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Abstract

We study signatures of primordial non-Gaussianity (PNG) in the redshift-space halo field on nonlinear scales using
a combination of three summary statistics, namely, the halo mass function (HMF), power spectrum, and
bispectrum. The choice of adding the HMF to our previous joint analysis of the power spectrum and bispectrum is
driven by a preliminary field-level analysis, in which we train graph neural networks on halo catalogs to infer the
PNG fNL parameter. The covariance matrix and the responses of our summaries to changes in model parameters are
extracted from a suite of halo catalogs constructed from the QUIJOTE-PNG N-body simulations. We consider the
three main types of PNG: local, equilateral, and orthogonal. Adding the HMF to our previous joint analysis of the
power spectrum and bispectrum produces two main effects. First, it reduces the equilateral fNL predicted errors by
roughly a factor of 2 while also producing notable, although smaller, improvements for orthogonal PNG. Second, it
helps break the degeneracy between the local PNG amplitude, fNL

local, and assembly bias, bf, without relying on any
external prior assumption. Our final forecasts for the PNG parameters are D =f 40NL

local , D =f 200NL
equil ,

D =f 85NL
ortho , on a cubic volume of 1 Gpc h 3( ) , with a halo number density of ~ ´ - -n h5.1 10 Mpc5 3 3¯ , at

z = 1, and considering scales up to = -k h0.5 Mpcmax
1.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Non-Gaussianity (1116);
Fisher’s Information (1922)

1. Introduction

The presence of a certain degree of non-Gaussianity (NG) in
the primordial cosmological perturbation field is a general
prediction of both inflationary and other early Universe
scenarios. In addition, both the level of the predicted NG
signal and the shape of the expected NG signatures are
significantly model-dependent. This makes primordial non-
Gaussianity (PNG) a powerful tool to constrain inflation or
alternative primordial models and provide clues about physics
at very high energy scales.

From an observational point of view, the challenging aspect
of any PNG analysis is that the expected NG signatures are
very small, and the optimal statistic that maximizes their signal-
to-noise ratio is unknown from low-redshift observables.
Indeed, to date, there has been no experimental detection of a
PNG signal, although significant constraints have been placed
using cosmic microwave background (CMB) data; the CMB is
an ideal observable for PNG studies, since it formed at early

times, when cosmological perturbations were still in the linear
regime, hence preserving the statistical features of the
primordial fluctuation field. The most precise results currently
come from the analysis of Planck CMB data, which produced
an upper bound on the level of PNG at roughly less than 0.1%
of the amplitude of the Gaussian component of the field
(Akrami et al. 2020).
The open question is whether and how we can obtain more

stringent PNG constraints—or achieve a detection—with future
cosmological observations. In this respect, it is known that,
after Planck, CMB data have nearly saturated their PNG
constraining power, with possible improvements of, at most, a
factor of ∼2 for relevant parameters in a majority of scenarios
(Finelli et al. 2018; Abazajian et al. 2019). It is therefore
necessary to explore different observables. Galaxy clustering is
a natural candidate for two main reasons. First of all, in the
limit of weak PNG, the bispectrum (i.e., the three-point
function of the Fourier/harmonic modes) of primordial
cosmological perturbations contains most of the non-Gaussian
information, and the three-dimensional galaxy density field
contains more bispectrum modes for NG analysis than the two-
dimensional CMB map. Furthermore, some models—notably,
those producing a “local-type” bispectrum, where the signal
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peaks on squeezed Fourier mode triangles—generate a
characteristic scale-dependent signature in the galaxy power
spectrum on very large scales (Dalal et al. 2008; Matarrese &
Verde 2008; McDonald 2008; Slosar et al. 2008; Desjacques &
Seljak 2010a; Giannantonio & Porciani 2010), which can be
used to constrain NG.

In both cases, however, there are some important complica-
tions to consider. As far as bispectrum analysis is concerned,
the big caveat is that the additional modes in the large-scale
structure (LSS) bispectrum are in the nonlinear regime. Hence,
they present a “late-time” component generated by the
nonlinear gravitational evolution of structures, which is hard
to disentangle and much larger than the primordial one. Of
course, this late-time three-point signal is interesting in itself,
since it carries a lot of information about cosmological
parameters and structure evolution (Hahn et al. 2020; Hahn
& Villaescusa-Navarro 2021); however, as long as we are
focused on PNG, it is a massive source of contamination, with
an amplitude ∼1000 times larger than the primordial signal of
interest. The scale-dependent power spectrum signature on
large scales clearly does not present this problem and was
considered for a long time to be a cleaner LSS probe of PNG,
although limited to a subset of all possible PNG scenarios.
However, a significant issue has recently been pointed out
again in this area (Reid et al. 2010; Barreira 2020, 2022),
namely, the degeneracy produced by the breaking of the
universality relation that was generally used to link the NG
galaxy bias parameter bf to the linear bias parameter b1. This is
due to halo/galaxy assembly bias effects, and, if not addressed
in any way, it allows us only to constrain the bffNL
combination.

A key objective in cosmological PNG studies is thus
developing optimal data analysis strategies to overcome, at
least partially, the aforementioned issues. As far as the bf(b1)
relation is concerned, an active effort is being put into
characterizing it as well as possible via numerical studies of
N-body simulations (Barreira 2020, 2022; Lazeyras et al. 2023;
Sullivan et al. 2023) in order to produce accurate priors.
Another logical line of attack, which we start exploring in this
work, is that of going beyond a power spectrum + bispectrum
analysis and including extra summary statistics, which could
help disentangle the PNG signal from late-time evolution
effects. The open question, with no straightforward answer, is,
of course, which summary statistics are best suited to this
purpose? In this paper, we explore the halo mass function
(HMF) as an interesting candidate. This choice was not casual
but was driven by training graph neural networks (GNNs) to
perform field-level likelihood-free inference on halo catalogs
from QUIJOTE-PNG simulations. The analysis of the outcome of
those calculations led us to the conclusion that the model was
extracting information from the abundance of halos, as we
explain in Section 3.1. Therefore, the HMF can be seen as a
machine learning–driven statistic that stands ahead of others.

Furthermore, our choice is also justified at a theoretical level,
since the HMF has been known for a long time to be sensitive
to non-Gaussian initial conditions (ICs), which are able to skew
its distribution by changing the abundance of massive halos,
and it was proposed as an interesting complementary PNG
probe to the bispectrum in a number of papers (Matarrese et al.
2000; Sefusatti et al. 2007; Grossi et al. 2007, 2009; Pillepich
et al. 2010; Desjacques et al. 2009; Desjacques &
Seljak 2010b; LoVerde & Smith 2011; Palma et al. 2020).

On top of this, a major advantage of the HMF is that it directly
depends on the PNG amplitude parameter fNL. Therefore, it
does not exhibit the bf–fNL degeneracy that affects the scale-
dependent power spectrum signature.
This work belongs to the QUIJOTE-PNG series (Coulton et al.

2023a, 2023b; Jung et al. 2022a, 2022b), where we aim to
build a simulation-based pipeline to optimally extract NG
information, pushing our analysis to smaller, nonlinear scales.
This kind of approach is complementary to a perturbation
theory–based likelihood analysis of the power spectrum and
bispectrum (Moradinezhad Dizgah et al. 2021; Cabass et al.
2022a, 2022b; D’Amico et al. 2022). See also Giri et al. (2023)
for an alternative simulation-based approach that uses large-
scale modulation of small-scale power.
The paper is structured as follows. In Section 2, we briefly

describe the simulation data set used in our analysis; in
Section 3.1, we describe our preliminary field-level analysis; in
Section 3.2, we recall and summarize the main methodological
aspects of our data analysis pipeline to extract relevant
summary statistics and compute the corresponding Fisher
matrix; Section 3.3 is devoted to a specific discussion of the
HMF, the main new ingredient with respect to our previous
analyses, and how we extract it from simulations; our
numerical Fisher forecasts are described in Section 4, where
we also discuss the improvements coming from complementing
the initial power spectrum + bispectrum analysis with HMF
estimates; finally, we draw our conclusions in Section 5.

2. Simulations

In this work, we use the publicly available halo catalogs
derived from the QUIJOTE suite of N-body simulations
(Villaescusa-Navarro et al. 2020).15 These simulations have
been produced using the codes 2LPTIC (Crocce et al. 2006) and
2LPTPNG (Scoccimarro et al. 2012; Coulton et al. 2023a)16 to
generate ICs at z = 127, GADGET-III (Springel 2005) to follow
their evolution up to z = 0, and the friends-of-friends (FOF)
algorithm to identify the halos in each simulation (Davis et al.
1985).
We report the cosmological parameters of these simulations

in Table 1. As described in Section 3.2, we use 15,000
simulations of the fiducial cosmology to evaluate covariance
matrices and paired sets of 500 catalogs where one parameter is
displaced by a small step from its fiducial value to compute
derivatives with respect to all parameters considered in the
analyses. As in Coulton et al. (2023b) and Jung et al. (2022b),
we focus on the cosmological parameters s W n h, , ,m s8{ }17 and
PNG amplitudes f f f, ,NL

local
NL
equil

NL
ortho{ }, including a simplified

bias parameter Mmin (the minimum mass of the halos included
in the analysis). To ensure that the IC generation method has
not generated unphysical higher-order N-point functions, which
could impact the results presented here, we performed further
validation of the ICs by examining the primordial trispectrum.
As discussed in Appendix A, we find no evidence of large,
unphysical trispectra in the ICs.
We focus our analyses on redshift z = 1, for which all

power spectra and (modal) bispectra have been computed in

15 https://quijote-simulations.readthedocs.io
16 https://github.com/dsjamieson/2LPTPNG
17 We do not include Ωb in the analyses presented here, as it is the parameter
that is most affected by the numerical convergence issue mentioned in
Section 3.2, and it does not significantly impact the results. Moreover, Ωb is
better constrained by CMB observations.
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Jung et al. (2022b). Results at lower redshifts, z = 0.5 and
zero, are also shown in Appendix B.

3. Methods

3.1. Field-level Analysis

As we discussed in the Introduction, the problem of finding
an optimal summary statistic that minimizes the error bars on a
given cosmological or PNG parameter is unsolved. An
alternative to using summary statistics is to perform field-level
analysis. The goal with this kind of analysis is to maximize the
amount of information that can be extracted without relying on
summary statistics. While there are many types of methods to
perform such analysis, in our case, we made use of GNNs
(Battaglia et al. 2018). The advantages of GNNs over other
methods are that (1) they do not impose a cut on scales, (2)
symmetries (e.g., rotational and translational invariance) can be
easily implemented, and (3) they can be more interpretable than
other methods. Because of this, we decided to train the GNNs
to perform field-level likelihood-free inference.

As a starting point, we run 1000 simulations, each containing
5123 particles in a periodic box of size 1 h−1 Gpc. Each of
those simulations has a different initial random seed but also a
different value of fNL

local in the range −300, +300. The value of
the cosmological parameters was the same in all simulations.
We then trained a GNN to perform field-level likelihood-free
inference on the value of fNL

local. The architecture and training
procedure are the same as those outlined in de Santi et al.
(2023), Shao et al. (2022), and Villanueva-Domingo &
Villaescusa-Navarro (2022).

From this exercise, we found that our model was able to infer
the value of fNL

local with an error of s ~f 35NL
local( ) at z = 0. In

an attempt to understand the behavior of the network, we
trained a deep set model (Zaheer et al. 2017), where the only
information we made use of for the halos was their masses, not
their spatial positions. By training such a model, we found that
its performance was almost identical to that of the GNNs. We
thus concluded that the network was likely not using the

clustering of the halos to perform the inference. Therefore, the
network should be using the abundance of halos to infer fNL

local.
To verify this, we trained a simple model consisting of fully

connected layers on the HMF of the halo catalogs from the
simulations. We found that this model performed almost as
well as the GNN. From this exercise, we reached the
conclusion that the HMF is a summary statistic that contains
lots of information, likely more than clustering-based statistics,
as the GNN did not use those to perform the inference. We
emphasize that we trained the GNN using halo catalogs from
simulations that only vary fNL

local. Therefore, our results did not
account for degeneracies with cosmological parameters that
could degrade the constraints, as we shall see below.
This motivated a further analysis, illustrated in the following

sections, in which we explicitly extract the power spectrum,
bispectrum, and HMF from the QUIJOTE data set, as well as
their covariance and response to variations in both cosmolo-
gical and PNG parameters, in order to perform a full Fisher
matrix forecast on nonlinear scales.

3.2. Fisher Information

In this section, we recall the main ingredients of our Fisher
analysis pipeline, which was previously used in Jung et al.
(2022b).
The Fisher information matrix, defined as

q q
=

¶
¶

¶
¶

-s
C

s
F , 1

i j
ij

T
1
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠

¯ ¯ ( )

allows us to estimate the variance, s q = -Fi ii
2 1( ) ( ) , of the

optimal unbiased estimator of a given summary statistic s with
covariance C assuming the statistic is Gaussian-distributed18

and neglecting the dependence of C itself on the parameters
(Carron 2013).

Table 1
The Parameters of the QUIJOTE and QUIJOTE-PNG Halo Catalogs Used in This Work

Nsims σ8 Ωm Ωb ns h fNL
local fNL

equil fNL
ortho

M M hmin ( )

Fiducial 15,000 0.834 0.3175 0.049 0.9624 0.6711 0 0 0 3.2 × 1013

s+8 500 0.849 0.3175 0.049 0.9624 0.6711 0 0 0 3.2 × 1013

s-
8 500 0.819 0.3175 0.049 0.9624 0.6711 0 0 0 3.2 × 1013

W+
m 500 0.834 0.3275 0.049 0.9624 0.6711 0 0 0 3.2 × 1013

W-
m 500 0.834 0.3075 0.049 0.9624 0.6711 0 0 0 3.2 × 1013

+ns 500 0.834 0.3175 0.049 0.9824 0.6711 0 0 0 3.2 × 1013

-ns 500 0.834 0.3175 0.049 0.9424 0.6711 0 0 0 3.2 × 1013

h+ 500 0.834 0.3175 0.049 0.9624 0.6911 0 0 0 3.2 × 1013

h− 500 0.834 0.3175 0.049 0.9624 0.6511 0 0 0 3.2 × 1013

+fNL
local, 500 0.834 0.3175 0.049 0.9624 0.6711 +100 0 0 3.2 × 1013

-fNL
local, 500 0.834 0.3175 0.049 0.9624 0.6711 −100 0 0 3.2 × 1013

+fNL
local, 500 0.834 0.3175 0.049 0.9624 0.6711 0 +100 0 3.2 × 1013

-fNL
equil, 500 0.834 0.3175 0.049 0.9624 0.6711 0 −100 0 3.2 × 1013

+fNL
ortho, 500 0.834 0.3175 0.049 0.9624 0.6711 0 0 +100 3.2 × 1013

-fNL
equil, 500 0.834 0.3175 0.049 0.9624 0.6711 0 0 −100 3.2 × 1013

+Mmin 500 0.834 0.3175 0.049 0.9624 0.6711 0 0 0 3.3 × 1013

-Mmin 500 0.834 0.3175 0.049 0.9624 0.6711 0 0 0 3.1 × 1013

18 As verified in Jung et al. (2022a, 2022b), this is a good approximation for
the power spectrum and bispectrum.
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In this work, both the covariance and derivatives are
computed from the simulations described in Section 2. The
covariance matrix is evaluated using

=
-

- -C s s s s
n

1

1
, 2

r

Tˆ ( ¯)( ¯) ( )

where nr is the number of realizations at fiducial cosmology
(15,000 here). Then, to obtain an unbiased estimate of the
precision matrix, we apply the Hartlap correction factor
(Hartlap et al. 2007),

=
- -

-
- -C C

n n

n

2

1
, 3r s

r

1 1ˆ ( )

where ns is the length of the summary statistic vector s (note,
however, that this correction is very small here, ns∼ 102, while
nr= 15,000).

The derivatives are calculated using finite difference,

q
q dq q dq

dq
¶
¶

=
+ - -s s s

2
, 4

i

i i i i

i

fid fid¯ ¯ ( ) ¯ ( ) ( )

where we use the sets of 500 simulations where one parameter
θi is displaced by ±δθi with respect to its fiducial value.
However, it was noticed in Coulton et al. (2023b) and Jung
et al. (2022b) that this number of realizations was not sufficient
to obtain fully converged derivatives of the halo power
spectrum and bispectrum, leading to spuriously low predictions
when analyzing jointly cosmological parameters and PNG
amplitudes. To overcome this issue, a conservative approach to
Fisher matrix computations was developed in Coulton &
Wandelt (2023) and Coulton et al. (2023b) that is based on
computing the Fisher matrix from maximally compressed
statistics instead of working with the summary statistics
directly.

As shown in Heavens et al. (2000) and Alsing & Wandelt
(2018), the compressed quantity defined by

q
=

¶
¶

--s
C s ss 5i

i

1˜ ¯ ( ¯) ( )

conserves all of the statistical information about the parameter
θi contained in the data vector s, if s follows a Gaussian
likelihood (hence, the same assumption as for the Fisher matrix
in Equation (1)). This compression uses the same ingredients as
for the Fisher matrix computation (covariance and derivatives
of s), with the addition of the mean s̄ that is trivial to evaluate
from the simulations at fiducial cosmology. Repeating the
process for all parameters of interest in θ, one can then compute
the Fisher matrix of the compressed statistics s̃ by substituting
it for s in Equation (1). In practice, one has to separate the
initial data set into two subsets. The first is used to perform the
compression (i.e., compute the derivatives in Equation (5)), and
the second is compressed (i.e., s in Equation (5)) and then used
to calculate the derivatives q¶ ¶s i˜ and covariance Ĉ of the
compressed statistics to obtain a conservative estimation of the
Fisher matrix. In this work, we use 80% and 20% of the
simulations for the two steps, respectively, which have been
verified to give optimal and numerically stable results. We
repeat the procedure for many random splits of the data

(between the two steps) and average the results to minimize the
intrinsic variance of the method.
Finally, as shown in Coulton & Wandelt (2023), computing

the following combination of the standard (overoptimistic) and
compressed (conservative) Fisher matrices,

=F G F F, , 6combined standard compressed( ) ( )

where G corresponds to the geometric mean defined by

= - -G A B A A BA A, , 7
1
2

1
2

1
2

1
2

1
2( ) ( ) ( )

gives unbiased estimates of the Fisher error bars with a much
smaller number of simulations. An illustration of the different
convergences for the three methods is provided in Appendix C.

3.3. Halo Mass Function

In addition to the halo power spectrum and bispectrum, we
consider the HMF, defined as the number of dark matter halos
per unit of comoving volume per unit of logarithmic mass bins.
We measure it in the QUIJOTE simulations using 15

logarithmic bins corresponding to halo masses M between
approximately 2.0 × 1013 and 4.6 × 1015Me h–1 (note,
however, that we do not use the first two bins in the analyses
presented in Section 4). To be exact, we use the same binning
as in Bayer et al. (2021), where the counted halos each contain
between 30 and 7000 dark matter particles.19

In Figure 1, we show the impact of the three shapes of PNG
on the HMF. Both the local and equilateral shapes increase the

Figure 1. The HMF derivatives with respect to the parameters
s W f f f, , , ,m8 NL

local
NL
equil

NL
ortho{ } at z = 0 and 1. For internal comparison, the

derivative with respect a given parameter θ is multiplied by the finite difference
Δθ used for its numerical estimation (see Table 1 for details). The vertical scale
is logarithmic, except in the range [−10−8, 10−8], where it is linear. Note that
in some cases, we have a change of sign in the fNL derivatives, implying an
opposite effect of PNG on the abundance of high- and low-mass halos,
respectively. This is consistent with previous findings in the literature, as
pointed out in the main text. The decreasing behavior of all derivatives at high
M is related to the exponential decay of the HMF in this mass range; note that a
plot of the logarithmic derivatives would display clear differences between
them, also at high M. The numerical results displayed here have all been cross-
validated in the simulation-independent, halo model–based analysis that we
describe in Section 4.4.

19 The mass of a halo is given by M = Nmp, where N is the number of dark
matter particles it contains, and mp is the mass of a dark matter particle.
However, mp depends on the cosmological parameter Ωm, which requires
inclusion of the correction term -

W
¶
¶ N

1 HMF

lnm
when computing the derivative

¶
¶ W
HMF

m
(see Bayer et al. 2021, for details). This derivative can also be evaluated

by finite difference between bins of N.
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number of massive halos for a positive fNL value (and decrease
it for a negative fNL) and have very degenerate signatures,
while for orthogonal PNG, it is the opposite. For less massive
halos, the effect of PNG changes sign (with the switch
occurring for higher masses for orthogonal PNG, which is the
only one that appears in the mass range of the plot at z= 1).
This effect was already present in early works on the HMF with
PNG simulations (see, e.g., LoVerde et al. 2008) and is due to
the fact that, at fixed Ωm, more massive halos can only appear
at the expense of less massive halos and matter in smaller
structures.

4. Results

4.1. Constraints from the HMF

As a preliminary exercise, in Figure 2, we show the
constraining power of the HMF on the PNG amplitudes fNL
of the three shapes, assuming the exactly known cosmological
parameters. As expected, the HMF is, in this case, extremely
sensitive to the presence of PNG, leading to even tighter
constraints than the power spectrum and bispectrum. For
example, our Fisher forecast on PNG of the local type is
s ~f 30NL

local( ) at z = 0, which is in very good agreement with
the GNN and deep set results s f 35NL

local( ) (see Section 3.1)
and more than twice as small as the equivalent power spectrum
+ bispectrum forecast error bar.

However, it is well known that there are large degeneracies
between fNL and several cosmological parameters, like σ8 or
Ωm (Maturi et al. 2011), as can be verified in Figure 1.

When we jointly analyze all parameters, these degeneracies
increase the errors significantly (by roughly 1 order of
magnitude at z= 1 and slightly less at z= 0, where the change

of sign of the fNL derivative, seen in Figure 1, helps distinguish
it from the response to variations in other cosmological
parameters), making them larger than those achievable from the
power spectrum and bispectrum combination.

4.2. Joint Constraints with the Power Spectrum and
Bispectrum

While, as expected, the HMF alone does not produce
competitive fNL constraints in comparison with the power
spectrum and bispectrum, it does remain interesting to
investigate whether a combined analysis of all three statistics
can produce significant improvements; this is the main point of
the present work. Complementing our previous power
spectrum + bispectrum analysis with the HMF can, in
principle, benefit us in two ways. First of all, it directly adds
extra information about the fNL parameter; also, it could be
useful to help break the important degeneracy between fNL and
the so-called bf bias parameter.
Before presenting our results, let us review and discuss the

latter point in more detail. In the presence of local PNG, the
halo density fluctuation field δh(z) can be written to leading
order as follows (Dalal et al. 2008; Matarrese & Verde 2008;
Slosar et al. 2008; McDonald 2008; Giannantonio &
Porciani 2010; Desjacques & Seljak 2010a):

d d= +
W

fz b z
H

D z k
b f z

3

2
, 8h

m
m1

0
2

2 NL
⎡
⎣⎢

⎤
⎦⎥

( ) ( )
( )

( ) ( )

where δm is the matter density fluctuation, D(z) is the growth
factor, and b1 and bf are the bias parameters, defined
respectively as the response of δh to mass density δm and
primordial potential f. It is evident in this relation that the
scale-dependent signature depends on both bf and fNL and that
the two parameters are completely degenerate. This issue can
be avoided if one assumes, as was generally done, the
universality relation between b1 and bf, that is,

d= -fb b2 1 , 9c 1( ) ( )

where δc is the critical density for collapse. However, it was
recently pointed out in Barreira (2020, 2022) that such a
relation does not accurately describe the bias of either
galaxies, selected by stellar mass, or halos, selected by
concentration. Therefore, bf is not exactly determined
anymore, and this reintroduces the bf–fNL degeneracy
problem. To overcome the issue, different studies have
focused on using simulations to produce accurate priors on bf
(Lazeyras et al. 2023) and exploiting the multitracer
technique (Barreira & Krause 2023; Karagiannis et al.
2023; Sullivan et al. 2023). In the present context, the idea
is instead to try and break the degeneracy by exploiting the
information in the HMF—which selects all halos in each
given mass bin—and its direct dependence on fNL and not on
bf.
For clarity, we split the discussion of our results into two

parts. Initially, we assume universality in the bf(b1) relation
using Equation (9), and we measure the sheer extra information
content in the HMF, in the absence of the bf–fNL degeneracy.

20

Later on, we instead treat bf as a free parameter.

Figure 2. The 1σ Fisher error bars on fNL (local, equilateral, and orthogonal)
from the HMF as a function of the maximum mass Mmax of the halos
considered ( ~ ´M M h4.1 10min

13 ). These constraints are derived from the
QUIJOTE suite of halo catalogs at z = 0 and 1, each having a 1 (Gpc h–1)3

volume. The solid lines (with triangles) are computed for each primordial shape
independently, assuming a fixed cosmology (at fiducial values), while for the
dashed–dotted lines, we marginalize over the cosmological parameters σ8 and
Ωm. This highlights the large degeneracies between the parameters at the level
of the HMF. For comparison, we also show the corresponding constraints from
the power spectrum and bispectrum (horizontal solid and dashed–dotted lines
for the independent and joint cases, respectively), as computed previously in
Jung et al. (2022b; = ´M M h3.2 10min

13 ). If we consider the unmargina-
lized HMF results, we see that the fNL constraining power is higher at z = 1
for the local and equilateral cases, despite the smaller number of halos at this
redshift; this is clearly due to a stronger response of the HMF to variations in
fNL at higher redshift, consistent with previous findings (see, e.g., Figure 4 in
LoVerde et al. 2008). The shape is due to the change of sign in the fNL
derivative at different masses, discussed in the main text and Figure 1.

20 Or, equivalently, we forecast the power spectrum + bispectrum + HMF
constraining power on the bffNL parameter combination.
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4.3. Fixing bf

The outcome of the first part of the analysis (assuming
universality in bf(b1)) is illustrated in Figures 3 and 4 (see also
Table 2). We see that by adding the HMF, the error bars on σ8
and fNL

equil become roughly twice as small as the power
spectrum + bispectrum result. Moreover, there is also a
noticeable improvement for Ωm and fNL

ortho. For fNL
local, there is

instead no clear improvement; this seems to be due to the fact
that in this case, the information content is totally dominated by
the power spectrum contribution via scale-dependent bias.
Such a contribution is instead smaller for the orthogonal shape
and absent for the equilateral case, making the HMF inclusion
more important for these scenarios, especially the equilat-
eral one.

Note that we consider only halos with masses above
∼4 × 1013 Me h–1 in the HMF, which is larger than the
fiducial = ´M M h3.2 10min

13 used to study the power
spectrum and bispectrum. This means that the HMF is not
sensitive at all to small variations of Mmin around the fiducial
value. However, through cross-correlated terms with the other
summary statistics, the error bars on Mmin are almost 2 orders of
magnitude smaller.21 In Appendix C, we verify the numerical
stability of our results by varying the number of simula-
tions used.

It is interesting to check which halo mass range gives the
largest contribution to the observed improvements. To this
purpose, we repeat the analysis by varying Mmin

HMF, the lowest
mass bin of the HMF used to evaluate Fisher matrices. Our
results are displayed in Figure 5, which highlights different
behaviors for the different parameters considered. Most
importantly, for the two PNG parameters fNL

equil and fNL
ortho,

halos of intermediate masses (∼2–6× 1014 Me h–1 at z= 0 and
slightly smaller at z= 1) play a significant role in the observed
improvement of constraints, while less massive halos, despite
being more numerous, have a much smaller effect. However,
the situation is different for cosmological parameters like σ8
and Ωm, where those same less massive halos contain most of
the information.

4.4. Breaking the bf– fNL
local Degeneracy with the HMF

Accounting for the effects of bf in our methodology is not
straightforward, since bf cannot be explicitly included as an
input parameter in our simulations, and this does not allow us to
directly compute the numerical derivative ∂s/∂bf. To circum-
vent this issue in a simple way and be able to perform a first test
of the ability of the HMF to remove degeneracies between bf
and fNL

local, we decide here to work under the conservative
assumption that these two parameters are fully degenerate at the
level of the halo power spectrum and bispectrum. In other words,
we assume that ¶ ¶ µ ¶ ¶fs sb fNL

local, where s is either the
power spectrum or the bispectrum. For the HMF, we instead set
the derivative with respect to bf equal to zero, as it does not
depend on this parameter, and compute the fNL

local derivative as
usual.
In Figure 6, we show the 1σ Fisher constraints obtained in

this assumption and compare them with the “ideal” (bf fixed)
constraints derived in the previous section for different kmax
(see also Table 2).
The most important result here is that the inclusion of the

HMF makes it possible to break the bf– fNL
local degeneracy to a

level that allows us to produce meaningful fNL
local constraints

without resorting to any prior information on bf. The final fNL
local

forecast is, however, degraded by a factor of ∼2.5 with respect
to the idealized, bf fixed case that was shown in Figure 11 in
Appendix C. In order to achieve this constraining level, it is
also crucial to include the information from the power spectrum
and bispectrum at nonlinear scales (k between 0.2 and
0.5 hMpc−1), as it helps break degeneracies with several
cosmological parameters (Ωm in particular).
We corroborate our findings with a simulation-independent

analysis based on the halo model (for a review, see Cooray &
Sheth 2002; Asgari et al. 2023). Within this framework, we
describe the HMF and halo power spectrum following Takada
& Spergel (2014) up to = -k h0.2 Mpcmax

1. We use the HMF
and bias from Tinker et al. (2010) using M200,m directly as the
mass definition in the mass integration. In the power spectrum
analysis of the simulations, the halos are considered pointlike;
thus, we use a Dirac delta as the halo profile. Thanks to the low
kmax we use, the two-halo term dominates the signal, and this
approximation is appropriate. The effect of PNG—here we
only consider the local model—is included as a correction to
the HMF parameterized according to LoVerde & Smith (2011)
and through the scale-dependent halo bias shown in
Equation (8). While we are aware that the M200,m mass does
not match the FOF mass used in the rest of the paper, we still

Figure 3. Ratio of 1σ Fisher error bars on the cosmological parameters and
PNG amplitudes from the HMF, halo power spectrum, and halo bispectrum at
z = 1, assuming bf is fixed. This illustrates how including the HMF tightens
the constraints on several parameters (σ8 and fNL

equil in particular). Note that the
values of these error bars are given in Table 2 and Figure 11.

21 An important caveat here is that it is important to verify whether this
conclusion holds when considering a more complex bias model, which
includes higher-order bias parameters; this will be done as part of a future work
on mock galaxy catalogs by including numerical derivatives with respect to
HOD parameters.

6

The Astrophysical Journal, 957:50 (13pp), 2023 November 1 Jung et al.



consider the HMF divided in 10 bins logarithmically spaced
between 3.2 × 1013 and 3.2 × 1015 Me h–1 as observable. We
bin the halo power spectrum in 30 bins logarithmically spaced
between 6.3 × 10−3 and 0.2 hMpc−1. We choose a relatively
low kmax to ensure that nonlinearities are negligible at this
stage. In the HMF–halo power spectrum covariance, for which
we again follow Takada & Spergel (2014), only the Gaussian
terms are included at present. A more refined analysis,
including a wider range of scales and masses, the complete
covariance, the uncertainties on the parameterization of the
HMF, and, crucially, the bispectrum, will be presented in a
future work (Ravenni et al. 2023, in preparation).

The results are shown in Figure 7, which highlights a very good
agreement between our preliminary theoretical computations and
the purely simulation-based forecast. This result confirms that a
joint analysis including the HMF is an interesting approach that
deserves further investigation and could be adopted as a
complementary strategy to those already implemented in the
literature to address the bf– fNL

local degeneracy issue.

4.5. Removing Degeneracies with Planck Priors

As highlighted in Section 4.2, removing the degeneracies of the
HMF using the information from the halo power spectrum and
bispectrum significantly improves the constraints on PNG of the

Figure 4. Impact of the HMF on the 1σ constraints on the cosmological parameters and PNG amplitudes from the halo power spectrum and bispectrum at z = 1,
assuming bf is fixed.
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equilateral type. In this section, we push the idea further by
assuming strong but realistic priors on cosmological parameters
based on CMB measurements from Planck.

We use the same Gaussian likelihood based on the Planck
CMB data (Aghanim et al. 2020) as in Uhlemann et al. (2020)
in Figure 8 in addition to our HMF, power spectrum, and
bispectrum measurements to derive 1σ Fisher constraints (see
also Table 2). For both fNL

local and fNL
equil, it improves these

constraints, while the effect is smaller for fNL
ortho. Note also that

the effect is strongest when the HMF is also considered in the
analysis, meaning it removes degeneracies between the PNG
and cosmological parameters at the level of the HMF.
Concerning numerical convergence with the number of
simulations used to compute the derivatives, including these
Planck priors also improves it significantly, where only fNL

equil is
not optimally constrained for the power spectrum + bispectrum
case, and all parameters have converged when we add the HMF
information.

5. Conclusion

In this work, we presented a combined analysis of the power
spectrum, bispectrum, and mass function of dark matter halos

in the QUIJOTE-PNG simulation suite. Our main goal was to
verify whether adding the HMF to our previous joint power
spectrum and bispectrum analyses (Coulton et al.
2023a, 2023b; Jung et al. 2022a, 2022b) could lead to
improved constraints on primordial non-Gaussianity (PNG).
The main underlying reason behind this analysis is that the
HMF turned out to be the statistics used by a sophisticated
graph neural network when carrying out a preliminary field-

Table 2
The 1σ Constraints on the Cosmological Parameters and PNG Amplitudes at
z = 1 Obtained by Combining the Information of the Halo Power Spectrum,

Bispectrum, and Mass Function, Each Measured from the QUIJOTE and
QUIJOTE-PNG Simulations

bf Fixed No Prior on bf Planck Priors

σ8 0.012 0.013 0.005
Ωm 0.018 0.017 0.002
ns 0.075 0.075 0.003
h 0.072 0.071 0.017

fNL
local 40 89 34

fNL
equil 203 136

fNL
ortho 85 79

M 10min
13 0.019 0.045 0.009

Figure 5. Impact of varying the lowest mass bins of the HMF on the 1σ Fisher
constraints on cosmological parameters and PNG amplitudes from the
combination of HMF, power spectrum, and bispectrum at z = 0 and 1,
assuming bf is fixed. All errors are normalized by their equivalent using the
power spectrum and bispectrum only. Note that we restrict only the mass range
for the HMF.

Figure 6. The HMF can break the bf– fNL
local degeneracy in the power spectrum

and bispectrum. As in Figure 3, we show normalized 1σ Fisher error bars
derived from the HMF, halo power spectrum, and bispectrum at z = 1. Here
we assume that fNL

local and bf are fully degenerate at the power spectrum and
bispectrum level, while the HMF does not depend on bf.

Figure 7. Similar to Figure 6, considering only s f,8 NL
local{ } and bias parameters.

The 1σ Fisher constraints include the information contained in the HMF and
the power spectrum information up to = -k h0.2 Mpcmax

1 computed using the
halo model on the left and from simulations on the right. Note that both
methods give s ~f 50NL

local( ) and similar σ(σ8) (less than 20% difference).
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level likelihood-free inference calculation. Furthermore, the
HMF tail has been known for a long time to be strongly
sensitive to PNG. Finally, the HMF not only carries
complementary information to the power spectrum and
bispectrum but also does not suffer from the bf– fNL

local,
assembly bias–PNG degeneracy that was recently pointed out
in Barreira (2020, 2022) as an important issue in the analysis of
local PNG.

Our results show that the HMF can indeed play a significant
role in tightening the expected PNG bounds and breaking
parameter degeneracies when its contribution is added to those
of the power spectrum and bispectrum. In the first part of our
analysis, we remove a priori the bf– fNL

local degeneracy by
assuming universality in the bf(b1) relation; i.e., we set
bf= 2δc(b1− 1). In this case, we see that the HMF is able to
improve equilateral fNL constraints by roughly a factor 2 and
orthogonal fNL constraints by 10%. Constraints on PNG of the
local type are instead unchanged, since in this idealized
scenario, the local PNG information is dominated by the large-
scale power spectrum modes via scale-dependent bias.

In the second part of the analysis, we instead treat bf as a free
parameter and assume that the responses of the halo power
spectrum and bispectrum to the changes in bf and fNL

local are
identical; that is, we assume that these two parameters are fully
degenerate in a joint analysis of the power spectrum and
bispectrum. Starting with this setup, we then see that the
additional inclusion of the HMF is able to break the bf– fNL

local

degeneracy at a significant level, without the need to rely on any
prior on bf or any other external information. More precisely, our
final fNL

local constraints after marginalizing over bf and other
standard cosmological parameters are now degraded by a factor of
∼2.5 compared to the ideal case, in which bf is fixed by the
universality relation. We confirmed these results with a
semianalytical, halo model–based evaluation of the Fisher matrix,

in which we restrict ourselves to the power spectrum and HMF,
after verifying that for local PNG, these two observables give the
dominant contributions to the final sensitivity. We note that to
achieve the claimed level of precision on fNL

local, it is important
to include nonlinear scales in the analysis up to =kmax
0.5 hMpc−1, since they help break additional important
degeneracies that affect the HMF constraining power. We also
stress that QUIJOTE-PNG simulations have a cosmological volume
of 1 (hGpc)−3, making it not straightforward to generalize our
forecasts to, e.g., a Euclid-like or other coming survey settings.
For the same reason, a direct comparison with other forecasts—
such as those based on the multitracer methodology and placing
suitable priors on bf—is not easy to make at the moment. In a
forthcoming publication, Ravenni et al. (2023, in preparation), we
will produce more detailed semianalytical predictions for future
surveys based on the halo model.
The results presented here have to be considered as preliminary

also, as they rely on a simplified bias model for our tracers, and
they do not account for systematic effects in the determination of
the HMF from actual observations. Indeed, the dark matter mass
of a halo is a quantity that is notoriously difficult to measure
observationally, especially for high-redshift objects. Halos are
complex and dynamic structures that are almost exclusively
probed by the signal broadcast by the baryons they host. Dark
mass measurements tend to require sophisticated and labor-
intensive observations, which is unfeasible for a large number of
objects, as needed for the HMF. Moreover, the sample
completeness (for the host halo, not the tracers) needs to be
known exquisitely well, which may constitute a formidable
challenge. Among the most promising approaches are the clusters
selected by the Sunyaev–Zel’dovich effect (signal at millimeter
wavelengths; Mroczkowski et al. 2019), X-ray clusters (Pratt et al.
2019), and (optical) gravitational-lensing mass determination (e.g.,
Murray et al. 2022). For example, cluster catalogs will increase
drastically with a suite of forthcoming experiments: eROSITA
(Predehl et al. 2021), Simons Observatory (Ade et al. 2019),
Euclid (Laureijs et al. 2011), Roman (Akeson et al. 2019), and
Rubin (Ivezić et al. 2019). Cluster masses will not be measured
directly but inferred through proxies; these proxies, however, will
be provided as a product of these surveys and are expected to be
or be made robust and reliable. An important ingredient for any
HMF analysis would be to robustly quantify the probability
distribution of the proxies as a function of the true halo mass. This
can then be simply folded into the error budget and the uncertainty
propagated through to the inferred parameters.
The results shown in this paper clearly show that a joint

analysis of the HMF, power spectrum, and bispectrum of LSS
tracers is a promising approach to constrain PNG, hence
providing another motivation for further investigation in this
direction and for addressing the aforementioned observational
issues.
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Appendix A
Examination of the ICs

The procedure used to generate the simulation ICs in
Coulton et al. (2023a) is designed to produce a specific
bispectrum. However, the method additionally modifies all
other N-point functions. The most well-studied by-product of
this procedure is modifications to the power spectrum.
Scoccimarro et al. (2012) showed that it must be taken in
when choosing how to generate the ICs to avoid having
corrections that dominate the power spectrum. In Coulton et al.
(2023a) and Jung et al. (2022a), the ICs were validated by
examining the power spectrum and bispectrum. Those tests
showed that the modifications to the power spectrum are small,
and the correct bispectrum was generated. A concern for the
results presented in this work and other studies of statistics
beyond the two- and three-point functions is that the ICs may
have unphysically large higher-order N-point functions that
impact the results. The power spectrum and trispectrum are the
leading-order unwanted by-products of the IC generation
procedure. If we can show that the corrections to both are
small, it is reasonable to assume that the impacts of the
unphysical higher N-point functions of the ICs are negligible
for studies of the HMF and other statistics of the simulations.
Given that the power spectrum has already been validated, in
this Appendix, we present an investigation into the properties
of the trispectrum.

A.1. Trispectrum Estimation

The trispectrum is defined as

d d d dá ñ =k k k k T k k k k K K, , , , , , A1a b1 2 3 4 1 2 3 4( ) ( ) ( ) ( ) ( ) ( )

where ki= |ki|, Ka= |k1+ k2|, and Kb= |k1+ k3|. Estimating
the full trispectrum is computationally highly challenging; so,
in this work, we measure trispectra averaged over Kb, i.e.,

åµk k k k K T k k k k K K, , , , , , , , , . A2a
K

a b1 2 3 4 1 2 3 4

b

( ) ( ) ( )

A binned version of this can be estimated as
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where Wa(k) selects modes that lie within binned a, and
Na,b,c,d,E is the normalization. In this work, we use 14 equally
spaced bins between k = 0.0102 and 0.193 h Mpc–1. By
utilizing

òd d+ + =k k k kxed , A4x ki3
1 2 3

3( ) ( ) ( )( ) · )

we efficiently implement the estimator by first computing
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and then the estimate is given by
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The normalization is obtained by evaluating this estimator
(without the Na,b,c,d,E term) on maps with δ(k)= 1.

A.2. Trispectrum of the ICs

To perform a stringent test of the ICs, we study the
difference between the trispectrum of the ICs with fNL≠ 0 and
fNL= 0, i.e.,

=

-

¹

=

k k k k K k k k k K

k k k k K

, , , , , , , ,

, , , , . A8

a b c d E
f
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0

NL
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ˆ ( ) ˆ ( )
ˆ ( ) ( )

 



This cancels the leading noise contribution to the trispectrum
measurement.
The results are shown in Figure 9. For equilateral, there is no

detectable trispectrum. For orthogonal NG, there are small hints
of a trispectrum signal. As this measurement uses 200
simulations and a method to cancel the cosmic variance, it is
likely that this small trispectrum is negligible. However, the
local case shows significant evidence of a trispectrum. This is
not unexpected. Local PNG is generated in these simulations
by

f f fF = + - á ñx x x xf , A9G G G
NL

2( ) ( ) ( ( ) ( ( ) ) ( )

where ΦG(x) is the Gaussian primordial potential. This
generates a primordial trispectrum known as τNL (Kogo &
Komatsu 2006). In many inflationary models, τNL is generated
with local NG; thus, the trispectrum seen here is physical.
These trispectra measurements suggest that unphysical

higher-order N-point functions are not significant in our
simulations.

Figure 9. Significance of the detection of the trispectrum in the ICs for the
three types of PNG. This is computed using 200 simulations of each type
of PNG.
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Appendix B
Analyses at Other Redshifts

We have performed a similar analysis using the QUIJOTE
snapshots at z = 0.5 and zero to verify that our conclusions
hold at other lower redshifts. As can be seen in Figure 10, this

is indeed the case. For all parameters, the relative improve-
ments due to including the HMF in the Fisher analysis are of
the same order (note, however, that the difference between the
halo power spectrum and bispectrum results is more
pronounced at lower redshifts).

Figure 10. Similar to Figure 3 at redshifts z = 0 and 0.5 and with bf fixed.
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Appendix C
Convergence of Numerical Derivatives

In Figure 11, we study the impact of varying the number of
simulations used to compute numerical derivatives on the 1σ
Fisher constraints both with and without including the HMF in
the analyses. This shows that the parameters for which the

improvement due to the HMF is the largest (i.e., σ8 and fNL
equil)

also have a better numerical convergence with the number of
simulations (a smaller difference between the standard and
conservative compressed Fisher methods). Note also the
stability of the combined Fisher results (variations at the %
level) when using more than 200 simulations for the
derivatives.

Figure 11. Stability of the Fisher 1σ error bars when varying the number of simulations used to compute derivatives for the three methods described in Section 3.2
(standard, compressed, and combined). In the left panels, the analysis includes the power spectrum (monopole + quadrupole) and bispectrum (monopole) information
of the halo field at z = 1, with scales up to = -k h0.5 Mpcmax

1. In the right panels, we also consider the HMF (for halos with a mass larger than 4.1 × 1013 Me h–1).
All error bars are normalized by their respective combined Fisher results, given explicitly in the legend for all parameters. They show that adding HMF can
significantly reduce the error bars, in addition to improving the numerical convergence of the results (smaller relative differences between the compressed and standard
methods) for several parameters, in particular σ8 and fNL

equil. Note that the lines corresponding to PNG parameters are in bold.
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