
24 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Birational geometry old and new / Grassi, Antonella*. - In: BULLETIN (NEW SERIES) OF THE AMERICAN
MATHEMATICAL SOCIETY. - ISSN 0273-0979. - ELETTRONICO. - 46:1(2009), pp. 99-123. [10.1090/S0273-
0979-08-01233-0]

Published Version:

Birational geometry old and new

Published:
DOI: http://doi.org/10.1090/S0273-0979-08-01233-0

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/683279 since: 2022-10-31

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1090/S0273-0979-08-01233-0
https://hdl.handle.net/11585/683279


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Grassi, A. "Birational Geometry Old and New." Bulletin of the American 
Mathematical Society, vol. 46, no. 1, 2009, pp. 99-123 

The final published version is available online at: https://dx.doi.org/10.1090/S0273-
0979-08-01233-0 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1090/S0273-0979-08-01233-0
https://dx.doi.org/10.1090/S0273-0979-08-01233-0


BIRATIONAL GEOMETRY OLD AND NEW

ANTONELLA GRASSI

Abstract. A classical problem in algebraic geometry is to describe
quantities that are invariants under birational equivalence as well as to
determine some convenient birational model for each given variety, a
minimal model. One such quantity is the ring of objects which trans-
form like a tensor power of a differential of top degree, known as the
canonical ring. The histories of the existence of minimal models and the
finite generation of the canonical ring are intertwined; minimal models
and canonical rings constitute the major building blocks for the bira-
tional classification of algebraic varieties. In this paper I will discuss
some of the ideas involved, recent advances on the existence of min-
imal models, some applications, and the (algebro-geometric proof) of
the finite generation of the canonical ring. These results have been long
standing conjectures in algebraic geometry.

1. Plan

A central problem in many areas of geometry, is how to “best” complete an
open variety, and also, to understand the relations between the different ways
to complete one given variety. In the language of algebraic geometry this
becomes constructing a minimal and canonical model and understanding
birational equivalence; the construction of the canonical model relies on the
finite generation of the canonical ring.

While the existence, and meaning, of minimal models turns out to be fairly
clear in the case of curves, the finite generation is not always obvious (Section
2). In the first part of the last century minimal models were defined and
shown to exists for surfaces; a complete classification in birational classes was
then later understood (Section 3.1). The question of the finite generation of
the canonical ring for surfaces was settled in the early 1960s (Section 3.1.2).
The definition of minimal models which works so well for surfaces does not
make sense in higher dimension: an appropriate generalization was provided
in the ’80s, and the “minimal model program” was successfully carried out
in dimension 3 (Sections 3.2.1, 3.2.2, 3.3.2).

Since then many partial results have been obtained, and quite a few turn
out to be essential to the proofs of the finite generation of the canonical
ring in all dimension and the existence of minimal model for varieties of
general type. It should be said that it is not possible to give here adequate
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2 ANTONELLA GRASSI

credit to all the people who contributed to the results stated, but there is
a brief historical summary at the end. A reference in brackets often merely
indicates a paper where a proof could be found (Section 6).

In 2005 Siu [30] and in 2006 Birkar, Cascini, Hacon and McKernan [3]
announced the proof of the finite generation of the canonical ring for a
smooth variety of general type of any dimension. Birkar, Cascini, Hacon
and McKernan also deduce that the canonical ring of any smooth variety
is finitely generated. We do not discuss here Siu’s proof, which is based on
analysis. The proof of [3] follows from the authors’ results on the existence of
minimal models for varieties of general type. Actually, their proof is a clever
round-about induction on the dimension of the variety, which builds on the
assumption that finite generation and minimal models exist for varieties
of lower dimension. In Section 4 we present an outline of the induction
arguments. The proofs of [3] contains quite a few novel ideas and we try
to outline some of them; these include, among others, the Minimal model
program with scaling.

Section 2 contains examples, facts, and results to introduce algebraic ge-
ometry, in particular birational algebraic geometry. Section 3 is an introduc-
tion to the minimal model program: we state results, examples, motivations
and lingo. Some newer results, and applications are in in Section 5.1 and
5.2, which contains application of the previous results to the classification
of algebraic varieties.

In many branches of mathematics classification constitutes an important
goal. In high dimensional topology classifications of manifolds of a given ho-
motopy type (like a sphere or projective space), or the classification of three
manifolds (like the classical Poincaré conjecture, the Thurston program), or
the classification of finite simple groups are a few well known examples. In
algebraic geometry one motivation for the minimal model program is that
it provides a powerful tool for the classification of algebraic varieties (or
function fields of algebraic varieties); this will be discussed in Section 5.2.

In this discussion, I will attempt to assume no previous familiarity with
algebraic geometry.

Acknowledgments: I would like to thank F. Di Sciullo, J. McKernan, D.
Morrison, M. Rossi, J. Shaneson, S. Shatz, L. Traynor for helpful comments
and in particular A. Collino for many insightful and inspiring conversations.

2. Origins of Birational Algebraic Geometry

2.1. Some Algebraic Geometry. The origin of algebraic geometry can
perhaps be traced to René Descartes, who noticed that certain geometric
objects, namely the graphs of equations, could be studied by combining
techniques from algebra and geometry. The fundamental insight is that
equations represent relations among different quantities and the representa-
tion of these equations in graph form results in either a curve, a surface or
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an object of higher dimension. When the equations are given in polynomial
terms, the corresponding graphs are called algebraic varieties.

The polynomials are taken with complex coefficients , so our varieties will
be complex algebraic varieties . The complex numbers are in fact in many
ways easier than the real numbers: a complex polynomial of degree n in one
variable always has n roots (counted with multiplicity) and differentiable
functions have a much tighter structure than infinitely differentiable real
functions.

If f(z1, z2) is a complex polynomial of degree 2,

C = {(z,1 , z2) ∈ C2 such that f(z1, z2) = 0}

is an algebraic curve (and a plane conic).
We will consider here projective varieties , that is varieties defined by ho-

mogenous polynomials in the projective space PN :

Definition 1. PN = (CN+1 \ 0) /C∗, where [a0, · · · , aN ] = [λa0, · · · ,λaN ],

aj ∈ C, not all zero, and λ ∈ C∗; recall that C∗ def
= C \ {0}.

To visualize the complex projective spaces one can look at the moment
map:

Example 2. (The moment map for P1.) Let µ : P1 → R2 be defined as:

[z0, z1] →
1

|z0|2 + |z1|2
(|z0|

2, |z1|
2).

The image of µ is the line segment I ⊂ R2 (with coordinates (x, y)) defined
by the equation x+ y = 1, 0 ≤ x ≤ 1. More precisely, µ : P1 ! I.
It is easy to see that the fibers are circles on the points in the interior of I
and a single point over (0, 1) and (1, 0); P1 is then a topological sphere S2:

Example 3. P2 def
= (C3 \ 0) /C∗. Similarly, let µ : P2 → R3 be defined as:

[z0, z1, z2] →
1

|z0|2+|z1|2+|z2|2
(|z0|2, |z1|2, |z2|2). The image of µ is a triangle

T ⊂ R3. More precisely, µ : P2 ! T .
It is easy to see that the fibers are tori on the points in the interior of T ,
circles on interior of the three edges a single point over the corners:
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Note that C ⊂ P2, defined by {z0 = 0}, can be visualized as the S2 on
the left; C is the locus of coordinates [0, z1, z2], (z1, z2) ∈ C2, which can
be identified with the projective line P1. C is a codimension 1 subvariety, a
divisor (see Section 2.1.2, below).

If X is a projective and algebraic variety, then it is also compact (see [31]):
the meromorphic functions on X are rational functions and we denote by
C(X), the function field ofX, the field of all rational functions. The function
field of X carries a lot of information about X; for example, if a function
field of a smooth variety X has a meromorphic function with only a simple
pole, then X is necessarily P1. [An algebraic variety is smooth (non singular)
at a point P if the rank of the Jacobian of the defining polynomials (locally
around P ) is maximal. A theorem of Zariski shows that this definition does
not depend on the embedding given by the defining polynomials.]

In the Zariski topology the closed sets are the algebraic subvarieties. For
example the algebraic variety Z = [0, z1, z2] ∈ P2 defined by z0 = 0 is a
closed set, its complement U = P2 \Z is an open set which can be identified
with C2, via the map [1, z2, z2] %→ (z1, z2) ∈ C2. Note also that Z can be
identified with P1. These identifications are examples of isomorphisms :

Definition 4. Let X and Y ⊂ PN be projective varieties. f : X ""# Y is
a rational map if f can be represented by rational functions (f0, · · · , fN ).
Note that f does not need to be well defined on the whole variety X.

Definition 5. f : X → Y is a morphism if f is a rational map defined on
everywhere on X.

Note that a rational map f : X → Y gives a morphism f|U : U → Y
where U ⊂ X is a Zariski open set.

Example 6. The map f : P2 ""# P1 defined by [z0, z1, z2] %→ [z0, z1] is a
rational map but not a morphism. In fact, f([0, 0, 1]) = [0, 0] is not a point
of P1, so f is not defined at P = [0, 0, 1]; on the other hand, f is well defined
on the open set {P2 \ P} and it is also a morphism.

Definition 7. f : X → Y is a birational map if there exist U ⊂ X and
V ⊂ Y Zariski open sets, such that f|U : U → V is an invertible morphism
and the inverse is also a morphism. In this case we write X ∼ Y , and we
say X and Y are birational.
f : X → Y is a birational morphism if f is as above and U = X.
A birational morphism f is called an isomorphism if also V = Y ; in this
case we write X ' Y , and we say X and Y are isomorphic.

So X and Y are birational if they have isomorphic open sets.

Definition-Proposition 8. (See for example [12, 31]) The following are
equivalent:
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(1) X and Y are birational (birationally equivalent);
(2) There exist UX ⊂ X and UY ⊂ Y , Zariski open sets, such that

UX ' UY ;
(3) X and Y have the same function fields.

Example 9. Let C ⊂ P2 be the cubic curve defined as z3z22 − z31 = 0; then
f : P1 ""# C as [1, t] %→ [t2, t3, 1] is a birational morphism, but it can be
shown (see for example, [31]) that it is not an isomorphism.

Example-Definition 10. (A blow up.) Let us consider C2×P1 with coordi-
nates ((x0, x1), [z0, z1]) andB = {((x0, x1), [z0, z1]) ∈ C2×P1 such that xjzi−
xizj = 0}.
Then f : B → C2 with ((x0, x1), [z0, z1]) %→ (x0, x1) is a birational morphism.
Note also that

f|B\f−1(0,0)
: B \ f−1(0, 0) → C2 \ (0, 0)

is an isomorphism and that f−1(0, 0) ' P1.

E
def
= f−1(0, 0) is called the exceptional divisor of the birational morphism

f (see also the introduction to Section 3).

The morphism f : B → C2 in Example 10 can be extended to a birational
morphism between compact varieties. Let B̂ be the (Zariski) closure of B
in P2 × P1. Then f extends to a morphism f̂ : B̂ → P2, which restricts to
an isomorphism:

f̂|
B̂\f̂−1([0,0,1])

: B̂ \ f̂−1([0, 0, 1]) → P2 \ [0, 0, 1].

B̂ and P2 are birational.

Example 11. The blow up of P2 at a point in the previous example can
be visualized via the image of the moment map on the right in the picture
below. The triangle on the left is the image of the moment map of P2, as
in Example 3, the picture on the right is the image of B̂ under the moment
map. The the blue segment on the right is image, under the moment map,
of the exceptional divisor E, which we see as a topological sphere S2.

The blow up construction gives two different ways to “complete” the open
variety P2 \ [0, 0, 1] to two different compact projective varieties.

Since the above construction is local around (0, 0) ∈ C2, it can be carried
through for other surfaces. A similar construction works in all dimensions.
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The search for the “minimal model” can be thought as the search for the
simplest way to birationally complete an open variety, and also, understand
the relations between the different minimal models, if more than one model
exists. As we will see below and in Section 3, in case of curve and surfaces,
it was shown that every birational class has a smooth minimal model1. It is
still not known if any variety has a minimal model; it has been showed that
in the dimension 3 and higher the minimal model cannot be smooth; the
recent paper of [3] shows that a minimal model always exists for a certain
type of varieties (varieties of general type).

A related question is to describe quantities which are invariant under bi-
rational morphisms. Before defining some of these invariants (the Kodaira
dimension κ(X), the plurigenera, the canonical ring), let us see their signif-
icance in the case of complex curves:

2.1.1. The case of complex curves: Kodaira dimension and some birational
properties. Riemann showed that any compact connected orientable (real)
surface can be embedded in a projective space PN , where the image, a
complex curve C, is defined by a finite set of polynomial equations. The
Riemann surfaces are determined up to homeomorphisms by the number g
of holes, which is defined to be the genus of the complex curve C. It turns
out that the genus is a birational invariant.

Theorem 12. dim(X) = 1: If X and Y are smooth and birational, then X
and Y are isomorphic.

A couple of remarks are needed here: the theorem does not hold if X
and Y are not both smooth, as we saw in Example 9; the theorem does not
directly generalize to higher dimension, as we saw in Example 10.

The topological Euler characteristic of smooth curves is also a
birational invariant; it turns out to be χtop(C) = 2 − 2g, which is also the
negative of the degree of the canonical divisor KC (see Example-Definition
14). It also turns out that 2g − 2 = degKC is related to the curvature of
the real surface: if the degree is negative, the curvature of the real surface
(a sphere) is positive. If the degree is zero, the surface is flat (a torus);
if the degree of the canonical divisor is positive, the curvature is negative.
Equivalently the area of a circle of radius r is respectively smaller, equal or
bigger than πr2. The Kodaira dimension is the algebraic analogue of the
curvature, and in the above cases we say it is respectively negative, zero or
positive.

1We consider normal varieties, see for example [12]. If X is normal, then the singular
locus has at most codimension 2. For example all normal curves are also smooth, normal
surfaces are singular at most in a set of points.
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2.1.2. Divisors, canonical divisors; canonical rings, finite generation; Ko-
daira dimension.

Definition 13. An effective Weil divisor D on a variety X is a finite sum
D =

∑
i aiDi with ai ∈ Z, where Di = [Vi] are irreducible codimension 1

subvarieties Vi
2. If ai ≥ 0,∀ i, D is an effective divisor .

Example-Definition 14. LetX be a complex curve: a divisorD =
∑

i aiDi

with ai ∈ Z is a collection of points. Then
∑

ai is the degree of D.

Similarly we can define the degree of a divisor in PN ; if a variety V ⊂ PN

is defined by a polynomial of degree d, d is the degree of the corresponding
divisor [V ] in PN .
A rational function f on X defines a divisor (f), namely the locus of zeroes
and poles counted with multiplicity and sign (positive the zeroes, negative
the poles); these are the principal divisors. Two divisors are linearly equiv-
alent if their difference is a principal divisor.

Locally on an open set Uj a Weil divisor on a smooth variety is defined
by a function fj. One could also define a divisor as the collection of these
open sets and functions {(Uj , fj)} with obvious compatibility conditions and
equivalence relations. These are called Cartier divisors . One can also view
Cartier divisors as invertible sheaves (or line bundles), see for example [12].
Multiplication of functions induces tensor powers of the line bundles and
sums of divisors. We will use the additive notation, say mD represents the
m-th tensor power of the line bundle D.

When X is not smooth Weil divisors are not always Cartier divisors, (see
Example 58). This is indeed a feature of varieties which are relevant to
birational geometry, as we will see in the next Sections.

Example 15. If C ⊂ P2 is a curve, and H ⊂ P2 a hyperplane, the intersec-
tion of H with C, denoted as H · C, defines a divisor on C, which is called
very ample.

Before defining a very ample divisor in general we need some more prop-
erties: Let D be an effective divisors: H0(X,D) is the set of global sections
of D, that is the collection of rational functions with at most poles on D;
H0(X,D) is a finite dimensional vector space. Let {s0, · · · sN} be a basis of
H0(X,D); we can define the rational map:

φ|D| : X ""# PN

p %→ [s0(p), · · · , sN (p)]

This map depends only on the linear equivalence class of the divisor D.

2Vi is irreducible if it is not reducible. A variety A is reducible if there exist varieties
B and C such that B ∪ C = A with B "= A and C "= A.
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Definition 16. Let X be an algebraic variety and D a divisor on X; D
is very ample if φ|D| : X ↪→ PN is an embedding3. In particular D is the

restriction of an hyperplane H ⊂ PN to X; we write D
def
= φ∗(H).

It is a crucial problem in this setting (see Section 3.2) to identify a priori
which divisors (or their multiples) are very ample and which divisors (or
their multiples) determine morphisms, not necessarily embeddings:

Definition 17. Let X be an algebraic variety and D a divisor on X; D is
base point free if there exists a morphism φ|D| : X → PN .

Definition 18. Let X be an algebraic variety and D a divisor on X; D is
semiample if there exists some m > 0 such that mD is base point free.

A canonical form on Cn, with coordinates (z1, · · · , zn) is a top differen-
tial form, for example dz1 ∧ · · · ∧ dzn. On a general smooth variety X, the
canonical form is a collection of volume forms on open sets with obvious
compatibility conditions. The canonical divisor is the divisor naturally as-
sociated to it and denoted by KX ; the canonical divisor is defined up to
linear equivalence.

In some cases the canonical divisor can be defined even when a variety X
is singular, as in the surface below:

Example 19. (Kummer surface) Let X = (E × E)/ < ı, id >, where E is
the torus in Example 28 and ı : (z1, z2) %→ (−z1,−z2) with (z1, z2) ∈ C2. X
has 16 singular points, and the canonical differential on E × E is preserved
by the group action and induces a canonical divisor on X. The canonical
divisor on X is still trivial: H0(X,KX) ' C.

It is of particular interest, in the context of birational geometry, to un-
derstand under which conditions on a variety X the canonical divisor KX

is semiample, as we will see in Example 29 below, Theorem 37 and Section
5.2. Also of importance are the space of sections H0(mKX).

Definition 20. dimH0(X,mKX),m ≥ 0 is called the m-plurigenus of X.

The following proposition holds:

Proposition 21. The plurigenera dimH0(X,mKX) are birational invari-
ants.

The algebraic definition of the genus of a smooth curve X is g(X) =
dimH0(X,KX), which coincides with the topological definition of the genus,
as we will see in Examples 27, 28 and 29 below.

Definition 22. (Mumford, [27]) R(X,KX) = ⊕m≥0H0(mKX) is the
canonical ring .

3That is, φ(X) is a closed subvarieties of PN isomorphic (via φ) to X.
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The previous proposition implies that the canonical ring is a birational
invariant. We assume X to be connected, hence H0(X, 0 ·KX) = C.

Definition 23. The Kodaira dimension κ(X) of a variety X is defined as
follows:
κ(X) < 0 if H0(X,mKX) = 0, ∀m > 0;
κ(X) = k, if dimH0(X,mKX ) ∼ mk as m → ∞.

Note that κ(X) < 0 is also denoted by κ(X) = −1 or κ(X) = −∞.
Obviously κ(X) ≤ dim(X); it turns out that

κ(X) = transc.degR(X,KX )− 1.

Definition 24. X is of general type if κ(X) = dim(X). If X is a variety of
general type, KX is big .

Similarly, one defines κ(X,D), the Kodaira dimension of a divisor D. If
κ(X,D) = dim(X), D is called big and D is of general type .

There are many varieties of general type, for example the curves of gen-
eral types are the curves with genus g ≥ 2, see the Examples below. Any
hypersurface defined by polynomials of degree greater than d + 1 in Pd is
also of general type, this can be seen from the adjunction formula:

Proposition 25. If V ⊂ X is a smooth hypersurface in a smooth variety
X, then:

(2.1) KV = (KX + V )|V .

We now see some examples of the results discussed above in the case of
curves:

Remark 26. If X is a smooth curve

KX = Ω1
X = T ∗

X and χtop(X) = 2− 2g = −deg(KX ),

where TX , T ∗
X denote the tangent and cotangent bundle respectively. Note

also that c1(X) = −KX . Then KX is non effective (we write KX < 0) if
and only if g = 0, KX is trivial (we write KX ' 0) if and only if g = 1 and
KX is effective (we write KX > 0) if and only if g ≥ 2.

Example 27. (Genus g = 0.) IfX = P1, on the open set U1 ' {[s, 1], s ∈ C}
the local volume form is ds, if U2 ' {[1, t]}, on U1 ∩ U2 s = 1/t and the
local volume form is ds = d(1/t) = −1/t2dt. The canonical divisor (Weil)
corresponds to a pole with multiplicity 2; it is not an effective divisor, but
its inverse is. In this case, H0(P1,KX) = 0, g(X) = 0, κ(X) < 0 and the
canonical ring is trivial.

Example 28. (Genus g = 1.) The torus E = C/Z ⊕ ıZ can be given the
structure of an algebraic curve X, which can be identified with a smooth
cubic in P2. It is easy to see that the volume form on C, dz1 induces a global
volume form X. The divisor associated to it does not have poles nor zeroes,
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it is the trivial divisor. Here H0(E,KX ) = C, g(X) = 1, κ(X) = 0, and the
canonical ring is R(X,KX ) = ⊕mC.

Example-Theorem 29. (The tricanonical embedding, [Riemann]) (See for
example [12] or [31].)
Riemann showed that if C is a curve of genus g ≥ 2, then 3KC is very ample,
that is there is an embedding φ|3KC | : C ↪→ PN with the following property:

if H ⊂ PN is an hyperplane, then H · C is 3KC . Then the canonical ring
R(C,KC) can be reconstructed4 from the coordinate ring of PN . In par-
ticular R is finitely generated (see below). Note that the pluricanonical
embedding determined by 3KC gives us an explicit description of C as an
algebraic subvariety in a projective space; in fact, C ' ProjR(C,KC) (see
the Remark 30 below). Note also that X is of general type.

Remark 30. We refer to [12] for a formal definition of Proj(R), for R a
finitely generated ring. If R is a finitely generated ring over C, the relations
among the generators in C[x0, · · · , xN ] (or better the ideal generated by the

relations) define an algebraic variety X ⊂ PN . Then X
def
= Proj(R); R is

the homogeneous coordinate ring of X (see also [12]).

A nice discussion of Proj in the context of birational geometry can be
found in Section 6 of [19]. The Examples 27, 28, 29 show the following
theorem:

Theorem 31. The canonical ring R of a smooth algebraic curve X is always
finitely generated. In addition, if X is of general type, then X = Proj(R).
X = Proj(R) is called the canonical model.

In the case of surfaces, it is much harder to show that the canonical ring
is finitely generated; this will be discussed in the next section.

3. Minimal models? Canonical models? An introduction.

We have seen that a birational morphism between algebraic varieties X
and Y is a map which is an isomorphism between some Zariski open sets.
Zariski open sets are dense in algebraic varieties, and the existence of a
birational morphism between X and Y implies strong relations between
them. In the case of curves, there is a unique smooth projective curve in each
birational equivalence class and the canonical ring R is finitely generated.
In addition if a curve is of general type, R gives an explicit embedding of
the curve, the canonical model.

It is natural to ask if similar statements also holds for surfaces, threefolds
and higher dimensional varieties. We have seen in Example 10 that P2 and
B̂ are smooth and birational surfaces, and that one can construct infinitely
many smooth projective surfaces in each birational equivalence class. So it is

4In fact Serre’s vanishing theorem for the first cohomology of the ideal sheaf of C in
P
N (twisted by m) shows that there is a surjection H0(PN ,mH) → H0(C, 3mKC).
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natural to ask if in each birational class we can identify a simpler model(s),
a minimal model , and how to produce it. It is also natural to ask if the
canonical ring is finite generated and it gives an embedding for varieties of
general type.

Zariski [36] first studied the ring R = ⊕mH0(mD), for a divisor D on a
surface X; he also showed that R is not always finitely generated, for some
particular divisors D. Much later, Wilson [35] gave examples of varieties
where the canonical ring is not finitely generated: in these examples the
varieties are not algebraic or they have worse singularities than the one
considered here.

We will see that in the case of surfaces the canonical ring R and its
finite generation can be instrumental to the understanding of a given variety
(see Remark 40). The proof of the finite generation of the canonical ring
for surfaces was one of the motivations for the birational classification of
surfaces, which was then completed on the basis of the existence of minimal
models. Also, the proof of finite generation relies on the existence of minimal
models.

In higher dimension the canonical model Proj(R) turns out to be a cru-
cial ingredient to the understanding of birational geometry of varieties, and
the existence of minimal models and canonical models become interdepen-
dent and intertwined. In particular, in the arguments of [3] and [11], the
existences of canonical and minimal models depend on each other in the
ascending induction arguments.

In the first part of the 20th century Castelnuovo, Enriques and Severi
gave an algorithm to construct a minimal model of a given smooth surface;
the definition and the algorithm are specific to dimension 2. By the middle
1980s a proposal for aMinimal Model Program in higher dimension had been
formed and also carried out in many aspects, by work of Clemens, Kawa-
mata, Kollár, Miyaoka, Mori, Reid, Shokurov, Viehweg and many others (see
[19] and [23]). The Minimal Model Program was successfully completed, by
Mori [26] for dimX = 3, by the end of the 1980s. It was also understood
how different minimal models of threefolds are related (see again [19] and
[23]).

3.1. The case of surfaces. The results stated in this section are by now
called classical ; we discuss them in detail because they illustrate some of the
basic ideas which recur in higher dimension, without many of the complica-
tions. On the other hand the presentation we give here is not the classical
one developed by the Italian school, which is in fact specific to dimension
two only.

3.1.1. Minimal models, following the Italian school.
Proofs for the results stated in this section can be found in many books;

here we mostly follow [1] and [23].
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In Example 10 we noted that any smooth point on a surface can be blown
up to obtain another smooth, birationally equivalent, surface. The “Ital-
ian school” came up with the following definition and proved the theorems
below:

Definition 32. (Classical) A smooth surface S̄ is minimal if any birational
morphism ψ : S → T to another smooth surface T is an isomorphism.

Theorem 33. Any smooth surface S has a minimal model.

Proof. If any birational morphism S → T , with T a smooth surface is an
isomorphism, then S is minimal and we are done. If S is not minimal, we can
find a sequence of birationally equivalent smooth surfaces {Sj}, j = 1, · · · , (
with S! minimal. In fact, if S is not minimal by definition there exists a
smooth surface S1 and a birational morphism ϕ1 : S → S1 which is not
an isomorphism; it is not hard to see that b2(S1) < b2(S), where b2 is the
second betti number (see, for example, [1]). If S1 is minimal we are done,
otherwise, we find another smooth surface S2 birationally equivalent to S
and b2(S2) < b2(S). Thus we get a collection of morphisms ϕj : Sj−1 → Sj

and smooth surfaces Sj, birationally equivalent to S. The process must stop
after a ( number of steps, since b2(Sj) < b2(Sj+1), ∀j. $

Furthermore the following holds:

Theorem 34. Let S be a smooth surface:

a: If κ(S) ≥ 0, then the minimal model of S is unique.
b: If κ(S) < 0, the minimal model is not unique. In this case S is

birationally equivalent to P1 ×C, for some smooth curve C, and we
say that S is birationally ruled.

It is not hard to see, for example, that S = P1 × P1 and T = P2 are both
minimal surfaces, according to Definition 32, with κ(S) = κ(T ) < 0. S and
T are also birational, as the blow up of S at one point is isomorphic to the
blow up of T at two different points.

Definition 32 and Theorem 33 do not provide an explicit algorithm for
constructing a minimal model for a given smooth surface; the basic tool for
such an algorithm is given by Castelnuovo’s contraction criterion , which is
the building block of the classical birational theory of surfaces. Castelnuovo’s
theorem provides a necessary and sufficient condition for a smooth curve E
on a smooth surface S1 to be the exceptional divisor of a blow up ϕ : S1 →
S2:

Theorem 35. [Castelnuovo] Let S1 be a smooth surface and E a smooth
rational curve on S1 with E2 = −1. Then there exists a birational morphism
ϕ : S1 → S2, where S2 is a smooth surface; ϕ is the blow up of S2 with
exceptional divisor E (as in Example 10).

The statement of this theorem is specific to surfaces: the exceptional
divisors are curves only in the case of surfaces and the “negative self-
intersection” makes sense only in dimension 2. In Section 3.2.1 we revisit
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these Theorems (and Definition), in light of the Minimal Model Algorithm,
which makes sense in all dimensions.

3.1.2. Canonical models, finite generation of the canonical ring.

The Castelnuovo-Enriques-Kodaira classification then provides a finer
structure theory for the surfaces which are not birationally ruled, which
we discuss briefly at the end of this Section. The classification is used in the
proof of the Theorem below, following [1]:

Theorem 36. (Mumford, 1962) The canonical ring of an algebraic surface
Z is finitely generated.

Proof. (Sketch) Let S be a minimal model of Z (see Section 3.1.1); if κ(S) <
0, then the canonical ring of S is finitely generated, as in the case of P1

(Example 27). Recall that κ(S) ≤ dim(S) = 2. If κ(S) = 0, then the
birational classification implies that nKS ' OS for some n, so the canonical
ring is again finite generated, as in the case of elliptic curves (Example 28).
If κ(S) = 1, 2 then it can be shown that KS is semiample (see Definition 18)
and we can deduce that the canonical ring is finitely generated, as in the
case of curves of general type (Example 29). $

The proof sketched above is not Mumford’s original proof, as it uses the
classification of surfaces; the completion of this classification was in fact
spurred by Mumford’s theorem.

Following Mumford, Bombieri showed:

Theorem 37. ([2]) Let S be a minimal surface of general type. Then mKS

is base point free (see Definition 17) for m ≥ 4 and if m ≥ 5 the morphism
is birational.

Remark 38. Let φ|mKS | : S → Wm be the morphism determined by mKS ,
m ≥ 5 as above. It follows that the Wm ' Proj(R(S,KS)), for all the

relevant m; Xcan def
= Wm is called the canonical model of S. The canonical

model is unique.

Remark 39. If φ|mKS | : S → Xcan is not an isomorphism, then S can be
seen as a minimal resolution of the canonical model Xcan. The singularities
on Xcan are called canonical (see Theorem-Definition 61).

The two-dimensional canonical singularities are also known as rational
double points, and they are locally of the form C2/Γ, where Γ ⊂ SL(2,C) is
a finite subgroup. The singularities in Example 19 are canonical.

Remark 40. The morphisms determined by the canonical divisor KS (or its
multiples mKS) on surfaces of general type were studied by Enriques [7], as
a crucial tool to understand these surfaces; see a nice exposition in [4].

Another strategy to construct the minimal model for a surface S of κ(S) =
2 could be to consider the canonical model Xcan and its minimal smooth
resolution (which is knows to exist).
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Part (b) in Theorem 34, together with Theorem 41 below provides a “struc-
ture” theorem for surfaces of Kodaira dimension negative and κ(S) = 1:

Theorem 41. Let S be a minimal surface with κ(S) = 1. The canonical
divisor KS is semiample and, for some m >> 0 there is a morphism φ|mKS | :
S → B, where B = Proj(R(S,KS)); the general fiber is a curve C with
κ(C) = 0 (an elliptic curve).

The fibration in the above theorem is called the Iitaka’s fibration , see
Theorem 90.

3.2. Towards higher dimensions. The Castelnuovo-Enriques classifica-
tion was completed by the middle of the 19th century; for a long time the
proof of the finite generation of the canonical ring and a birational classifi-
cation in higher dimension seemed out of reach. One of the major obstacles
was the lack of a “good” analogue of the notion of minimal model; in fact the
classical Definition 32 does not makes sense in three-dimension (see Example
86).

3.2.1. Minimal models for surfaces, towards higher dimension.

The starting point is the following observation:

Remark 42. Castelnuovo’s Theorem 35 says that a birational morphism of
smooth surfaces f : S → S̄ which is not an isomorphism contracts (to
points) rational curves E on S such that KS ·E < 0. This follows from the
adjunction formula on surfaces, 25.

Definition 43. A divisor D on a variety S is nef if D · C ≥ 0, for all the
effective curves C in S.

The following holds:

Theorem 44. If S is not birationally ruled and KS is not nef, then there
exists a rational exceptional curve as in Castelnuovo’s criterion.

We will not discuss here the proof of this results, which is related to the
existence of rational curves when KS is not nef and the “bend and break”
arguments (see [19], Chapter 1.1).

Definition 45. (Revised): A smooth surface S is minimal if KS is nef.

This definition makes sense in all dimension. So the key idea of Mori’s
algorithm in all dimension is to contract all curves C such that KX ·C < 0.
We will see that contracting such curves will provide a structure theorem
for birationally ruled varieties (the variety of negative kodaira dimension),
as in the following cases:

Example 46. (Trivial, but useful remark):

0: If S = P2, then there exists a trivial morphism: π : P2 → {pt.} (the
fiber of π is the whole P2).
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1: If S = P1 × P1, then there exists a fibration π : S → P1 (the
projection on one factor), with fibers P1 (the other factor).

We still need an analogue of Castelnuovo’s Theorem 35 which works in
all dimensions. We will need the definitions of the following Section:

3.2.2. The Mori cone; Ample, Nef, Pseudo-effective cones and Big divisors.

More details on the definitions and results stated here can be found, for
example, in [19], [15], [23].
A 1-cycle is a linear combination of subvarieties of dimension 1 in a variety
X:

Definition 47. Let X be a smooth variety. Let NE(X) be the cone gen-
erated by classes of effective 1-cycles, with real coefficients and let NE(X)
denote its closure. NE(X) is the Mori Cone of X.

We consider the Mori cone modulo numerical equivalence, (which means:
from the point of view of intersection with divisors, they behave the same).

Definition 48. A divisor D is called ample if mD is very ample (see Defi-
nition 16), for some m ∈ N.

Theorem 49. (Kleiman’s criterion) D is ample if and only if:
D · C > 0, for every non-zero curve C ∈ NE(X).

We consider the cone of ample divisors and the cone of nef divisors, mod-
ulo numerical equivalence, (which means: from the point of view of inter-
section with curves, they behave the same).

Remark 50. The nef cone and the Mori cone are then dual cones with respect
to the intersection pairing. The closure of the ample cone is the nef cone.

It is also useful to consider the cone of effective divisors, with real coeffi-
cients, modulo numerical equivalence. Its closure is called the
pseudo-effective cone; a divisor D in the closure is called pseudo-effective.
These divisors appear in more general versions of the statements of [3] than
we discuss in Section 4, with the exception of Theorem 89. The following
result is also used:

Proposition 51. A big divisor can be written as the sum of an ample divisor
and an effective divisor.

Note that the following four inclusions hold:

Ample ↪→ Eff
↓ ↓

Nef ↪→ Pseudoeff

Definition 52. A ray R in NE(X) is defined as R = R+[Z], for some
Z ∈ NE(X). The ray R is extremal if z1 + z2 ∈ R ⇒ z1, z2 ∈ R (in the
sense of convex geometry) and KX · R < 0.
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Example 53. (See for example [19]) Let S be a smooth surface and E a
rational curve with E2 = −1, then E generates an extremal ray.

Example 54. (See for example [19] and Example 46) Let S = P2, then the
class of a line L is an extremal ray.

Example 55. (See for example [19] and Example 46) Let S = P1×P1, then
the class F of a factor P1 is an extremal ray.

Definition 56. Let R be an extremal ray; a Cartier divisor D is the
supporting divisors of R if and only if D · Z ≥ 0, for all Z ∈ NE(X) with
equality if and only if Z ∈ R.

Geometrically the hyperplane defined by the supporting divisor D inter-
sects the cone NE(S) only on the ray R; this is a necessary condition for a
morphism φ|mD| (if it exists) to contract exactly the curves in ray R. Cas-
tenuovo’s contraction Theorem shows that there exists a semiample divisor
D (that is mD is base point free for sufficiently large integers m), such
that φ|mD| : X → X1 contracts exactly the extremal ray generated by the
rational exceptional curve E with E2 = −1. The morphisms in Example 46
contract exactly the extremal rays L and F .

To generalize Castelnuovo’s criterion we need to find a supporting divisor
D for an extremal ray R such D is semiample. Note that this is what
happens also for the morphisms in Example 46.

We will need to some Definitions and Properties.

3.3. Higher dimensions: Minimal modes, Finite generation, Canon-
ical models. It is in higher dimension that minimal models, canonical mod-
els and finite generation get intertwined.

In dimension 3 or higher one needs to allow certain mild singularities:

3.3.1. Singularities. In fact Mori [25] showed that if dim(X) ≥ 3, con-
tracting certain curves C on extremal rays on smooth varieties produces
singularities on the image variety. The nice thing is that the program also
works with these singularities, and these are called (Q-factorial)-terminal
singularities.

Definition 57. A Weil divisor D on a normal variety is called Q-Cartier
(resp. R-Cartier) if mD is Cartier for some m > 0, m ∈ Q (resp. m ∈ R).
X is Q-factorial if every Weil divisor is Q-Cartier. Let D and E be Q (resp.
R)-Cartier divisors. D and E are equivalent if there exists a m such that
mD and mE are equivalent divisors. If C is a curve, we also define:

D · C
def
=

1

m
(mD · C).

Note that the definitions in Section 3.2.2 can be applied also to Q-divisors,
and R-divisors. In fact in the proofs in [3] the use of R-divisors is essential.
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Example 58. Let X = C2/τ , where τ =< eπi/3, e2πi/3, 1 > and τ :
(z1, z2) %→ (eπi/3z1, eπi/3z2). X is singular at (0, 0), but the canonical differ-
ential on C2 is not preserved by the group action. However, the third tensor
power of the canonical differential is, and induces a Cartier divisor 3KX on
X. KX is then a Q-Cartier divisor.

Theorem-Definition 59. X has at most terminal singularities if KX is
Q-Cartier and for every (equivalently, for any) resolution h : X̃ → X, we
have mKX̃ = h∗(mKX) + F , for some effective divisor F supported on the
exceptional locus and every irreducible component of the exceptional locus
appears in F with strictly positive multiplicity.

It is not hard to see that a surface S has at most terminal singularities if
it is smooth; the singularities of the surface canonical models (see Remark
39) satisfy this similar property:

Proposition 60. Let Xcan be the canonical model of a surface of general
type and φ : S → Xcan the minimal resolution as in Theorem 37. Then
KS = φ∗(KXcan).

The definitions can be combined as follows:

Theorem-Definition 61. X has at most canonical singularities if KX is
Q-Cartier and for every (equivalently, for any) resolution h : X̃ → X, we
have mKX̃ = h∗(mKX) + F , for some effective divisor F supported on the
exceptional locus. If every irreducible component of the exceptional locus
appears in F with strictly positive multiplicity, then X is said to have at
most terminal singularities.

It can be shown that canonical and terminal singularities do not affect the
plurigenera, hence the canonical ring; this property was in fact a motivation
for considering this class of singularities (see [28], [29]).

Now we can state the higher dimensional definition of minimal (and
canonical model)

Definition 62. X is a canonical (resp. minimal) model if X has at
worst canonical (resp. terminal ) singularities andKX is an ample (resp.
nef) Q-Cartier divisor.

and the generalization of Castelnuovo’s criterion:

Theorem 63. (The contraction Theorem) Let X be a projective variety
with at worst canonical singularities. Then every extremal ray R such
that KX · R < 0 has a supporting semiample divisor.

Key ingredients in the proof of the above theorem are the Vanishing Theo-
rems, the Non-vanishing Theorem, the Cone Theorem, the Rationality The-
orem, the Base point free Theorem (see for example, [19] or [23]).



18 ANTONELLA GRASSI

Theorem-Definition 64. [Kawamata-Shokurov] If X̄ is a minimal model
of a projective variety X, and KX is also big, then KX̄ is semiample, and
the canonical ring is finitely generated. Then Xcan = Proj(R(X,KX )) is
called the canonical model of X, and the singularities are canonical.

Recall that the canonical model is unique. Now we can see the minimal
Model Algorithm at work:

Theorem 65. [26] Let X be a projective variety with only Q-factorial termi-
nal singularities. If X is not a minimal model, then there exists a surjective
morphism f : X → Y to a normal projective variety Y with connected fibers
and one of the following holds:

(1) dim(X) > dim(Y ) (Mori fiber space).
(2) f is birational and contracts a divisor (divisorial contraction)
(3) f is birational and contracts no divisor (small contraction).

Furthermore:

Case (1) holds if and only if κ(X) < 0.
In Case (2) Y has at most terminal singularities.
In Case (3) Y is not Q-factorial.

It is useful to see the algorithm at work in the case of surfaces; we will not
discuss this here (see for example [23]). Case (2) is Castelnuovo’s Theorem
35; P2 and P1 × P1 as in Example 46 are Mori fiber spaces, as in Case (1).

If the exceptional locus of a contraction morphism is not a divisor, but
say a curve C on a threefold X, then the singularities on the image va-
riety are such that the algorithm cannot be applied again5. To avoid the
problem of these “small” contractions one would like, on a threefold, to flip
the curve C, that is to construct another threefold (with mild singularities)
X+, isomorphic to X outside C, but such that KX+ intersects positively
the “transform” of C (KX+ · C+ > 0). Then one would need to show that
a sequence of flips terminates.

3.3.2. The case of threefolds.

Mori’s result on existence of flips in 1988 [26] completed the algorithm for
constructing minimal models for threefolds.

Theorem 66. [26] Let f : X → Y be a birational morphism between normal
projective threefolds as in Case (3) of the previous Theorem. Then there is
a birational morphism f+ : X+ → Y

5It is easy to see that one would get the contradiction: 0 = KX · [R] < 0.
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where X+ is a projective threefold with only Q-factorial terminal singu-
larities, f+ contracts no divisors and KX+ · C > 0, for any curve C con-
tracted by f+. The birational map between X and X+ is an isomorphism
in codimension 1.

Definition 67. A divisor D is f -ample if D · C > 0, for any curve C
contracted by f . The birational map between X and X+ in the above
Theorem is called a flip.

This gives the minimal model algorithm for threefolds:

Let X be a threefold with Q-factorial terminal singularities:

If KX is nef, STOP: X is a minimal model.
If KX is not nef: contract any extremal ray R (as in Theorem 65).
In case (1) X is a Mori fiber space: STOP.
In case (2): replace X by Y ,
In case (3): replace X by X+.
The process is then repeated until the canonical bundle is nef or Case
(1) holds.

It turns out that neither (2) nor (3) can occur an infinite number of
times. The termination of Step (2) follows from the fact that at every step
the second betti number decreases. The termination of (3) is subtle; it was
shown by Shokurov, see for example [23].

Remark 68. The choice of a particular extremal ray to contract is arbi-
trary and typically far from unique and efficient (it is easy to construct
surfaces with infinitely many extremal rays). The Minimal Model Program
with scaling in [3] (see Section 4) provides a “guided”, efficient, contraction
algorithm.

The varieties of general type are somewhat special in this regard. It turns
out (in the hypothesis of the cone theorem) that if a variety is of general
type then the number of extremal rays is always finite. This principle is
also used in the proof of termination of a certain kind of flips in [3]; see also
Section 4.

3.3.3. Log minimal pairs. There exists also a log version of the minimal
model program:
Let (X,∆) be a pair consisting of a variety X and an effective Q(R)-Cartier
divisor in X. We might want to consider such a pair, for example, when we
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have an open variety M and a compactification X = M̄ , in this case ∆ is
the boundary divisor (see Theorem 88). Another case is given by the elliptic
fibrations, which we discuss here in the case of smooth surfaces.

Example 69. An elliptic surface is a morphism: π : X → C, to a curve
C where all the fibers, except a finite number, are elliptic curves; let also
assume that X is minimal, for simplicity’s sake. It is then a classical result
[20] that KX = π∗(KC +∆), where ∆ is a Q-divisor supported on the image
of the fibers of π which are not smooth elliptic curves. The singular fibers
determine the coefficients of∆ =

∑
i ai∆i; it turns out that 0 ≤ ai < 1. Here

the log pair (C,∆) in dimension 1 constitues as a step towards dimension 2.

Example 70. If V ⊂ X is a smooth hypersurface, in a smooth variety
X, then the adjunction formula (see Property 25) computes the canonical
divisors of V in term of the log pair (X,V ): KV = (KX + V )|V .

Definition 71. A log resolution of (X,∆) is any resolution of X f : X̃ → X
such that the union of the strict transform of ∆ and the exceptional locus
of f are supported on divisors with simple normal crossings. Let (X,∆) be
a log pair, ∆ =

∑
i ai∆i and f : X̃ → X be a log resolution of (X,∆); we

write:
KX̃ + ∆̃ = f∗(KX +∆) and ∆̃ =

∑
dj∆̃j.

Definition 72. We have the following:

klt: The pair is kawamata log terminal if for any (equivalently for every)
log resolution f , dj < 1,∀j .

lc: The pair is log canonical if for any (equivalently for every) log reso-
lution f , dj ≤ 1,∀j.

dlt: The pair (X,∆) is divisorially log terminal if 0 < ai ≤ 1 and there
is a log resolution f such that dj < 1 for every exceptional divisors
Dj .

plt: The pair is purely log terminal if for any log resolution f , dj < 1,
for every coefficient of an exceptional divisor Dj .

The pair (C,∆) in the base of the elliptic fibration described in the Example
69 is ktl : C is taken to be smooth, and ∆ consists of a finite set of points, so
the only condition to verify is the one on the coefficients. The pair (X,V )
in Example 70 is ptl; in fact, the notion of plt pair was introduced in the
context of induction arguments (see Definition 83). Lc pairs are important
also in the study of moduli spaces (see Theorem 88).

Remark 73. Klt pairs are dlt pairs; dlt pairs are lc; see also [19]. There are
other variations on the definitions above, which are essential for the proofs
of the theorems stated in Section 4; we do not state them here and we refer
the readers to [3].

Definition 74. A curve C on X is log-extremal if (KX +∆) ·C < 0 and C
is extremal in the usual sense.
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We are looking for suitable models (Y,Γ) with Q-factorial singularities
and KY + Γ nef:

Definition 75. Let (X,∆) be log canonical and let φ : X ""# Y be a
birational map such that φ−1 does not contract any divisors. Let Γ = φ∗(∆):
Y is a log terminal model for KX +∆ if φ is (KX +∆)-negative, KY + Γ is
dlt and nef and Y is Q-factorial.

In the next Section we will see the log model at work, in the proof of
Theorem 81.

3.3.4. Relative minimal model program; Finite generation and flips. There
is a “relative” version of the above algorithm, for a morphism f : X → Y .
This relative version is crucial in the proofs of [3]. In these notes we only
mention the following result, which connects finite generation and flips (see
for example [23], Remark 30 and Theorem 64):

Theorem 76. Let f : X → Y be a small contraction.
The sheaf Rf =

⊕
m∈N f∗(mKX) is a sheaf of finitely generated algebras if

an only if the flip of f exists. Then the variety X+ def
= Proj(R) and the

morphism f+ are unique.

4. New results

Several groups of people have been working on extending the (log) min-
imal model program to arbitrary algebraic varieties and many important
results have been obtained (see the Introduction of [3]).

In the summer of 2005 Siu [30] announced the proof of the finite generation
of the canonical ring for a smooth variety of general type. Siu’s proof is
based on analysis and we will not discuss it here. In the Fall of 2006,
Birkar, Cascini, Hacon and McKernan [3] posted a paper on ArXiv on the
existence of minimal models in all dimensions for varieties of general type.
A corollary is the finite generation of the canonical ring and the existence
of flips. Their proof of the existence of minimal models for a n-dimensional
variety of general type does not rely on the existence or termination of flips,
but it is a clever round-about induction on n. In this section we present an
outline of the combined inductions arguments in [10], [11] and [3].

The arguments of the proofs work in the relative log set up and the use
of the adjunction formula 25 is crucial.

It should be emphasized that we do not state the results in the most
general form derived in the original papers. Most notably, the theorems
are not stated here in the relative setting. The relative setting is however
crucial in the induction steps; see for example the comments on the proof
of Theorem 85.

Theorem 77. [8], [3, 11], [30] Let X be a smooth variety. Then the canon-
ical ring R(X,KX) is finitely generated.
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Theorem 78. (Corollary of Theorem 77) Let X be a smooth variety of
general type, then Proj(R(X,KX )) = Xcan is the canonical model of X (see
Remark 30).

Recall that the canonical model is then unique. The log statement of the
finite generation is:

Theorem 79. Let X be a projective variety. Suppose KX +∆ is is klt, and
KX +∆ is Q-Cartier. Then the ring

R(X,KX +∆) =
⊕

m∈N

H0((%m(KX +∆)&)

is finitely generated. Here %
∑

aiDi& =
∑

%ai&Di and 2ai3 means the round
down to an integer of ai.

Theorem 80. [3] Let X be a smooth projective variety of general type of
any dimension. Then the minimal model of X exists.

The log statement of the above theorem is:

Theorem 81. Let X be a projective variety. If KX +∆ is big and KX +∆
is klt, then there exists a log terminal model of KX +∆.

The proofs of the above theorems are intertwined and form a circular
ascending induction on the dimension of the (log) variety (X,∆). The as-
cending induction on dimension [3, 11] goes roughly as follows (but there are
other inductions within the induction, and many delicate technical points,
not mentioned here):

(4.1) Th. 79 in dimn ⇐ Th. 81 in dimn ⇐ Th. 79 in dimn−1.

The proofs of 81 and 79 are different from the one outlined in the previous
sections for the minimal model algorithm; in particular the termination and
existence of flips is not a building block of the proof.

In the Sections 4.1.1 and 4.1.2 below we discuss some ideas involved in
the proof of the arrows in (4.1):

4.1. Some ideas in the proofs.

4.1.1. Existence of log minimal models for log varieties of general types im-
plies finite generation for the log canonical ring:

Theorem 79 in dimn ⇐ Theorem 81 in dimn

(Theorem 77 in dimn follows from Theorem 79).

Case 1. κ(X,∆) ≤ 0. Then R(X,KX +∆) is obviously finitely generated,
as in Examples 27 and 28.
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Case 2. κ(X,∆) = dim(X), that is (X,∆) is of general type. Then by
Theorem 81 (X,∆) has a log terminal model (X̄, ∆̄). The divisor KX̄ + ∆̄
is semiample, since it is nef and big, by the base point free theorem of
Kawamata and Shokurov (Theorem 64). Then R(X̄,KX̄ + ∆̄) is finitely
generated (as in Example 29); since the log canonical ring is a birational
invariant we have R(X,KX +∆) = R(X̄,KX̄ + ∆̄).

Case 3. 0 ≤ κ(X,∆) < dim(X). This case follows from the previous one,
as the following holds:

Theorem 82 (Fujino-Mori). [8] Let (X,∆) be a klt pair with κ(X,∆) ≥ 0,
then there exists a variety Y and a klt log pair (KY ,∆1) of general type
such that ⊕rH0(X, (r(KX +∆)) = ⊕rH0(Y, (r(KY +∆1)), ( >> 0.

A particular case, and a “model” for the above Theorem 82 is given by
the minimal elliptic surfaces X of κ(X) = 1, where KC + ∆ is big on C
(see Section 3.3.3). (In general birational Iitaka’s fibrations are used, see
Theorem 90.)

4.1.2. Finite generation and existence of certain flips imply the existence of
log minimal models for varieties of general type:

(4.2) Theorem 81 in dimn ⇐ Theorem 79 in dimn− 1.

The argument uses several log versions of the minimal model program,
and it relies on induction on n. Some of the properties of the varieties of
general types which have been discussed in Example 29 and Remark 68
become crucial here.

We have seen in the previous Sections that the crucial points in completing
the minimal model algorithm are the existence and termination of flips. The
argument of [3] cleverly avoids both issues: First the problem is modified by
considering a suitable log pair KX +D and showing that flips exist for these
particular pairs, following ideas of Shokurov; these are called pre-limiting
flips, pl flips [10], [11].

The arrow of (4.2) consists then of two other arrows, which are the bulk
of the inductive arguments (remember that this is only a rough outlines of
the proofs!):

(4.3) Min. mod. in dim n (Th. 81) ⇐ Pl-flips ∃ in dim n ([11])
⇐ Fin. gen. in dim n− 1 (Th. 79).

Here we assume the existence of pl-flips, as in [3]; note that in [10], the
existence of pl-flips is proved by induction, following ideas of Kawamata,
Shokurov, Siu.

Definition 83. Let (X,∆) a plt pair and f : X → Z be a projective
morphism between normal projective varieties. Then f is a pl-flipping con-
traction if ∆ is a Q-divisor and
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(1) f is small, of relative Picard number one,
(2) −(KX +∆) is f -ample6,
(3) X is Q-factorial,
(4) S = %∆& is irreducible and −S is f-ample.

The flip of a pl-flipping contraction f : X → Z is a small projective mor-
phism g : Y → Z of relative Picard number one, with Γ = µ∗(∆),

(X,∆)
f

%%$
$$

$$
$$

$$

"" """ µ (Y,Γ)
g

&&%%
%
%
%%
%
%

$$" " "

Z

such that KY + Γ is g-ample.

As in Theorem 76, the sheaf Rf =
⊕

m∈N f∗(m(KX + ∆)) is a sheaf of
finitely generated algebras if an only if the flip of f exists. The variety Y
and the morphism g are then unique (see Remark 30). The main results of
[11] implies:

Theorem 84. Pl flips exist in dimension n.

The strategy is to consider a klt pair (X,∆) with ∆ big, dimX = n− 1,
assume that the canonical ring R(X,∆) is finitely generated and that other
technical hypothesis are satisfied (in dimn− 1). In the notation of [11] and
[3], Theorem 84 (in dimension n) is Theorem An, while the assumptions are
Theorem Fn−1.

We now discuss some ideas in the following implication:

(4.4) Theorem 81 in dimn ⇐ Pl-flips exist in dimension n.

To give a flavor of the argument used in [3] we follow the reasoning, presented
in [3] for a very particular case (recall that Theorem 80 is a particular case
of Theorem 81). This will allow us to introduce some of the ideas used in
the arguments: minimal model program with scaling and finiteness of models
combined with the induction step(s).

A very particular case of Theorem 80.
Assume that X is a smooth variety (there is no log divisor), KX is big

(see Section 3.2.2) and that there exists a divisor D linearly equivalent to
mKX smooth and irreducible.

Consider the pair KX+D. It is clear that KX is nef if and only if KX+D
is nef; note that R is an extremal ray for KX if and only if it is an extremal
ray for KX + D. If KX is not nef, there exists an extremal ray R and a
contraction φ : X → Z, as in Theorem 63.
Case 1: φ is a divisorial contraction: then KZ is trivial and Z is a minimal
model.

6see Definition 67
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Case 2: φ is a small contraction: φ is a small contraction for the pair
KX +D and we are in the situation of a pl-flip of Definition 83; we assume
that such flips exists by Theorem 84. Let ϕ : X ""# X ′ be the flip. One still
should show that any sequence of such flips terminates, but this results is
not available; instead the the authors of [3] run the minimal model program
with scaling together with induction:

The minimal model program with scaling: Consider an ample divisor H on
X and a positive number t0 ∈ R≥0 such that KX +D + t0H is still ample.
Then there exists a number 0 ≤ t1 ≤ t0, a ray R such that KX +D + t1H
is nef and (KX +D+ t1H) ·R = 0. Note that if t1 = 0, KX +D is nef and
we are done. We can then assume that 0 < t1, so that (KX + D) · R < 0;
it can be shown that we can also assume R extremal. So there exists a
divisorial extremal contraction or a flip, as above, and we can reiterate the
algorithm. The novelty here is that the strict transforms of the divisor
(KX +D + t1H) remain nef at each step, as the algorithm is run, and this
is enough to guarantee the termination of these flips. Assume in fact that
the contraction of R gives a flip: we restrict to D and use induction. Then
(KX + D)|D = KD (by adjunction, see 25); let G = H|D . We have then
the pair KD + t1G on D, with dim(D) = n − 1. Termination is proved
by showing the finiteness of the possible nef pairs {KD + τG} that one
would get by running this algorithm; the hypothesis of KX of general type
is used (see Remark 68). A delicate point is that these minimal models are
not necessarily log terminal, so a result for broader singularities is needed.

In the notation of [3], the “finiteness of models” is Theorem En−1; Theo-
rem 81 is Theorem Cn. Theorem En−1 is also proved by induction, assuming
Theorem Cn−1.

Quite a few subtleties and difficulties occur in the general case and the
relative case of the minimal program needs to be considered.

5. Remarks

5.1. Other results and applications. The results stated in the previous
Section have generated a cascade of other new results; we mention here only
a few.

Theorem 85. Klt flips exist.

The existence of flips in fact follows from a relative version of the finite
generation, see also Theorem 76.

Another result is the following Theorem 87, which describes how two
different minimal models are related; in fact the minimal models in dim ≥ 3
are not necessarily unique (see Example 86). Note that if X is a minimal
model and KX is ample (then X is of general type), then the minimal model
is then unique (we know also that X = Proj(R(X,KX ))).
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Example 86. Let X̄ = {xy + zw = 0} ⊂ C4; X̄ is singular at the origin.
Now consider the threefolds X ⊂ C4 × P1 and X ′ ⊂ C4 × P1 defined by the
equations: {y0w+y1y = 0, y0x+y1z = 0} and {y0w+y1x = 0, y0y+y1z = 0}
respectively, with [y0, y1] ∈ P1. X and X ′ are smooth and the natural
projection morphisms φ : X −→ C4 and φ′ : X ′ −→ C4 are a isomorphism
outside the origin of C4. The composition ϕ = φ · φ′−1 : X ""# X ′ is an
isomorphism outside L = φ−1(0, 0, 0, 0) and L′ = φ′−1(0, 0, 0, 0). It can be
shown that KX ·L = KX′ ·L′ = 0. [Exercise.] This transformation is called
a flop.

Theorem 87. [3, 13](2008) Let X and X ′ two minimal models and φ :
X ""# X ′ a birational map. Then φ is a composition of flops.

This result was first proved in [3] for varieties of general type. The proof
in [13] uses the existence of klt flips (Theorem 85), the terminations of a
certain kind of flips, proved in [3] and the algorithm of the minimal model
program with scaling. The statement is obtained by the considering a klt log
pair (X,D), where D is a suitable effective divisor in X; then φ : X ""# X ′

is shown to be a composition of klt flips for the pair. Each klt flip for the
pair (Xi,Di) is also a flop for the terminal variety X.

The following is an application to the moduli space and involves lc pairs:

Theorem 88. [3] Let X = Mg,n the moduli space of stable curves of genus
g with n marked points and let ∆i, 1 ≤ i ≤ k denote the boundary divisors.
Let ∆ =

∑
ai∆i be a boundary. Then the pair (X,∆) is lc and if KX +∆

is big then there is a log canonical model.

5.2. Classification.

Finally a few words on how the Minimal Model Program provides a pow-
erful tool to understand varieties in the sense of classification; majors players
are also the Mori fibrations, the Iitaka fibrations and canonical models. We
have already seen this in special case of surfaces.

The Minimal Model Program with Scaling provides the following:

Theorem 89. [3] Let (X,∆) be a klt Q-factorial pair. If K + ∆ is not
pseudo-effective, then there exists a birational map X ""# X̄ and a Mori
fiber space π : X̄ → B.

Here we do not discuss Mori fiber spaces. We have seen that if C is any
curve contracted by π then KX̄ · C < 0, equivalently, since π is a fibration,
−KF is ample, for a fiber F of π (this follows from the adjunction formula
and Kleiman’s criterion); F is a called Fano variety. In the case of surfaces
we have seen (see Theorem 34) that the fibers are birationally ruled, in
particular they are covered by rational curves. It is not known if the same
is true in all dimensions. We refer to [9], [24], [18] for an introduction to
Mori fiber spaces and several results.
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For the variety of positive Kodaira dimension the following holds:

Theorem 90. (The Iitaka fibration, [34]) If κ(X) > 0, there exists an inte-
ger m >> 0 and a fibre space IX : X̃ → Xcan which is birationally equivalent
to the rational maps φ|mKX | : X ""# Wm, with dimWm = dimXcan = κ(X)
and the general fiber F of IX has κ(F ) = 0.

Note that Theorem 77 implies Wm = Proj(R(X,KX )) = Xcan, ∀m >> 0;
note also that the all the relevant Wm are isomorphic, but given in different
projective embeddings. The Theorem above states that a variety X of ko-
daira dimension 0 < κ(X) < dim(X) is birationally fibered by varieties F
of smaller dimension and κ(F ) = 0.

The statement of the theorem is trivial for κ(X) = 0, but formally true.
If κ(X) = dim(X), and X is of general type, then Xcan is the canonical
model of X.

It is then important to know under which condition the canonical divisor
is semiample and find the lowest m such that mKX is base point free; this
an active area of current study. Recall that if X is minimal and of general
type, then KX is semiample by Theorem 64.

Conjecture 91. (Abundance) Let X be a minimal model of a variety with
κ(X) ≥ 0; then the canonical divisor KX is semiample, and it defines a
morphism φ|mKX | : X → B, for m >> 0, where B = Xcan and κ(F ) = 0,
where F is the general fiber of φ.

Conjecture 92. Let X be a smooth projective variety. Then:

a: If κ(X) < 0, then there exists a variety Y birational to X and a
morphism f : Y ! B which gives W the structure of Mori fiber
space.

b: If κ(X) ≥ 0, then X is birationally equivalent to a minimal model
M .

Let us combine the above theorems in the case of dimX = 3 (the abun-
dance conjecture holds):

Example 93. Let X be a smooth projective variety, with dimX = 3:

a: If κ(X) < 0, then there exists a variety Y birational to X and a
morphism f : Y ! B which gives W the structure of Mori fiber
space.

b: If κ(X) = 0, there is an explicit birational classification of minimal
models.

c: If κ(X) = 1, 2, then there exists a morphism f : M ! Xcan, where
M is the minimal model of X; furthermore the fibers F have dim
2, 1 respectively, with κ(F ) = 0 (as in Theorem 90).

d: If κ(X) = dim(X), then X is of general type, and the minimal
model M is the terminal resolution M → Xcan of the canonical
model.
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6. Summary/Timeline

∼ 1850s: dim(X) = 1. [Riemann et al.] Each smooth curve X has a
unique smooth minimal model, the same curve X.

∼ 1900-1950: dim(X) = 2. [Castelnuovo-Enriques] If κ(X) ≥ 0, then
X has a unique minimal model. If κ(X) < 0, then X is birational
to a Mori fiber space.

∼ 1960: [Severi, Kodaira, Mumford, Bombieri et al.] A classification
exists.

∼ 1980s: dim(X) = 3. [Kawamata, Kollár, Mori, Reid, Shokurov et
al.]
If κ(X) ≥ 0, then X has a minimal model, unique in codimension 2.
If κ(X) < 0, then X is birational to a Mori fiber space.
For dimX ≤ 3 a finer structure exists.

1990s-2005: Many important results (see Introduction of [3].

2005-2008: [Birkar, Cascini, Hacon, McKernan, et al.] dimX any, X
of general type, then Minimal model exists.

2005-2008: [Siu; Birkar, Cascini, Hacon, McKernan, et al.] Let X be
a smooth variety, then the canonical ring R(X,KX) is finitely gen-
erated.

2005-2008: [Birkar, Cascini, Hacon, McKernan, et al.] dimX any:
Flips exists.
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