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Abstract—This paper proposes a novel approach for the study
of cyber-attacks against the powertrain of a generic vehicle. The
proposed model is composed of a generic Internal Combustion
engine and a speed controller, that communicate through a
Controller Area Network (CAN) bus. We consider a threat model
composed of three representative attack scenarios designed to
modify the output of the model, thus affecting the rotational speed
of the engine. Two attack scenarios target both vehicle sensor
systems and CAN communication, while one attack scenario only
requires injection of CAN messages. To the best of our knowledge,
this is the first attempt of modeling the consequences of realistic
cyber attacks against a modern vehicle.

Index Terms—cyber attacks, cyber-physical systems, power-
train, controller area network, control system.

I. INTRODUCTION

Since the introduction of microcontrollers in modern vehi-
cles, car manufacturers began to push more and more features
to improve both safety and driving comfort. These features
are deployed on microcontrollers that are part of the vehicle
network and called Electronic Control Units (ECUs), which
are connected to the mechanical parts of the vehicle and
communicate between each others through means of different
communication protocols. The most deployed communication
protocol is the Controller Area Network (CAN), developed
by Bosch GmbH in the early ‘90 [1]. Despite the CAN bus
is one of the most deployed networking protocols in modern
vehicles it does not provide any security guarantees. Security
researchers demonstrated that it is possible to hijack a vehicle
by injecting maliciously forged messages on the CAN bus,
and published these results on technical reports and white
papers [2], [3]. These attacks are achieved by exploiting the
drive-by-wire capabilities of modern vehicles, a feature that
enables the control of the driving system through messages
sent over the CAN bus. An example of the drive-by-wire
capabilities of modern vehicle is represented by the cruise
control, which is activated to preserve the speed of the vehicle
to reduce fuel consumption and therefore emissions.

Despite these systems are developed for comfort and safety
purposes, the fundamentals required for their deployment
pave the way to targeted attacks, jeopardizing the safety of

people inside and outside the vehicle. Since the first public
demonstration of a remote attack to a modern connected
vehicle [4], many cyber security researchers proposed different
detection algorithms tailored for the in-vehicle communica-
tion networks to detect an ongoing cyber-attack [5], [6],
[7]. However, current literature explored attacks and their
relative countermeasures only focusing on a particular vehicle
domain. As an example, the detection algorithms designed to
detect cyber-attacks targeting the communication network of
modern vehicles are tested only against attacks targeting these
networks, while detection methods based on the analysis of
the system state are only tested against attacks designed to
modify the system state.

In this paper, we present a complete powertrain system
of a generic vehicle composed of an internal combustion
engine and speed controller, connected using a Controller Area
Network (CAN) communication protocol. This system is used
to analyze the consequences of cyber-attacks to the powertrain
system targeting both the sensors and the communication
network.

This paper has two main contributions. The first one is
that the speed controller is designed and implemented by
using the model of the engine instead of relying on a
generic representation of the whole vehicle [8]. To the best
of our knowledge, this is the first time that the speed control
problem is addressed by proposing a solution based on the
engine model. The second contribution of this work is the
demonstration of the consequences of cyber-attacks to the
engine model, considering different attack scenarios that can
be deployed at both system and communication level. To the
best of our knowledge, this is the first paper that addresses
the cyber security of the engine model using both model and
communication methodologies.

The rest of the paper is organized as follows. Section II
presents an analysis of the current state-of-the-art with the
methodology presented in this paper, while Section III shows
the design of the powertrain system, composed of the engine
and controller models and the CAN messages used for com-
munication between the two models. Section IV introduces the



threat model considered in this paper, and its effects on the
engine model are presented in Section V. Final remarks and
future work are outlined in Section VI.

II. RELATED WORK

Modern vehicle systems are built by considering many
different complex domains, that can be grouped as either
mechanical [9], [10], electronic [11], or intercommunication
domains [1], [12]. With the advent of remote connectivity,
these systems transitioned from being isolated from outside
communication to being interconnected with different com-
munication technologies. The increasing adoption of novel
Cooperative Intelligent Transport Systems (C-ITS) paved the
way to the development of novel communication standards
designed to meet the strict requirements of modern vehicles,
targeting both safety and security of the communication [13],
[14], [15], [16].

However, these novel external communication methods ex-
posed internal and isolated networks to remote attacks, which
take advantage of insecure networks to hijack the vehicle
system [2], [3].

The vulnerabilities of the in-vehicle networks have already
been addressed by cyber-security researchers. One of the first
works presenting the vulnerabilities of a licensed vehicle
is presented in [17], in which the authors experimentally
evaluated the security of a modern vehicle. The work pre-
sented in [17] demonstrated the vulnerabilities of poorly-
designed systems (such as the Adaptive Cruise Control) and
the implications of using legacy communication protocols with
no support to modern security techniques. Another similar
work is presented in [4], in which the authors focused on
the identification of a series of vulnerabilities to remotely
hijacking the vehicle. Despite the detailed description of the
methodology presented in [4] is focused on the steps required
to gain remote access to the connected vehicle, the final goal
of their work is to inject messages at CAN level, hence
demonstrating how it is possible to hijack a connected vehicle
via its drive-by-wire capabilities. In this paper we present first
complete powertrain system of a modern vehicle, including
both the engine model and CAN communication, that allows
to investigate the consequences of cyber-attacks targeting both
the internal communication network and the physical represen-
tation of the vehicle. Compared to the previous literature, the
work presented in this paper presents a generalized approach
for the analysis of the consequences of cyber-attacks to a
generic engine model, instead of focusing on a particular
vehicle.

Modern vehicles are cyber-physical systems (CPSs) [18].
CPSs are systems which show a tight connection between
sensing, processing, control and communication to achieve
goals that otherwise it would be impossible (e.g. advanced
driver assistance system). This scenario offers many attack
surfaces where cyber-security tools may not cover [19].

One example is the replay attack, where the adversaries
replace the actual sensor measurements with pre-recorded
ones, while driving the actual physical system to possible

dangerous situations. To detect this kind of stealthy attack,
system theory tools are needed since the attack is changing
the information of the data and not the structure.

Classical system theory detection techniques are based on
fault detection schemes that generate a residual value by com-
paring the real sensor measurements and the ones predicted by
an observer. This residual value is later used for the anomaly
detection task. In case of a replay attack, fault detection
schemes are not able to detect it since the base values used for
detection task are being corrupted. To overcome this limitation,
an active detection method for replay attack on CPS has been
proposed in [20].

Other interesting works are presented in [8], [21], in which
a Denial-of-Service attack against a vehicle system is pre-
sented. While in [8] the authors focus on the analysis of
the consequences of the missing input of a generic engine
drive, the authors of [21] designed a predictive controller to
overcome missing input. Both [8], [21] are based on a logical
interruption of the input to the systems, which are represented
by an approximation of the whole vehicle system instead of
considering the actual mechanical parts composing the engine
model. However, compared to both [8], [21], we showcase the
consequences of a wider range of cyber-attacks, carried out
on a model representing the actual mechanical composition of
a modern internal combustion engine, and used a simulated
communication network to study the realistic consequences of
cyber-attacks targeting our system. Moreover, we adapted the
replay attack presented in [20] to the automotive scenario to
present its consequences on a novel scenario.

III. POWERTRAIN MODEL

In this section the basic knowledge required for the un-
derstanding of this paper is provided. In Section III-A we
describe the dynamical model of the IC engine, while in
Section III-B we present the design of the controller deployed
on the IC engine model. Finally, in Section III-C the basics of
the Controller Area Network and on its design in our model
are provided.

A. Engine and Controller Models

We consider the mean-value model (MVM) of the sparkle-
ignited (SI) engine, which consists of five interconnected
sub-modules: throttle body, intake manifold, gas exchange,
combustion and torque generation, and engine inertia. The
nonlinear model that describes the dynamics of the SI engine
is:

dpm(t)

dt
=

Rθm
Vd

(ṁα(t)− ṁβ(t)) (1)

dωe(t)

dt
=

1

θe
[Te(t)− Tl(t)] (2)

where pm is the intake manifold pressure, ṁα is the air-flow
mass entering from the throttle valve, ṁβ is the air-flow mass
going out from the intake manifold to the cylinders, we is the
engine speed, Te the torque generated by the engine, and Tl the
load torque. To use the aforementioned model for the design



of a controller, we need to identify the relationship between
the two dynamics described in (1) and (2). Starting from (1)
we have to characterize ṁα and ṁβ . Assuming that the air is
a perfect gas and the throttle is isenthalpic1, ṁα is given by:

ṁα(t) =

 Aα(t)
pa√
Rθa

1√
2

pm(t)
pa

≤ 0.5

Aα(t)
pa√
Rθa

√
pm(t)
pa

[1− pm(t)
pa

] else

(3)
where Aα is the throttle valve open area that is computed

as follows:

Aα(αth) =
πd2th
4

(
cos(αth)

cos(αth,0)

)
+Ath,leak (4)

αth = αth,0 +
(π
2
− αth,0

)
uα (5)

where αth is the throttle angle, and uα ∈ [0, 1] is the control
input.

Equations (4) and (5) assume that the throttle actuation is
neglected. The following relation:

λ(t) =
1

σ0
· ṁβ(t)

ṁϕ(t)
(6)

describes the ratio of air and fuel in the cylinders with
respect to the stoichiometric constant σ0

2. The term ṁϕ is
the fuel mass flow to the cylinder. Assuming that the injectors
dynamics and wall-wetting phenomena are negligible and λ is
approximately constant, we can derive the expression of the
fuel flow-mass going into the cylinder as:

ṁϕ =
ṁβ(t)

σ0λ
, (7)

hence the gas-mixture mass flow aspired in the cylinder is:

ṁ(t) = ṁβ + ṁϕ = ṁβ

(
1 +

1

σ0λ(t)

)
.

Finally, the air flow-mass going out from the intake manifold
to the cylinders ṁβ can be expressed in terms of ṁ(t) as
follows:

ṁβ(t) =
ṁ(t)

1 + 1
λσ0

(8)

Equation (8) presents the relation between ṁβ and ωe,
considering the engine as a volumetric pump, the gas-mixture
mass flow aspired in the cylinders is given by:

ṁ(t) =
pm(t)

Rθm
· λl(ωe(t), pm(t)) · Vd ·

ωe(t)

4π
(9)

where λl is the volumetric efficiency3. The volumetric effi-
ciency λl can be approximated as:

λl(ωe, pm) = λlω(ωe) · λlp(pm) (10)

1the temperature of the air flow in input is approximately the same of the
air flow in output

2represents the optimal air/fuel ratio which generates the maximum heat
possible, i.e. for gasoline is 14.66.

3describes how far the engine differs from a perfect volumetric device

where

λlω(ωe) = γ0 + γ1ωe + γ2ω
2
e (11)

λlp(pm) =
Vc + Vd

Vd
− Vc

Vd

(
pout
pm

) 1
κ

(12)

In Equation (12), Vc is the compression volume, Vd is the
volume displacement, κ is the ratio of the specific heat (κ ≈
1.4), and pout is the pressure at the engine’s exhaust side.
Now we know how ωe is related to (1), and to show how
pm is related to (2) we introduce the break mean effective
pressure pme which represents the required pressure on the
piston during one full expansion stroke to complete an engine
cycle4 and it is given by:

pme =
Te · 4π
Vd

. (13)

The fuel mean effective pressure:

pmϕ
=

mϕ ·Hl

Vd
, (14)

corresponds to break mean effective pressure generated by
an engine that converts all the fuel thermal energy into
mechanical energy, for the amount of fuel mass mϕ burnt per
engine cycle. Hl is the specific energy of the fuel. The mass
of fuel mϕ is related to the fuel mass flow by the following
equation:

ṁϕ(t) = mϕ(t)
we(t)

4π
. (15)

This equation also represents the relationship that links the
mechanical dynamics with the air pressure in the intake
manifold.

To exploit this relationship, we start considering the effec-
tive efficiency which is:

ηe =
pme

pmϕ

=
Te · 4π
mϕ ·Hf

(16)

and the goal is to find an expression for Te. Hence then:

pme = ηe(....) · pmϕ
(17)

ηe(...) can be obtained in different ways, a possible approxi-
mation uses the indicated mean pressure:

pme ≈ pmi(ωe)− (pm0f (ωe) + pm0g(ωe)) (18)

where pmi is the indicated mean pressure which is given by:

pmi =
wi

Vd
= ηi

mϕ ·Hf

Vd
(19)

where wi is the indicated work5. The associated indicated
thermodynamic efficiency can be approximated by using the
Willians approximation as: ηi(ωe) ≈ η0 + η1ωe. The terms
pm0f and pm0g represent the loss due the friction and gas
exchange.

4for a four-stroke engine it corresponds to two engine revolutions.
5mechanical energy transferred to the piston during one cycle, where

friction is not considered.



From (13), (17), and (18)

Te(t) = pme(t) ·
Vd

4π

= (ηi(ωe)pmϕ
− pm0f (ωe)− pm0g(ωe))

Vd

4π
(20)

From (16) we find the expression of pmϕ
, hence:

Te(t) = ((η0+η1ωe)
Hf ·mϕ(t)

Vd
−pm0f (ωe)−pm0g(ωe))

Vd

4π
(21)

By using (15), we can express mϕ as function of ṁϕ which
can be derived from (7) as:

mϕ(t) =
ṁβ · 4π
α · ωe

6 (22)

where α = λ · σ0.

param value units param value units

R 287 [J/KgK] γ1 3.42e-3 [s]
θa 298 [K] γ2 -7.7e-6 [s2]
θm 340 [K] η0 0.16 [J/Kg]
αth0 7.9 [deg] η1 2.21e-3 [Js/Kg]
dth 58.7e-3 [m] β0 15.6 [Nm]
Ath,leak 5.6e-6 [m2] β2 0.175e-3 [Nms2]
V d 2.77e-3 [m3] θe 0.2 [kg/m2]
V c 0.277e-3 [m3] Hf 45.8e6 [-]
pa 1e5 [Pa] κ 1.35 [-]
pout 1e5 [Pa] α 14.70 [-]
γ0 0.45 [-]

TABLE I: Values of the parameters used in the model

Fig. 1 shows the nonlinear model we consider to simulate
and control the SI IC engine, where equation (1) has been
rewritten by using (3) and (8), and equation (2) with (21) and
(22). Table I shows the parameters we use in our simulations
[9].

B. State Space Representation and Controller Design

In this section we present the controller design for our SI
engine described by (23) and (24). In this model we can
identify pm and we as state variables:

z ≜

[
pm
we

]
, (25)

where h(t) = Aα(t)
7 as the input, and we is the output.

The cruise control problem aims to keep a certain constant
speed of the car which means that the SI engine is working
around a pre-determined equilibrium point z̄ = [p̄m, w̄e]

T and
h̄ = Āα.

A controller for this task can be designed considering the
linearized dynamics (23) and (24) around x̄. Considering a

6for idle control gas-mixing transportation delays have to be taken into
account, ṁϕ(t− δ) and ṁβ(t− δ).

7To do not overload the representation we consider directly Aα(t) as input.
To consider uα the throttle angle, we need to consider the equations (4) and
(5).

constant Tl
8, (23) and (24) can be written as ż = f(z, h),

where f : R2 × R → R2. From the linearization:

A =
∂f

∂z

∣∣∣∣
z=z̄ h=h̄

, B =
∂f

∂h

∣∣∣∣
z=z̄ h=h̄

(26)

and defining x ≜ z− z̄ and u ≜ h− h̄, the system we consider
for design the controller is:

ẋ = Ax+Bu+ w (27)

where w ∼ N (0, Q) represents the process noise which is
zero-mean Gaussian with known covariance matrix Q. Since
the output is we, then the output equation of the linearized
model is y = Cx+ v with C = [0 1] and v ∼ N (0, R) is the
zero-mean Gaussian measurement noise with variance R. To
design the controller we consider the discrete version of (27)
with sampling time Ts. Hence the considered system is given
by:

xk+1 = Adxk +Bduk + wk (28)
yk = Cxk + vk (29)

with wk ∼ N (0, Qd), and vk ∼ N (0, Rd). We defined Ad,
Bd, Qd, and Rd as in [22]. To stabilize the dynamics (28), we
consider a Linear Quadratic Gaussian (LQG) controller. This
is a state feedback controller uk = Lxk that minimizes the
following cost function:

J = lim
N→∞

E
1

N

[N−1∑
k=0

(x⊤
k Wxk + u⊤

k Uuk)

]
, (30)

where W and U are semi-positive definite matrices. The actual
control is computed as:

uk = Lx̂k|k (31)

where x̂k|k is the Kalman state estimation at time k

x̂k|k = x̂k|k−1 +K
(
yk − Cx̂k|k−1

)
. (32)

The one-step prediction x̂k|k−1 is given by:

x̂k|k−1 = Adx̂k−1|k−1 +Bduk−1. (33)

The constant gain K is the Kalman gain considered at steady
state. For more details about (31) and (32), the reader is
invite to see [22]. The associated observer-based state feedback
control scheme is reported in Fig. 3.

C. The Controller Area Network

The Controller Area Network (CAN) is a vehicle bus stan-
dard designed to allow the nodes of the network to exchange
data without requiring a host computer [1]. CAN is one of
the most deployed networking protocol for internal vehicular
communications due to its high resilience to electromagnetic
interference and its cheap implementation. Microcontrollers
on the same CAN segment exchange data between themselves

8for a case of replay attack, a time-varying Tl makes the attack not stealthy,
here we consider a scenario where Tl is constant and possible small changes
can be modelled as random noise.



dpm(t)

dt
=

Rθm
Vd

(
Aα(t)

pa√
Rθa

1√
(2)

−
(
pm(t)

Rθm

(
γ0 + γ1ωe(t) + γ2ω

2
e(t)

)
(
Vc + Vd

Vd
− Vc

Vd

(
pout
pm

) 1
κ

)
Vdωe(t)

4π

α

α+ 1

))
(23)

dωe(t)

dt
=

1

θe

[(
(η0 + η1ωe(t))

Hf · pm(t)

Rθm

(
γ0 + γ1ωe(t) + γ2ω

2
e(t)

)(Vc + Vd

Vd
− Vc

Vd

(
pout
pm

) 1
κ

)

· Vd

α+ 1
−
(
β0 + β2ω

2
e(t) + (pout − pm(t))

) Vd

4π

)
− Tl(t)

]
(24)

Fig. 1: Nonlinear model of an SI-engine for cruise-control problem.

using the CAN data frame, one of the 4 types of frames defined
by the CAN standard. The CAN data frame is composed of
two main fields, namely the identifier (ID), and the payload
(data). The ID is used to distinguish among different types
of CAN data frame. Data frames characterized by a given
ID are produced by only one microcontroller, while receiver
microcontrollers use the value of the ID to select data frames
that are relevant for their functioning. The CAN standard
defines two types of data frames: the standard format, whose
ID field is 11-bits long, and the extended format, whose ID
field is encoded using 29-bits. The extra bits of the extended
format are separated from the bits composing the standard
format for backward compatibility. Figure 2 shows an example
of a generic CAN data frame in the extended format. The
data field encapsulates the information that the sender micro-
controller transmits to other microcontrollers on the network.
The data field has a variable size (from 1 to 8 bytes) and
usually packs several different signals. The CAN standard
leaves complete freedom to the car manufacturers about the
structure, number, encoding, and semantic of these signals.
Hence, without having access to the formal specifications of
the CAN network for a particular vehicle model, the signals
encoded in the data field can only be interpreted as an opaque
binary blob.
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ARBITRATION CONTROL DATA CRC FIELD
ACK

SLOT

Fig. 2: CAN data frame in the extended format

For the tests presented in this paper, we designed a CAN
communication network between the IC engine model the
speed controller. In particular, we identified a minimum of
two messages required to enable communication between the
IC engine model and the speed controller. The first message,
called ES (engine speed) is sent from the ECU attached
to the engine output sensor and required as input by the
controller, while the second message is called TR (throttle
request) and is sent from the controller to the input of the
engine model. The ES message contains the value of the

engine rotational speed, while the TR message contains the
value of the throttle estimated by the controller to keep the
rotational speed constant. The detailed description of the two
CAN messages is provided in Table II.

Message ID [hex] cycle time [ms] encoded signal DLC [bits]

ES 0x10 10 throttle opening
request [0, 1] 32

TR 0x15 10 engine rotational
speed [RPM] 32

TABLE II: CAN bus specifications

Figure 3 presents the final architecture of the system,
showing how the different subsystems are connected with each
other: a black line is used to denote direct connection between
the subsystems, while the orange line is used to highlight
subsystems communicating via CAN.

Engine Model

Engine 
Control
Unit (input)

Engine 
Control
Unit (output)

Speed Controller

CAN

Fig. 3: Final design of the IC engine model with the controller
and CAN communication

IV. THREAT MODEL

In this section we present the threat model considered for
testing our model. The threat model considered in this paper
is focused on attacks targeting the output of the engine model,
with the final goal to modify its output.

Modern literature already showcased different threat models
for both CPS security and CAN communications, demonstrat-
ing the vulnerabilities of modern control systems and network-
ing protocols. The consequences of these vulnerabilities have



been exploited by security researchers from both academia and
industries to perform different attacks, from simple Denial-
of-Services [8], [21], designed to test the systems against a
disruption of the communication, to more advanced imperson-
ation attacks [23], in which the attacker is able to impersonate
a target ECUs by replacing legit messages with maliciously
forged ones. However, all the presented threat models are
developed by focusing only on a specific aspect of the model,
being either the control system itself [24], [25] or the adopted
communication protocol [26], [27].

The threat model considered in this paper is based on
both research areas, hence representing a hybrid approach
composed of control system theory and CAN communication.
To the best of our knowledge, this is the first time a hybrid
approach is used for the definition of a threat model for
automotive applications. The threat model considered in this
paper is composed of three different attack scenarios, each
one designed to modify the output of the system by means
of different attack vectors. The detailed description of each
attack scenario is presented in the following.

A. Fuzzing attack

The fuzzing attack considered in our threat model requires
an attacker with the ability to provide custom input to the
control system, resulting in the modification of the speed
of the engine. This attack supposes that the attacker is able
to inject a custom control input to the system at anytime.
The attack is composed of two stages: in the first stage the
attacker learns the legit values of the input of the control
system, while in the second stage a desired sequence of
control input is provided to the system. The fuzzing attack is
a type of attack already explored on both control systems [28]
and CAN communications [29], [30]. However, since the
input of the system can be modified at sensor level or by
tampering the content of its relative CAN message, we remark
that the consequences of the fuzzing attack scenario can be
analyzed by targeting either the model’s sensors or the CAN
communication.

B. Replay attack

The replay attack is an advanced version of the fuzzing
attack scenario, in which it is necessary that the attacker is
able to provide custom input to the control system while si-
multaneously change its output by replaying the corresponding
output of the provided input. This attack scenario is composed
of two stages: in the first stage the attacker records a sufficient
number of sensor readings (both input and output) without
providing any input to the system, hence with the system
running in normal conditions; while in the second stage the
attacker provides a desired sequence of control input while
replaying the previously recorded outputs. By conducting a
replay attack to the powertrain system, the attacker is able to
modify the final speed of the vehicle without being noticed,
by injecting a control input to the system and masquerading
its consequences to the controller by replaying previously

recorded output values. This attack scenario has already ex-
plored on both research areas [31], [32] hence we remark that
its consequences on our model can be analyzed by simulating
the attack on one of the two scenarios.

C. Injection attack
In the injection attack scenario, the attacker has no direct

access to the sensors attached to the ECUs but is able to read
and send CAN messages, either via a physical connection or
by exploiting a vulnerability of a target ECU. The injection
attack is an attack targeting the CAN communication between
the system microcontrollers, in which the attacker is able to
send messages containing an arbitrary value of the system
control input to modify its output. The injection attack is
designed in two stages: in the first stage the attacker observes
the CAN communication of the target vehicle to identify
the messages carrying the input values of the control system
and to learn their cycle time; while in the second stage the
attacker injects CAN messages with the desired control input
encoded in their data field with a faster cycle time than the
original ones, interleaving malicious messages with the valid
ones. As opposed to the previous two attack scenarios, the
injection attack can only be performed at CAN communication
level [23].

V. ATTACK CONSEQUENCES

In this section we investigate the consequences of the attacks
composing the threat model presented in Section IV on the
powertrain model presented in Section III. The attacks are
replicated on our model after 10 seconds of normal system
simulation for a duration of 2 seconds.

A. Fuzzing attack
The consequences of the fuzzing attack on our model are

investigated by performing the attack at CAN level. The
attack is simulated as follows. In the first phase of the attack
we identified a sequence of input values corresponding to 2
seconds of system inputs. In the second phase we changed
the real value of the sensor reading encoded in its relative
CAN message by increasing the values of a fixed amount.
The attack analyzed in this section targets the input of the
engine model (the throttle request), and the value encoded in
the CAN messages is increased by 1e − 6. Figure 4 shows
the consequences of this attack on our system, comparing the
input (throttle request, blue line) with the output (engine speed,
green line). The left y-axis shows the values of the input, the
right y-axis shows the values of the output, while the x-axis
shows the time of the simulated system. We denote the start
of the attack with a red vertical line.

From the analysis of the results presented in Figure 4 we
notice that after the start of the attack the output of the
system rapidly increased, from its stationary value of 4200rpm
to a peak of 4224rpm. Moreover, despite the input of the
system is fixed at 7.54e−5, the action of the cruise controller
deployed on our model stabilizes the input of the system
to approximately 7.462e − 5, hence slightly decreasing the
malicious input.
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Fig. 4: Consequences of the fuzzing attack on the system input

B. Replay attack

The consequences of the replay attack on our model are
investigated by performing the attack at CAN level. For this
attack scenario, we also remark that the same results are
achieved by performing the same attack at sensor level. The
attack is conducted as follows. In the first phase of the
attack we recorded a sequence of input and output values
corresponding to 2 seconds. The second phase of the attack
is conducted as in the fuzzing attack scenario, despite in this
attack scenario the content of the CAN message carrying the
reading’s of the output sensor is overwritten with the output
value corresponding to the given input. Figure 5 shows the
consequences of this attack on our system, comparing the
input (throttle request, blue line) with the output (engine speed,
green line). The left y-axis shows the values of the input,
the right y-axis shows the real output of the system (and not
the replayed values), while the x-axis shows the time of the
simulated system. The start of the attack is represented by a
red vertical line.
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Fig. 5: Consequences of the replay attack on the system

Figure 5 shows that after the start of the replay attack there
is an increment of the actual speed of the engine. Moreover,
by comparing the evolution of the input of the system with the
results presented in Figure 4, it is possible to notice that by
overwriting the output of the system before its relative CAN

message is sent to the controller it is possible to prevent the
controller to operate on the input.

C. Injection attack

The consequences of the injection attack scenario are in-
vestigated by performing the attack at CAN level. We remark
that this attack scenario is limited to the CAN communication
bus, hence it is not possible to obtain the same results by
performing the attack at sensor level. The injection attack is
performed by injecting throttle request CAN message with a
higher value of the throttle input to increase the speed of the
engine. The attack is conducted as follows. In the first phase
the legit values of the input are analyzed to identify the normal
value used by the controller. In the second phase, messages
carrying a higher value of the input of the system are injected
with a frequency 10 times higher than the legit message, thus
injecting 10 malicious messages between two legit ones. The
input value of the injected message is 1e− 6 higher than the
value sent by the original messages.

Figure 6 shows the consequences of this attack on our
system, comparing the input (throttle request, blue line) with
the output (engine speed, green line). The left y-axis shows
the values of the input, the right y-axis shows the output of
the system, while the x-axis shows the time of the simulated
system. The start of the attack is represented by a red vertical
line. The internal plot of Figure 6 is a detailed example of the
system input and output centered at time t = 11 seconds. In
this internal Figure it is possible to notice better the difference
of the between the legit values of the input (blue dot) and
output (green dot) sensors, the injected system input (blue
crosses) and its relative output (green crosses).
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Fig. 6: Consequences of the injection attack on the system

The analysis of the results presented in Figure 6 shows
an interesting pattern caused by the start of the attack. In
particular, the output of the system goes from a minimum
values of 4120rpm (which to the legit value) to values of
4215rpm (which corresponds to the injected input).

VI. CONCLUSIONS

In this paper we analyzed the consequences of cyber-attacks
to the powertrain model of a generic vehicle. The powertrain
model is built by considering a generic internal combustion



engine model, composed of different sub-models, a speed
controller, and a communication network based on the CAN
protocol connecting the engine model with the controller.
We consider a threat model composed of different attack
scenarios, whose final goal is to modify the output of the
engine model, representing the rotational speed of the engine.
We discussed 3 different attacks to the system, of which 2 can
be deployed at both sensor and CAN level, while the other
attack can be only executed at CAN communication level.
We experimentally analyzed the consequences of these attacks
on our model through simulation of the different attacks,
demonstrating that it is possible to modify the output of the
model by introducing little deviations in the content of the
CAN messages or in the sensor’s readings. Compared to the
current state-of-the-art, the work presented in this paper uses a
cruise controller developed to operate in conjunction with the
model describing the actual components of a generic internal
combustion engine, demonstrates the consequences of cyber-
attacks targeting the powertrain system, and uses the CAN
communication protocol to enable communication between the
engine and the controller.

Future work is focused on the analysis of state-of-the-
art defences against the considered threat model to build a
framework that exploits the two scenarios to overcome each
other limitations.
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