency of the number of C9orf72 repeats in the
validation cohort and highlights alleles with more than 10 repeats. These results confirmed
the association of severe COVID-19 that requires MV or NIV with the presence of longer
intermediate repeats (>10 units) in the C9orf72 gene.
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Figure 3. Histogram showing the distribution and frequency (%) (Y-axis) of the number of C9orf72 hex-
anucleotide repeats (X-axis) in patients’ alleles in severe COVID-19 patients who received mechanical
ventilation (MV) or non-invasive ventilation (NIV) (white bars) and non-hospitalized SARS-CoV-2
infected subjects (asymptomatic or with very mild symptoms) (black bars).

3. Discussion

With this work, we sought to explore whether intermediate HREs in C9orf72 may be
a risk factor for severe COVID-19 pneumonia. Although we found intermediate repeats
in only a small percentage of COVID-19 patients, the magnitude of risk for requiring MV
or NIV conferred by harboring intermediate repeats >10 units in at least one allele was
more than twice with respect to having shorter expansions (≤10 units), when adjusted
for age (OR 2.36; 95% C.I. 1.04–5.37, p = 0.040). The association between intermediate
repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an
independent cohort of 201 SARS-CoV-2 infected patients, comprising 101 severely affected
COVID-19 patients who received MV or NIV during hospitalization and, as control group,
100 non-hospitalized subjects (asymptomatic or with very mild symptoms). These data
suggest that C9orf72 HREs > 10 units may be not a common cause of severe COVID-19
pneumonia but may influence the pathogenic process driving to severe phenotypes.
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Although mainly implicated in neurodegenerative disorders, the human gene C9orf72
is highly expressed not only in microglia but also in myeloid cells, mainly monocytes
and dendritic cells [25], is critical for their proper functions and is involved in autoim-
munity and inflammation [27–29]. C9orf72−/− knock-out mice indeed exhibit dysregu-
lation of the immune system, age-dependent inflammation characterized by a cytokine
storm, neuroinflammation and features of autoimmunity like systemic lymphadenopathy,
splenomegaly, pseudothrombocytopenia, high levels of autoantibodies and membrano-
proliferative glomerulonephritis reminiscent of systemic lupus erythematosus (SLE). Even
haploinsufficient hemyzygous C9orf72+/− mice exhibit enhanced cytokine production in
response to several immune stimuli [28]. Interestingly, we found that one COVID-19 patient
with intermediate HREs in both C9orf72 alleles received MV during hospitalization and
experienced acute immune-mediated glomerular disease.

Accumulating evidence supports the role of C9orf72 in regulating vesicle traffick-
ing [15,18,52,53] and lysosomal degradation of inflammatory mediators, including TLRs
and STING, leading to their prolonged inflammatory signaling [30,31]. Interestingly, the
environment, especially variation in gut microorganisms, seems to directly influence the
pathological phenotype of C9orf72−/− mice [37] and HSV-2 latent infection in the spinal
cord of mice results in altered microglia and leucocyte infiltration accompanied by a de-
crease in C9orf72 protein levels [38]. C9orf72 interacts with different Rab GTPases and
might affect autophagy at many steps and through the regulation of mammalian target of
rapamycin Complex 1 (mTORC1) [13]. Of note, autophagy dysfunctions are often associ-
ated with inflammatory and autoimmune diseases [44] and innate immune responses and
inflammation, crucial in anti-viral responses, are regulated by autophagy [54]. Several stud-
ies have shown that many viruses, like coronaviruses, have evolved strategies to evade the
host response by directly hijacking the autophagy pathway in support of their life cycle and
spread or by disrupting the host control on the production of anti-viral cytokines [54–56].
Host genetics also contributes to aberrant immunity in autoimmune diseases and suscepti-
bility to infectious diseases in humans and such variants are often found in genes involved
in the immune response and inflammation [44,45]. The current knowledge and our work
confirm these findings in COVID-19 [41,43,45,57,58]. Autophagy genes have recently been
proposed as susceptibility factors in COVID-19 [46]. Our results are the first report on
the potential involvement of variants in an autophagy gene in determining susceptibility
for severe COVID-19 phenotype. The recent observation that C9orf72 is involved in the
lysosomal degradation of inflammatory mediators like TLRs and STING [30,31], that are
crucial in anti-viral response, further corroborates our findings.

Large hexanucleotide expansions in C9orf72 lead to neurodegeneration in ALS/FTD
through the cooperation between loss and gain of functions, derived from C9orf72 haploin-
sufficiency and accumulation in patients’ brain and spinal cord of C9orf72 HRE bidirec-
tional transcripts and cytoplasmic toxic aggregates of dipeptide repeat proteins (DPRs) [13].
C9orf72 intermediate expansions of 24–30 repeats have recently been found associated
with ALS in a large meta-analysis on 5071 cases and 3747 controls [59], but characteristic
nuclear RNA foci and DPR aggregates were absent in one ALS patient with an intermediate
expansion of 16 repeats [60] and 9 cases with corticobasal degeneration and intermediate
repeats ranging from 17 to 29 units [10]. Furthermore, while full expansion results in the
decrease in C9orf72 mRNA and protein expression [1,61], due to premature abortion of
transcription [62] and hypermethylation of the CpG-rich C9orf72 promoter region [34,63],
for intermediate expansions current results are discordant. Some authors and our group
found association of intermediate repeats with neurodegenerative disorders like corti-
cobasal degeneration, Parkinson’s Disease, atypical parkinsonisms, multiple sclerosis,
psychiatric symptoms in ALS/FTD patients, neuropsychiatric disorders and autoimmune
diseases [4–12]. Moreover, intermediate repeats from 7 to 24 units showed a slightly higher
methylation degree, particularly in the homozygous state, in comparison with short repeats.
A decrease of transcriptional activity with increasing number of repeats from 7 to 24 units
compared with shorter repeats has been demonstrated in HEK293T and SH-SY5Y cells [34].
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By contrast, the risk haplotype was found to be associated with slightly higher expression
of C9orf72 transcript variants 1 and 3 and lower expression of transcript variant 2 [25]
and induced pluripotent stem cells edited with intermediate HREs and differentiated into
neural progenitor cells showed an increase in transcript variant 3 and protein levels [10].
As stated above, C9orf72 protein expression is down-modulated by HSV-2 infection [38]
while a cell type-dependent regulation of its levels via the ubiquitin-proteasome system
and autophagy has been recently suggested [35]. Given the role of C9orf72 in TLR and type
I IFN pathways [30,31], it is tempting to speculate that intermediate repeats, likely through
gene expression modulation, may influence host response to infection with SARS-CoV-2
and perhaps further viruses. This could explain our findings regarding the higher risk
of having severe COVID-19 requiring NIV or MV independently of age. Indeed, hyper-
activation of myeloid cells, aberrant release of pro-inflammatory cytokines, autoimmune
features and defective innate immune responses, particularly in type I IFN signaling,
are believed to significantly contribute to severe clinical course of COVID-19. Recent
studies highlighted the role of host genetics in determining COVID-19 severity with the
identification of inborn errors of TLR3, IFN regulator factor 7-dependent production of
type I IFN and variants in further genes involved in IFN signaling, cytokine release and
inflammation underlying life-threatening COVID-19 [41,43,58]. To date, there is limited
direct experimental evidence on autophagy involvement in SARS-CoV-2 infection, either
in an anti-viral or pro-viral manner, with the exception of recent studies demonstrating
that the SARS-CoV-2 papain-like protease (PLpro) cleaves the serine/threonine kinase
unc-51-like autophagy activating kinase 1 disrupting autophagy [64] and that SARS-CoV-2
ORF3a inhibits autophagy activity by blocking fusion of autophagosomes/amphisomes
with lysosomes [65]. We can hypothesize that harboring intermediate HREs in C9orf72
could contribute to negatively balancing the host innate immune response to SARS-Cov-2
infection leading to a more severe disease. A limit of our study is that we did not mea-
sure C9orf72 mRNA expression in patients’ peripheral blood cells, however we thought
that gene expression could be influenced not only by harboring intermediate repeats >10
units, as described above [10,25,34], but also by the clinical state, as suggested for HSV-2
infection [38], making it hard to discriminate between the two conditions. COVID-19
patients of the first cohort were enrolled after discharge, however they had been severe
COVID-19 hospitalized patients (38.3% of them received MV or NIV) and most of them at
the time of the recruitment in this study, during the follow-up, were still showing some
signs of severe COVID-19. This could make difficult and hamper a clean analysis of C9orf72
expression relative to the length of the intermediate expansion. Furthermore, some patients
of the validation cohort were recruited during the pandemic and the ongoing inflammatory
conditions could likely affect C9orf72 expression. Further studies are therefore needed to
determine if intermediate expansions may modulate C9orf72 in vivo and, more importantly,
which immune cells are mainly affected but also to verify if SARS-CoV-2 may influence
C9orf72 expression in particular subsets of myeloid cells.

Increased levels of pro-inflammatory cytokines have been observed in sera of
C9orf72−/− knockout mice [27–29,37], with a pattern that similarly defines the “cytokine
storm” driving acute injuries during severe COVID-19 [66]. In our cohort of severe COVID-
19 patients, we did not find any evident correlation between the presence of C9orf72
intermediate repeats and routine inflammatory laboratory parameters, except for D-dimers,
and we did not measure levels of pro-inflammatory chemokines and cytokines. This is
a limit of our study. Coagulation biomarkers, including D-dimers, are frequently altered
during severe inflammation [67–70]. In patients with severe COVID-19, genetic variants
studied here may be involved in more severe inflammatory conditions perhaps through
STING signaling-mediated altered type I IFN production [31]. Indeed, very recently,
inflammasome-dependent coagulation activation has been found to associate with exces-
sive activation of the STING pathway [67], while beclin-1, a marker of autophagy, has been
found to be increased in COVID-19 patients, particularly in severe patients, and its levels
have been demonstrated to correlate with D-dimer levels [71].
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The complex interactions between genetic background and the environment are poorly
understood. The variable phenotype associated with C9orf72 large HREs in ALS/FTD
has indicated that penetrance is incomplete [72], suggesting that either further genetic or
environmental factors could modify the individual risk of disease. Microbiota seems to be
a potent modifier of onset and progression of autoimmunity, inflammation and premature
mortality in C9orf72−/− knockout mice [37]. We cannot, then, exclude that environmental
factors like microbiota may also influence the effect of intermediate C9orf72 repeats on
COVID-19 clinical phenotype.

Further limitations of our study are, first, that the number of carriers of C9orf72 in-
termediate alleles in the 240 severe COVID-19 patient cohort, as well as in the validation
cohort of 201 SARS-CoV-2 infected patients, is small, and one should be cautious with the
interpretation of these results. Secondly, we considered a cohort of genetically characterized
patients with ALS, harboring no C9orf72 pathogenic large expansions and without clini-
cally defined disorders related to immune dysfunctions, as representative of the general
population for the first part of this study rather than considering uninfected controls, likely
resistant to SARS-CoV-2 infection, to make the first comparisons and find the number
of repeats in C9orf72 HRE at which the difference between COVID-19 patients and ALS
patients was significant. Nevertheless, at the time of patients’ recruitment for this study we
had no easy access to SARS-CoV-2 negative subjects, since in the midst of the pandemic
molecular tests were executed mainly in symptomatic patients in Italy and, however, we
could have not been sure that SARS-CoV-2 negative subjects were not infected because
of their genetic background or simply because they did not come into close contact with
infected people. Therefore, SARS-CoV-2 negative subjects could not represent the correct
control population. Furthermore, as stated above, all published studies performed in ALS
cases without pathological C9orf72 expansions and healthy controls found no significant
differences in distribution, range, and median number of repeats [1,2,8,47,48]. For these
reasons, and to avoid bias possibly deriving from genetic ancestry, being expansions of
more than 8 repeats linked to the chromosome 9 Finnish founder ALS risk haplotype that
is more common in individuals of Northern Europe ancestry [33], we decided to choose
the ALS cohort (mostly Caucasian and from the same geographical region of COVID-19
patients), already used in a previous work [12] for the first comparison. Moreover, further
analyses in this work compared severe COVID-19 patients of the first cohort considering
MV and NIV requirement as a proxy of high severity of disease to find association with
C9orf72 intermediate repeats >10 units. Furthermore, we validated our findings in an addi-
tional cohort. Since the aim of the second part of our work was not the comparison between
COVID-19 patients and the general population but the confirmation of our hypothesis that
harboring alleles with more than 10 repeats in the C9orf72 gene may be a risk to develop a
more severe form of disease, we considered only COVID-19 patients stratified in severely
affected ones that received MV or NIV during hospitalization and non-hospitalized sub-
jects (asymptomatic or with very mild symptoms). The genetic analyses in this stratified
cohort confirmed the association between intermediate repeats >10 units and more severe
clinical outcome.

Finally, we cannot completely exclude that COVID-19 severity could be unrelated
to C9orf72 HRE itself but rather associate with the genetic background defined by the
chromosome 9 region in which C9orf72 is located, comprising the 110 kb risk Finnish
haplotype, that is, as stated above, more frequent for alleles with more than 8 repeats
within the C9orf72 HRE. Interestingly, genome-wide association studies (GWAS) identified
single nucleotide polymorphisms (SNPs) in the region of chromosome 9 that contains
the Mps One Binder Kinase Activator-Like 2B (MOBKL2B), C9orf72 and IFN-K loci as
associated with the response to anti-tumor necrosis factor α therapy in rheumatoid arthritis
(RA) [73], with a genetic predisposition to SLE [74] and recently as genetic loci shared
between ALS and autoimmune diseases like SLE and RA [75]. IFN-K is expressed in oral
epithelial cells, one of the first sites of host interaction with viruses that are spread via saliva
and may be spread through the mouth [76]. Near this region are also clustered further
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genes of type I IFNs and we recently found a significantly higher frequency of C9orf72
intermediate repeats in patients with SLE and RA [12].

In conclusion, C9orf72 intermediate alleles >10 repeat units are over-represented
in hospitalized COVID-19 patients with severe pneumonia and related to MV and NIV
requirements independently of age, suggesting that they could represent a risk factor
contributing to the occurrence of severe COVID-19 forms. Autophagy may be involved in
the COVID-19 clinical phenotype and a polygenic model also related to genes involved in
the autophagy machinery has been recently proposed to explain COVID-19 risk assessment
and guide precision medical care [46]. This is the first report describing the association of
severe forms of COVID-19 with variants in a gene involved in autophagy. Understanding
how host genetic factors contribute to variation in disease susceptibility and severity may
shed light on heterogeneity in the immune response and the host–pathogen interaction
and facilitate the development of therapeutics and vaccines.

4. Materials and Methods
4.1. Patients

In the first cohort, we consecutively enrolled 240 adult patients (aged > 18 years, mostly
Caucasian and most of them from the same Italian region, Lombardy) with confirmed
COVID-19 pneumonia (defined by SARS-CoV-2-positive molecular test on nasopharyngeal
swab and radiological features of pneumonia) who previously required hospitalization
at ASST-Spedali Civili di Brescia over the period March-December 2020. Recruitment
was performed when discharged patients were referred to the University Department of
Infectious and Tropical Diseases of our Hospital for clinical and virological control and
follow-up. Hospitalization with COVID-19 pneumonia was used as proxy of severity for
patients’ inclusion. NIV or MV were used to define the most severe degree of pneumonia
in further analyses. Patients’ clinical data and routine laboratory findings (white blood
cell, lymphocyte and platelet counts, serum biochemical tests for liver and renal function,
C-reactive protein, ferritin, D-dimer) were collected from clinical and electronic charts. The
worst value for each biochemical parameter during hospitalization was used for analyses.

No significant differences between ALS cases without large C9orf72 HRE and healthy
subjects have been thoroughly described regarding distribution, range and median re-
peat number [1,2,4,8,47–50]. Nonetheless, differences in the prevalence of large C9orf72
pathogenic expansions have been described between people from Southern and North-
ern Europe and both large (>30 repeat units) and intermediate (>8 but ≤30 repeat units)
expansions are linked to the chromosome 9 Finnish founder ALS risk haplotype, that is
common in individuals of Northern European ancestry [33]. To avoid potential bias deriv-
ing from the genetic background, as control group for the first cohort of analyzed subjects
we included 93 ALS patients, mostly Caucasian and from the same geographical region
of COVID-19 patients, but without large C9orf72 pathogenic expansions. ALS patients
included in this study referred to the Centre for Neuromuscular Diseases and Neuropathies
ASST-Spedali Civili di Brescia and were recently admitted to the Cytogenetics and Molecu-
lar Genetics Section of our Hospital for routine genetic diagnosis (some of these patients
were already described in reference [12].

In the replication study, 201 SARS-CoV-2 infected individuals (defined by SARS-
CoV-2-positive molecular test on nasopharyngeal swab as above) from the GEN-COVID
Multicenter Study [51] were considered. Among them, 101 patients were severely affected
and treated by either MV or NIV, while 100 were non-hospitalized subjects (asymptomatic
or with very mild symptoms). Specimens were provided by the COVID-19 Biobank of
Siena, which is part of the Genetic Biobank of Siena, a member of BBMRI-IT, Telethon
Network of Genetic Biobanks (project no. GTB18001), EuroBioBank and RD-Connect.

All data were collected in anonymized form by study physicians. Written informed
consent was obtained by all patients. The protocol for enrollment of COVID-19 patients of
the first cohort was approved by the Ethics Committee of ASST-Spedali Civili di Brescia
(GEVACOBA Study Project). The GEN-COVID study was approved by the University
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Hospital of Siena Ethics Review Board. Clinical research was conducted in accordance with
the principles for medical research involving human subjects described in the Declaration
of Helsinki.

4.2. C9orf72 Genotyping

Genomic DNA samples were obtained from peripheral blood samples using the
Wizard Genomic DNA Purification kit (Promega Corporation, Madison, WI, USA). DNA
samples were quantified by the use of Qubit 2.0 Fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA), with Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and geno-
typed with a polymerase chain reaction (PCR)-based two-step C9orf72 analysis, essentially
as previously described [77].

A preliminary cut-off of >8 repeat units was chosen to distinguish short (2–8 units)
from intermediate (9–30 units) C9orf72 HREs, on the basis of the following criteria [12]:
(1) most healthy individuals harbor 2 to 8 repeats [1,2]; (2) the risk haplotype is more
frequent above 8 repeats [78,79]; (3) modulation of C9orf72 expression has been observed
with a number of repeats in the intermediate range [10,25,34].

4.3. Statistics

Categorical variables were reported as proportion and/or percentage, continuous
variables as mean (±SD) values. Fisher’s exact or Chi-square test for categorical variables
and Student’s t-test for continuous variables were applied as appropriate. To find the
number of repeats in C9orf72 HRE at which the differences in COVID-19 and control
patients was more significant, we performed a logistic regression analysis, using the COVID-
19 condition as dependent variable and the number of patients with different maximum
repeats level. We then plotted the OR and p-value on the number of maximum repeats.

Logistic regression was used to perform the adjusted analysis for COVID-19 severity
(using NIV and MV requirements as proxy), and presence of C9orf72 HRE >10 units,
adjusted for age. p values < 0.05 were considered significant. When significant, OR with
95% CI were indicated.
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