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Abstract—The singular value decomposition (SVD) is one of 
the most popular methods in harmonics and interharmonics 
estimation. However, its accuracy strongly depends on the 
correctness of the selected model order. To this purpose, this 
work aims at contributing to the correct estimation of the model 
order. This is achieved by exploiting the energy of the singular 
values (SVs). Firstly, the relationship between one frequency 
component and its corresponding SVs is theoretically 
investigated. Secondly, a new indicator is proposed for 
determining the model order, which denotes the energy of the k-
th pair of consecutive SVs. Thirdly, an adaptive threshold is 
defined for separating signal components from noise. This way, 
the number of components can be obtained for unknown noise 
levels. Finally, the effectiveness and robustness of the proposed 
method has been validated by simulations. They have been run 
implementing typical signals designed according to the 
harmonics and interharmonics measurements standard, the 
IEC standard 61000-4-7. 

Keywords—Model order determination, singular value 
decomposition, harmonics estimation, interharmonics estimation 

I. INTRODUCTION 
The proliferation of power electronics based non-linear 

loads is worsening the power quality (PQ) of the power 
system. In particular, the presence of harmonics and 
interharmonics components affects it the most. [1-4]. 
Therefore, their accurate estimation is essential for the safe 
and stable operation of the grid. At present, the estimation 
methods can be divided into two main categories: Discrete 
Fourier Transform (DFT) based methods and Singular Value 
Decomposition (SVD) based methods (i.e., the modern 
spectral estimation method) [5-10].  

Due to its high-resolution feature in the frequency domain, 
the SVD-based methods have received considerable scholarly 
attention. This is particularly true within the field of the 
analysis of harmonics and interharmonics [11]. The SVD-
based method includes the Prony method [12], the Matrix 
Pencil [13-15], and the estimation of signal parameters via 
rotational invariance techniques (ESPRIT) [5, 16-18]. 
Generally, accurate estimates of harmonics and 
interharmonics can be achieved by all these methods under the 
premise that a proper model order (i.e., the number of the 
signal components) is offered. An incorrect model order, 
whether it is higher or lower than the correct one, will 
dramatically deteriorate the performance of these methods. 
Consequently, a robust model order estimation technique, for 
harmonics and interharmonics, is crucial in the SVD-based 
approaches. 

To solve such a problem, different methods based on SVs 
have been developed to estimate an exact value of the model 
order. In [11, 13, 14], methods for determining the model 
order, which relied on the ratio of SVs to the max one, are 
presented. The ratio was compared with fixed thresholds that 
were selected experimentally under specific noise level and 
observation window lengths. However, these heuristically 
determined thresholds cannot adapt to conditions in which 
noise can vary over time. In [16] and [19], a method based on 
selected relative difference index of SVs is introduced to 
estimate the model order in the presence of varying noise 
levels and data window lengths. Nevertheless, the method 
needs to determine the sensitivity factor for different levels 
of noise. An improved version of [19], called modified exact 
model order (MEMO), is proposed in [5]. This method not 
only does not require any threshold parameters but also 
returns more reliable estimates, regardless of the length of the 
data window. However, if small relative difference exists 
between the SVs components and noise, the MEMO method 
usually fails. This is because significant relative difference 
may not exist between the signal and the ‘noise’ components 
under low signal-to-noise ratio (SNR) scenarios. 

Although raw SVs are used to estimate the model order of 
a signal containing harmonics and interharmonics, literature 
lacks documentation about the relationship between one 
frequency component and its corresponding SVs. Therefore, 
this work starts exactly from this task, with the higher aim of 
distinguishing the weak harmonics or interharmonics from 
noise independently. Then, a new indicator is proposed for 
determining the model order, which denotes the energy of the 
k-th pair of consecutive SVs. Finally, an adaptive threshold is 
introduced for separating the signal components from 
unknown noise levels. This way it is possible to determine 
the number of components at unknown noise levels. The 
efficiency and applicability of the method have been 
validated, by simulations, with a variety of typical signals 
defined according to IEC standard 61000-4-7. 

II.  PROPOSED MODEL ORDER DETERMINATION METHOD 

A. Signal Model of Multifrequency Power Signal 
In the following, let us consider the sampled distorted 

power supply signals of length N (n = 0, 1, ..., N-1): 
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where K is the model order (the number components), fk, Ak, 
and ϕk are, respectively, the frequency, amplitude, and phase 
of the k-th component. For k = 1, f1, A1, and ϕ1 are the 
parameters of fundamental component. Ts = 1/fs is the 
sampling interval, and fs is the sampling rate, and w(n) 
represents the white Gaussian noise with zero mean. 

B. The Relationship Between the Frequency Component 
and Its Corresponding SVs 

In general, two steps are required for determining the 
model order of an SVD-based method for harmonics and 
interharmonics estimation. The first step is the generation of 
the Hankel matrix H by using N data samples of the measured 
signal y(n), as: 

 , (2) 

where L = (N + 1)/2. For simplicity, N here is specified as odd 
to obtain a square Hankel matrix H, and L is specified as even. 

The second step is the application of SVD on H as:  
 , (3) 

where ( )H represents the Hermitian transpose operator, U=[u11, 
u12,..., uG1, uG2] and V=[v11, v12,..., vG1, vG2]T are L×L unitary 
matrixes. S is a L×L diagonal matrix which contains SVs of H 
and can be expressed as: 

 , (4) 

where G = L/2, σ11 ≥ σ12≥ ... ≥ σk1 ≥ σk2 ≥ ... ≥ σG1 ≥ σG2.  
It is known that two consecutive SVs correspond to a 

frequency component of a distorted signal [5]. So, σk1 and σk2 
are considered as a pair of SVs taken from the k-th 
component. 
1) Energy defined by SVs and Frobenious norm 

Substituting (1) into (2), H can be indicated as the 
superposition of a series of sub-matrix Hk as: 

 , (5) 

where  represents the Hankel matrix including noise 
interference, and  refer to the Hankel matrix obtained 
with the k-th frequency component as: 

 , (6) 

where . 
According to the definition of the Frobenious norm (F-

norm) of H [20], one have: 

 , (7) 

where || ||F represents the F-norm operator, r and c are the 
index of row and column, respectively. To better understand 
the relationship between the k-th component and σk1 and σk2, 
it is introduced the notation . It is an indicator, 

for determining the model order, which denotes the energy of 
the k-th pair of consecutive SVs. In addition, to denote the 
energy of the Hankel matrix H and the k-th component the 
notations  and  are introduced, respectively. 

2) Energy E expressed by the parameters of the components 
Firstly, the energy of a single element  in H can be 

expressed as:  

 , (8) 

where r = 1, 2, ..., L, c = 1, 2, …, L, and n = r + c - 1. 
Secondly, the energy of the r-th row in the H can be 

obtained by summing the energies of all elements in this row 
as: 

,(9) 

where 
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 . (12) 

Thirdly, the total energy of  can be obtained by 
summing the energies of all the rows as:  

 , (13) 

where 

 (14) 

 (15) 

Finally, the total energy E in (13) can be rewritten as: 

 , (16) 

where 
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3) The relationship between  and  
Aim of this paragraph is to investigate the relationship 

between  and . Equations (16)-(18) reveal that the 
energy of the k-th component  consists of two parts:  
in (17) represents the contribution of the k-th component 
itself, which depends on the length of data samples, sampling 
interval, and the k-th component’s parameters (i.e., amplitude, 
frequency, phase). , instead, represents the influence of 
other components on the k-th component. 

It is worth noting that  in (12) represents the integral 

sum of the product of the components yi(t) and yj(t). If all yk(t) 
are harmonics and half-observation window (i.e., successive 
L samples of each row in H) is coherent sampling, the product 
will be equal to zero due to the orthogonality of trigonometric 
functions. It also gives  in (18) equal to zero, as well as 

 equal to . This characteristic guarantees the 

applicability of  in model order determination for 

harmonic signals. Although the is no longer equal to  
under the conditions of asynchronous sampling (i.e., 
frequency deviation) or interharmonics, it still ensure a strong 
positive correlation (more discussion in the next section). 
Therefore,  is more suitable for order determination than 
raw SVs. 

C. Robust and Adaptive Model Order Determination 
Method 

In this subsection, we propose a robust and adaptive order 
determination method based on the relationship between  

and . The steps are divided into two stages: first, a 
modified relative difference (RD) method is adopted to obtain 
a rough estimation of the model order of the power signal, i.e., 

. Second, determining the final estimation of model order, 
i.e., , by using  and the energies corresponding to ‘noise’ 
components. 
1) Obtaining rough estimation of model order 

The key to rough estimation is figuring out the potential 
boundary between the signal energies and the noise energies. 
To achieve this, a modified RD method is designed, and the 
main steps are as follows: 

Step 1: construct energy vector  by using each pair of 
consecutive SVs corresponding to each component as: 

 . (19) 

Step 2: calculate the RD values of elements in  as: 

 . (20) 

 

 
Fig. 1. Estimating the rough model order by the  (SNR=35dB). 

Step 3: obtain a rough estimation of model order, i.e., . 
First, calculating the mean value of RD. Second, construct 

 by setting each RD(k) equal to the mean value if RD(k) 
lower than it. This is used to highlight the important energy 
differential nodes. In general, the boundary of signal and 
noise might be one of the largest values in . Here, the 
index of the last peak of  is regarded as the rough 
estimation of model order . It is worth noting that the 
number of peaks may be equal to zero under strong noise 
conditions. In this special situation, let  = 1. 

After obtaining rough estimation of model order, the 
possible energies of the signal components can be regarded 
as , , , . The possible energies of the 

‘noise’ components can be considered as , , 

, . 
2) Final estimation of model order 

In fact, the RD-based methods are only able to find the 
correct boundary in a situation with a high SNR. Here, a more 
robust method, which uses the possible energies of ‘noise’ 
components, is proposed to handle low SNR scenarios. The 
core idea is to establish a threshold ε using the mean value of 
the energies of the ‘noise’ components, and then determine 
the number of the signal components by comparing the 
elements of  with ε. The main steps are as follows: 

Step 1: calculate the threshold ε for separating signal 
components from the noise: 

 , (21) 

where VTH represents the threshold sensitivity coefficient 
which is determined by the statistical analysis of experimental 
results (in this paper, VTH is set to 5). It is worth noting that 
VTH does not need to be changed according to SNR, window 
length, and sampling rate during the whole estimation process. 

Step 2: determine the model order of the signal. If  > 

ε,  can be treated as one element of the signal. Finally,  
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let  be equal to the number of elements in  greater 

than the threshold ε. Such  is then the model order of the 
analyzed power signal. 

 

III. RESULTS AND DISCUSSION  
In this section, simulations are conducted to evaluate the 

effectiveness and robustness of the proposed method. From 
Equations (16)-(18), it is clear that the larger the number of 
signal components, the harder it is to estimate the correct 
number of signal components. The classical synthetic signal 
suggested in [16] contains twelve components. To prove the 
robustness of the proposed method, the test signals should 
have two features: 1) the number of signal components should 
be larger than the classical synthetic signal; 2) the parameters 
of the signal components should be random values within a 
reasonable range based on [21]. Thus, each test signal contains 
a fundamental and twenty other components (either harmonics 
or interharmonics). The nominal frequency of the test signal 
is fn = 50 Hz while the amplitude of twenty other components 
is a random value in the range of [1 %, 20 %) of the 
fundamental. The phase of all components is a random value 
in the range of [-π, π). Three types of test signals are 
considered: a) synchronously sampled (f1 = 50 Hz) signals 
containing a fundamental and twenty harmonics; b) 
asynchronously sampled (f1 = 50 Hz ± 2 or 5 Hz) signals 
containing the fundamental and twenty harmonics; c) signals 
containing a fundamental and twenty interharmonics (the 
interval between any two frequencies meets the definitions of 
interharmonics in the IEC Std 61000-4-7 [21]). 

A.  and  Under Different Conditions 

To demonstrate that  is suitable for the model order 
determination under different conditions, the relationship of  

 
Fig. 2.  and  under the harmonics conditions (coherent sampling). 

 
Fig. 3.  and  under the harmonics conditions (asynchronous sampling). 

 

 
Fig. 4.  and  under the interharmonics conditions. 

 

 and  is investigated by simulations. A sampling rate of 
fs = 12 kHz, and two different observation window lengths, 4 
or 6 cycles (N = 959 or 1439), are considered. All test signals 
are superposed with 30 dB or 40 dB noise. 

The test results under the coherent and asynchronous 
sampling conditions are reported in Fig. 2 and Fig. 3, 
respectively. It can be observed that the curves representing 

 and  are almost overlapped in the presence of all 
considered observation window lengths and noise levels 
conditions. The test results under the twenty interharmonics 
conditions are reported in Fig. 4. Although the curves 
representing  and  do not completely overlap, they 
maintain a strong correlation trend. Moreover, there is a 
distinct gap between  (the smallest one contributed by 

interharmonics) and (the largest one contributed by noise). 

Therefore,  is a reasonable indicator for order 
determination. 

B. Success Rate of the Proposed Method in Order 
Estimation 

The Monte Carlo simulations are conducted to evaluate the 
behaviour of the proposed method while estimating the model 
order. The performance is also compared with the MEMO 
method. Two different sampling rates (fs = 6 and 12 kHz) and 
two different observation window lengths (C = 4 and 6 cycles) 
are considered. Gaussian white noise is superimposed on three 
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types of representative test signals to evaluate success rates 
under different SNRs, which range from 20 to 50 dB at an 
increment of 1 dB. For each test, 1000 runs are performed to 
evaluate the statistical properties.  

The results are presented in Fig. 5. It can be observed that 
the success rates are positively correlated with the number of 
samples for all test conditions (harmonics or interharmonics). 
The proposed method offers better robustness compared with 
the MEMO method within all considered data sample lengths. 
Moreover, even if the proposed method uses the fewest data 
samples (i.e., fs = 6kHz, C = 4, N = 479), the behaviour is still 
better than that of MEMO which uses the maximum data 
samples (i.e., fs = 12kHz, C = 6, N = 1439). In consideration 
of the SVD is a time-consuming technique, it means that the 
proposed method only requires a smaller computational 
burden to achieve the same performance. 

 
Fig. 5. Success rate of methods under different conditions. Case a: f1 = 50Hz, 
twenty harmonics, coherent sampling; Case b: f1 = 50Hz±5Hz, twenty 
harmonics, asynchronous sampling; Case c: f1 = 50Hz, twenty interharmonics. 
 

IV. CONCLUSIONS 
In this paper, a novel model order determination method is 

presented for signals containing harmonics and inter-
harmonics. The contribution is twofold: firstly, a novel and 
efficient indicator is proposed based on the relationship 
between each component and raw SVs. Secondly, a robust and 
adaptive order determination procedure is proposed to obtain 
the model order independently of the noise levels. Simulation 
results show that the behaviour of the proposed method 
outperforms the MEMO method. This is particularly true 
when the SVs of the noise and components have only small 
relative differences (e.g., signals defined in Section III under 
SNR < 40dB conditions) even if fewer data samples are used. 

It can be concluded that is implementable into SVD-based 
methods to improve its performance. In particular, for 
distinguishing weak harmonics or interharmonics from the 
measurement environment with unknown noise levels. 
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