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ABSTRACT

Guided depth super-resolution aims at using a low-resolution depth map and an associated high-resolution RGB image
to recover a high-resolution depth map. However, restoring precise and sharp edges near depth discontinuities and fine
structures is still challenging for state-of-the-art methods. To alleviate this issue, we propose a novel multi-stage depth
super-resolution network, which progressively reconstructs HR depth maps from explicit and implicit high-frequency
information. We introduce an efficient transformer to obtain explicit high-frequency information. The shape bias
and global context of the transformer allow our model to focus on high-frequency details between objects, i.e., depth
discontinuities, rather than texture within objects. Furthermore, we project the input color images into the frequency
domain for additional implicit high-frequency cues extraction. Finally, to incorporate the structural details, we develop
a fusion strategy that combines depth features and high-frequency information in the multi-stage-scale framework.
Exhaustive experiments on the main benchmarks show that our approach establishes a new state-of-the-art.
This paper is under consideration at Computer Vision and Image Understanding.

1. Introduction

With the rise of consumer-grade depth cameras, depth maps
are employed in various scenarios such as 3D reconstruction
(Chen et al., 2020a,b), recognition (Cai et al., 2010) and more.
Time-of-Flight (ToF) is one of the leading technologies in-
volved in depth sensing, measuring the distance traveled by
emitted rays until they reach points in the scenes. However,
due to the limitations of physical fabrication, power consump-
tion and costs (Bamji et al., 2022), the resolution of depth maps
usually is often insufficient to fulfill the demand of the down-
stream applications, such as object detection (Chen et al., 2021)
and pose estimation (Ge et al., 2019). In contrast, collecting
RGB images at much higher resolution is cheaper. As a result,
the guided depth super-resolution task, known as GDSR, has
emerged as a crucial solution to this technological limitation,
allowing to obtain an accurate high-resolution (HR) depth map
from a low-resolution (LR) one, guided by an HR image.

Initially, algorithms addressing this problem were classified
into local (Kopf et al., 2007; Yang et al., 2007; Riemens et al.,
2009; Wang et al., 2014) and global (Diebel and Thrun, 2005;
Park et al., 2011; Ferstl et al., 2013; Li et al., 2016b), with
the former family being faster, yet suffering in low-textured
regions and the latter resulting more robust, at the expense of
processing time. More recently, deep neural networks have be-
come the preferred choice for depth super-resolution (Hui et al.,
2016; Li et al., 2016a, 2019; Lutio et al., 2019; Tang et al.,
2021b), although they still struggle to restore sharp and precise

∗∗Corresponding author: Chenyang Ge
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edges from LR depth maps reliably, especially when dealing
with large upsampling factors. This is mainly due to the in-
adequate guidance provided by High-Frequency (HF) features,
implicitly modeled by deep networks, which frequently cause
texture copying effects in the upsampled depth maps. In ad-
dition, single-stage multi-scale architectures for this task (Ye
et al., 2020; Wang et al., 2020; Zuo et al., 2020; Tang et al.,
2021a), at any given scale, cannot fully leverage fine details en-
coded at the higher ones, as they are lost due to down-sampling
and only partially recovered through skip connections.

In light of the two weaknesses highlighted so far, we aim
to improve GDSR by explicitly countering them. For the for-
mer, we argue that explicit extraction of HF features, supported
by edge detection algorithms such as the Canny operator, can
play a crucial role (Wang et al., 2020). Concerning the latter,
multi-stage network design – which outperforms single-stage
counterparts in high-level visual tasks like action segmentation
(Farha and Gall, 2019) and pose estimation (Chen et al., 2018),
as well as for low-level vision problems such as image restora-
tion (Zamir et al., 2021; Kim et al., 2022) – can mitigate the
information loss issue. However, since features extracted from
RGB images need to be considered in addition to depth fea-
tures, existing multi-stage networks are inadequate for GDSR
and should be revised to fuse features from the two domains.

In this paper, we present a Depth Super-Resolution
method leveraging both Explicit and Implicit HF information
(DSR-EI), which contains two branches: the High-Frequency
Extraction Branch (HFEB) and the Guided Depth Restoration
Branch (GDRB). The former is designed to model explicit
HF features by exploiting dynamic self-calibrated convolutions
(DSP) and the power of vision transformers blocks. The latter
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Fig. 1: Depth Super-Resolution exploiting explicit and implicit high-frequency features. On the left, an overview of our framework, combining the power of
both explicit and implicit high-frequency information extracted from the inputs. On the right, qualitative examples with (a) RGB images, (b) ground truth depth and
error maps by existing methods (c – d) and ours (e).

effectively fuses the guidance from RGB features with depth
features to obtain HR depth maps. This is achieved by deploy-
ing two novel modules: 1) the Adaptive Feature Fusion Mod-
ule (AFFM), which counters the HF information loss due to
downsampling, and 2) the Low-Cut Filtering (LCF) module,
which acts in the frequency domain to improve implicit extrac-
tion of HF features. Exhaustive experiments on several standard
datasets show the superiority of DSR-EI. In summary, the main
contributions of this paper are:

• The proposed architecture employs a novel efficient trans-
former for explicit, HF feature extraction. The transformer
can accurately capture image details and structures from
depth maps.

• In the guided depth restoration branch, we propose a low-
cut filtering module that can obtain accurate, implicit HF
information.

• To counter the information loss issue, we propose an
Adaptive Feature Fusion Module located in the middle of
the guided depth restoration branch.

• Quantitative and qualitative experimental results demon-
strate that our approach establishes a new state-of-the-art
in the field of guided depth super-resolution.

Fig. 1 provides a high-level view of our framework, followed
by examples that anticipate the superior accuracy achieved
by DSR-EI compared to existing methods (Zhao et al., 2022;
de Lutio et al., 2022). In case of acceptance, we will make our
code publicly available to ease reproducibility.

2. Related Work

In this section, we first review the literature related to the
GDSR task, divided into conventional and learning methods,
as well as to vision transformers.

Conventional Methods. Initially, hand-craft models were
developed for GDSR, using the edge co-occurrence between
the LR depth map and its HR color counterpart as prior. Kopf
et al. (2007) first utilizes a joint bilateral filter, taking guidance
cues from color images. The so-called local methods followed
this pivotal work: Yang et al. (2007) enhances the LR depth
maps by exploiting registered HR color images, Riemens et al.
(2009) uses anti-alias image prefiltering built on the multi-stage
joint bilateral filter, while graph-based joint bilateral upsam-
pling (Wang et al., 2014) casts GDSR as a regularization prob-
lem.

More accurate solutions, although slower, are represented by
global methods. The first work in this direction is Diebel and
Thrun (2005), which employs Markov random fields (MRF) to
integrate multi-modal data for LR depth map upsampling. Us-
ing the non-local mean filtering method, Park et al. (2011) re-
covers noisy LR images from a ToF camera to a high-quality
image. To be more efficient, Ferstl et al. (2013) exploits To-
tal Generalized Variation (TGV) regularization for GDSR, en-
abling a high frame rate. Li et al. (2016b) uses fast global
smoothing (FGS) to make guided depth interpolation more ro-
bust.

Learning Methods. Earlier methods from this category ex-
ploit MRF (Mac Aodha et al., 2012; Kiechle et al., 2013; Kwon
et al., 2015). However, these techniques rely on manually cre-
ated dictionaries, whose limited content restricts the capac-
ity of generalizing. More recently, deep learning-based ap-
proaches achieved remarkable results and became the preferred
choice for GDSR. Hui et al. (2016) designs a multi-scale guided
CNN using hierarchical feature extraction to gradually restores
blurred edges. To reconstruct sharp edges, the works by Li et al.
(2016a, 2019) learn salient features from color images using an
encoder-decoder structure. In contrast, Lutio et al. (2019) casts
GDSR as a pixel-to-pixel mapping from the HR RGB image to
the domain of the LR source image, learned by a multi-layer
perceptron. In Ye et al. (2020), a multi-branch network with
progressive refinement performs adaptive information fusion to
restore depth details. Wang et al. (2020) can quickly upsample
depth maps by learning Canny edges, while Zuo et al. (2020)
proposes a depth-guided affine transformation where the feature
refinement is carried out iteratively. Tang et al. (2021a) makes
use of implicit neural interpolation, Kim et al. (2021) develops
a deformable kernel network whose outputs are per-pixel ker-
nels, and Zhao et al. (2022) proposes a Discrete Cosine Trans-
form Network (DCTNet) to extract multi-modal features effec-
tively. Through graph optimization, de Lutio et al. (2022) com-
bines the advantages of model-driven and deep learning-based
methods. Concurrent works exploit recurrent structure attention
(Yuan et al., 2023) or combine deep learning with anisotropic
diffusion (Metzger et al., 2022).

Despite substantial advancements, these networks are not ef-
fective enough at extracting HF guidance from RGB images.
Inspired by Liu et al. (2021), this paper tackles GDSR leverag-
ing both explicit and implicit HF features guidance.

Vision Transformers. Transformers, initially designed for
natural language processing (Vaswani et al., 2017), recently
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Fig. 2: DSR-EI architecture. Rectangles with different colors depict different stages and functions in each stage.

Fig. 3: High-frequency information loss (factor 4×). From left to right, HR
depth map and its corresponding gradient map, followed by the gradient map
from bicubic upsampled LR depth map and LR depth map itself. HF informa-
tion is mostly lost in the second gradient map.

gained popularity in computer vision, for tasks such as image
recognition (Dosovitskiy et al., 2021; Touvron et al., 2021), ob-
ject detection (Carion et al., 2020) and semantic segmentation
(Wang et al., 2021). Vision Transformers (ViTs) learn long-
range dependencies across image tokens through self-attention
(Han et al., 2022). Given the natural advantages of such a mech-
anism, ViTs targeting low-level vision tasks emerged more re-
cently (Zamir et al., 2022; Lee et al., 2022; Pu et al., 2022), al-
though requiring much larger amounts of parameters and com-
puting resources.

3. DSR-EI Framework

In GDSR, HF information in color images – complementary
to depth maps – is essential for achieving high performance,
which motivates us to seek an efficient method to extract it. In
this section, we present our framework that exploits explicit and
implicit HF information for depth super-resolution. Then, we
introduce the two branches in our network: the High-Frequency
Extraction Branch (HFEB) and the Guided Depth Restoration
Branch (GDRB).

Fig. 2 shows an overview of our architecture. Given the LR
depth map Dlr ∈ Rh×w×1 and the corresponding HR color image
Ihr ∈ RH×W×3, we aim at restoring HR depth map D̃sr. Note that
H = s×h and W = s×w, where s denotes the upsampling factor
– e.g., 4×, 8× or even 16×. In our proposed network, the input
depth map is firstly upsampled with bicubic interpolation to the
same size as Ihr. At different scales, we denote the correspond-
ing depth maps and color images as Di

lr and Ii
hr, respectively,

with s = 2i. Then, according to the above notation, the input
images D0

lr and I0
hr are fed into the two branches, respectively.
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Fig. 4: DSP architecture. Differently from SCPA (Zhao et al., 2020), our
module processes features at different scales, allowing to extract explicit HF
information more effectively.

Before being sent to GDRB, both the RGB and depth images
are processed by a channel-attention block (CAB) (Zhang et al.,
2018) and a low-cut filtering (LCF) module, which will be ex-
plained in detail in Sec. 3.2.

3.1. High-Frequency Extraction Branch (HFEB)

We argue HF information is crucial for effective super-
solving depth and is often lost by upsampling. The primary
goal of HFEB is to produce an accurate gradient map from an
LR depth map, with the support of a color image jointly pro-
cessed with it.

Indeed, as pointed out in Wang et al. (2020), networks for
GDSR tend to focus more on depth discontinuities or object
boundaries. However, from Fig. 3, we can notice that even
with a 4× factor, most high-frequency information vanishes,
as shown by the gradient maps extracted from HR and up-
sampled LR depth maps, leading to severe degradation of the
super-solved depth map. Traditional methods tend to transfer
texture to depth maps rather than structural details, failing to
extract accurate edges. Moreover, methods extracting binary
edges (Wang et al., 2020) gather insufficient high-frequency in-
formation, yielding sub-optimal results.

The work (Pu et al., 2022) has shown that transformer-based
networks can extract clear and meaningful edges by lever-
aging both global and local features simultaneously. Con-
sidering the sparsity of edge maps, we design an efficient
transformer, inspired by dynamic scale policy (Wang et al.,
2019) and self-attention (Vaswani et al., 2017), to obtain strong
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HF priors for guiding depth super-resolution. Specifically,
our transformer consists of a stack of blocks called dynamic
self-calibrated convolution with pixel attention (DSP) and one
LightViT block (Huang et al., 2022). To better extract HF fea-
tures, we design the DSP block, which is inspired by SCPA
(Zhao et al., 2020) and performs self-calibrated convolution
with two branches at a single scale. However, unlike SCPA,
our DSP block includes an additional branch that enables the
processing of features at different scales without incurring ex-
tra computational burden, as we will demonstrate empirically
in our experiments. Specifically, stacked DSP blocks can be
expressed as:

ΦM = F
M

DS P(F M−1
DS P (· · ·F 1

DS P(Φ0) · ··)) (1)

where F m
DS P denotes the mapping of the m-th DSP block, m ∈

[1,M], Φ0 and ΦM are the input/output features, respectively.
As shown in Fig. 4, each DSP block includes three branches:
the upper is the dynamic scale branch, the middle is the flat
convolution branch, and the lower is the pixel attention branch.
Specifically, we employ three convolutions with 1 × 1 kernel to
split the channels, which are further processed by each branch.
Note that the dynamic scale branch needs to be downsampled
before 1 × 1 convolution. Given the input Φm−1, we obtain:

Φ1
m−1 = Conv1×1((Φm−1) ↓) (2)

Φk
m−1 = Conv1×1(Φm−1) (3)

where Φ1
m−1 is the output from the upper dynamic scale branch,

k = 2, 3 denotes the features of the other two branches, Conv1×1
is 1 × 1 convolution, and ↓ is the downsampling operation. Ex-
cept for the pixel attention branch, which has features with half
the total channels, the other two branches process features with
1
4 of the channels each. Next, the pixel attention branch obtains
features through the pixel attention scheme (Zhao et al., 2020).
In contrast, the other two branches extract spatial information
with a 3 × 3 flat convolution, followed by a 1 × 1 convolution
to restore the number of channels to be the same as the pixel
attention branch. Note that the dynamic scale branch needs up-
sampling after 1 × 1 convolution. Then, the features from the
dynamic scale and the flat convolution branches can be fused by
summation. After concatenation of the features followed by a
1× 1 convolution, the DSP finally generates the output features
Φm in a residual learning fashion. It can be written as follows:

Φ1
m = Conv1×1(Conv3×3(Φ1

m−1)) ↑ (4)

Φ2
m = Conv1×1(Conv3×3(Φ2

m−1)) (5)

Φ3
m = Conv3×3(Φ3

m−1) ⊙ σ(Conv1×1(Φ3
m−1)) (6)

Φ
′

m = Conv3×3(Φ3
m) (7)

Φ
′′

m = Conv3×3(Φ1
m ⊕ Φ

2
m) (8)

where σ is the sigmoid function, ⊙ and ⊕ are element-wise
multiplication and element-wise summation, respectively, and
↑ denotes the upsampling operation. After concatenation of the
features Φ

′

m and Φ
′′

m followed by a 1 × 1 convolution, the DSP
finally generates the output features Φm in a residual learning
manner. This process can be expressed as follows:

Φm = Conv1×1([Φ
′

m,Φ
′′

m]) ⊕ Φm−1 (9)
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Fig. 5: AFFM architecture, operating at middle scale. AFFMs for the re-
maining scales follow the same design.

where [·] perform concatenation.
To further enhance the feature representation of the subnet-

work, we incorporate LightViT (Huang et al., 2022) as the tail
module, which utilizes local-global attention broadcast to ag-
gregate information from all tokens, allowing for the efficient
integration of global dependencies of local tokens into each im-
age token. Finally, considering that the supervised attention
module (SAM) (Zamir et al., 2021) can restore information
progressively between stages/branches, we employ it to out-
put the gradient map E ∈ RH×W×1 and high-frequency features
Fedge ∈ RH×W×C , used respectively as intermediate output – al-
lowing for explicit supervision over edges – and as guidance
for GDRB. Under this lightweight design, HFEB can effec-
tively still extract meaningful structural information with dif-
ferent scale receptive fields.

3.2. Guided Depth Restoration Branch (GDRB)

As shown in Fig. 2, GDRB is composed of two stages, and
each one processes features at three scales, following a coarse-
to-fine strategy (Gao et al., 2019; Sarlin et al., 2019). The two
stages are implemented with standard U-net architectures (Ron-
neberger et al., 2015). More specifically, a cross-stage feature
fusion module (Zamir et al., 2021) is deployed between the two,
which proved to be effective in image restoration and, in our
design, allows GDRB to benefit from the intermediate features
extracted by HFEB. To prevent aliasing in downsampling, we
employ content-aware filtering layers (Zou et al., 2022) in the
encoders. Besides, GDRB deploys some further SAM blocks
(Zamir et al., 2021), allowing valuable features to propagate
to the next stage. In addition to depth features, the SAMs of
the two stages also output depth maps D̃

′

sr and D̃
′′

sr, to which
intermediate supervision is provided. Note that input images
are downsampled to the lower stage using pixel unshuffling to
prevent information loss. Subsequently, the depth map output
of this stage is restored at high resolution by employing pixel
shuffling.

Based on the above structure, we propose two novel modules:
AFFM and LCF. The former fuses gradient features between
each encoder/decoder, while the latter supplements additional
HF information in an implicit manner.

Adaptive feature fusion module. Recent networks such as
Ye et al. (2020); Tang et al. (2021a) typically concatenate RGB
and depth features directly during feature fusion, followed by
additional operations such as channel attention (Zhang et al.,
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2018) to capture useful information. In contrast, inspired by
Liu et al. (2021), we run adaptive feature fusion through AFFM
in two steps to strengthen the reconstruction of HF cues, as il-
lustrated in Fig. 5. We differentiate from Liu et al. (2021) by
using dynamic convolution (Chen et al., 2020c) to better ag-
gregate depth and HR features. In the first step, we generate
dynamic weights πi, i = 0, 1, 2, which are then assigned to fea-
tures from different scales within the current stage. Finally, we
perform element-wise summation to obtain the feature maps F

′

.
For clarity, the figure shows the module working at the middle
scale of the network as an example, with the others sharing the
same design. The process is defined as follows:

Fcat = Conv3×3(Conv1×1([F0 ↓, F1, F2 ↑])) (10)
{π0, π1, π2} = σ(Avgpool(Fcat)) (11)

F
′

= π0 · F0 ↓ +π1 · F1 + π2 · F2 ↑ (12)

where F i, i = 0, 1, 2 denotes the feature maps from the three
scales, and ↓, ↑ are respectively downsampling and upsampling
operators.

In the second step, gradient features Fedge from HFEB are
concatenated with F

′

. Then, per-pixel attention maps Fatt are
generated by a ResBlock (He et al., 2016) followed by an av-
erage pooling operation. These attention maps are then applied
directly to the adaptively fused features F

′

through element-
wise multiplication operation. Finally, after 1 × 1 convolution,
the attention-guided features F i

out are delivered to the corre-
sponding scale of the current stage. In Fig. 5, the output is
passed to the middle scale of the decoder. AFFMs working at
the other scales send their output to the corresponding scale in
the decoder. This step can be formalized as follows:

F
′′

= [Avgpool(Conv3×3(Fedge)), F
′

] (13)

Fatt = σ(Avgpool(ResBlock(F
′′

))) (14)

F1
out = con1×1(F

′

⊗ Fatt) (15)

where ⊗ is an element-wise multiplication operation and F1
out

denotes the output features at the middle scale.
Low-cut filtering module. The performance of our method

greatly benefits from the explicit gradient information, but some
valuable high-frequency information still vanishes. This fact
motivates us to consider extracting complementary informa-
tion in the frequency domain. As a common practice (Chang
et al., 2007; Lin et al., 2010), we use the low-frequency in-
formation of the discrete cosine transform (DCT) to compress
images. Based on the design approach proposed in Qin et al.
(2021), we develop a filtering module utilizing feature decom-
position in the frequency domain to extract low-frequency com-

ponents from the input. Specifically, we apply a 1 × 1 con-
volution followed by a channel split to the input color image
I0
hr. Then, we can obtain assigned frequency components from

the output features [ f0, f1, · · ·, fn−1] after DCT. Thus, the multi-
spectral channel attention maps are generated by a fully con-
nected layer and sigmoid activation. According to Qin et al.
(2021), the low-frequency information is first assured to pass.
Thus, we subtract such a low-frequency component from the in-
put features producing the complementary high-frequency fea-
tures Frgb. Fig. 6 illustrates LCF in detail. The high-frequency
cues extracted from these features enable GDRB to progres-
sively super-resolve LR depth maps into HR ones.

Refinement. To enhance the depth quality further, we op-
tionally feed our final output into NLSPN (Park et al., 2020) for
refinement. This variant of the method is referred to as DSR-
EI+.

3.3. Training Loss
Our network is trained in an end-to-end fashion using two

loss terms: depth loss Ld and gradient loss Lg. The depth loss
is defined as:

Ld=∥ (D̃sr−Dgt)⊙I∥1+ λd· ∥ (D̃
′

sr−Dgt)⊙I∥1
+ λd· ∥ (D̃

′′

sr−Dgt)⊙I∥1
(16)

where Dgt is the ground truth depth, D̃sr, D̃
′

sr and D̃
′′

sr are pre-
dicted depth maps from different stages, and I is pixel validity,
as defined in de Lutio et al. (2022). We empirically set λd = 0.2.
Gradient loss Lg is computed on HEFB output, as:

Lg =∥ Ẽ − Egt ∥1 (17)

where Ẽ is the predicted gradient map and Egt is the ground
truth one, extracted according to Liu et al. (2021). Thus, the
total loss can be defined as:

Ltotal = Ld + λg · Lg (18)

with λg empirically set to 0.01.

4. Experimental Results

In this section, we validate the effectiveness of our proposal.
We first introduce datasets, metrics and implementation de-
tails involved in our evaluation. Then, we compare DSR-EI
with state-of-the-art methods, conduct an ablation study on our
model and, finally, discuss its limitations.

4.1. Datasets and Metrics
We evaluate DSR-EI on four datasets, compared with exist-

ing methods when super-solving depth maps by three different
upsampling factors: 4×, 8×, and 16×.

Middlebury (Scharstein and Szeliski, 2003; Scharstein and
Pal, 2007; Hirschmuller and Scharstein, 2007; Scharstein et al.,
2014). We train all learning-based methods using 50 RGB-
D images with ground truth from Middlebury 2005, 2006 and
2014 datasets. As in de Lutio et al. (2022), we retain 5 for vali-
dation and 5 for testing.
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Table 1: Results on Middlebury, NYUv2 and DIML datasets. The lower the MSE and MAE, the better.

Dataset Middlebury NYUv2 DIML

Methods 4× 8× 16× 4× 8× 16× 4× 8× 16×

GF (He et al., 2010) 33.3 / 1.27 40.5 / 1.49 67.4 / 2.21 114 / 3.91 142 / 4.47 249 / 6.34 25.6 / 1.45 34.1 / 1.77 66.3 / 2.74
SD (Ham et al., 2017) 24.9 / 0.46 82.5 / 0.86 511 / 1.73 36.0 / 1.31 105 / 2.57 533 / 5.07 10.5 / 0.40 44.9 / 0.83 41.1 / 1.91
P2P (Lutio et al., 2019) 39.8 / 0.79 32.7 / 0.82 41.5 / 1.24 112 / 3.61 122 / 3.86 219 / 5.40 20.7 / 1.15 23.0 / 1.26 39.3 / 1.78
MSG (Hui et al., 2016) 4.13 / 0.22 10.5 / 0.43 34.2 / 1.06 6.85 / 0.81 24.1 / 1.66 84.5 / 3.35 1.73 / 0.22 4.13 / 0.40 13.0 / 0.93
DKN (Kim et al., 2021) 4.29 / 0.18 11.2 / 0.38 47.6 / 1.42 11.4 / 1.03 29.8 / 1.82 115 / 4.01 3.47 / 0.33 5.47 / 0.45 19.3 / 1.20
FDKN (Kim et al., 2021) 3.60 / 0.16 10.4 / 0.37 38.5 / 1.18 9.07 / 0.85 29.9 / 1.80 113 / 3.95 2.20 / 0.23 5.95 / 0.47 20.8 / 1.24
PMBANet (Ye et al., 2020) 4.72 / 0.25 9.48 / 0.38 30.6 / 0.89 10.8 / 0.93 17.2 / 1.38 84.9 / 3.26 3.05 / 0.31 5.87 / 0.47 13.8 / 0.87
FDSR (He et al., 2021) 7.72 / 0.35 23.2 / 0.69 55.4 / 1.51 10.1 / 0.94 19.5 / 1.38 86.4 / 3.35 2.75 / 0.29 8.40 / 0.66 32.9 / 1.66
JIIF (Tang et al., 2021a) 2.70 / 0.11 8.01 / 0.27 37.5 / 0.98 3.28 / 0.52 15.2 / 1.29 59.9 / 2.81 1.19 / 0.16 3.65 / 0.32 11.7 / 0.81
DCTNet (Zhao et al., 2022) 5.00 / 0.24 15.1 / 0.57 52.3 / 1.50 3.63 / 0.68 20.9 / 1.79 77.0 / 3.61 2.09 / 0.31 7.08 / 0.65 23.4 / 1.75
LGR (de Lutio et al., 2022) 3.04 / 0.13 7.26 / 0.24 24.7 / 0.67 6.45 / 0.73 19.6 / 1.42 67.5 / 2.90 1.68 / 0.20 3.51 / 0.31 9.45 / 0.68
DADA (Metzger et al., 2022) 2.58 / 0.11 5.68 / 0.20 16.3 / 0.48 4.83 / 0.64 16.6 / 1.30 59.0 / 2.64 1.33 / 0.17 2.93 / 0.28 7.61 / 0.59
DSR-EI 2.46 / 0.08 6.20 / 0.18 15.8 / 0.47 2.82 / 0.49 11.8 / 1.12 47.8 / 2.48 0.70 / 0.13 2.12 / 0.22 6.29 / 0.52
DSR-EI+ 2.56 / 0.07 5.13 / 0.18 16.6 / 0.40 2.75 / 0.47 11.8 / 1.09 47.14 / 2.40 0.65 / 0.12 2.09 / 0.22 6.31 / 0.50

Table 2: Results on RGBDD dataset. We report RMSE, the lower the better.

Methods 4× 8× 16×

SDF (Li et al., 2016a) 2.00 3.23 5.16
SVLRM (Pan et al., 2019) 3.39 5.59 8.28
DJF (Li et al., 2016a) 3.41 5.57 8.15
DJFR (Li et al., 2019) 3.35 5.57 7.99
PAC (Su et al., 2019) 1.25 1.98 3.49
CUNet (Deng and Dragotti, 2020) 1.18 1.95 3.45
DKN (Kim et al., 2021) 1.30 1.96 3.42
FDKN (Kim et al., 2021) 1.18 1.91 3.41
FDSR (He et al., 2021) 1.16 1.82 3.06
DCTNet (Zhao et al., 2022) 1.07 1.78 3.18
RSAG (Yuan et al., 2023) 1.14 1.75 2.96
DSR-EI 0.91 1.37 2.10
DSR-EI+ 0.91 1.38 2.10

NYUv2 (Silberman et al., 2012). It contains 1449 RGB-D
images in total. Following de Lutio et al. (2022), we randomly
split it into 849 RGB-D images for the training set, 300 for the
validation set and 300 for the test set. Compared to Ye et al.
(2020); Liu et al. (2022), it comes with a validation set to make
the comparison fairer.

DIML (Kim et al., 2016, 2017, 2018; Cho et al., 2021) con-
sists of 2 million color images and corresponding depth maps
from indoor and outdoor scenes. We adopt the same strategy
outlined in de Lutio et al. (2022), i.e., considering only the in-
door data subset, and use 1440 for training, 169 for validation,
and 503 for testing.

RGBDD (He et al., 2021) is a new real-world dataset for
GDSR, which consists of 4811 image pairs. For evaluation, we
follow the protocol described in He et al. (2021), using 2215
images (1586 portraits, 380 plants, 249 models) as the training
set and 405 images (297 portraits, 68 plants, 40 models) as the
test set.

Metrics. Following de Lutio et al. (2022), we compute mean
square error (MSE / cm2) and mean absolute error (MAE / cm)
as metrics on Middlebury, NYUv2 and DIML. For RGBDD, we
use root mean square error (RMSE / cm) as in He et al. (2021).

4.2. Implementation Details

During training, the HR depth maps and the color images are
randomly cropped into 256×256 patches. LR depth patches are
generated by bicubic interpolation at 64 × 64, 32 × 32, 16 × 16
resolution for 4×, 8× and 16× factors, respectively. We ran-
domly extract about 75K, 168K, 223K and 232K patches from
Middlebury, NYUv2, DIML and RGBDD for training. Before

Table 3: Cross-dataset generalization. All methods are trained on NYUv2
and tested on DIML/Middlebury with factor 8×. Middlebury-HR is the test set
defined in de Lutio et al. (2022), Middlebury-LR is the one from Tang et al.
(2021a). The lower MSE and MAE, the better.

Methods DIML Middlebury-HR Middlebury-LR

GF (He et al., 2010) 34.1 1.77 40.5 1.49 25.6 2.31
SD (Ham et al., 2017) 44.9 0.83 82.5 0.86 28.8 2.07
P2P (Lutio et al., 2019) 23.0 1.26 32.7 0.82 15.8 1.73
MSG (Hui et al., 2016) 5.76 0.51 11.0 0.54 8.89 1.62
FDKN (Kim et al., 2021) 6.74 0.53 10.0 0.43 5.54 0.99
PMBANet (Ye et al., 2020) 7.35 0.59 9.62 0.46 4.16 0.91
FDSR (He et al., 2021) 7.73 0.74 18.4 0.73 6.92 1.09
JIIF (Tang et al., 2021a) 4.10 0.38 19.3 0.74 4.40 0.92
DCTNet (Zhao et al., 2022) 5.64 0.77 17.5 0.77 6.96 1.15
LGR (de Lutio et al., 2022) 4.95 0.40 8.25 0.35 5.94 1.11
DSR-EI+ 3.72 0.36 14.6 0.54 3.44 0.87

being fed to the network, depth maps and images are normal-
ized in the [0, 1] range.

We use Pytorch (Paszke et al., 2019) to implement and train
DSR-EI, on a single Nvidia RTX 3090 GPU. The batch size is
set to 4, using Adam as the optimizer. The learning rate is ini-
tialized to 1 × 10−4, then performing a 5-epoch warm-up and
cosine annealing. We use random rotation, horizontal/vertical
flipping as data augmentation. According to the size of the
four datasets, we train our network for 1505, 198, 155 and 109
epochs on Middlebury, NYUv2, DIML and RGBDD, respec-
tively. When evaluating results on a specific dataset, we do not
perform any pre-training on the others. Following de Lutio et al.
(2022), testing is performed by processing 256× 256 patches at
a time on Middlebury, NYUv2 and DIML for fairness, while
full-resolution images are processed for RGBDD.

4.3. Comparison with State-of-the-Art

We compare DSR-EI to GF (He et al., 2010), SD (Ham et al.,
2017), P2P (Lutio et al., 2019), MSG (Hui et al., 2016), DKN
and its fast implementation FDKN (Kim et al., 2021), PM-
BANet (Ye et al., 2020), FDSR (He et al., 2021), JIIF (Tang
et al., 2021a), DCTNet (Zhao et al., 2022), LGR (de Lutio
et al., 2022), and finally to DADA (Metzger et al., 2022) on
Middlebury, NYUv2 and DIML datasets. We could not com-
pare with PDRNet (Liu et al., 2022) under the same setting
because the source code is unavailable at the time of writing.
For the other methods, we use the results from (de Lutio et al.,
2022) or the officially published codes, and results from (Yuan
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Fig. 7: Qualitative comparison on the Middlebury, NYUv2, and DIML. From left to right: (a) RGB image, (b) Bicubic upsampled depth map, (c) GT; then,
error maps achieved by selected methods: (d) PMBA Ye et al. (2020), (e) FDSR He et al. (2021), (f) JIIF Tang et al. (2021a), (g) DCTNet Zhao et al. (2022), (h)
LGR de Lutio et al. (2022); finally, (i) error maps and (j) predictions by DSR-EI.
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Fig. 8: Qualitative comparison on the RGBDD dataset. From left to right: (a) RGB image, (b) Bicubic upsampled depth map, (c) GT; then, error maps achieved
by selected methods: (d) FDKN (Kim et al., 2021), (e) FDSR (He et al., 2021), (f) DCTNet (Zhao et al., 2022); finally, (g) error maps and (h) predictions by DSR-EI.

et al., 2023; Metzger et al., 2022) for concurrent works. On the
RGBDD dataset, the proposed network is compared to SDF (Li
et al., 2016a), SVLRM (Pan et al., 2019), DJF (Li et al., 2016a),
DJFR (Li et al., 2019), PAC (Su et al., 2019), CUNet (Deng and
Dragotti, 2020), FDKN (Kim et al., 2021), DKN (Kim et al.,
2021), FDSR (He et al., 2021), DCTNet (Zhao et al., 2022) and
RASG (Yuan et al., 2023). To be fair with DCTNet (Zhao et al.,
2022), we downsample depth maps as the LR input. When re-
porting results, we highlight absolute and second best methods
for each metric on each dataset.

Quantitative Comparison. Tabs. 1 and 2 report the accu-
racy of super-solved depth maps at factors 4×, 8× and 16× on
the four datasets. As expected, learning-based methods show
a significant improvement over traditional methods (He et al.,
2010; Ham et al., 2017; Lutio et al., 2019). DSR-EI vastly out-
performs any existing network, with larger gaps in accuracy

with the increasing of the upsampling factor. This can be at-
tributed to the limitations affecting existing methods, i.e., 1) the
guidance of either explicit or implicit RGB features alone be-
ing insufficient; 2) multi-modal information fusion on a single
scale being not flexible enough to deal with complex scenes.
Both limitations are fully addressed by DSR-EI, which con-
sistently outperforms concurrent works (Metzger et al., 2022;
Yuan et al., 2023).

The margin is consistent both on perfect (Middlebury) and
noisy datasets (NYUv2, DIML, RGBDD), with the latter being
a more challenging, realistic benchmark. Although DSR-EI+ is
definitely the absolute best, its margin over DSR-EI is negligi-
ble, with tiny gains yielded by NLSPN with respect to our main
modules. Indeed, DSR-EI alone consistently outperforms any
other approach already.

Qualitative Comparison. Fig. 7 provides qualitative com-
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Fig. 9: Visual comparison on cross-dataset generalization (scaling factor 8×). The top, middle and last row show the error maps on the DIML dataset, the
Middlebury-HR dataset and the Middlebury-LR dataset, respectively. From left to right: (a) RGB image, (b) Bicubic upsampled depth map, (c) GT; then, error maps
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et al. (2022); finally, (i) error maps and (j) predictions by DSR-EI.

DHR

DLR

(a) RGB (b) Dhr (c) Dlr

Fig. 10: Image context processed on Middlebury – HR vs LR. (a) RGB
image and depth patches D processed when testing on (b) Middlebury-HR and
(c) Middlebury-LR.

parisons of the GDSR results across multiple datasets, i.e.,
NYUv2, Middlebury, and DIML, which cover various types of
scenarios and noise levels. We can notice that our model can
extract boundaries and details from the RGB image more ac-
curately. Specifically, on the depth discontinuities in the two
topmost rows, DSR-EI+ introduces fewer artifacts around the
edges of objects where specular reflections occur, which means
that our network is more robust in removing texture-copy ef-
fects from RGB images compared with other methods. On
the two samples selected from NYUv2, our network produces
fewer errors in recovering fine structures and details. For ex-
ample, in the fourth row of this figure, there are many tiny
objects whose shape and structure are degraded due to down-
sampling. Other methods may produce artifacts and inaccurate
depth boundaries, while our method has a clear advantage in
recovering fine-grained depth details. Fig. 8 also reports two
examples on the RGBDD dataset. In this case, we notice fewer
errors in the background, e.g., on the curtain.

Cross-dataset Generalization. We conclude the compari-
son with existing methods by conducting cross-dataset experi-
ments with 8× factor. All methods are trained on the NYUv2
dataset and directly evaluated on DIML and Middlebury. Ta-
ble 3 collects quantitative results for the 11 selected methods.
Again, CNN-based methods attain better performance than tra-
ditional approaches, despite the domain gap playing a signifi-
cant role in performance – as evident by comparing results with
Table 3. Nonetheless, DSR-EI outperforms any other frame-
work on DIML.

When considering the Middlebury dataset, we evaluate using

Table 4: Abaltion study – high-frequency information. Scale 8×.

No. Gradient Shallow
Feature LCF ResBlock MSE MAE

(I) % ! ! 13.1 1.19
(II) ! % 12.4 1.14
(III) ! ! ! 12.3 1.15
(IV) ! ! ! 11.8 1.12

Table 5: Different configurations for HR information. Scale 8×.

No. HF Information MSE MAE

(I) Canny Edge 12.0 1.13
(II) Gaussian Edge 12.1 1.16
(III) DCT 12.1 1.15
(IV) Wavelet Transform 12.1 1.15
(V) Gradient Map 11.8 1.12

the setting proposed in de Lutio et al. (2022) – Middlebury-HR
in the table. In this case, our results are slightly less accurate
compared to a few existing methods. However, given the very
high resolution of Middlebury images, we argue that this testing
protocol – i.e., consisting of processing 256×256 crops at a time
– penalizes our network’s ability to leverage the global context
in the input that results irremediably reduced to a very local area
in these images. Therefore, we also evaluate on Middlebury test
set defined by Tang et al. (2021a) – Middlebury-LR in the table.
Note that different subsets of images are used in Middlebury-
HR and Middlebury-LR splits. Besides, Middlebury-LR im-
ages are resized and processed without cropping, i.e., used at
full-size after resizing, allowing to fully exploit global context,
while this is not feasible with Middlebury-HR due to memory
constraints. In this case, DSR-EI attains the best performance
again, confirming our previous analysis, as shown in Tab. 3.
Such a difference in terms of context is highlighted in Fig. 10.

4.4. Ablation Study

We now perform a series of ablation experiments to measure
the impact of key components and parameters in DSR-EI. We
collects the outcome of these studies, conducted on NYUv2 test
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(a) (b) (c)

(d) (e) (f)

Fig. 11: Visual exhibition of high-frequency features generated from
HFEB. (a) RGB image, (b) GT, (c) Bicubic, (d)-(f) high-frequency features.

(a) (b) (c)

(d) (e) (f)

Fig. 12: Visual exhibition of shallow high-frequency features generated
from LCF. (a) RGB image, (b) GT, (c) Bicubic, (d)-(f) high-frequency fea-
tures.

set with 8× factor. Without loss of fairness, NLSPN is never
used here – to fully focus on the impact of single components.
The configurations marked in gray in Tab. 4-Tab. 9 correspond
to our final model without NLSPN.

(a) Implicit vs Explicit High-Frequency Features. To mea-
sure the impact of both implicit and explicit HR features, we
compare the performance of the proposed network and its vari-
ants when extracting either only one of the two. The quantita-
tive results are collected in Tab. 4. Without the help of gradi-
ent maps (I), the performance of the network significantly de-
grades. We believe this is caused by the difficulty in effectively
extracting fine structures or salient edges required for LR depth
maps from implicit HF features alone. Moreover, explicit fea-
tures highlight regions in the image that need to be focused on,
avoiding DSR-EI to learn to localize them and easing its task.
Fig. 11 shows three among the high-frequency features Fedge

from a representative sample. We can notice how each of the
three mainly emphasizes object boundaries, confirming the ef-
fectiveness of HFEB at extracting gradient information. At the
same time, we can notice how the input RGB images expose
very low texture, further confirming the effectiveness of HFEB
at localizing high-frequency information.

Nonetheless, explicit HF features alone as guidance (II) are
insufficient as well. We argue that the explicit information
might neglect some RGB features, whereas implicit HF feature
extraction can recover them. Furthermore, to verify the effec-

Table 6: Effectiveness of HFEB. Scale 8×.

No. Config. Params (M) Flops (G) MSE MAE

(I) EdgeNet 5.78 95.6 12.0 1.12
(II) SCPA 0.29 13.1 12.5 1.16

(III) HFEB 0.27 11.6 11.8 1.12

Table 7: The impact of scales at which AFFM is applied.

No. Scales Params (M) MSE MAE

(I) H1 1.5 12.3 1.14
(II) H1, H2 3.0 11.8 1.12
(III) H1, H2, H3 4.5 11.8 1.12

tiveness of LCF, we replace it with ResBlock (He et al., 2016)
(III) to extract shallow features from RGB images, highlighting
a negative impact on implicit features extraction – i.e., it results
less accurate than (II). Fig. 12 shows some of the features ex-
tracted by LCF. We can notice how, in addition to the primary
high-frequency information, other information is encoded, such
as semantics, which can further provide support for the explicit
high-frequency information extracted in parallel by HFEB and
improve the guidance for the final, depth super-resolution task.

(b) Ablation on Explicit High-Frequency Features. Based
on the previous analysis, HFEB can significantly improve the
network. To determine which high-frequency information is
more suitable as guidance for GDSR, we experiment with five
kinds of edge maps used as ground truth Egt to train HFEB: (1)
the Canny edge map, (2) the Gaussian high-frequency map, (3)
the high-frequency map generated by discrete cosine transform,
(4) the high-frequency wavelet map and (5) the gradient map,
as shown in Tab. 5. The Gaussian high-frequency map is ob-
tained using a Gaussian filter, as detailed in Wang et al. (2020).
Table 5 reports the outcome of the evaluation. From it, we can
see that the Canny edge and the gradient map allow for better
performance. Although DSR-EI with the gradient map attains
the best results in terms of MSE and MAE, the different types
of high-frequency maps do not significantly affect the final up-
sampling result.

(c) Impact of HFEB. To verify the effectiveness of HFEB,
we replace it with EdgeNet (Liu et al., 2021) – based on the
widely-used U-net structure – and SCPA (Zhao et al., 2020),
which inspires our scaling strategy. As shown in Table 6, al-
though the parameter size of EdgeNet is 5.6M, its performance
is almost the same as our HFEB, while the parameter size of our
network is only 0.7M, i.e. only 1

8 of it. This fact highlights that
our network based on a transformer is more efficient at feature
extraction.

Besides, unlike previous works that employ fixed feature
scaling rules, we adopt a dynamic scaling strategy to extract
high-frequency features from depth maps. Table 6 also shows
that our DSP with the dynamic scale strategy decreases the
number of parameters while simultaneously enhancing the per-
formance of GDSR. Compared to the original SCPA (Zhao
et al., 2020), DSP can perform dynamic scaling according to
the characteristics of the feature map to get a more effective
receptive field.

(d) Impact of AFFM. We now measure the effectiveness of
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Table 8: Ablation study of AFFM. Scale 8×.

No. Config. Params (M) MSE MAE

(I) w/o AFFM - 12.7 1.16
(II) w/o att 1.3 12.2 1.13
(III) Concat. 4.5 12.2 1.13
(IV) AFFM 3.0 11.8 1.12

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 13: Visual exhibition of attention maps generated from AFFM. (a)
RGB image, (b) GT, (c) Bicubic, (d)-(h) attention maps.

AFFM. Tab. 8 shows results obtained by deploying AFFM at
different scales, respectively the highest (I), the first two (II)
and all of the three scales. We can notice how performing fu-
sion at the highest scale alone results insufficient, whereas us-
ing multi-scale features for fusion yields improvements, despite
saturating already when using two scales, with the lowest one
not providing additional, meaningful details to be taken into ac-
count.

Furthermore, we ablate AFFM in its single components.
Tab. 8 resumes the outcome of this evaluation. We first test
the performance of DSR-EI without AFFM (I), highlighting a
large drop in accuracy. By adding dynamic fusion, yet without
using attention (II) vastly improves the results already, while
replacing the weighted sum in the upper of Fig. 5 with con-
catenation and a ResBlock (He et al., 2016) (III) yields worse
results compared to our full AFFM (IV).

Fig. 13 visualizes the attention maps produced by AFFM,
highlighting how sharp and accurate they are in correspondence
with depth discontinuities, tiny objects, and fine details. Thus,
thanks to them AFFM can better focus on reconstructing depth
boundaries and details more accurately.

(e) Impact of Stages Number. To conclude, we evaluate the
impact of the multi-stage design. As shown in Tab. 9, a single-
stage architecture (I) is vastly outperformed by deploying two
stages (II), yet at the expense of doubling the number of pa-
rameters. Furthermore, while the three-stage architecture (III)
still yields some improvement, the benefit is minor in compari-
son to the significant increase in parameters. Hence, we choose
two stages as the default configuration to balance accuracy and
efficiency.

(f) Results on full-size images. In Tab. 1 and 2, we reported
the results achieved by our model when processing 256 × 256
patches, to allow for a fair comparison with LGR (de Lutio
et al., 2022) and DADA (Metzger et al., 2022). However, this
irremediably reduces the global context processed by DSR-EI,

Table 9: Comparisons with different stage numbers. Scale 8×.

No. Stages Params (M) MSE MAE

(I) 1 14.2 13.3 1.19
(II) 2 25.0 11.8 1.12
(III) 3 37.5 11.6 1.10

hindering its capacity to exploit it enabled by the transformer
blocks similar to what was observed in the generalization ex-
periment on Middlebury (Tab. 4). In this section, we demon-
strate how processing larger images allows DSR-EI to further
improve its performance. Tab. 10 compares the results achieved
when switching from 256×256 patches to the full resolution im-
ages of DIML and NYUv2 – i.e., 1344 × 756 and 640 × 480,
respectively. We can notice consistent improvements, particu-
larly when dealing with larger upsampling factors.

4.5. Limitations

We conclude by listing a few limitations of DSR-EI. As pre-
viously pointed out, global context is crucial for it to achieve
the best performance. When this is unavailable, some accuracy
is lost when generalizing across datasets. Moreover, the signif-
icant improvements over existing methods are paid for in terms
of time/memory requirements. Tab. 11 highlights the higher
runtime and, more evidently, peak memory usage. Future work
will aim at reducing the overhead, while minimizing the drop
in accuracy.

5. Conclusion

This paper proposed DSR-EI, a depth super-resolution net-
work, which includes a high-frequency extraction branch
(HFEB) and a guided depth restoration branch (GDRB). Specif-
ically, implemented as an efficient transformer, HFEB ex-
tracts explicit HF features. Then, GDRB deploys a two-stage
encoder-decoder network to recover HR depth maps progres-
sively, by adaptively fusing discriminative features while sup-
plementing additional, implicit HF information. Exhaustive ex-
periments demonstrate that DSR-EI sets a new state-of-the-art
for guided depth super-resolution.
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