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In real-world construction sites, On-Site Workshops (OSW) are installed to accelerate construction 
activities and facilitate the material handling process. These temporary OSWs are cost-effective, 
leading to decreasing the material handling cost and project makespan, which indicates their 
important role as a part of a construction project. However, considering the OSW, which has 
not been addressed in the project scheduling problems, requires the construction site to have 
a space capacity constraint while considering the workshop size, availability level, and other 
project-related constraints. In the present work, by considering the OSWs, a real construction 
project scheduling problem is studied as a Multi-Mode On-Site Workshop Investment Problem 
with Tardiness (MOSWIPT) while finding the installation/dismantling time of the OSWs. Two 
new (linear) mathematical programming models are proposed for MOSWIPT. Next, due to the 
NP-hardness of the problem, an enhanced Genetic Algorithm (GA)-based metaheuristic with 
efficient problem-specific improvement rules as local search and effective crossover and mutation 
operators is proposed. Computational experiments show that the proposed method has solved 
most of the instances of the addressed problem to optimality and outperformed the existing 
metaheuristics, e.g., Simulated Annealing (SA) and Particle Swarm Optimization (PSO). Finally, 
conclusions and suggestions for future studies are stated.

1. Introduction

Project Scheduling Problem (PSP) has been a popular topic among researchers and decision-makers due to its practical and 
theoretical importance. PSP seeks to obtain the start time of the activities concerning the constraints of the project and optimize 
the predetermined objective function. PSP is a very important task since it directly impacts the time, cost, and quality of a project. 
PSP has two main limitations: (I) the maximum availability level of the resources and (II) the precedence relationship between 
activities. With these two limitations, the PSP becomes the well-known Resource-Constrained PSP (RCPSP) [1–3]. The other well-

known problem in the PSP is Time-Constrained PSP (TCPSP), which aims to obtain the minimum usage cost of the resources while 
satisfying the deadline of the project [4].

According to the literature, TCPSP is also known as a Resource Investment Problem (RIP) [5]. RIP determines the level of the 
resources, minimizing the cost of investment in resources and completing the project in the given time. According to the literature, 
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Fig. 1. A picture of an OSW at a construction site.

Image source: https://www .shelterlogic .com /knowledge /site -workshops -storage -shelter -industry.

Fig. 2. A picture of an OSW used as a material storage place at a construction site.

Image source: https://www .shelterlogic .com /knowledge /site -workshops -storage -shelter -industry.

there are different types of resources in real-world projects, such as renewable (they have limited usage in each period but are 
renewed next period, e.g., labor, machines, equipment, and space), non-renewable (they are consumed during planning horizon, 
e.g., money, materials, and energy), doubly-constrained (they are renewable from a period to next period but are non-renewable 
within each period, e.g., periodic budget), and partially (non)renewable (their presence is connected to specific periods within the 
planning horizon, and the activities that need these resources will only utilize them when they are executed during these periods [6]). 
The present work considers a new resource type called an On-Site Workshop (OSW). Each OSW has a specific lifetime —, a period 
between installing and dismantling times —, and requires a certain place to be located at a construction site. In other words, OSW is 
a generalized partially (non)renewable resource that poses space capacity constraints in the scheduling process. Therefore, partially 
(non)renewable resource is a subset of OSWs that does not require a space to occupy. In the construction site, these temporary OSWs 
are cost-effective, leading to decreasing the material handling cost and project makespan1 (as shown in Fig. 1). However, each OSW, 
which has not been addressed in the construction project scheduling problems, occupies a certain space of the construction site. This 
requires the construction site to have a (storage) space capacity constraint; for example, as can be seen in Fig. 2, the more OSWs 
(with a certain size) are established, the more space the construction site occupies.

Thus, the occupied space by OSWs is an important factor that must be considered since, in the real world, OSWs are built next 
to each other, and the total space available to install these workshops is limited at the construction site [7,8]. Also, the OSW’s 
lifetime directly impacts the project scheduling/planning phase because some project activities rely on a specific OSW to be started. 
Considering the OSW’s limited availability, the sum of the occupied space of OSW by activities can not be greater than the OSW’s 
available amount. Moreover, each OSW is a temporary workshop used to carry out some construction project activities. Hence, 
each OSW has a particular function: storage, cutting, welding, painting workshops, etc. Installing and dismantling such a temporary 
workshop, which has a limited available level, poses an issue for the activities’ start/finish time as well as the makespan of the 
project. In addition, not only does each OSW have a limited availability, but the construction site also has a certain space capacity, 
resulting in applying a limited number of OSWs simultaneously.
2

1 https://www .shelterlogic .com /knowledge /site -workshops -storage -shelter -industry.

https://www.shelterlogic.com/knowledge/site-workshops-storage-shelter-industry
https://www.shelterlogic.com/knowledge/site-workshops-storage-shelter-industry
https://www.shelterlogic.com/knowledge/site-workshops-storage-shelter-industry
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This paper presents a new problem in the context of PSP: Multi-Mode On-Site Workshop Investment Problem with Tardiness 
(MOSWIPT), which aims to find the optimal lifetime and the occupied level of OSWs, activities start time, and execution mode of 
each activity so that usage of OSWs and tardiness penalty costs are minimized while satisfying the space capacity of the construction 
site, resource-constrained and precedence relationships constraints. This paper is organized as follows: The second section reviews the 
literature. The third section states the problem and presents the mathematical models for the problem. The fourth section describes 
the proposed solution procedure. The fifth section represents the computational experiments to evaluate the performance of the 
proposed models and solution techniques. Finally, the sixth section states the conclusion and suggestions for future studies.

2. Literature review

2.1. Resource investment problems

Three characteristics identify the PSP: (I) resources, which are classified as renewable, non-renewable, partially renewable, or 
fixed, stochastic, uncertain, time-dependent, etc., (II) activities, such as single-mode, multi-mode, (non)preemptive, determinis-

tic, stochastic, uncertain, fuzzy, time-dependent, resource-dependent, etc., (III) objective function, such as, minimizing the project 
makespan, resource leveling, minimizing the resource investment, maximizing the Net Present Value (NPV), etc. Due to these various 
characteristics, [9] suggested a classification scheme to denote the PSP problems with unanimous notations and symbols. The present 
paper complies with the notations introduced by [9] to classify the MOSWIPT (see section 3).

If a penalty is assigned to the tardiness of the project completion time, then RIP becomes RIP with Tardiness Penalty (RIPT) [10]. If 
the tardiness penalty is considered a constraint, not an objective function, then RIPT is called the Resource Availability Cost Problem 
(RACP) [11]. RIPT/RACP has been studied by both exact and heuristics solvers, including Branch-and-Bound [12], Lagrangian 
Relaxation and Column Generation (CG) [5], Constraint Programming (CP) [13], Genetic Algorithm (GA) [10,14], Particle Swarm 
Optimization (PSO) [15], Artificial Immune System (AIS) [16].

Due to the theoretical and practical importance of RIPT/RACP, several variants have been introduced in the literature, such as 
Multi-Mode RIP (MRIP) [17,18], RIP with Time Windows [19], RIP with Quantity Discount Problem [20], Multi-Mode Preemptive 
RIPT [21], Fuzzy-Stochastic RIP [22]. Moreover, [23] extended the MRIP to multi-agent settings, proposing decentralized negotiation 
mechanisms to facilitate the allocation of global resources. [24] presented a novel interval programming and chance-constrained 
optimization-based hybrid solution approach for a fully uncertain, multi-objective, and MRIP scheduling problem. [21] studied the 
preemptive MRIP minimizing the total (non)renewable resource costs and earliness-tardiness costs by a given project deadline and 
activity due dates. Also, a Mixed Integer Programming (MIP) formulation and GA are proposed for the problem. [25] studied the 
MRIP with Tardiness Penalty (MRIPT) by proposing a Large Neighborhood Search (LNS) where destroy operators were applied to 
a feasible solution to obtain subproblems. Then, these subproblems were solved with MIP-based recreate operators to obtain an 
improved solution. Our addressed problem, MOSWIPT, extends MRIPT by considering partially (non)renewable resources and space 
capacity constraints.

2.2. Project scheduling with storage space capacity

Limited storage space has emerged as a significant bottleneck in projects carried out in urban areas. Some recent works have 
considered space capacity constraints in the construction project scheduling. For example, [26] addressed the integrated RCPSP 
and Material Procurement Scheduling (MPS). While previous literature had primarily focused on solving the simultaneous solution 
of RCPSP-MPS with one warehouse (storage) and unlimited capacity, they introduced a novel approach that considered multiple 
warehouses with limited capacity over the entire planning horizon. They employed a metaheuristic method, namely population-based 
Simulated Annealing (SA), to find acceptable solutions efficiently within a short time frame. Also, [27] studied the Project Scheduling 
and Material Ordering Problem (PSMOP) with storage space constraints. Their proposed model minimized the makespan of the 
project, material inventory, ordering, and indirect costs by finding the activity schedule and the material ordering time and quantity. 
Also, they designed an efficient, non-dominated sorting GA (NSGA-II) to solve the problem for large-sized instances. Recently, 
[28] tackled the integrated RCPSP and PSMOP with Limited Storage Space (RCPSMOP-LSS) regarding the activity scheduling and 
material ordering when faced with storage constraints. They introduced a Two-Layer Heuristic Algorithm (DLHA) to solve the 
model. The addressed problem in the present paper, MOSWIPT, differs from RCPSP-MPS or RCPSMOP-LSS by employing partially 
(non)renewable resources and parallelized activities and OSWs.

2.3. Project scheduling under partially (non)renewable resources

Also, the partially (non)renewable resource concept was first introduced by [6], which encompasses traditional renewable and 
nonrenewable resource constraints. The primary objective was to minimize the makespan of the PSP under partially (non)renewable 
resources. They used an enumeration method for exact solutions and provided bounds considering future resource consumption for 
faster convergence. [29] discussed the historical focus of project scheduling research on developing solution methods and general-

izing models, neglecting the generation of problem instances until recently, e.g., partially (non)renewable resources. Furthermore, 
they highlighted the limitations of the classical RCPSP when dealing with labor time regulations in manpower scheduling scenarios. 
Furthermore, [30] introduced a novel heuristic algorithm rooted in Scatter Search (SS) for addressing PSP under partially (non)re-
3

newable resources. The efficacy of the SS algorithm was evaluated using established test instances.
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Table 1

List of abbreviations.

Abbreviation Phrase

PSP Project Scheduling Problem

RCPSP Resource-Constrained PSP

TCPSP Time-Constrained PSP

RIP Resource Investment Problem

OSW On-Site Workshop

MOSWIPT Multi-Mode On-Site Workshop Investment Problem with Tardines

RIPT RIP with Tardiness Penalty

RACP Resource Availability Cost Problem

MRIP Multi-Mode RIP

MRIPT MRIP with Tardiness Penalty

MPS Material Procurement Scheduling

PSMOP Project Scheduling and Material Ordering Problem

RCPSMOP-LSS RCPSP and PSMOP with Limited Storage Space

MRACP-RR Multi-Mode RACP with Recruitment and Release Dates for Resources

Moreover, [31] presented a set of preprocessing techniques and multiple heuristic algorithms tailored to address PSP under par-

tially renewable resources. They introduced heuristic algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) 
and path relinking, which were tested using existing test instances and demonstrated excellent performance. Also, [32] proposed 
an Integer Programming (IP) model and a Constraint Programming (CP) model for PSP under partially renewable resources and 
resource consumption during setup operations. They introduced a heuristic method, termed the “mask calculation algorithm,” which 
restricted selectable modes to enhance the efficiency of the search process.

In recent work, [33] addressed RCPSP, incorporating partially renewable resources and general temporal constraints. They in-

troduced the concept of partially renewable resources within the context of projects with broader temporal constraints, enhancing 
its applicability to real-world project scenarios. They presented a branch-and-bound procedure and developed new consistency tests, 
lower bounds, and dominance rules. Similarly, [34] introduced a novel branch-and-bound algorithm for solving RCPSP with partially 
renewable resources and general temporal constraints, employing a stepwise decomposition approach to analyze potential resource 
consumption by project activities. This method effectively limited the depth of the enumeration tree, achieving polynomial complex-

ity through a binary search mechanism. The addressed problem in the present paper, MOSWIPT, extends the multi-mode RACP with 
recruitment and release dates for resources (MRACP-RR) [21] and PSP under partially renewable resources by considering the space 
capacity of the construction site and introducing the decision variables on parallelized activities and OSWs.

The main contribution of the present work is to extend the well-known MRIPT (or MRACP), PSMOP, and PSP with partially (non) 
renewable resources by taking the lifetime and the spatial constraints of the OSW into account while satisfying the space capacity 
of the construction site. Hence the contributions of the present work can be listed as follows: (I) A new problem in the context of 
project scheduling is presented: multi-mode OSW investment problem with tardiness, or MOSWIPT, finding the optimal lifetime and 
occupied level of OSWs, activities start time and execution mode of each activity; (II) Two new linear mathematical models are 
proposed for MOSWIPT; one with time-indexed decision variables and the other one with variables for parallelized activities and 
OSWs, (III) A GA-based metaheuristic is proposed for MOSWIPT, which is enhanced by problem-specific improvement rules and 
efficient crossover/mutation operators and compared with SA and PSO algorithms over the new instances generated for MOSWIPT 
according to the dataset at PSPLIB (http://www .om -db .wi .tum .de /psplib/). For ease of understanding the various problems in the 
literature, the list of abbreviations is provided in Table 1. Moreover, the research methodology steps in this work are presented 
in Fig. 3. In the methodology of this paper, the first step involved conducting a literature review to gain a deep understanding of 
the problem domain and identify existing research gaps. Subsequently, two linear mathematical models were developed to model 
the problem, providing a theoretical foundation for the proposed solutions. A GA-based metaheuristic was proposed to enhance the 
effectiveness and efficiency of these models. To empirically evaluate the proposed models and the metaheuristic, various problem 
instances were generated, and experiments were conducted to measure their performance. Furthermore, sensitivity analysis was 
carried out to assess the models’ performance and identify critical parameters influencing their outcomes.

3. Problem statement and formulation

MOSWIPT contains activities of the Finish-to-Start (FS) type, where some activities occupy a certain space of the OSWs to be 
started. The total sum of these occupied spaces must not be greater than the maximum space capacity of related OSWs; the total 
sum of the occupied spaces by the OSWs must not be greater than the space capacity of the construction site. The assumptions of 
the addressed problem, MOSWIPT, are given as follows: (I) each activity occupies a certain space of an OSW; (II) Some OSWs may 
not be able to be constructed at the same time due to the space limitations of the construction site; (III) The occupied space by 
each OSWs is constant and varied from one to the other; (IV) OSW-related cost includes the installation (usage) cost per unit; (V) 
OSWs and project activities occupy a continuous space; (VI) an individual OSW cannot be split into separated parts; (VII) There 
is a space capacity for the construction site at where OSWs are located; (VIII) Each OSW has unique application, so they are not 
interchangeable; (IX) Duration time of each activity is fixed; (X) Project activities have more than one execution modes (multi-mode) 
4

and are non-preemptive; (XI) Precedence relationships are the FS type; (XII) OSWs may be installed right after the first activity, 

http://www.om-db.wi.tum.de/psplib/
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Fig. 3. Research methodology steps of the present paper.

which needs this OSW, becomes active, and they may be dismantled right after the last activity, which needs this OSW, becomes 
inactive; (XIII) Delay in project completion has a penalty.

To explain the MOSWIPT in more detail, a numerical example is given in this section. Assume a project with five activities (with a 
single execution mode) and two OSWs. The Activity-on-Node (AON) network for this project with the parameters is given in Fig. 4. In 
Fig. 4, 𝑤𝑖1 is the amount of space that activity 𝑖 occupies in the first OSW; also, 𝑤𝑖2 is the amount of space that the activity 𝑖 occupies 
in the second OSW, and 𝑑𝑖 is the duration of activity 𝑖. Now, assume that the construction site has unlimited space capacity and the 
space capacity of each OSW is three units. A feasible schedule for this project is given in Fig. 5. This feasible schedule indicates that 
the project is finished on the 11th day, and the space capacity of each OSW is not violated. On the other hand, if we assume that 
the construction site has a limited space capacity of 4 units, then the schedule given in Fig. 5 becomes an infeasible solution since, 
in the period between the fifth and ninth days, the sum of the amount of space occupied by both OSWs is greater than four units. 
The feasible schedule for the case of assuming the space capacity for the construction site is given in Fig. 6. In the new schedule, the 
project is finished on the 15th day (4 days more than the previous schedule) while satisfying the space capacity of each OSW and 
construction site. This example clearly shows that by assuming a limited space capacity for the construction site, project scheduling 
is affected dramatically; for example, the makespan of the project in 11 units (days) increases to 15, as shown in Figs. 5 and 6, 
respectively.

MOSWIPT can be represented by a directed graph (AON network) 𝐺 = (𝑉 , 𝐸), in which there are 𝑁 + 2 activities (nodes), and 
arcs are the FS precedence relationship between activities. The initial and terminal activities are dummies, so there are 𝑁 main 
activities. Also, each activity 𝑗 ∈ 𝐽 = 𝑉 with the execution mode of 𝑖 ∈ 𝑚𝑗 (𝑚𝑗 is the set of possible execution modes for activity 
𝑗 ∈ 𝐽 ), has a fixed duration 𝑑𝑗𝑖. Furthermore, each activity 𝑗 ∈ 𝐽 with the execution mode of 𝑖 ∈ 𝑚𝑗 requires a fixed space of each 
OSW 𝑘 ∈𝐾 equals 𝑟𝑗𝑖𝑘 (𝐾 is the set of available OSWs). In addition, the precedent activities of activity 𝑗 ∈ 𝐽 are given by the set 𝑃𝑗 . 
Also, the construction site has a fixed space capacity of 𝑄, which cannot be violated. Moreover, the usage cost of the OSW per unit 
and the tardiness penalty are presented by 𝐶𝑘 and 𝐶𝑑 , respectively. Also, the time units are defined by the set of 𝑇 = {0, 1, ..., 𝐻}
(𝐻 is the planning horizon), and the deadline of the project is 𝑇𝑚𝑎𝑥. According to the notations introduced by [9], MOSWIPT is 
5

symbolized as 1, 𝑣, 𝑣𝑎|𝑐𝑝𝑚, 𝛿𝑛, 𝑚𝑢|𝑟𝑎𝑐, 𝑇𝑚𝑎𝑥.
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Fig. 4. The AON project network for the numerical example.

Fig. 5. A feasible schedule for the numerical example when the space capacity of the construction is unlimited.

Fig. 6. A feasible schedule for the numerical example when the space capacity of the construction is limited to four units.

Two (linear) mathematical programming models are proposed for MOSWIPT, MP1-MOSWIPT, and MP2-MOSWIPT. The main 
difference between the two models is the definition of their decision variables. In MP1-MOSWIPT, the optimal values for the activities’ 
start time, installing and dismantling times of each OSW, and execution mode of each activity are found by binary decision variables. 
In MP2-MOSWIPT, the optimal activities start time and installing/dismantling times of each OSW are defined as non-negative 
continuous decision variables besides finding the parallel activities and OSW.

3.1. The first proposed mathematical model for MOSWIPT

The parameters and decision variables of MP1-MOSWIPT are in Table 2. This model finds the optimal values of the activities’ 
start time, the occupied level of OSWs, the installing and dismantling times of each OSW, and the execution mode of each activity 
while satisfying the precedence relationship, OSW’s size, and capacity of construction site constraints. The first linear formulation, 
MP1-MOSWIPT, which is developed based on the proposed formulations by [17,35,25,18] and modified for the addressed problem, 
is presented as follows:

∑

6

𝑀𝑖𝑛

𝑘∈𝐾
𝐶𝑘𝑅𝑘 +𝐶𝑑𝐷 (1)
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Table 2

Parameters and decision variables of the first mathematical model, MP1-MOSWIPT.

Sets:

𝐽 Set of activities including initial and terminal (dummy) activities; 𝑗 ∈ 𝐽 = {0,1,2, ...,𝑁,𝑁 + 1}
𝑚𝑗 Set of possible execution modes for activity 𝑗 ∈ 𝐽

𝐾 Set of available OSWs (resources) 𝑘 ∈𝐾

𝑃𝑗 Set of the precedent activities of activity 𝑗 ∈ 𝐽

𝑇 set of time units; 𝑡 ∈ 𝑇 = {0,1, ...,𝐻}

Parameters:

𝑁 Number of project (non-dummy) activities

𝑑𝑗𝑖 Duration of activity 𝑗 executed my mode 𝑖 ∈𝑚𝑗

𝑟𝑗𝑖𝑘 The amount of space that activity 𝑗 ∈ 𝐽 with the execution mode of 𝑖 ∈𝑚𝑗 needs to occupy in OSW 𝑘 ∈𝐾

𝑄 Space capacity of the construction site

𝐶𝑘 Usage cost of the OSW 𝑘 ∈𝐾 per unit

𝐶𝑑 Penalty cost for each unit of tardiness

𝐻 Planning horizon

𝑇𝑚𝑎𝑥 Project deadline

Decision variables:

𝑥𝑖𝑡 A binary variable equals 1 if activity 𝑖 ∈ 𝐽 starts at time 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑧𝑖𝑗 A binary variable equals 1 if activity 𝑖 ∈ 𝐽 is executed by the mode 𝑗 ∈𝑚𝑖; 0 otherwise.

𝑦𝑘𝑡 A binary variable equals 1 if the OSW 𝑘 ∈𝐾 is active at time 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑦′
𝑖𝑗𝑘𝑡

A binary variable equals 1 if the activity 𝑖 ∈ 𝐽 with mode 𝑗 ∈𝑚𝑖 occupies the OSW 𝑘 ∈𝐾 at time 𝑡 ∈ 𝑇 ; 0 otherwise.

𝑅𝑘 Availability level of the OSW 𝑘 ∈𝐾 during the project.

𝑅′
𝑘𝑡

Availability level of the OSW 𝑘 ∈𝐾 at time 𝑡 ∈ 𝑇 .

subject to,

∑
𝑡∈𝑇

𝑡𝑥𝑛+1,𝑡 − 𝑇𝑚𝑎𝑥 ⩽𝐷 (2)

∑
𝑢∈𝑚𝑗

𝑧𝑗𝑢𝑑𝑗𝑢 +
∑
𝑡∈𝑇

𝑡𝑥𝑗𝑡 ⩽
∑
𝑡∈𝑇

𝑡𝑥𝑖𝑡 ∀𝑖 ∈ 𝐽,∀𝑗 ∈ 𝑃𝑖 (3)

∑
𝑖∈𝐽

∑
𝑗∈𝑚𝑖

𝑟𝑖𝑗𝑘𝑦
′
𝑖𝑗𝑘𝑡

⩽𝑅𝑘 ∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (4)

𝑦′
𝑖𝑗𝑘𝑡

+ 1 ⩽ 𝑧𝑖𝑗 + 𝑦𝑘𝑡 ∀𝑖 ∈ 𝐽,∀𝑗 ∈𝑚𝑖,∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (5)

𝑦′
𝑖𝑗𝑘𝑡

⩽ 𝛽(𝑧𝑖𝑗 + 𝑦𝑘𝑡) ∀𝑖 ∈ 𝐽,∀𝑗 ∈𝑚𝑖,∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (6)
∑
𝑘∈𝐾

𝑅′
𝑘𝑡
⩽𝑄 ∀𝑡 ∈ 𝑇 (7)

0 ⩽𝑅′
𝑘𝑡
⩽𝑅𝑘 ∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (8)

𝑅′
𝑘𝑡
⩽𝑀𝑦𝑘𝑡 ∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (9)

𝑅′
𝑘𝑡
⩽𝑅𝑘 −𝑀(1 − 𝑦𝑘𝑡) ∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (10)

𝑡𝑥𝑖𝑡 +
∑
𝑗∈𝑚𝑖

𝑑𝑖𝑗𝑧𝑖𝑗 − 1 ⩽
∑
𝑡′∈𝑇

𝑦𝑘𝑡′ ∀𝑗 ∈ 𝐽,∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (11)

∑
𝑗∈𝑚𝑖

𝑧𝑖𝑗 = 1 ∀𝑖 ∈ 𝐽 (12)

∑
𝑡∈𝑇

𝑥𝑖𝑡 = 1 ∀𝑖 ∈ 𝐽 (13)

𝑥00 = 1 (14)

𝑥𝑖𝑡, 𝑧𝑖𝑗 , 𝑦𝑘𝑡, 𝑦
′
𝑖𝑗𝑘𝑡

∈ {0,1}, ∀𝑖 ∈ 𝐽,∀𝑗 ∈𝑚𝑖,∀𝑘 ∈𝐾,∀𝑡 ∈ 𝑇 (15)

In MP1-MOSWIPT, the objective function (1) minimizes the usage costs of OSWs plus the penalty for tardiness, in which 𝐷 is 
a non-negative continuous decision variable; the objective function (1) and constraints (2) linearize the non-linear form of 𝐷 =
𝑀𝑎𝑥{0, 

∑
𝑡∈𝑇 𝑡𝑥𝑛+1,𝑡 − 𝑇𝑚𝑎𝑥}. Constraints (3) ensure the precedence relationships between the activities. Constraints (4)-(6) ensure 

that at each time unit, the occupied space of the OSW must not be greater than the availability level of that OSW. Also, these 
constraints (4)-(6) linearize the non-linear constraints of 

∑
𝑖∈𝐽

∑
𝑗∈𝑚𝑖

𝑧𝑖𝑗𝑟𝑖𝑗𝑘𝑦𝑘𝑡 ⩽ 𝑅𝑘, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 , in which 𝛽 is an arbitrary 
constant parameter such that 0 < 𝛽 < 1. Constraints (7)-(10) satisfy the space capacity of the construction site, and they linearize the 
non-linear constraints of 

∑
𝑘∈𝐾 𝑅𝑘𝑦𝑘𝑡 ⩽𝑄, ∀𝑡 ∈ 𝑇 . Note that in constraints (9)-(10), 𝑀 is a big constant parameter and chosen such 

that 0 ⩽𝑅𝑘 ⩽𝑀, ∀𝑘 ∈𝐾 . Constraints (11) enforce that the OSW must be installed when an activity needs it and remain in use until 
7

the activity is not finished. Constraints (12) ensure that only one execution mode must be chosen for each activity. By constraints 
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Table 3

Decision variables of the second mathematical model, MP2-MOSWIPT.

Decision variables:

𝐴𝑖𝑢 A binary variable equals 1 if activity 𝑖 ∈ 𝐽 is parallelized with activity 𝑢 ∈ 𝐽 ; 0 otherwise. (𝐴𝑖𝑖 = 1 means activity 𝑖 is 
being executed during the project)

𝐴′
𝑖𝑗𝑢

A binary variable equals 1 if activity 𝑖 ∈ 𝐽 with mode 𝑗 ∈𝑚𝑖 is parallelized with the activity 𝑢 ∈ 𝐽 ; 0 otherwise.

𝑊𝑘𝑘′ A binary variable equals 1 if the OSW 𝑘 ∈𝐾 is parallelized with the OSW 𝑘′ ∈𝐾 ; 0 otherwise. (𝑊𝑘𝑘 = 1 means the OSW 
𝑘 is being activated during the project)

𝑊 ′
𝑘𝑘′

Availability level of the OSW 𝑘 ∈𝐾 while it is parallelized with the OSW 𝑘′ ∈𝐾

𝑆𝑖 Start time of activity 𝑖 ∈ 𝐽

𝑆𝑊𝑘 Installing time of the OSW 𝑘 ∈𝐾

𝐹𝑊𝑘 Dismantling time of the OSW 𝑘 ∈𝐾

𝜙,𝜙′,𝜔,𝜔′ Continuous decision variables defined for simplification of the model.

(13), each activity starts one time. Constraint (14) forces the initial activity to start at time 0. The domain of the decision variables 
is given by constraints (15).

3.2. The second proposed mathematical model for MOSWIPT

In the second proposed mathematical model, MP2-MOSWIPT, a novel model in the literature, the possibility of parallelization of 
activities and OSWs is considered rather than the lifetime of OSWs and activities. Decision variables of MP2-MOSWIPT are given in 
Table 3. MP2-MOSWIPT finds the optimal scheduling for activities and OSWs and considers the parallelized activities and OSWs as 
binary variables. In other words, MP2-MOSWIPT focuses on parallel activities and OSWs to minimize the usage cost of the OSW and 
the tardiness penalty. Also, MP2-MOSWIPT needs to determine the required OSW for each activity; thus, the set 𝐻𝑘 is defined as the 
activities that require the OSW 𝑘 ∈𝐾 . The second proposed mathematical model, MP2-MOSWIPT, is presented as follows:

The objective function (1) subject to (2), (12), and:

𝑆𝑖 ⩽ 𝑆𝑗 +
∑
𝑢∈𝑚𝑗

𝑧𝑗𝑢𝑑𝑗𝑢 ∀𝑖 ∈ 𝐽,∀𝑗 ∈ 𝑃𝑖 (16)

∑
𝑖∈𝐽

∑
𝑗∈𝑚𝑖

𝑟𝑖𝑗𝑘𝐴
′
𝑖𝑗𝑢

⩽𝑅𝑘 ∀𝑘 ∈𝐾,∀𝑢 ∈ 𝐽 (17)

𝐴′
𝑖𝑗𝑢

+ 1 ⩽ 𝑧𝑖𝑗 +𝐴𝑖𝑢 ∀𝑖, 𝑢 ∈ 𝐽,∀𝑗 ∈𝑚𝑖 (18)

𝐴′
𝑖𝑗𝑢

⩽ 𝜆(𝑧𝑖𝑗 +𝐴𝑖𝑢) ∀𝑖, 𝑢 ∈ 𝐽,∀𝑗 ∈𝑚𝑖 (19)∑
𝑘∈𝐾

𝑊 ′
𝑘𝑘′ ⩽𝑄 ∀𝑘′ ∈𝐾 (20)

0 ⩽𝑊 ′
𝑘𝑘′ ⩽𝑅𝑘 ∀𝑘′ ∈𝐾 (21)

𝑊 ′
𝑘𝑘′ ⩽𝑀𝑊𝑘𝑘′ ∀𝑘,𝑘′ ∈𝐾 (22)

𝑊 ′
𝑘𝑘′ ⩽𝑅𝑘 −𝑀(1 −𝑊𝑘𝑘′ ) ∀𝑘,𝑘′ ∈𝐾 (23)

0 ⩽ 𝑆𝑊𝑘 ⩽ 𝑆𝑖 ∀𝑖 ∈𝐻𝑘,∀𝑘 ∈𝐾 (24)

𝐹𝑊𝑘 ⩽ 𝑆𝑖 +
∑
𝑗∈𝑚𝑖

𝑧𝑖𝑗𝑑𝑖𝑗 ∀𝑖 ∈𝐻𝑘,∀𝑘 ∈𝐾 (25)

𝐴𝑖𝑢 ⩽ 𝜙 ∀𝑖, 𝑢 ∈ 𝐽 (26)

𝜙 ⩽ 𝑆𝑢 −𝑆𝑖 + 1 ∀𝑖, 𝑢 ∈ 𝐽 (27)

𝐴𝑖𝑢 ⩽ 𝜔 ∀𝑖, 𝑢 ∈ 𝐽 (28)

𝜔 ⩽ 𝑆𝑖 +
∑
𝑗∈𝑚𝑖

𝑧𝑖𝑗𝑑𝑖𝑗 − 𝑆𝑢 + 1 ∀𝑖, 𝑢 ∈ 𝐽 (29)

𝑊𝑘𝑘′ ⩽ 𝜙′ ∀𝑘,𝑘′ ∈𝐾 (30)

𝜙′ ⩽ 𝐹𝑊𝑘′ −𝑆𝑊𝑘 + 1 ∀𝑘,𝑘′ ∈𝐾 (31)

𝑊𝑘𝑘′ ⩽ 𝜔′ ∀𝑘,𝑘′ ∈𝐾 (32)

𝜔′ ⩽ 𝐹𝑊𝑘 − 𝐹𝑊𝑘′ + 1 ∀𝑘,𝑘′ ∈𝐾 (33)

𝐴𝑖𝑢,𝐴
′
𝑖𝑗𝑢
,𝑊𝑘𝑘′ , 𝑧𝑖𝑗 ∈ {0,1}, 𝜙,𝜙′,𝜔,𝜔′ ⩽ 0 ∀𝑖, 𝑢 ∈ 𝐽,∀𝑘,𝑘′ ∈𝐾,∀𝑗 ∈𝑚𝑖 (34)

In MP2-MOSWIPT, constraints (16) ensure the precedence relationships between the activities. Constraints (17)-(19) ensure that 
8

the occupied space of an OSW must not be greater than the availability level of that OSW. Also, the constraints (17)-(19) linearize 
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Fig. 7. Alg. 1: Pseudo-code of the proposed GA for MOSWIPT.

the non-linear constraints of 
∑

𝑖∈𝐽
∑

𝑗∈𝑚𝑖
𝑧𝑖𝑗𝑟𝑖𝑗𝑘𝐴𝑖𝑢 ⩽ 𝑅𝑘, ∀𝑘 ∈ 𝐾, ∀𝑢 ∈ 𝐽 . Note that in constraints (19), 𝜆 is an arbitrary constant 

parameter, where 0 < 𝜆 < 1. Constraints (20)-(23) satisfy the space capacity of the construction site, and they also linearize the 
non-linear constraints of 

∑
𝑘∈𝐾 𝑅𝑘𝑊𝑘𝑘′ ⩽𝑄, ∀𝑘′ ∈𝐾 . Note that in constraints (22) and (23), 𝑀 is a big constant parameter chosen 

such that 0 ⩽𝑅𝑘 ⩽𝑀, ∀𝑘 ∈𝐾 . Constraints (24) ensure that its required OSW must be installed before starting an activity. Constraints 
(25) ensure that the OSW cannot be dismantled unless the activities needed for it are finished. Constraints (26)-(29) ensure that a 
pair of activities can be parallelized if the start time of one of them is between the start and finish time of the other one. Constraints 
(30)-(33) ensure that a pair of OSWs can be parallelized if the finish time of one is between the start and finish time of the other. 
The domain of the decision variables is given by constraints (34).

The number of constraints of MP1-MOSWIPT is 𝑂(�̄�𝑇 (𝑛 + 𝑚′)), where n, T, �̄� and 𝑚′ are the number of activities, the number 
of periods, the number of precedent activities of all activities, the number of available OSWs, and the number of execution modes 
of all activities, respectively. Also, the number of decision variables of MP1-MOSWIPT is 𝑂(𝑇 (�̄�𝑚′ + 𝑛)). Also, for MP2-MOSWIPT, 
the number of constraints is 𝑂(𝑛(�̄� + 𝑚′ + 𝑛) + �̄�2), and the number of decision variables of MP2-MOSWIPT is 𝑂(𝑛(𝑚′ + 𝑛) + �̄�2). 
Therefore, the proposed linear models are polynomial in the number of constraints and decision variables.

4. An enhanced Genetic Algorithm for MOSWIPT

If the project activities become single-mode, and the capacity space for installing the OSWs turns to infinity, then MOSWIPT 
reduces to the RIPT. It has been proven that RIPT is NP-hard [12], so the MOSWIPT is also NP-hard. Due to the proven efficiency 
of GA-based solvers for PSPs, this paper proposes an enhanced GA-based solution technique to solve the MOSWIPT in an acceptable 
time when large instances cannot be solved optimally.

GA was first proposed by John Holland and explained completely in [36]. GA goes through a stochastic search to improve the 
solutions to the problem and seeks to improve the generated solutions while keeping the best-found solution consisting of chromo-

somes (genotype), a population, a fitness function, and a local search. Chromosomes represent the problem’s solution throughout the 
solution space and encode the solutions to be understandable by GA. The population is a set of solutions generated at each iteration 
of GA. The fitness function indicates a better solution in terms of the objective function. Also, local search is an important element 
of GA defining the operators to generate the neighbor solutions; for example, crossover and mutation operators are well-known 
tools to search the neighborhood of a solution. Generally, the crossover operator explores the solution space by finding far solutions 
(diversification), and the mutation operator exploits the solution space by finding the close (local) solutions (intensification). Making 
a trade-off between diversification and intensification is critical to increasing the efficiency of the proposed GA, which becomes 
possible by tuning the GA parameters. The parameters of GA include the size of the population (𝑁), the probability of crossover (𝑝𝑐), 
the probability of mutation (𝑝𝑚), the number of generations (𝑇 ), the mutation rate (𝑟𝑚), and the crossover point (𝐶𝑝) of one-point 
crossover. The pseudo-code of the proposed GA for MOSWIPT, the selection, and crossover/mutation steps are presented in Figs. 7-9, 
respectively. The main contribution of the proposed GA is in employing problem-specific improvement operators, which makes the 
GA capable of finding high-quality solutions while avoiding low-quality solutions.

4.1. Solution representation

To encode a solution of MOSWIPT by the chromosome, this paper proposes the following representation, where 𝑛, and �̄� are the 
number of activities and OSWs, respectively:

Chromosome: {𝑆1, ..., 𝑆𝑛, 𝑆𝑊1, ..., 𝑆𝑊�̄� , 𝐹𝑊1, ..., 𝐹𝑊�̄� , 𝑀1, ..., 𝑀𝑛, 𝑅1, ..., 𝑅�̄�}

So, the chromosome in the proposed GA is a (2𝑛 +3�̄�)-dimensional vector, in which { 𝑆1, ..., 𝑆𝑛}, { 𝑆𝑊1, ..., 𝑆𝑊�̄�}, { 𝐹𝑊1, ..., 𝐹𝑊�̄�}, 
9

{𝑀1, ..., 𝑀𝑛}, and {𝑅1, ..., 𝑅�̄�} are the start time of the activities, the install time of the OSW, the dismantle time of the OSW, 
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Fig. 8. Alg. 2: The selection step in the proposed GA.

Fig. 9. Alg. 3: The crossover/mutation step in the proposed GA.

Fig. 10. Alg. 4: The algorithm of finding the feasible schedule for the project activities.

the execution mode of the activities, and the availability level of the OSW, respectively. To generate the initial population, each 
chromosome must be a feasible solution that satisfies the constraints of the precedence relationships, the space capacity, and the 
maximum available level of the OSWs. At first, each 𝑅𝑘 (𝑘 ∈ 𝐾) is found by assigning an integer random number greater than 
𝑚𝑎𝑥𝑖∈𝐽 ,𝑗∈𝑚𝑖

{𝑟𝑖𝑗𝑘}. Next, each 𝑀𝑖 (𝑖 ∈ 𝐽 ) is found by assigning an integer random number from the set 𝑚𝑖, the activity’s execution 
mode 𝑖. Then, the start time of the activities is found by Alg. 4, as given in Fig. 10. Finally, each 𝑆𝑊𝑘 and 𝐹𝑊𝑘 are found according 
to the activities which need the OSW 𝑘 ∈𝐾 to be started, or mathematically by Eq. (35):

𝑆𝑊𝑘 =𝑚𝑖𝑛𝑖∶∃𝑗∈𝑚𝑖,𝑟𝑖𝑗𝑘≠0{𝑆𝑖} and 𝐹𝑊𝑘 =𝑚𝑎𝑥𝑖∶∃𝑗∈𝑚𝑖,𝑟𝑖𝑗𝑘≠0{𝑆𝑖 + 𝑑𝑖𝑗} (35)

4.2. Calculation of the fitness function

The fitness function or objective function value of a chromosome (solution) consists of two parts: (I) The usage cost of the OSWs 
and (II) The tardiness penalty cost. The first part can be calculated simply by multiplying each 𝑅𝑘 and 𝐶𝑘 for all 𝑘 ∈ 𝐾 . For the 
second part, the completion time of the project or 𝑆𝑛+1 is found by 𝑆𝑛+1 = 𝑆𝑛 + 𝑑𝑛𝑗 where 𝑗 =𝑀𝑛; as a result, the objective (fitness) 
10

function is found by 
∑

𝑘∈𝐾 𝐶𝑘𝑅𝑘 +𝐶𝑑 ×𝑚𝑎𝑥{0, 𝑆𝑛+1 − 𝑇𝑚𝑎𝑥}.
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4.3. Crossover operator

The input of the crossover operator is two chromosomes, known as parent solutions, and its output is two chromosomes, known 
as offspring solutions. Assume that there are two parent solutions as follows:

1st parent solution: {𝑆1
1 , ..., 𝑆

1
𝑛
, 𝑆𝑊 1

1 , ..., 𝑆𝑊
1
�̄�
, 𝐹𝑊 1

1 , ..., 𝐹𝑊 1
�̄�
, 𝑀1

1 , ..., 𝑀
1
𝑛
, 𝑅1

1, ..., 𝑅
1
�̄�
}

2nd parent solution: {𝑆2
1 , ..., 𝑆

2
𝑛
, 𝑆𝑊 2

1 , ..., 𝑆𝑊
2
�̄�
, 𝐹𝑊 2

1 , ..., 𝐹𝑊 2
�̄�
, 𝑀2

1 , ..., 𝑀
2
𝑛
, 𝑅2

1, ..., 𝑅
2
�̄�
}

Now a point is chosen according to the parameter of 𝐶𝑝, then the crossover operates on that point and generates the offspring 
solutions as follows (For example, assume the crossover point is between the elements (genes) 𝑛 + �̄� and 𝑛 + �̄� + 1 with the sign of 
△):

1st parent solution: {𝑆1
1 , ..., 𝑆

1
𝑛
, 𝑆𝑊 1

1 , ..., 𝑆𝑊
1
�̄�
△ 𝐹𝑊 1

1 , ..., 𝐹𝑊 1
�̄�
, 𝑀1

1 , ..., 𝑀
1
𝑛
, 𝑅1

1, ..., 𝑅
1
�̄�
}

2nd parent solution: {𝑆2
1 , ..., 𝑆

2
𝑛
, 𝑆𝑊 2

1 , ..., 𝑆𝑊
2
�̄�
△ 𝐹𝑊 2

1 , ..., 𝐹𝑊 2
�̄�
, 𝑀2

1 , ..., 𝑀
2
𝑛
, 𝑅2

1, ..., 𝑅
2
�̄�
}

Then, the offspring solutions are generated as follows:

1st offspring: {𝑆1
1 , ..., 𝑆

1
𝑛
, 𝑆𝑊 1

1 , ..., 𝑆𝑊
1
�̄�
△ 𝐹𝑊 2

1 , ..., 𝐹𝑊 2
�̄�
, 𝑀2

1 , ..., 𝑀
2
𝑛
, 𝑅2

1, ..., 𝑅
2
�̄�
}

2nd offspring: {𝑆2
1 , ..., 𝑆

2
𝑛
, 𝑆𝑊 2

1 , ..., 𝑆𝑊
2
�̄�
△ 𝐹𝑊 1

1 , ..., 𝐹𝑊 1
�̄�
, 𝑀1

1 , ..., 𝑀
1
𝑛
, 𝑅1

1, ..., 𝑅
1
�̄�
}

Note that it is possible that the offspring solutions would be infeasible after operating the crossover. So, the crossover operator is 
designed to repair the infeasible solutions and convert them into feasible ones. If the crossover changes the start time of the activities, 
then Alg. 4 repairs the schedule. If the crossover changes the schedule of the OSWs (both installing and dismantling times), then the 
infeasible schedule for the OSW is repaired by Eq. (35). Suppose the crossover changes the execution mode of each activity and the 
availability level of the OSWs. In that case, the scheduling of the activities and the OSWs are updated and repaired according to the 
new execution modes by Alg. 4.

4.4. Mutation operator

The input of the mutation operator is one chromosome, and its output is a mutated chromosome. The parameter of 𝑟𝑚 determines 
the number of genes (bits) mutated in each chromosome. For example, assume that the following chromosome is a solution to be 
mutated:

Before mutation: {𝑆1
1 , ..., 𝑆

1
𝑛
, 𝑆𝑊 1

1 , ..., 𝑆𝑊
1
�̄�
, 𝐹𝑊 1

1 , ..., 𝐹𝑊 1
�̄�
, 𝑀1

1 , ..., 𝑀
1
𝑛
, 𝑅1

1, ..., 𝑅
1
�̄�
}

Now assume that the elements 𝑛 and 𝑛 + �̄� are mutated, then the output will be as follows (new genes are 𝑆′ 1
𝑛

and 𝑆𝑊 ′ 1
�̄�

):

After mutation: {𝑆1
1 , ..., 𝐒

′𝟏
𝐧 , 𝑆𝑊 1

1 , ..., 𝐒𝐖
′𝟏
�̄�
, 𝐹𝑊 1

1 , ..., 𝐹𝑊 1
�̄�
, 𝑀1

1 , ..., 𝑀
1
𝑛
, 𝑅1

1, ..., 𝑅
1
�̄�
}

Like the crossover operator, it is possible that after mutation, the output solution would be infeasible. So, the mutation operator 
is designed to avoid infeasible solutions. Suppose the mutation changes the scheduling of an activity and the availability level of the 
OSWs. In that case, the start time of the activity is changed to a value satisfying the precedence relationship and the space capacity 
constraints according to Alg. 4. If the mutation changes the scheduling of the OSW, then the installing or dismantling time of the 
OSW is changed to a value satisfying the feasible schedule of the activities according to Eq. (35). Finally, suppose the mutation 
changes the execution modes. In that case, the execution modes are chosen among the available execution modes for that activity, 
satisfying the feasible schedule of the activities and the space capacity according to Alg. 4. After the crossover/mutation step, the 
resultant population goes through the improvement phase for possible improvements. The final population is saved and updated in 
the next iterations until returned as the best-found optimal solution in the last step of GA.

4.5. Problems-specific improvement operators

In this section, three problem-specific improvement operators are designed to enhance performance within the proposed GA. These 
three MOSWIPT-specific improvement operators are defined based on the well-known improvement rules in the literature (as given 
in Table 4). In other words, the improvement rules, whose efficiency is proven in the literature, are modified and adapted to the 
11

newly addressed problem, MOSWIPT. The first improvement operator, 𝐼𝑜1, changes the execution mode of each activity to decrease 
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Table 4

Problem-specific improvement operators employed within the proposed GA.

Improvement operator Symbol Definition

Execution mode switch 𝐼𝑜1 The execution mode of the activities is switched while not violating the space 
capacity of the construction site and improving the objective function.

Activities rescheduling 𝐼𝑜2 The start time of the activities are rescheduled according to their float time while 
improving the objective function.

Regularization of the availability level of OSW 𝐼𝑜3 The availability level of each OSW is changed (regularized) while not becoming 
lower than the required space of the OSW by the activities.

Fig. 11. A construction site, occupied with five workshops and the AON network (a numerical example), when activity one is executed with mode 1.

the makespan by parallelizing the activities or to decrease the occupied space of an OSW to make it possible for other activities 
to be activated while not violating the space capacity of the construction site. For example, consider a construction site where 
five OSWs are installed, and OSWs 1, 4, and 5 are occupied by activity 1; also, activities 2 and 3 occupy workshops {1, 2, 3} and 
{3, 4}, respectively (Fig. 11). The precedence relationships for this example are given on the left-hand side of Fig. 11. Now, the first 
improvement operator (𝐼𝑜1) switches the execution mode of activity one from 1 to 2. Execution mode 2 requires activity 1 to occupy 
more space in workshop four while there is no need to occupy any space in workshop 5 (see Fig. 12); therefore, activity four is made 
parallel with activities 1, 2, and 3, according to the precedence relationships given in Fig. 11, since activity four only needs workshop 
six and total space capacity of the construction site is not violated as well. By parallelizing the four activities in this example, the 
makespan of the project is decreased while satisfying the constraints.

The second improvement operator, 𝐼𝑜2, reschedules the activities according to their float times to decrease the makespan while 
not violating the project constraints, including precedence relationships and construction site space capacity. Let’s consider the 
example given in Fig. 11, where the duration of activities 1, 2, 3, and 4 are 3, 4, 3, and 6, respectively. Considering the limited space 
capacity of the construction site, activity four cannot start unless one of activities 1, 2, or 3 finishes. The schedule for this project is 
given in Fig. 13. Since activity 1 is not a successor of activities 2 or 3, the second improvement operator (𝐼𝑜2) reschedules its start 
time from 0 to 3 units of time while satisfying the space capacity constraint (Fig. 14). The new schedule decreases activities’ finish 
time from 9 to 6 units of time, decreasing the objective function value.

Finally, the third improvement operator (𝐼𝑜3) regularizes the size (availability level) of each OSW to include more workshops on 
the construction site if possible. For example, consider the construction site given in Fig. 11. The third improvement operator (𝐼𝑜3) 
reduces the size of each OSW while keeping the required space for activities to occupy each OSW. After regularizing the sizes of 
each workshop, available space for installing the OSW 6 is created to be occupied by activity 4 (Fig. 15). Thus, more workshops are 
installed, more activities are parallelized, and the objective function is decreased.

5. Computational results

This section presents several comprehensive experiments, including the comparison of mathematical models, sensitivity analysis of 
12

GA parameters, performance evaluation of the different versions of GA, and comparison of the proposed GA with other metaheuristics. 
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Fig. 12. The construction site, occupied with five workshops and the AON network, when the execution mode of activity one is switched to mode two by 𝐼𝑜1 .

Fig. 13. Activities schedule of the numerical example when activity 1 starts at time zero.

All proposed linear mathematical models were solved by the Python-Gurobi interface. Also, GA was coded in C++ programming 
language using a 1.60 GHz Intel Core i5 processor with 16 GB RAM.

5.1. Instance generation for MOSWIPT

In the MP1-MOSWIPT and MP2-MOSWIPT, several new parameters are presented in the literature for the first time. So, in this 
section, these new parameters are determined to generate the various instances of MOSWIPT. The parameters of MOSWIPT are close 
to the well-known MMRCPSP [37]. To generate the instances for MOSWIPT, three sets of parameters, including the usage cost of 
13

each OSW (𝐶𝑘), penalty for the tardiness (𝐶𝑑 ), and the amount of required space of the OSW 𝑘 ∈ 𝐾 by the activity 𝑖 with the 
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Fig. 14. Activities schedule of the numerical example when activity one is rescheduled to start at time three by 𝐼𝑜2 .

Fig. 15. The construction site, occupied with six workshops, when the size of each OSW is regularized by 𝐼𝑜3 .

execution mode 𝑗 ∈ 𝑚𝑖 (𝑟𝑖𝑗𝑘) were added to the MMRCPSP library.2 The instances of c15, c21, j10, j12, j14, j16, j18, j20, j30, m2, 
and r3 are chosen from this library. First, the behavior of the problem concerning the parameters was investigated, so 16 instances 
of j10 were chosen. Next, the parameters 𝑟𝑖𝑗𝑘 were assigned a number from 0 to 13 ascendingly, while the remaining parameters 
were unchanged. Like 𝑟𝑖𝑗𝑘, parameters 𝐶𝑘 and 𝐶𝑑 were assigned a number among 10, 20, 30, 50, and 100 ascendingly, while the 
remaining parameters were unchanged. The results of these instances of j10 showed that higher values for 𝑟𝑖𝑗𝑘 led to a situation 
in which the OSW and the activities were not able to be parallelized with other OSWs or activities, so the tardiness of the project 
increased. Moreover, the results showed that higher 𝑟𝑖𝑗𝑘 increased the 𝑅𝑘 if the 𝐶𝑑 was greater than 𝐶𝑘, in which the optimal solution 
tended to have a non-parallelized OSW and activities. This means that the 𝐶𝑑 had more effect on the objective function than 𝐶𝑘

when 𝑟𝑖𝑗𝑘 had higher values. Accordingly, three parameters of 𝑟𝑖𝑗𝑘, 𝐶𝑘, and 𝐶𝑑 of MOSWIPT were generated according to the values 
of 𝑟𝑎𝑛𝑑(0, 13), 𝑟𝑎𝑛𝑑(10, 30) and 20, respectively (𝑟𝑎𝑛𝑑(𝑎, 𝑏) was a function generating a random number between a and b).
14

2 http://www .om -db .wi .tum .de /psplib /getdata _mm .html.

http://www.om-db.wi.tum.de/psplib/getdata_mm.html
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Table 5

The results by the exact solver, Gurobi, over the various-sized instances of MOSWIPT.

Dataset Models Minimum 𝑇 ′ Maximum 𝑇 ′ Average of 𝑇 ′ Number of 
executed instances

Number of instances 
solved optimally

c15 MP1-MOSWIPT 17 2750 1105 34 34

MP2-MOSWIPT 15 2530 1040 34 34

c21 MP1-MOSWIPT 3.4 3600 680 84 77

MP2-MOSWIPT 1.3 3600 620 84 78

j10 MP1-MOSWIPT 0.5 480 21 536 536

MP2-MOSWIPT 0.4 470 20 536 536

j12 MP1-MOSWIPT 0.9 3600 35 101 100

MP2-MOSWIPT 0.9 3600 39 101 101

j14 MP1-MOSWIPT 2.5 2505 610 117 117

MP2-MOSWIPT 1.3 2110 545 117 117

j16 MP1-MOSWIPT 4.6 3600 330 45 41

MP2-MOSWIPT 5.6 3600 335 45 41

j18 MP1-MOSWIPT 5 3600 2120 93 68

MP2-MOSWIPT 8 3600 2450 93 70

j20 MP1-MOSWIPT 25 3600 470 64 37

MP2-MOSWIPT 33 3600 662 64 39

j30 MP1-MOSWIPT 98 3600 2080 10 2

MP2-MOSWIPT 132 3600 2509 10 3

m2 MP1-MOSWIPT 2.4 3600 660 89 75

MP2-MOSWIPT 2.2 3600 630 89 75

r3 MP1-MOSWIPT 3 3600 550 113 95

MP2-MOSWIPT 9.8 3600 755 113 96

5.2. Comparison of MP1-MOSWIPT and MP2-MOSWIPT

At first, the various instances of MOSWIPT were solved by an exact commercial solver, Gurobi, coded by Python language 
programming. The computational results of MP1-MOSWIPT and MP2-MOSWIPT are given in Table 5; some instances of each dataset 
were not solved optimally within the maximum execution time of 3600 seconds (𝑇 ′ is the execution time in seconds). The difference 
between the number of executed instances and the number of solved instances is that when the execution time of an instance got 
higher than 3600 seconds, that instance was considered an unsolved problem. Table 5 shows that MP2-MOSWIPT is faster than 
MP1-MOSWIPT in most instances, even in large-size instances (j30). Also, MP2-MOSWIPT could solve more instances to optimality 
in comparison with MP1-MOSWIPT; the execution time of MP2-MOSWIPT was raised in some datasets (j12, j18, j20, j30, r3).

5.3. Sensitivity analysis of GA parameters

According to the design of experiments (DOE) by response surface methodology (RSM), the optimal parameters of the proposed 
GA were obtained on the instances of dataset c15 (each instance of dataset c15 was executed five times). The range and optimal 
values for the parameters of GA were presented in Fig. 16, which were returned by the Design-Expert. 11 software. The range of 𝑁
was between 30 and 70, while DOE found the optimal value of 46.2915 for 𝑁 (since the population size, 𝑁 , is an integer value, 
we chose 𝑁 = 50). Also, by Fig. 16, the initial range of 𝑃𝑐 , 𝑃𝑚, 𝑟𝑚, 𝐶𝑝, and 𝑇 were [0.1,0.5], [0.1,0.3], [0.2,0.4], [0.1,0.3], and 
[200,600], respectively; in addition, the optimal values of 𝑃𝑐 , 𝑃𝑚, 𝑟𝑚, 𝐶𝑝, and 𝑇 were obtained as 0.3, 0.2, 0.3, 0.2, and 600, 
respectively. In addition, the behavior of the objective function value (𝑂𝐹𝑉 ) for the various pairs of parameters of GA is presented 
in Fig. 17. Also, Fig. 17 shows that if 𝑁 equals 50, then by setting 𝑝𝑚 = 0.2, the 𝑂𝐹𝑉 becomes lower; or when 𝑁 = 50 and 𝑝𝑐 = 0.3, 
𝑂𝐹𝑉 is decreased.

5.4. Performance evaluation of the proposed GA

In this section, the results of the proposed GA are presented. For this experiment, the parameters of GA are considered as follows: 
𝑁 = 50, 𝑝𝑐 = 0.3, 𝑝𝑚 = 0.2, 𝑟𝑚 = 0.3, 𝐶𝑝 = 0.2, 𝑇 = 600. First, the instances of MMRCPSP at the PSPLIB, including c15, c21, j10, j12, 
j14, j16, j18, j20, j30, m2, and R3, were extracted, and then the new parameters were added to the instances of each dataset. To 
evaluate the performance of the GA in MOSWIPT instances, three improvement rules (operators) were added to GA to enhance its 
efficiency (Table 4).

Finally, the results of the comparative study of different versions of GA with SA [38] and PSO [39] over the MOSWIPT instances 
are given in Table 6. In this experiment, the execution time was limited to 60 seconds. Also, in this experiment, the parameters of GAs 
were tuned to 𝑁 = 50, 𝑝𝑐 = 0.3, 𝑝𝑚 = 0.2, 𝑟𝑚 = 0.2, 𝐶𝑝 = 0.2, and the parameters of SA were 𝑇𝑚𝑎𝑥 = 1000, 𝑇𝑚𝑖𝑛 = 0.01, 𝛼 = 0.98, 𝑁 = 20, 
(𝛼: Cooling rate, 𝑁 : The number of iteration at each temperature) and the parameters of PSO were adjusted to 𝑛𝑠 = 20, 𝑐1 = 𝑐2 =
2, 𝑀 = 100, (𝑛𝑠: Swarm size, 𝑐1, 𝑐2: two learning factors, 𝑀 : Maximum total number of iterations). Moreover, three criteria are used 
to compare the performance of the GA, SA, and PSO, namely, the number of instances solved to optimality (𝑁∗), an average of 
relative difference percentage between returned solutions and the optimal solutions (𝐴∗), or mathematically 𝐴∗ = 𝑓𝑖−𝑓𝑜

𝑓𝑜
×100, where 
15

𝑓𝑖 and 𝑓𝑜 are the objective functions returned in the 𝑖th iteration, and the optimal objective function, respectively; and finally, the 
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Fig. 16. Best values of the parameters of GA for MOSWIPT found by DOE.

last criterion is the average execution time of the algorithm (𝑇 ∗). In Table 6, five versions of GA are provided as follows: (I) 𝐺𝐴1: GA 
without any improvement rule, (II) 𝐺𝐴2: GA will all improvement rules except 𝐼𝑜3, (III) 𝐺𝐴3: GA will all improvement rules except 
𝐼𝑜2, (IV) 𝐺𝐴4: GA will all improvement rules except 𝐼𝑜1, (V) 𝐺𝐴5: GA with all improvement rules.

In Table 6, 𝐺𝐴5, the GA with all improvement rules, outperforms all remaining algorithms in terms of both the number of the 
optimal solution found (𝑁∗) and the average of closeness to the optimal solution (𝐴∗) in small- and large-size instances. However, its 
execution time is higher than most of the algorithms, which is explainable in that since 𝐺𝐴5 applies all improvement rules, it takes 
more time to improve a solution at each iteration compared to the other GA versions. Also, since 𝐴∗ is small for most algorithms, it 
is expected that by increasing the upper bound of the execution time, GA could decrease the gap between the near-optimal solution 
and the optimal (global) solution. Moreover, Table 6 proves the effectiveness of the improvement rules in applying them to the GA 
for solving the MOSWIPT; meanwhile, the various versions of GA have better performance than the other two metaheuristics, SA 
and PSO, in most instances which shows the efficiency of the employed local search operators like crossover/mutation operators. 
Furthermore, Fig. 18 compares the proposed GA (𝐺𝐴5) with the existing metaheuristic in terms of the number of instances solved to 
the optimality in each dataset; the blue parts show the instances that have been solved to the optimality. Also, Fig. 18 shows that the 
enhanced GA with improvement rules has obtained more optimal solutions compared to the other solvers (it has a larger blue area 
in each dataset in Fig. 18), which confirms its efficiency in solving the MOSWIPT instances.

5.5. Discussion on results

In the end, some remarks can be concluded as follows: (I) GA with all improvement rules outperforms the other versions of 
GA, SA and PSO in terms of the number of instances solved to optimality (best-known solutions) and the closeness to the optimal 
solution (best-found solutions) although its execution time is higher than most of the algorithms, (II) All enhanced versions of GA 
outperform the GA without any improvement rule, (III) GA with all improvement rules except the second rule has worse performance 
than the other versions GA, which shows that the second rule is significant in enhancing the performance of the GA in terms of the 
improvement rules, (IV) The mathematical model with the decision variables of parallelized activities and OSW outperforms the first 
mathematical model in terms of both the number of instances solved to optimality and execution time, (V) Designed improvement

rules and crossover/mutation operators are efficient in obtaining the near-optimal solutions for different instances.

6. Conclusion and suggestions for future studies

The present paper studies a new problem in the context of PSP, called MOSWIPT, which aims to find the optimal lifetime, a 
period between installing and dismantling time, of the OSW at the construction site, the availability level of the OSW, activities 
start time and execution mode of each activity. Also, the objective function of MOSWIPT is to minimize the usage cost of OSWs 
and the tardiness penalty while satisfying the construction site’s project-related constraints and space capacity. Moreover, two new 
linear mathematical models are proposed for MOSWIPT: one with time-indexed decision variables and the other with variables for 
parallelized activities and OSWs. Due to the NP-hardness of the problem, GA-based metaheuristics enhanced by efficient improvement 
16

rules and effective crossover and mutation operators are proposed to obtain the solutions with high quality for large-sized instances. 
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Fig. 17. The behavior of the objective function value (𝑂𝐹𝑉 ) with respect to the pair of the GA parameters.
17
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Fig. 18. The comparison of the enhanced GA with the existing solvers in terms of total instances solved to optimality (Vertical axis: The number of instances).
18
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Table 6

The comparative study of the proposed GA with the existing metaheuristic over the various-sized instances of 
MOSWIPT.

Dataset Number of 
instances

Criteria 𝐺𝐴1 𝐺𝐴2 𝐺𝐴3 𝐺𝐴4 𝐺𝐴5 SA PSO

c15 34 𝑁∗ 17 20 20 22 25 15 17

𝐴∗ 3.52 3.07 3.14 2.99 2.24 4.04 3.66

𝑇 ∗ 47.09 47.33 49.19 52.01 55.18 54.01 49.33

c21 84 𝑁∗ 20 24 22 24 30 18 20

𝐴∗ 5.88 5.12 5.24 5.10 3.96 6.33 6.10

𝑇 ∗ 56.22 56.33 57.10 57.09 59.75 49.11 54.88

j10 536 𝑁∗ 490 510 500 510 515 440 480

𝑅∗ 0.97 0.77 0.71 0.76 0.53 3.88 1.98

𝑇 ∗ 46.22 50.12 50.01 54.33 57.19 47.11 49.01

j12 101 𝑁∗ 82 88 85 88 90 75 80

𝐴∗ 1.88 1.39 1.44 1.37 0.91 2.87 2.25

𝑇 ∗ 46.22 50.87 50.91 49.01 55.01 41.08 46.88

j14 117 𝑁∗ 92 95 95 99 99 81 87

𝐴∗ 2.02 1.87 1.91 1.66 1.53 2.90 2.51

𝑇 ∗ 50.09 54.78 54.88 58.03 58.99 45.98 52.99

j16 45 𝑁∗ 21 23 22 23 25 16 19

𝐴∗ 4.33 4.10 4.02 4.31 2.77 5.01 4.76

𝑇 ∗ 53.11 55.98 55.87 56.88 58.90 50.09 51.12

j18 93 𝑁∗ 35 38 36 38 40 29 30

𝐴∗ 9.66 9.12 9.18 8.87 8.32 11.61 11.01

𝑇 ∗ 51.12 54.88 54.12 55.61 58.91 45.11 49.10

j20 64 𝑁∗ 25 29 29 33 35 22 25

𝐴∗ 8.99 8.10 8.16 7.61 7.22 9.79 9.10

𝑇 ∗ 50.11 53.29 53.90 55.01 58.96 43.11 49.05

j30 10 𝑁∗ 1 1 1 2 2 1 1

𝐴∗ 10.21 9.05 9.51 6.61 6.05 10.09 9.83

𝑇 ∗ 54.09 58.09 57.77 58.98 59.16 49.02 52.49

m2 89 𝑁∗ 45 49 48 52 55 40 42

𝐴∗ 5.67 5.01 5.14 4.87 4.51 6.33 6.19

𝑇 ∗ 50.22 54.98 53.09 56.77 59.09 42.01 49.88

r3 113 𝑁∗ 50 53 52 56 60 45 48

𝐴∗ 7.51 7.11 7.42 6.78 6.20 8.21 7.88

𝑇 ∗ 53.44 55.91 54.01 57.09 59.56 49.01 52.01

Finally, computational experiments show that GA with all improvement rules outperforms the other versions of GA, SA, and PSO 
regarding the number of instances solved to optimality and the closeness to the optimal solution, although its execution time is 
higher.

For future studies, there are promising areas. First, valid inequalities and lifting methods can strengthen the proposed mathe-

matical models. Second, finding the optimal location for each OSW can be considered to extend the problem and make it close to 
real-world projects. Third, considering the problem’s parameters as stochastic, uncertain, or fuzzy numbers can make the problem 
more real. Fourth, integrating MOSWIPT with the facility layout planning problem [40,41] can be an interesting topic. Finally, state-

of-the-art metaheuristics such as Grey Wolf Optimizer (GWO) [42], Enhanced Intelligent Water Drops (EIWD) and Cuckoo Search 
(CS) [43], and Artificial Immune Systems (AIS) [44] can be implemented in the addressed problem.
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