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and in integration, when both regions trade both assets and consume both
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decrease, depending on the time of integration, but decrease on average. Corre-
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1 Introduction

When investors gain access to a new asset class, diversification benefits loom
large. Past price observations, from an era when the new asset class was un-
available to the new investors, suggest both significant risk premia and modest
correlations with existing asset classes. Yet, as the new investors adjust their
portfolios, they find that correlations have increased, largely reducing the pu-
tative diversification gains. International equities [41, 27], emerging markets
[6], and commodity futures [46] offer recent examples of this phenomenon.

More broadly, the central problem is to understand how the integration of
two markets affects the welfare of their participants, how such benefits – if any
– are shared, and how integration changes the levels and dynamics of prices.
To answer these questions, it is necessary to understand markets’ equilibria
both in the regime of segmentation – when in one market assets are available
only to that market’s investors – and in integration, when any investor can
trade any asset.

This paper examines a general equilibrium model with two regions, each of
them endowed with its own asset, and finds explicitly the two assets’ dynamics
and their implied welfare in both the segmentation and integration regimes.
It also identifies the terms of sharing under which investors in both markets
would agree to integration. Similar to the familiar Lucas Jr [32] tree, both
regions have infinitely lived representative investors with the same isoelastic
preferences. Outputs in the two regions have uncorrelated short-term fluctu-
ations, but remain cointegrated, their shares oscillating around fractions that
represent the markets’ long-term relative sizes. The growth of total consump-
tion has constant mean and volatility.

Prima facie, the model has contrasting implications for prices and welfare:
integration increases welfare in both markets but, on average, it decreases as-
set prices – investors are happier, but poorer. Counterintuitive at first, this
phenomenon stems from the change in consumption dynamics from segmenta-
tion to integration. In segmentation, consumption shocks are undiversifiable,
and agents have no choice but to bid up the domestic asset in an effort to
secure future consumption. In integration, however, agents can spread their
wealth between domestic and foreign assets, thereby reducing consumption
shocks, and in turn reducing the pressure to buy each of them. Thus, the loss
of wealth from lower asset prices is more than compensated by the availability
of a smoother consumption stream.

In the international asset pricing literature, the market segmentation hy-
pothesis stipulates that integration increases the price of an asset by making
it available to a larger pool of investors, and decreases its subsequent expected
return by reducing its equilibrium risk premium.1 In a similar vein, Merton’s

1 As Foerster and Karolyi [26] surmise, “International asset pricing models suggest that
when investors realize that barriers to investments are to be removed, expected returns
should decrease as prices are bid up on the expectation of the removal of these barriers.”
For partial equilibrium models of international asset pricing, see also Solnik [42, 43], Stulz
[44, 45], Adler and Dumas [2].
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[36] investor recognition hypothesis prescribes that an asset that is recognized
(i.e., held or traded) by more investors has a lower expected return than an-
other one, with the same exposures to risk factors, but recognized by fewer
investors.

Our results are consistent with these hypotheses when a small market be-
comes integrated in a much larger one, but the model also uncovers new in-
teractions that arise when the two markets have comparable size, potentially
reversing these conclusions. While market integration brings new buyers for
the domestic asset, i.e. capital inflows, it also leads domestic investors to buy
foreign assets – capital outflows – which make the effect of flows ambiguous.

In segmentation, price-dividend ratios increase with the dividend share
while decreasing in integration. In an integrated market, a smaller dividend
share means a lower correlation between dividends and consumption growth,
which implies a higher diversification value [16]. In segmentation, however, the
dividend is the consumption, and a higher share increases demand for assets
in the attempt to smooth consumption over time. As the supply of stock is
fixed, in equilibrium such higher demand is reflected in increased stock prices.

Correlation between asset returns has also subtle properties. Only with
logarithmic preferences it is true that uncorrelated dividend fluctuations imply
uncorrelated returns.2 With higher risk aversion, returns correlation is negative
in segmentation and positive in integration. The latter effect has a natural
interpretation as price-pressure from rebalancing:3 when one asset gains value,
its portfolio weight increases, spurring investors to sell it, to buy the other
asset. In equilibrium, rebalancing is impossible, and prices adjust by moving
together.

Negative correlation in segmentation arises from a more complex mecha-
nism: Price correlation is the sum of correlation between dividends and price-
dividend ratios and between the two price-dividend ratios (cf. (5.1) below). In
both segmentation and integration, as the price-consumption ratio increases
with that market’s share and the shares add to one, the two assets’ price-
consumption ratios must be negatively correlated. In segmentation, where
consumption and dividends coincide, this is the main determinant of return
correlation, while in integration it is compensated by rebalancing effects. Be-
cause our model documents a shift – and even reversal – in correlation from
the segmentation to the integration regime, it offers a rational explanation
of this phenomenon as the equilibrium response to the removal of investment
barriers.

Welfare implications are more forthright. Integration increases welfare for
investors in both markets, regardless of their share. At the same time, aggre-
gate wealth (i.e. the total value of both assets) also declines. The intuition is

2 It is trivial to obtain uncorrelated returns with power utility by considering two seg-
mented markets with independent Lucas trees. However, in such a model one market even-
tually overtakes the other, violating cointegration.

3 With logarithmic preferences, see the integrated market of Cochrane et al. [16] and
the partially integrated markets of Pavlova and Rigobon [38], Bhamra et al. [7]. For power
utility, see Martin [33].
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that, in segmentation, each asset has a domestic monopoly on consumption –
in apple country, owning apple trees is the only way to eat. But in a country
with apples and oranges (assumed to be perfect substitutes in this metaphor)
one can buy both fruits, neither of them is a perfect consumption hedge, and
consumption – a mixture of both – is overall less volatile over time.

Unanticipated, exogenous integration increases welfare for both markets,
but it also changes the share of wealth that original investors own in the inte-
grated market. Wealth shares implied by exogenous integration are weighted
averages of the current and the long-term dividend shares, as prices reflect the
reversion of future dividend shares to their means.

Endogenous integration, which would require the agreement of both in-
vestors while allowing for one-off transfers, needs to ensure that neither party
is worse off. We determine the range of post-integration shares of wealth that
are acceptable to both investors: In normal times (when consumption shares
are close to their long-term means) the integration range is a narrow interval
around the exogenous integration point. In times of stress, when one consump-
tion share is abnormally low (hence the other is abnormally high), the interval
widens for both investors, but especially for the one in distress, who is com-
pelled to accept integration even for a wealth-share well below its exogenous
level.

The rest of the article is organized as follows. Section 2 discusses in detail
the relation of the paper with the literature. Section 3 describes the model, its
main assumptions, and defines segmented and integrated equilibria. Section 4
states the main results: asset price dynamics, their correlation, and implied
welfare in both regimes. Section 5 discusses the implications of market inte-
gration for price levels, excess returns, interest rates, correlation, and welfare,
as well as the sharing ranges for endogenous integration. Section 6 discusses
the effect of heterogenous preferences. Concluding remarks are in section 7.
All proofs are in the Appendix.

2 Literature review

The results in this paper are related to several strands of literature. Our model
of an integrated market is closest to the one of Menzly et al. [35]: assuming
that consumption is a geometric Brownian motion and dividend shares fol-
low multivariate mean-reverting process, they find linear approximations for
asset prices in terms of dividend shares under logarithmic preferences with
external habit. Santos and Veronesi [39, 40] obtain exact linear prices with
power utility, at the cost of introducing predictability in consumption growth.
Employing a novel volatility specification in the class of polynomial diffusions
(Filipović and Larsson [23], Filipović et al. [25], Filipović and Larsson [24]), we
combine exact linear prices for power utility with geometric Brownian motion
for consumption.

Our results contribute to the literature on the financialization of commod-
ity prices. Tang and Xiong [46] link the increase in both commodity prices
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and their correlation with equities to the entry of institutional investors in the
market. Such effects, along with significant increase in volatility, alarmed regu-
lators and policy makers in several countries [34, 10]. Yet, as the financial crisis
has receded, so has some of this evidence [8], and the financialization debate
remains mired in controversy (see Carmona [12] for a recent survey), as em-
pirical observations attract competing interpretations – partly for the dearth
of theoretical models that examine the implications of such explanations.

In an iterative equilibrium, where investors use recent price behavior to
update their policies, Chan et al. [14] find that feedback effects on prices in-
crease correlations. Likewise, Cont and Wagalath [17] observe an increase in
correlations from price pressure in a model where institutional investors rebal-
ance their portfolios subject to price impact. Basak and Pavlova [5] present a
model in which the benchmarking incentives faced by institutional investors
generate both higher prices and higher correlation. Yet, as they note, “The
often-quoted intuition for this increase is that commodity futures markets were
largely segmented before the inflow of institutional investors in the mid-2000s,
and that institutions entering these markets have linked them together, as well
as with the stock market, through the cross-holdings in their portfolios.” This
paper brings this oft-quoted intuition to life in a general equilibrium model,
and examines its wider implications for asset dynamics and welfare. Consis-
tent with intuition, our model shows that market integration does reproduce
a substantial increase in correlation. Furthermore, it predicts that prices do
not necessarily increase with integration, and in fact they may fall, depending
on the circumstances of integration.

Our specification is related to the volatility-stabilized model of Banner
et al. [3], Fernholz and Karatzas [22], Pal [37], and Cuchiero [18], who study
models in which asset prices (without dividends) aggregate to a geometric
Brownian motion, and characterize their no-arbitrage properties. By contrast,
we posit similar diffusions as models of dividends, and exploit their aggregation
properties to derive equilibrium prices that are arbitrage-free by construction,
in view of the strictly positive stochastic discount factor implied by the equi-
librium.

More broadly, our integrated market can be interpreted as a Lucas’ orchard
[33] with two trees, as in Cochrane et al. [16], Bhamra et al. [7], Buraschi
et al. [11], and Chabakauri [13]. Hansen [29] solves numerically a model with
two agents and different beliefs, showing that a large number of trees helps
explaining empirical evidence on asset price dynamics. In contrast to these
studies, our trees are cointegrated, in that the ratio of their outputs remains
stationary. While Cochrane et al. [16] find that price-dividend ratios involve
hypergeometric functions in the integrated market, in our model such functions
arise in the segmentation regime, where consumption growth has a stationary
component (with the exception of logarithmic preferences, for which price-
dividend ratios remain constant).

In the international asset pricing literature, our model is closest to that of
Pavlova and Rigobon [38], who also specify two countries with respective goods
and representative investors. The main differences from their model are that,
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while we compare the segmentation and integration regimes, their agents trade
through some endogenous exchange rate. Also, while they focus on a linear
combination of logarithmic preferences across domestic and foreign goods, we
assume that goods are perfect substitutes, but allow for power utility.

The representative investor of Dumas [19] shares our investors’ preferences,
but has a perfectly elastic asset supply through a linear technology, while trad-
ing incurs proportional costs. Bhamra et al. [7] represent imperfect integration
as a tax on foreign dividends while keeping the logarithmic preferences and
dividend dynamics of Cochrane et al. [16]. As in these previous studies, our
integrated stock prices display “excess correlation” in the sense of Dumas et al.
[20], i.e., higher than output correlation. In addition, we show that such cor-
relation is a product of integration because we find that in the segmentation
regime it is negative. As this latter effect arises from correlation in the price-
dividend ratios, it is not visible in models with logarithmic preferences, which
imply constant price-dividend ratios.

3 Model

3.1 Market

Two similar trees grow in separate islands with similar people, and each tree
feeds its island. Their crops fluctuate independently, but have similar long-
term growth. Crops are perishable – must be consumed immediately – and
trees are the only property on the islands. With a bridge, people on both
islands could share property (trees) and consumption (crops). Should they
build such a bridge?

The island-tree metaphor has multiple interpretations: Certain countries
(islands) compel their citizens to own only local securities (trees). Regulation
prevents some industries (islands) from holding investments (trees) in other
sectors. In each of these situations, a central policy question is how integration
– enabling cross-ownership – affects asset prices and welfare.

Adopting a more conventional terminology, henceforth we refer to an island
as a “region”, to a tree as an “asset”, and to its crop as a “dividend stream”.

The model begins with the dynamics of the dividend streams (D
(1)
t , D

(2)
t )t≥0,

described by their sum Dt = D
(1)
t + D

(2)
t and by the dividend share Xt =

D
(1)
t /Dt, the proportion of dividends produced in the first region:

dDt =µDtdt+ σDtdB
D
t (3.1)

dXt =κ(w1 −Xt)dt+ σ
√
Xt(1−Xt)dB

X
t (3.2)

where µ, σ > 0, w1 ∈ (0, 1), and BD, BX are independent Brownian motions
supported on the probability space (Ω,F , P ) endowed with the augmentation
(Ft)t≥0 of their natural filtration. Set w2 = 1− w1.

Equation (3.1) means that aggregate dividends’ growth has constant mean
µ and volatility σ. This specification stems from the observation that dividend
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growth, while fluctuating over time, has remained positive on average over the
past century, while the independence of increments reflects the unpredictability
of dividend growth [15]. Equation (3.2) stipulates that the first region’s share
of total dividends fluctuates around its long-term mean w1. The independence
of the Brownian motions (BDt )t≥0, driving aggregate dividends, and (BXt )t≥0,
driving the dividend share in the first market, is equivalent to the independence
of dividend shocks, as shown by Proposition 3.2 below. This assumption, in
turn, is made to isolate the price dependence that arises endogenously from
agents’ strategic behavior from any exogenous dependence among dividend
shocks. Put differently, we can safely ascribe any price dependence to the
endogenous demand for risky assets rather than to some exogenous correlation
among dividend shocks, which is indeed absent.4

Neither dividend ever vanishes under the following5

Assumption 3.1 The parameters κ, σ, and w1 satisfy

σ2

2κ
≤ w1 ≤ 1− σ2

2κ
.

The above restriction is typically mild. For example, σ = 1.5% and κ = 6%,
used in the discussion below (cf. Figure 5.1), imply that w1 ∈ (4.5%, 95.5%),
whereby, on average, one region should not overwhelm the other by more than
twenty-two to one. (In particular, the above restriction implies that κ near
zero is not a meaningful limit for the model.)

The specification in (3.1)-(3.2) implies the joint dynamics of separate div-
idend streams.

Proposition 3.2 The dividend D(1), D(2) follow the bivariate diffusion:

dD
(1)
t =

(
(µ− κw2)D

(1)
t + κw1D

(2)
t

)
dt+ σ

√
D

(1)
t

(
D

(1)
t +D

(2)
t

)
dB

(1)
t

(3.3)

dD
(2)
t =

(
κw2D

(1)
t + (µ− κw1)D

(2)
t

)
dt+ σ

√
D

(2)
t

(
D

(1)
t +D

(2)
t

)
dB

(2)
t

where the Brownian motions B(1), B(2) are defined as

dB
(1)
t =

√
D

(1)
t

Dt
dBDt +

√
D

(2)
t

Dt
dBXt , dB

(2)
t =

√
D

(2)
t

Dt
dBDt −

√
D

(1)
t

Dt
dBXt ,

and therefore are independent.

4 This assumption is also a reasonable approximation to the statistical properties of div-
idends across large economic areas. For example, in the period 1991-2018, the correlation
among dividend growth between large-capitalization stocks in the United States, Europe,
and Japan, were 0.25 (US-EU), -0.07 (US-JP), and -0.11 (EU-JP), as estimated from the
annual dividends paid by the index funds VFINX, VEUREX, and VPACX, which track
their respective markets.

5 Under Assumption 3.1, the process X exists globally and never reaches zero or one, i.e.,
P (Xt ∈ (0, 1) ∀t ≥ 0) = 1. See, for example, Borodin and Salminen [9, No. 6, Chapter II.1]
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The independence of B(1) and B(2) means that the dividend streams have
uncorrelated fluctuations, thereby offering a natural model of two regions af-
fected by unrelated risks. (Note that such independence is not an additional
assumption, but stems from – and is equivalent to – the independence of fluc-
tuations in their sum and share, posited in (3.1)-(3.2).) To see how dividend
growth depends on assets’ relative sizes, rewrite (3.3) as

dD
(1)
t

D
(1)
t

=

(
µ− κw2 + κw1

D
(2)
t

D
(1)
t

)
dt+ σ

√√√√1 +
D

(2)
t

D
(1)
t

dB
(1)
t , (3.4)

which shows that both growth rate and volatility are higher for the asset with
smaller dividends.

3.2 Preferences and equilibrium

In both regions, asset owners are infinitely-lived representative agents with
equal preferences. Each of them seeks to maximize time-additive utility from
consumption, with a time-preference rate β > 0 and a constant relative risk
aversion γ > 0.6

The asset pricing and welfare implications follow from the familiar premises
of optimality and market clearing for consumption and investment, which un-
derpin the definition of equilibrium, both in segmentation and in integration.

Definition 3.3 Equilibria in segmentation and integration are defined as:

(i) Segmentation

A segmented equilibrium for region i = 1, 2 is a pair (r
(i)
t , P

(i)
t )t≥0, where

(r
(i)
t )t≥0 is adapted with

∫ T
0
r
(i)
t dt < ∞ a.s. for all T > 0, (P

(i)
t )t≥0 is

a continuous semimartingale, and the optimal consumption-investment
problem (the set of admissible strategies A is defined in Appendix A.1)

max
(c,φ)∈A

E
[∫ ∞

0

e−βs
c1−γs

1− γ
ds

]
, (3.5)

with safe rate r(i) and asset price P (i), hence with wealth (Yt)t≥0 satis-
fying the budget equation

dYt = r
(i)
t (Yt−φtP (i)

t )dt+φt

(
dP

(i)
t +D

(i)
t dt

)
− ctdt Y0 = P

(i)
0 , (3.6)

is well-posed and has solution ct = D
(i)
t and φt = 1 for all t ≥ 0 (the

market-clearing conditions for assets and consumption).

6 The case γ = 1 corresponds to logarithmic utility, which leads to simpler but slightly
different calculations, for brevity not included here.
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(ii) Integration

An integrated equilibrium is a triplet of processes (r̄t, P̄
(1)
t , P̄

(2)
t )t≥0,

where (r̄
(i)
t )t≥0 is adapted with

∫ T
0
r
(i)
t dt <∞ a.s. for all T > 0, (P̄

(i)
t )t≥0

are continuous semimartingales, and the optimal consumption-investment
problem7 (3.5) with safe rate r̄ and asset prices P̄ (1), P̄ (2), hence with
wealth process (Yt)t≥0 satisfying

dYt =r̄t

(
Yt − φ(1)t P̄

(1)
t − φ(2)t P̄

(2)
t

)
dt+

φ
(1)
t

(
dP̄

(1)
t +D

(1)
t dt

)
+ φ

(2)
t

(
dP̄

(2)
t +D

(2)
t dt

)
− ctdt

Y0 =P
(1)
0 + P

(2)
0 , (3.7)

is well-posed and solved by ct = D
(1)
t +D

(2)
t , φ

(1)
t = φ

(2)
t = 1 for all t ≥ 0.

In particular, the above definition treats the goods of both markets as
perfect substitutes in the integration regime, which implies a unit exchange
rate. By contrast, in the segmentation regime the exchange rate is nontrivial,
because a unit of the foreign good cannot be consumed domestically. In this
case, the exchange rate reflects precisely the shadow price of the constraint
that each market consume its own good. Accordingly, the foreign good becomes
expensive precisely when it would be most needed, as discussed in Section 5.5
below.

3.3 Lucas’ Tree

To set the stage for the main results, it is helpful to recall the continuous-time
version of the familiar asset pricing model of Lucas Jr [32], with a represen-
tative agent maximizing (3.5) and a dividend stream following the geometric
Brownian motion (3.1). The corresponding price-dividend ratio Pt/Dt and
interest rate r0 are constant:

Pt
Dt

=
1

r0 − µ+ γσ2
(3.8)

r0 =β + γµ− σ2

2
γ(γ + 1). (3.9)

By the second equation, the interest rate increases with time preference and
dividend growth, which reduces savings, and decreases with dividend volatility,
which encourages precautionary savings. The first equation adjusts for risk the
familiar dividend-discount model of Gordon and Shapiro [28].

The present model retains two attractive features of Lucas’ model: station-
ary price-dividend ratios and interest rates, and stationary dividend growth
rates. In fact, market integration leads to the same interest rate (3.9) as Lucas’,

7 Here the maximization takes place on c ∈ C and φ = (φ(1), φ(2)) ∈ P, as the integrated
market includes two assets. See Appendix A.1 for details.
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and the price-dividend ratio of the aggregate asset with price P̄t = P̄
(1)
t + P̄

(2)
t ,

paying the total dividend Dt = D
(1)
t + D

(2)
t , coincides with the value in the

right-hands side of (3.8). The problem is to identify separately the two asset

prices P̄
(1)
t , P̄

(2)
t in integration, and to compare them with their counterparts

P
(1)
t , P

(2)
t in segmentation.

In addition, note that Lucas’ model is well posed if and only if the asset
price in (3.8) is finite, which corresponds to the following:

Assumption 3.4 The parameters µ, σ, γ, β > 0 satisfy the condition:

θ := r0 − µ+ γσ2 = β − (1− γ)µ+ γ(1− γ)
σ2

2
> 0.

This condition prescribes that preference and market parameters are such that,
as the horizon increases, the discounted value of dividends declines sufficiently
quickly, so that their accumulated value converges. It excludes combinations
of preference and market parameters that would make it optimal to postpone
consumption indefinitely, in the anticipation of ever higher future satisfaction.

4 Main results

This section summarizes the main results: first in segmentation and then in
integration, we find explicit formulae for (i) asset prices, their expected excess
returns, and safe rates, (ii) their corresponding welfares, and (iii) the instanta-
neous correlation of asset prices. Such quantities are most complex in segmen-
tation, as the corresponding consumption processes and hence the stochastic
discount factors have stochastic growth and volatility. In integration, instead,
asset prices are linear in dividends, while welfare is homogeneous.

4.1 Segmentation

When the domestic investor owns and consumes only domestic dividends, each
region has its own asset price, safe rate, and welfare. The next theorem ex-
presses all these quantities in terms of two scalar functions f (1), f (2), which are
found explicitly in Proposition A.3 in the appendix, in terms of (generalized)
hypergeometric functions.

Theorem 4.1 (Segmentation) Let dividends (D(i))i=1,2 be as in Proposi-
tion 3.2 and let Assumptions 3.1 and 3.4 hold. Define

f (1)(x) := E

 ∞∫
0

e−θsX1−γ
s ds

∣∣∣∣∣X0 = x

 , (4.1)

f (2)(x) := E

 ∞∫
0

e−θs(1−Xs)
1−γds

∣∣∣∣∣X0 = x

 ,
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and assume that f (1)(x), f (2)(x) <∞ for all x ∈ (0, 1). (Assumption 4.2 below
clarifies when this condition is satisfied.) Then,

(i) segmentation equilibrium asset prices and safe rates (P (i), r(i))i=1,2 are

P
(1)
t = D

(1)
t Xγ−1

t f (1)(Xt),

P
(2)
t = D

(2)
t (1−Xt)

γ−1f (2)(Xt), (4.2)

r
(1)
t = β + γ(µ− κ) +

1

Xt

(
γκw1 −

γ(γ + 1)σ2

2

)
, (4.3)

r
(2)
t = β + γ(µ− κ) +

1

1−Xt

(
γκw2 −

γ(γ + 1)σ2

2

)
. (4.4)

(ii) segmentation welfares are

U (i)
t = Et

∫ ∞
t

e−β(s−t)

(
D

(i)
s

)1−γ
1− γ

ds

 =
D1−γ
t

1− γ
f (i)(Xt), i = 1, 2.

where Et[·] denotes the conditional expectation with respect to Ft.
(iii) segmentation correlation, defined as

ρt :=

d〈P (1),P (2)〉
t

dt√
d〈P (1)〉

t

dt

√
d〈P (2)〉

t

dt

, (4.5)

equals

ρt =

√
Xt(1−Xt)√

Xt

(
f (1)(Xt)

)2
+
(
h(1)(Xt)

)2
(1−Xt)

· f (1)(Xt)f
(2)(Xt) + h(1)(Xt)h

(2)(Xt)√
(1−Xt)

(
f (2)(Xt)

)2
+
(
h(2)(Xt)

)2
Xt

, where

h(1)(x) := γf (1)(x)+xf (1)′(x) and h(2)(x) := −γf (2)(x)+(1−x)f (2)′(x).
(iv) the assets’ expected excess returns are

µ
(1)
t − r

(1)
t = µ− r̄ + γ2σ2 1−Xt

Xt
+ κ (w −Xt)

(
f (1)

)′
(Xt)

f (1)(Xt)

+
σ2

2
(1−Xt)

(
2γ

(
f (1)

)′
(Xt)

f (1)(Xt)
+Xt

(
f (1)

)′′
(Xt)

f (1)(Xt)

)
+

1

Xγ−1
t f (1)(Xt)

,

µ
(2)
t − r

(2)
t = µ− r̄ + γ2σ2 Xt

1−Xt
+ κ (w −Xt)

(
f (2)

)′
(Xt)

f (2)(Xt)

+
σ2

2
Xt

(
−2γ

(
f (2)

)′
(Xt)

f (2)(Xt)
+ (1−Xt)

(
f (2)

)′′
(Xt)

f (2)(Xt)

)
+

1

(1−Xt)γ−1f (2)(Xt)
.
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Finding the functions f (1), f (2) that identify the segmentation equilibria is
important both for computation and to understand when such functions are
finite, i.e. the problem is well posed. In fact, such a condition holds under a
parameter restriction that has no analogue in the Lucas’ model (and in the
integrated market).

Assumption 4.2 (Well-posedness) The values 2κw1

σ2 , 2κw2

σ2 are not integers.
In addition,

γ < 1 +
2κ

σ2
min{w1, w2}. (4.6)

The exclusion of integer values for 2κw1

σ2 and 2κw2

σ2 is merely technical: as it is
satisfied up to arbitrarily small perturbations of any parameter, it does not
have a distinct economic meaning. The inequality in (4.6) specifically requires
that risk aversion is not too high relative to growth, volatility, and market
size, and holds for typical risk aversions. For example, with the combination
µ = 1.5%, σ = 6%, w1 = 2/3 in Figure 5.1, the restriction becomes γ < 8.4.

To interpret this condition, note first that it is always satisfied for γ ≤ 1,
regardless of dividend dynamics and relative size, as for such investors the util-
ity U(x) = x1−γ/(1− γ) of future dividends is always finite, and Assumption
3.4 guarantees that also its discounted value is finite. By contrast, for γ > 1
the marginal utility from states in which dividends are very low (Xt near 0 for
region 1 or Xt near 1 for region 2) can be so large that the resulting asset price
is infinite (an extra unit of consumption would lead to an unbounded increase
in expected utility) and the resulting expected utility is infinitely negative –
the specified dividend stream is unacceptable.

4.2 Integration

With market integration, each investor can own and consume both the domes-
tic and the foreign asset. As both investors have the same preferences, they
make the same choices in proportion to their respective wealth. How such
wealth is shared at the time of integration depends on whether the integration
occurs exogenously or endogenously. Exogenous integration takes place sud-
denly, and agents exchange their holdings according to their post-integration
prices to form the optimal portfolios in both assets. Thus, the share of post-
integration wealth of each agent equals the post-integration value of the do-
mestic asset relative to total market capitalization. Vice versa, endogenous
integration entails the consent of both participants, hence the negotiation of
respective shares of post-integration wealth within a range that is compati-
ble with a welfare gain for both parties. After relative shares are determined
at time of integration, both agents effectively represent different fractions of a
grand representative agent who consumes both dividend streams. Accordingly,
the unique stochastic discount factor depends on overall consumption, i.e., the
sum of dividends.
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Theorem 4.3 (Integration) Let dividends (D(i))i=1,2 be as in Proposition
3.2 and let Assumptions 3.1 and 3.4 hold. Then,

(i) integration asset prices and their safe rate are

P̄
(1)
t =

1

θ

(
θ + κw1

θ + κ
D

(1)
t +

κw1

θ + κ
D

(2)
t

)
(4.7)

P̄
(2)
t =

1

θ

(
κw2

θ + κ
D

(1)
t +

θ + κw2

θ + κ
D

(2)
t

)
(4.8)

rt =r̄ :=β + γµ− γ(γ + 1)
σ2

2
.

(ii) denoting by k1, k2 > 0 the initial shares of ownership of the (risky) asset
of the two agents (so that k1 + k2 = 1), integration welfares are

Ū (i)
t := Et

[∫ ∞
t

e−β(s−t)
(kiDs)

1−γ

1− γ
ds

]
= k1−γi

D1−γ
t

(1− γ)

1

θ
, i = 1, 2.

If integration is exogenous, the shares ki, i = 1, 2 are

k1 =
P̄

(1)
t

P̄
(1)
t + P̄

(2)
t

=
θ

θ + κ
Xt+

κ

θ + κ
w1 and k2 =

θ

θ + κ
(1−Xt)+

κ

θ + κ
w2

(iii) integration correlation, defined as ρ̄t :=
d〈P̄ (1),P̄ (2)〉

t
dt√

d〈P̄ (1)〉
t

dt

√
d〈P̄ (2)〉

t
dt

, equals

ρ̄t =
b1b2 + a0 (b1(1−Xt) + b2Xt)√

b21 + a0 (a0 + b1)Xt

√
b22 + a0 (a0 + b2) (1−Xt)

,

where a0 := 1
θ+κ , bi := κwi

θ(θ+κ) , for i = 1, 2.

(iv) the expected excess return of both assets is µ̄
(i)
t − r̄ = γσ2.

Note that in integration the safe rate is the same in both regions, as a
common stochastic discount factor governs both markets. In fact, the price of
the basket comprising both assets follows the usual risk-adjusted formula of
Gordon and Shapiro [28]

P
(1)
t + P

(2)
t =

1

θ

(
D

(1)
t +D

(2)
t

)
=

1

r̄ − µ+ γσ2

(
D

(1)
t +D

(2)
t

)
, (4.9)

confirming that the total consumption claim is priced as in the usual Lucas’
model.

5 Implications

This section brings to life the theoretical results of the previous sections by
discussing their significance for asset prices, their dynamics, and welfare.
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Fig. 5.1 Left: Price to aggregate consumption ratios (vertical) of the larger (red) and
smaller (blue) asset, against dividend share of the larger asset Xt (horizontal), in segmen-

tation (dashed) and integration (solid). (P
(1)
t /Dt (dashed red), P

(2)
t /Dt (dashed blue),

P̄
(1)
t /Dt (solid red), P̄

(2)
t /Dt (solid blue).) Right: total market capitalization, i.e., sum of as-

set prices (vertical) against dividend proportionXt (horizontal) in segmentation (P
(1)
t +P

(2)
t ,

dashed) and integration (P̄
(1)
t +P̄

(2)
t , solid). Vertical dotted lines delimit the 99% confidence

interval of Xt for large t. Parameters are µ = 1.5%, σ = 6%, β = 1%, w1 = 2/3, γ = 3,
κ = 4%, whence Assumptions 3.1, 3.4, and 4.2 hold.

5.1 Price levels

The intuitive effect of integration on price levels is ambivalent: On one hand,
integration allows foreign investors to buy the domestic asset, increasing its
demand and hence its price. On the other hand, integration also allows do-
mestic investors to buy the foreign asset, thereby selling the domestic asset,
hence decreasing its price. The overall effect is unclear.

Figure 5.1 plots the prices of both assets (per unit of aggregate consump-
tion), as a function of the dividend share of the first asset, in segmentation and
integration. Note that, in integration, the sum of both prices is constant (prices
are symmetric with respect to the horizontal line through their intersection),
confirming the validity of Lucas’ formula for the aggregate asset.

Three features are apparent: First, price-consumption ratios increase with
an asset’s dividend share, reflecting the increased value of dividends from that
asset. Second, price sensitivity to the dividend share is higher in segmentation
and lower in integration for typical dividend shares (i.e., in the long-term
confidence interval). Third, for a given current dividend share, the region with
smaller long-term share has higher sensitivity. These three features share a
common theme: the price of an asset increases as its alternatives dwindle.

This theme is apparent also in the effect of integration on price levels:
As each solid curve is neither consistently below nor above the dashed curve
with the same color, integration may either increase or decrease asset prices.
An asset price increases only if integration takes place when its weight is
relatively low, and therefore additional foreign demand overwhelms diminished
domestic demand. Otherwise, integration typically decreases the prices of both
assets – an effect that cannot be explained by the zero-sum logic of flows. In
fact, the right panel in Figure 5.1 shows that integration reduces total market
capitalization, regardless of the dividend share.
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Fig. 5.2 Left: Price-dividend ratios (vertical) of the larger (red) and smaller (blue) asset,
against dividend share of the larger asset Xt (horizontal), in segmentation (dashed) and

integration (solid). (P
(1)
t /D

(1)
t (dashed red), P

(2)
t /D

(2)
t (dashed blue), P̄

(1)
t /D

(1)
t (solid

red), P̄
(2)
t /D

(2)
t (solid blue).) Right: Average price-dividend ratios (vertical) against average

dividend share w1 of the first asset. Parameters as in Figure 5.1.

Integration depresses prices because it breaks the link between domestic
dividends and future consumption growth, making each asset both less effective
and less important as a consumption hedge. To see this mechanism, note that,
in segmentation, consumption growth is mean-reverting, thus a high current
consumption share is likely to be followed by lower consumption, which in
turn generates demand for stocks in the attempt to smooth consumption over
time, leading to higher stock prices. In integration, on the other hand, shocks
to consumption growth are smaller and unforecastable, two characteristics that
reduce the demand for stocks from the consumption-smoothing motive.

5.1.1 Price-dividend ratios

While the ratio of prices to total consumption helps to compare assets’ prices,
the price-dividend ratio gauges an asset’s value relative to its own cash-flow.
The left panel in Figure 5.2 displays price-dividend ratios, conditional on the
dividend share of the first asset.

In segmentation, an asset becomes more expensive as its dividend share
increases: this is an intertemporal-hedging effect, as a high current share fore-
casts a lower future share (by mean-reversion), which in turn spurs hedging
against lower dividends through stock purchases, thereby increasing prices. In
integration, an asset becomes cheaper as its dividend share increases because
mean-reversion triggers a different response: as investors anticipate lower div-
idend growth, they shift their portfolios away from the asset, depressing its
price while raising the other asset’s prices.

An alternative explanation is based on the stochastic discount factor. In
segmentation, each market has its separate discount factor, which determines
prices through the ratio of future to present marginal utility. When the current
dividend share is high, its marginal utility is low, hence future dividends are
discounted at a low rate, leading to high prices. Crucially, for the typical val-
ues of risk aversion above one (which generate positive intertemporal hedging
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demand), this effect is so strong that not only prices, but even price-dividend
ratios increase.

In integration, the discount factor depends on total dividends, which follow
a geometric Brownian motion and lead to a constant aggregate price-dividend
ratio (i.e., the sum of both asset prices divided by the sum of both dividends) as
in the Lucas’ model. Thus, the price-dividend ratio depends on the dividend
share only through expected future dividends, which themselves reflect the
mean-reversion in the dividend share, thereby leading, in integration, to a
price-dividend ratio that decreases as the dividend share increases.

Consider now the average price-dividend ratios, defined as

lim
T→∞

E

[
P

(i)
T

D
(i)
T

]
and lim

T→∞
E

[
P̄

(i)
T

D
(i)
T

]
i = 1, 2

as functions of the average dividend share w1. To compute such long-term
averages, by the ergodicity of the divided share Xt it suffices to compute the
average of the conditional price-dividend ratio with respect to the long-term
(stationary) distribution of Xt, described by the Beta density

m(x) =
1

B(a+ b− c1 + 1, c1)
xc1−1(1− x)a+b−c1 ,

where a, b and c1 are as in Proposition A.3 below and B is the beta function.
The explicit formulae for conditional asset prices in Theorem 4.3 yield the
average price-dividend ratios:

Proposition 5.1 Let the dividends (D(i))i=1,2 be as in Proposition 3.2 and
let Assumptions 3.1, 3.4, and 4.2 hold. In segmentation, the average price-
dividend ratios are:

lim
t→∞

E

[
P

(i)
t

D
(i)
t

]
=

2

σ2ω(i)B(a+ b− ci + 1, ci)

(
Γ

(i)
1

G
(i)
1 (1)

ci + 1− γ
G

(i)
3 (1)

ci + γ − 1

+Γ
(i)
2

∫ 1

0

xciF
(i)
3 (x)

(
G

(i)
1 (x)

ci + 1− γ
+

G
(i)
3 (x)

ci + γ − 1

)
dx

)
,

where

F
(i)
3 (x) :=2F1(1− b, 1− a; 2− ci;x),

G
(i)
1 (x) :=3F2(ci − a, ci − b, 1 + ci − γ; ci, ci + 2− γ;x),

G
(i)
3 (x) :=3F2(ci − a, ci − b,−1 + ci + γ; ci, ci + γ;x),

while the generalized hypergeometric functions 2F1 and 3F2 and constants a,

b, ci, ω
(i), and Γ

(i)
j are as in Proposition A.3.

In integration, the average price-dividend ratios are

lim
t→∞

E

[
P̄

(i)
t

D
(i)
t

]
=

1

θ + κ

(
1 +

κwi
θ

(
2 κ
σ2 − 1

2κwiσ2 − 1

))
.
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These quantities are plotted in the right panel of Figure 5.2: consistent with
Figure 5.1, the plot shows how integration on average decreases asset prices,
especially in the smaller market. In addition, the plot shows that in integration
average price-dividend ratios are rather insensitive to relative market size,
while such sensitivity is significant in segmentation.

By comparison, with logarithmic investors (γ = 1), who are myopic and
hence do not hedge investment opportunities, Equations (4.9) and (4.1)–(4.2)
imply that price-dividend ratios are 1/β (hence independent of w1) in both
integration and segmentation, confirming that the sensitivity to w1 stems from
the motive of non-myopic investors to hedge against intertemporal changes in
consumption growth.

5.2 Correlation

Although dividend streams in the two regions are uncorrelated by assumption,
the resulting price correlation in segmentation and integration is far from
granted, because the stochastic discount factor also depends on such dividends.
To understand price correlations, note first that they are the same as return
correlations:

ρt :=

d〈P (1),P (2)〉
t

dt√
d〈P (1)〉

t

dt

√
d〈P (2)〉

t

dt

=

d〈P (1),P (2)〉
t

P
(1)
t P

(2)
t dt√

d〈P (1)〉
t

(P
(1)
t )2dt

√
d〈P (2)〉

t

(P
(1)
t P

(2)
t )2dt

=

d〈R(1),R(2)〉
t

dt√
d〈R(1)〉

t

dt

√
d〈R(2)〉

t

dt

,

where the total-return processesR
(i)
t are defined by dR

(i)
t = (D

(i)
t dt+dP

(i)
t )/P

(i)
t

and R
(i)
0 = 0.

Next, note that

dR
(i)
t =

D
(i)
t dt+ dP

(i)
t

P
(i)
t

=
D

(i)
t

P
(i)
t

dt+
dD

(i)
t

D
(i)
t

+
d(P

(i)
t /D

(i)
t )

P
(i)
t /D

(i)
t

+
d〈D(i), P (i)/D(i)〉t
D

(i)
t (P

(i)
t /D

(i)
t )

.

Now, as each price equals the dividend times the price-dividend ratio, and div-
idends are uncorrelated, price covariation in the model stems from covariation
between (i) dividends and price-dividend ratios, and (ii) the two price-dividend
ratios:

d〈R(1), R(2)〉t =

d〈P (1)/D(1), D(2)〉t(
P

(1)
t /D

(1)
t

)
D

(2)
t

+
d〈P (2)/D(2), D(1)〉t(
P

(2)
t /D

(2)
t

)
D

(1)
t

+
d〈P (1)/D(1), P (2)/D(2)〉t(
P

(1)
t /D(1)

)(
P

(2)
t /D

(2)
t

)
(5.1)
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Fig. 5.3 Left: Price correlation in segmentation (ρt, dashed) and integration (ρt, solid)
against dividend share Xt. The thin upper line shows correlation in integration for loga-
rithmic utility (γ = 1) while correlation is identically zero in segmentation for logarithmic
utility. Right: decomposition of correlation in segmentation (dashed) and integration (solid),
against dividend share Xt, as in Equation (5.1). The curves represent correlations between
growths in one region and price-dividend ratio in the other (red and green), and between
the two price-dividend ratios The vertical dotted lines delimit the 99% confidence interval
of Xt for large t. Parameters as in Figure 5.1.

The left panel of Figure 5.3 displays price correlation in segmentation and
integration, and the right-panel decomposes such correlation into its three
components. The last term (blue in the right panel) represents correlation
between price-dividend ratios, which is negative in segmentation, and even
more so in integration, consistently with the observation that, in Figure 5.2,
price-dividend ratios of the two assets move in opposite directions.

By contrast, the first two terms – the covariation between an asset’s div-
idend and the other asset’s price-dividend ratio – have a sharply different
behavior in the two regimes. In segmentation, these terms are also negative,
as an asset’s dividend growth shrinks the other asset’s price-dividend ratio (as
in Figure 5.2).

Integration turns the tables completely, leading to a dramatic increase
in correlation, driven by the positive covariation between dividends in one
region and price-dividend ratio in another. Such a positive dependence is clear
from the pricing formulae (4.7)-(4.8), but has also a clear interpretation: in
an integrated market, as an asset’s dividend increases, also its price increases,
and hence its proportion in the portfolio. The investor responds by increasing
the demand for the other asset, attempting to rebalance the portfolio. But in
equilibrium rebalancing cannot take place, and instead the price of the other
asset rises.

5.3 Interest rates and excess returns

To understand the properties of interest rates and excess returns in the model,
note first that in integration the safe rate is constant because aggregate con-
sumption is a geometric Brownian motion, and therefore the stochastic dis-
count factor has the same dynamics as in the Lucas’ model.
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Fig. 5.4 Safe rate (left, vertical), and expected excess return (right, vertical) of the first
(red) and second (blue) market, against dividend share Xt (horizontal), in segmentation
(dashed) and integration (solid). Vertical dotted lines delimit the 99% confidence interval

of Xt for large t. Parameters as in Figure 5.1. (Left: r
(1)
t (dashed red), r

(2)
t (dashed blue),

r̄t (solid purple); Right: µ
(1)
t − r(1)t (dashed red), µ

(2)
t − r(1)t (dashed blue), µ̄

(1)
t − r̄t (solid

red), µ̄
(2)
t − r̄t (solid blue).)

The left panel of Figure 5.4 compares the common safe rate in integration
with the two safe rates in segmentation. In each segmented market, the safe
rate decreases as the market’s dividend share increases. This effect is consistent
with the increase in asset prices noted earlier, because a decrease in the interest
rate is equivalent to an increase in bond prices.

Yet, the interest rate formulae in Theorem 4.1 show that this directional
effect in general depends on the parameter values, and results from the tradeoff
between two countervailing forces: on one hand, a higher dividend share implies
lower future growth, thereby lowering the interest rate through the intertem-
poral substitution channel (Equations (4.3) and (4.4)). On the other hand, a
higher dividend share also implies a lower consumption volatility (Equation
(3.4)), which increases the interest rate by reducing the precautionary motive
for saving. In the example considered, intertemporal substitution is stronger
than precautionary savings, hence the interest rate declines.

Expected excess returns (right panel in Figure 5.4) have a qualitatively
similar behavior, as they are constant (and equal to each other) in integration
and decreasing with the dividend share in segmentation. It is noteworthy that
in integration both assets have the same expected excess return – a fact that
can be seen analytically from the explicit formulae for prices. As in Santos
and Veronesi [39, Equation 24], an asset has an expected return above the
market only if its dividend share covaries with the total consumption, while
here it is uncorrelated. Note, however, that equal expected excess returns do
not correspond to equal asset volatilities, which are higher when the dividend
share is lower by Equation (3.4), therefore the Sharpe ratios are stochastic and
different from each other.

The inverse relation between the dividend share and expected excess re-
turns in segmentation can also be seen from the stochastic discount factor
viewpoint. A low dividend share increases current marginal utility, thereby
depressing prices. As the dividend share rises, the price increases for two rea-
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Fig. 5.5 Left: Fraction of wealth that each agent would forego in segmentation in exchange
for integration (vertical), for the first (red) and second (blue) agent, against dividend share
Xt (horizontal) in segmentation (dashed) and integration (solid). As integration always
increases welfare, both curves are always positive. Right: Range of wealth shares k1 (vertical)
against the dividend share Xt (horizontal) compatible with voluntary integration. The solid
line represents the wealth share corresponding to exogenous integration. The horizontal
dotted line represents the long-term dividend share w1. Vertical dotted lines delimit the

99% confidence interval of Xt for large t. Parameters as in Figure 5.1 and Dt = 1. U(1)
t

(dashed red), U(2)
t (dashed blue), Ū(1)

t (solid red), Ū(2)
t (solid blue).

sons: first, the dividend has increased; second marginal utility has decreased,
boosting prices further.

5.4 Welfare and endogenous integration

The left panel in Figure 5.5 displays welfare in segmentation and integration
in terms of the fraction of wealth that each agent would forego in segmentation
in exchange for exogenous integration. As such fraction is always positive for
both agents, integration always increases welfare. The agent with a smaller
dividend share has more to gain from integration through diversification with
a larger, more stable consumption stream, therefore is also more willing to
integrate (the fraction of wealth foregone is higher, cf. Section 4.1).

Importantly, integration increases welfare even when it reduces wealth for
one, or even both, investors. The intuition is that the integrated market offers a
smoother consumption stream or, equivalently, superior diversification, which
more than offset any decrease in welfare resulting from lower wealth. Note
also that the welfare increase is more significant for the smaller (blue) mar-
ket, which benefits more than the larger market from increased diversification
opportunities.

Although this analysis finds that market integration is beneficial for both
investors, it assumes that it happens exogenously, with the investors surprised
by a sudden change in wealth, after which they reallocate their holdings by
exchanging them according to the new prices. By contrast, if each region can
independently choose to remain segmented, integration requires mutual con-
sent, which in turn may lead to a negotiation over the respective shares of
post-integration wealth.
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The right panel in Figure 5.5 shows the range of post-integration wealth
shares that are Pareto improving, and hence compatible with both regions
agreeing to integrate. The straight line, denoting the wealth shares implied by
exogenous integration, lies inside the integration region, as exogenous integra-
tion increases the welfare of both investors.

In normal times, when dividend shares are close to their long-term aver-
ages, the integration region is actually a rather narrow interval around the
exogenous integration share, wider for the smaller market than for the larger
one. The intuition is that, because the smaller market has the most to gain
from integration, it is also the one that is more willing to pay a higher price
to see that integration takes place.

In times of distress, when dividend shares are away from their means, the
integration range widens – in both directions. In other words, the range of
shares under which both markets are better off integrated is larger both for
the market that is abnormally small, and for the one that is abnormally large.
Deviations from the mean make both markets more willing to integrate for
different reasons: the abnormally small market faces the double whammy of
low and volatile consumption – both mitigated by integration. The abnormally
large market, on the other hand, has the incentive to integrate because its
future consumption is likely to worsen (by mean-reversion), potentially leading
to a similar predicament as the one in which the other market is now.

In summary, while in reality the exact shares of post-integration wealth
may depend on the bargaining power of the two regions, on the irreversibility
of integration, and on other aspects that are not in the present model, the
Pareto optimality discussed here suggests that integration may be easier to
achieve in times of dislocation from the long-term averages.

5.5 Exchange rates

While in the integration regime each unit of dividend can be consumed inter-
changeably by both agents, the segmentation regime can be described, equiv-
alently, either by a ban on transfers between regions, or by an equilibrium real
exchange rate [19, 21] that represents the shadow price of such transfers (and
hence prevents them from occurring).

The next proposition calculates the equilibrium exchange rate (pt)t≥0, de-
fined as the price of one unit of region-two dividend in terms of region-one
dividends.

Proposition 5.2 In segmentation, the equilibrium real exchange rate (pt)t≥0
is

pt =

(
1−Xt

Xt

)γ
.

(In integration, the equilibrium real exchange rate is p̄t := 1.)

Thus, the equilibrium exchange rate in segmentation is a power of the ratio
of the two dividends, and decreases in the dividend share Xt (Figure 5.6). As
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Fig. 5.6 Equilibrium real exchange rate (vertical axis), in segmentation, against dividend
share (horizontal) under risk aversion γ = 1 (dotted), γ = 3 (solid), and γ = 5 (dashed).

the dividend share declines, the agent in the first region would be increasingly
keen to buy foreign dividends, which are both uncorrelated and less volatile
than domestic ones. Of course, the variation in the equilibrium exchange rate
perfectly offsets such a shift, deterring agents from buying or selling.

6 Heterogeneous preferences

The previous analysis assumes that preferences in both regions are the same.
Such an assumption allows to study the dependence or prices and welfare on
market factors, such as relative size, but it also raises the question of whether
it is possible to construct, in the integration regime, an equilibrium in which
regions with different preferences coexist in the long run (in segmentation, the
regions do not interact, therefore can certainly coexist with arbitrary prefer-
ences). The result in this section indicates that different preferences typically
lead one region to overtake the other one in the integration regime, thereby
suggesting that long-term coexistence would have to require additional self-
regulating mechanisms to the ones described in the model.

Let the representative agent in the i-th market have time-preference rate
βi > 0 and relative risk aversion γi > 0. In segmentation, the main results of
the paper remain valid without change, as the equilibrium is obtained sepa-
rately for each market.

In integration, the market-clearing conditions are

Dt = D
(1)
t +D

(2)
t = c

(1)
t + c

(2)
t

Y
(1)
t + Y

(2)
t = P̄

(1)
t + P̄

(2)
t

φ
(1j)
t Y

(1)
t + φ

(2j)
t Y

(2)
t = P̄

(j)
t for j = 1, 2,

where c(i), Y (i), φ(ij) are the consumption, wealth, and the number of shares
held in the the j-th asset by the i-th agent.
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With similar arguments as in Proposition A.2, the optimal consumptions
of both agents are respectively

c
(1)
t =

(
y(1)eβ1tM̄t

)− 1
γ1

and c
(2)
t =

(
y(2)eβ2tM̄t

)− 1
γ2
, (6.2)

where M̄ > 0 is the stochastic discount factor and y(i) > 0 is the Lagrange

multiplier that fulfills the budget constraint E[
∫∞
0
M̄tc

(i)
t dt] = Y

(i)
0 for i = 1, 2;

Y
(i)
0 > 0 is the initial wealth of agent i.

The next result shows that, in the tractable case of risk aversion in one
market being twice the risk aversion in the other, one market overtakes the
entire economy.

Proposition 6.1 Let γ1 = γ ≥ 1, γ2 = 2γ, and let Assumption 3.4 hold for
βi and γi, i = 1, 2. Assuming further that

β1

(
1− 1

2γ

)
+
β2
2γ

>

(
γ − 1

2

)((
1

2
+ γ

)
σ2

2
− µ

)
, (6.3)

it follows that:

lim
t→∞

Y
(2)
t

Y
(1)
t

=

{
0 µ− σ2

2 + β2−β1

γ > 0

+∞ µ− σ2

2 + β2−β1

γ < 0
a.s.

Note that condition (6.3) ensures well-posedness by requiring that agents’
overall time-preference is large enough to prevent indefinite deferral of con-
sumption to achieve arbitrarily high utility.

To interpret this result, consider first the case where the time-preference
parameters are the same (β1 = β2). Then, the above proposition implies that,
in the typical case of µ− σ2/2 (which corresponds to a dividend stream that
increases indefinitely), the second market (which has higher risk aversion)
asymptotically disappears, eventually leaving the first market, which has lower
risk aversion, to take over all of the wealth in the economy. Note that, in the
present setting of time-additive preferences, lower risk aversion is equivalent
to higher elasticity of intertemporal substitution, therefore it is not possible
to determine which of these is more important for long-term dominance.

Lower risk aversion is not enough to guarantee dominance when time-
preference is heterogeneous: indeed, if low risk aversion is combined with a

sufficiently high time-preference, so that µ− σ2

2 + β2−β1

γ < 0, then it is possible
for the high risk aversion market to overtake the economy, as the other market’s
proclivity for consumption depletes its share of wealth over time.

In both cases, the result suggests that a substantial difference in preferences
between the two markets is poised to lead one market to dominate the overall
economy in the long run. The dominating market may have lower risk aversion,
lower time-preference, or both.
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7 Conclusion

This paper examines the asset pricing implications of a two-region model in
which shocks to dividend growth are independent across regions, and shocks
to aggregate dividends are independent over time – a cointegrated, two-way
split of the usual Lucas’ tree.

In segmentation, when each region owns and consumes its dividends, cor-
relation among asset prices is null with logarithmic preferences and negative
with higher risk aversion, reflecting intertemporal hedging demand. Correla-
tion increases significantly as markets integrate, even as the shocks to assets’
cash flows remain independent.

Integration has an ambiguous effect on price levels, but on average it de-
creases prices, even as welfare always increases for both regions. Price-dividend
ratios increase with the dividend share in segmentation, while in integration
they decline. Expected excess returns decline with a region’s dividend share
in segmentation, while they are equalized by integration.

If integration requires the consent of both regions, they agree to integrate
only for wealth shares within a narrow range around the values implied by ex-
ogenous integration. Such a range widens in unusual times, when the dividend
share significantly departs from its long-term mean.
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A Proofs

A.1 Preliminaries

The next proof relies on the definition of consumption and investment policies
C and P respectively, which combine into admissible strategies.

Definition A.1 In all markets (segmented or integrated), the set of consump-

tion policies C denotes all adapted processes (ct)t≥0 such that E[
∫ T
0
ctdt] < +∞

for all T > 0.
In each segmented market, the set of investment strategies (Pi)i=1,2 con-

sists of all adapted processes (φt)t≥0 such that E[
∫ T
0
φ2td

〈
P (i)

〉
t
] < +∞, where

P (i) is the respective asset price. In the integrated market the set of invest-
ment policies P consist of R2-valued, adapted processes (φt)t≥0 such that
E[〈
∫ ·
0
φ · dP 〉T ] < +∞.

The set of admissible strategies A is consists of all pairs (c, φ), such that
c ∈ C, φ ∈ P(i) for each segmented market and φ ∈ P̄ for the integrated market,



Asset Prices in Segmented and Integrated Markets 25

and the corresponding wealth in Equations (3.6) or (3.7) satisfies Yt ≥ 0 a.s.
for all t ≥ 0.

The equilibrium Definition 3.3 leads to the familiar representation of prices
as discounted cash flows and the safe rate as opposite of the growth rate of the
stochastic discount factor. Although the result is often taken for granted and
can be informally derived from a perturbation argument, it is not guaranteed
to hold in general, and the literature does offer counterexamples (See Remark
4 and Corollary 3 in Basak and Cuoco [4] and the discussion in Karatzas et al.
[31]). Thus, we offer a proof that applies to the model considered here.

Proposition A.2 In the segmented markets, equilibrium asset prices are:

P
(i)
t = Et

[∫ ∞
t

M
(i)
s

M
(i)
t

D(i)
s ds

]
where M

(i)
t = e−βt(D

(i)
t )−γ ,

while equilibrium safe rates r
(i)
t are identified by the local-martingale condition

for (M
(i)
t e

∫ t
0
r(i)
s ds)t≥0. Likewise, in the integrated market the equilibrium asset

prices are

P̄
(i)
t = Et

[∫ ∞
t

M̄s

M̄t
D(i)
s ds

]
where M̄t = e−βt(D

(1)
t +D

(2)
t )−γ .

Proof. Note that, if Y0 = P
(i)
0 , ct = D

(i)
t and φt = 1, then (3.6) implies that

Yt = P
(i)
t for all t ≥ 0. Fix i = 1, 2, t0 > 0, ϑ > 0 and K > 1. Define the

stopping time

τ0 := (t0 + ϑ) ∧ inf

{
t > t0 : P

(i)
t ≤

1

K
P

(i)
t0 , D

(i)
t ≥ KD

(i)
t0

}
.

For any δ ∈ (−ϑ, ϑ), consider a Ft0 -measurable event A on which we adopt
an alternative strategy, whereby from time t0 to τ0 the consumption changes

from D
(i)
t to cδt = (1− δ

ϑ )D
(i)
t , with the difference in consumption invested in

the risky asset, so that the number of shares changes from 1 to φδt := 1 + δ
ϑ∆t

for some process (∆t)t≥0. Thus, the corresponding wealth becomes

Y δt =

(
1 +

δ

ϑ
∆t

)
P

(i)
t .

To satisfy the budget constraints (3.6), ∆t satisfies

d

(
1 +

δ

ϑ
∆t

)
P

(i)
t = r

(i)
t

((
1 +

δ

ϑ
∆t

)
P

(i)
t −

(
1 +

δ

ϑ
∆t

)
P

(i)
t

)
dt

+

(
1 +

δ

ϑ
∆t

)(
dP

(i)
t +D

(i)
t dt

)
−
(

1− δ

ϑ

)
D

(i)
t dt

δ

ϑ
P

(i)
t d∆t +

δ

ϑ
d
〈
∆,P (i)

〉
t

=

(
δ

ϑ
+
δ

ϑ
∆t

)
D

(i)
t dt

d∆t = (1 +∆t)
D

(i)
t

P
(i)
t

dt.
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Hence,

∆t =

∫ t

t0

e

∫ t
s

D
(i)
u

P
(i)
u

duD
(i)
s

P
(i)
s

ds ≤ ϑK2e
ϑK2

D
(i)
t0

P
(i)
t0

D
(i)
t0

P
(i)
t0

for all t ∈ [t0, τ0].

After τ0, the investor holds φδt = 1 + δ
ϑ∆τ0 unit of risky asset and consumes

cδt = (1 + δ
ϑ∆τ0)D

(i)
t for t ≥ τ0. To ensure that consumption remains positive,

assume also that

δ > − 1

K2
e
−ϑK2

D
(i)
t0

P
(i)
t0

P
(i)
t0

D
(i)
t0

.

The change in expected utility from (ct, φt)t≥0 to (cδt , φ
δ
t )t≥0 is thus

∆δJ = E

1A

∫ τ0

t0

e−βt
((

1− δ
ϑ

)
D

(i)
t

)1−γ
1− γ

dt

+

∫ +∞

τ0

e−βt
((

1 + δ
ϑ∆τ0

)
D

(i)
t

)1−γ
1− γ

dt −
∫ +∞

t0

e−βt
(
D

(i)
t

)1−γ
1− γ

dt


 .

Because x1−γ

1−γ is concave, y−γ(y − x) ≤ y1−γ

1−γ −
x1−γ

1−γ for any x, y > 0, whence

∆δJ ≥ E

[
1A

(
− δ
ϑ

∫ τ0

t0

e−βtD
(i)
t

((
1− δ

ϑ

)
D

(i)
t

)−γ
dt

+
δ

ϑ
∆τ0

∫ +∞

τ0

D
(i)
t e−βt

((
1 +

δ

ϑ
∆τ0

)
D

(i)
t

)−γ
dt

)]
.

As (ct, φt)t≥0 is optimal, it follows that limδ↓0
∆δJ
δ ≤ 0 and limδ↑0

∆δJ
δ ≥ 0,

whence

lim
δ→0

1

ϑ
E

[
1A

(
−
∫ τ0

t0

e−βtD
(i)
t

((
1− δ

ϑ

)
D

(i)
t

)−γ
dt

+∆τ0

∫ +∞

τ0

D
(i)
t e−βt

((
1 +

δ

ϑ
∆τ0

)
D

(i)
t

)−γ
dt

)]
= 0

and therefore

E
[
1A

(
−
∫ τ0
t0
e−βtD

(i)
t

(
D

(i)
t

)−γ
dt+∆τ0

∫ +∞
τ0

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt

)]
ϑ

= 0.

(A.1)
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Because (A.1) holds for all ϑ 6= 0,

lim
ϑ↓0

E
[
1A

(
−
∫ τ0
t0
e−βtD

(i)
t

(
D

(i)
t

)−γ
dt+∆τ0

∫ +∞
τ0

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt

)]
ϑ

= 0. (A.2)

Note that

lim
ϑ↓0

∫ τ0
t0
e−βtD

(i)
t

(
D

(i)
t

)−γ
dt

ϑ
= e−βt0

(
D

(i)
t0

)1−γ
,

lim
ϑ↓0

∫ +∞

τ0

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt =

∫ +∞

t0

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt

and

lim
ϑ↓0

∆τ0

ϑ
= lim

ϑ↓0

1

ϑ

∫ τ0

t0

e

∫ τ0
s

D
(i)
u

P
(i)
u

duD
(i)
s

P
(i)
s

ds =
D

(i)
t0

P
(i)
t0

.

Thus, an application of the dominated convergence theorem to (A.2) yields

E

[
1A

(
−e−βt0

(
D

(i)
t0

)1−γ
+
D

(i)
t0

P
(i)
t0

Et0
[∫ +∞

t0

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt

])]
= 0.

As A is an arbitrary Ft0 event, it follows that

P
(i)
t0 = Et0

∫ +∞

t0

D
(i)
t e−β(t−t0)

(
D

(i)
t

D
(i)
t0

)−γ
dt

 . (A.3)

To identify the safe rate r(i), fix i = 1, 2, t1 > t0 > 0, ϑ ∈ (0, t1 − t0), and
K > 1, and define stopping times

ηK := inf

{
t > t0 : e

∫ t
t0
|r(i)
u |du ≥ K,P (i)

t ≤
1

K
P

(i)
t0

}
τ0 := (t0 + ϑ) ∧ ηK∧

inf

{
t > t0 : D

(i)
t ≥ KD

(i)
t0 ,

1

P
(i)
t

∫ t

t0

e
∫ t
s |r(i)

u |duD(i)
s ds ≥ K

2

}
.

For any 0 < |δ| < ϑ
K , further define another stopping time

τ1 := t1 ∧ ηK ∧ inf

{
t > τ0 :

∣∣∣∣∣ δϑ 1

P
(i)
t

∫ τ0

t0

e
∫ t
s
r(i)
u duD(i)

s ds

∣∣∣∣∣ ≥ 1

2

}
.

Consider a Ft0 -measurable event A on which to adopt an alternative strat-

egy in which, as before, from t0 to τ0 the consumption changes from D
(i)
t to

cδt = (1− δ
ϑ )D

(i)
t , while the difference now is invested in the safe asset. Thus,
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the corresponding wealth is Y δt = P
(i)
t + δ

ϑ∆t where ∆t =
∫ t
t0
e
∫ t
s
r(i)
u duD

(i)
s ds.

From time τ0 to τ1, the strategy remains (cδt , φ
δ
t ) = (D

(i)
t , 1), thus wealth be-

comes Y δt = P
(i)
t + δ

ϑ∆t where ∆t =
∫ τ0
t0
e
∫ t
s
r(i)
u duD

(i)
s ds. After τ1, the lump-

sum δ
ϑ∆τ1 is used to buy δ

ϑ

∆τ1
P

(i)
τ1

units of stock, so that the number of shares

becomes φδt = 1 + δ
ϑ

∆τ1
P

(i)
τ1

and the consumption rate cδt = (1 + δ
ϑ

∆τ1
P

(i)
τ1

)D
(i)
t for

t ≥ τ1.
Then the change in expected utility from (ct, φt)t≥0 to (cδt , φ

δ
t )t≥0 is

∆δJ = E

1A

∫ τ0

t0

e−βt
((

1− δ
ϑ

)
D

(i)
t

)1−γ
1− γ

dt

+

∫ +∞

τ1

e−βt
((

1 + δ
ϑ

∆τ1
P

(i)
τ1

)
D

(i)
t

)1−γ

1− γ
dt−

∫ +∞

t0

e−βt
(
D

(i)
t

)1−γ
1− γ

dt


 .

Again, concavity implies that y−γ(y−x) ≤ y1−γ

1−γ −
x1−γ

1−γ , for any x, y > 0, thus

∆δJ ≥ E

[
1A

(
− δ
ϑ

∫ τ0

t0

e−βtD
(i)
t

((
1− δ

ϑ

)
D

(i)
t

)−γ
dt

+
δ

ϑ

∆τ1

P
(i)
τ1

∫ +∞

τ1

e−βtD
(i)
t

((
1 +

δ

ϑ

∆τ1

P
(i)
τ1

)
D

(i)
t

)−γ
dt

 .
As (ct, φt)t≥0 is optimal, it is necessary that limδ↓0

∆δJ
δ ≤ 0 and limδ↑0

∆δJ
δ ≥

0, and thus

lim
δ→0

1

ϑ
E

[
1A

(
−
∫ τ0

t0

e−βtD
(i)
t

((
1− δ

ϑ

)
D

(i)
t

)−γ
dt

+
∆τ1

P
(i)
τ1

∫ +∞

τ1

D
(i)
t e−βt

((
1 +

δ

ϑ

∆τ1

P
(i)
τ1

)
D

(i)
t

)−γ
dt

 = 0;

Then, considering that limδ→0 τ1 = τ2 := min{t1, ηK} almost surely and
∆τ1
P

(i)
τ1

≤ (τ1 − t0)K3D
(i)
t0

P
(i)
t0

, the dominated convergence theorem yields

lim
ϑ↓0

E
[
1A

(
−
∫ τ0
t0
e−βt

(
D

(i)
t

)1−γ
dt+

∆τ2
P

(i)
τ2

∫ +∞
τ2

e−βt
(
D

(i)
t

)1−γ
dt

)]
ϑ

= 0.

(A.4)
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Recalling that ∆τ2 =
∫ τ0
t0
e
∫ τ2
s

r(i)
u duD

(i)
s ds, it follows that

lim
ϑ↓0

∆τ2

ϑ
= e

∫ τ2
t0

r(i)
u duD

(i)
t0

Applying the dominated convergence theorem to (A.4), (A.3) implies that

E

[
1A

(
−e−βt0

(
D

(i)
t0

)1−γ
+
e
∫ τ2
t0

r(i)
u duD

(i)
t0

P
(i)
τ2

Eτ2
[∫ +∞

τ2

D
(i)
t e−βt

(
D

(i)
t

)−γ
dt

])]

= e−βt0E
[
1AD

(i)
t0

(
−
(
D

(i)
t0

)−γ
+ e

∫ τ2
t0

r(i)
u due−β(τ2−t0)

(
D(i)
τ2

)−γ)]
= 0.

As A is any arbitrary Ft0 event,

e
∫ t0
0 (r(i)

u −β)du
(
D

(i)
t0

)−γ
= Et0

[
e
∫min{t1,ηK}
0 (r(i)

u −β)du
(
D

(i)
min{t1,ηK}

)−γ]
,

which implies that (e
∫ t
0
(r(i)
u −β)du(D

(i)
t )−γ)t≥0 is a local martingale.

A.2 Proof of Theorem 4.1

The proof focuses on region 1, as the argument for region 2 is analogous.

(i) Recalling that e
∫ t
0
(r(1)
s )dsM

(1)
t = e

∫ t
0
(r(1)
s −β)ds(ct)

γ = e
∫ t
0
(r(1)
s −β)ds(D

(1)
t )γ

and applying Itô’s lemma, it follows that

d

(
e
∫ t
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(r(1)
s −β)ds

(
D

(1)
t

)−γ)
=
(
r
(1)
t − β

)
e
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(r(1)
s −β)ds

(
D

(1)
t
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− γe
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s −β)ds

(
D

(1)
t

)−γ−1 (
(µ− κ)D

(1)
t + κw1Dt

)
dt

+
γ(1 + γ)σ2

2
e
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s −β)ds

(
D

(1)
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)−γ−1
Dtdt+ Lt

= e
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0
(r(1)
s −β)ds
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D

(1)
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)−γ
×(

r
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t − β − γ(µ− κ)− γκw1

Dt

D
(1)
t

+
γ(γ + 1)σ2

2

Dt

D
(1)
t

)
dt+ Lt

for some local martingale L (a stochastic integral with respect to Brow-
nian motion, whose expression is inconsequential). Thus, the equilibrium
safe rate is

r
(1)
t = β + γ(µ− κ) + γµw1

Dt

D
(1)
t

− γ(γ + 1)σ2

2

Dt

D
(1)
t

.
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Write the price of asset 1 in terms of Xt and Dt, as

P
(1)
t = Et

∫ ∞
t

e−β(s−t)

(
D

(1)
s

)1−γ
(
D

(1)
t

)−γ ds


= Et

[∫ ∞
t

e−β(s−t)
(Ds)

1−γ

(Dt)
−γ

X1−γ
s

X−γt
ds

]

=

∫ ∞
t

e−β(s−t)Et

[
(Ds)

1−γ

(Dt)
−γ

X1−γ
s

X−γt

]
ds

=

∫ ∞
t

e−β(s−t)Et

[
(Ds)

1−γ

(Dt)
−γ

]
Et
[
X1−γ
s

X−γt

]
ds

= DtX
γ
t

∫ ∞
t

e−β(s−t)Et

[(
Ds

Dt

)1−γ
]
Et
[
X1−γ
s

]
ds, (A.5)

where the fourth equality follows by the independence of (BDt )t≥0 and
(BXt )t≥0. As (Dt)t≥0 is a geometric Brownian motion, it satisfies

E

[(
Ds

Dt

)1−γ
]

= E
[
e
(1−γ)

(
µ−σ2

2

)
(s−t)+(1−γ)σ(BDs −B

D
t )
]

= e
(1−γ)

(
µ− γσ

2

2

)
(s−t)

.

Then, (A.5) becomes

P
(1)
t = DtX

γ
t

∫ ∞
t

e−θ(s−t)Et
[
X1−γ
s

]
ds = DtX

γ
t Et

[∫ ∞
t

e−θ(s−t)X1−γ
s ds

]
= DtX

γ
t E
[∫ ∞

t

e−θ(s−t)X1−γ
s ds

∣∣∣∣Xt

]
= DtX

γ
t f

(1)(Xt),

where the third equality follows by the Markov property of (Xt)t≥0, and

f (1)(x) := E

 ∞∫
t

e−θ(s−t)X1−γ
s ds

∣∣∣∣∣Xt = x

 = E

 ∞∫
0

e−θsX1−γ
s ds

∣∣∣∣∣X0 = x


(Note that the second equality holds true because of Markov property.)

(ii) For the welfare, recall that

U (1)
t = Et

[∫ ∞
t

e−β(s−t)
c1−γs

1− γ
ds

]
= Et

∫ ∞
t

e−β(s−t)

(
D

(1)
s

)1−γ
1− γ

ds


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Comparing this expression to the formula in P
(1)
t in (A.5), note that

U (1)
t =

1

1− γ

(
D

(1)
t

)−γ
P

(1)
t =

1

1− γ

(
D

(1)
t

)1−γ
Xγ−1
t f (1)(Xt)

=
1

1− γ
(Dt)

1−γ
f (1)(Xt)

(iii) As P
(1)
t = DtX

γ
t f

(1)(Xt) where f (1) is as in (4.1), Ito’s formula yields

dP
(1)
t = σDtX

γ
t f

(1) (Xt) dB
D
t

+ σDtX
γ−1
t

(
γf (1)(Xt) +Xtf

(1)′(Xt)
)√

Xt(1−Xt)dB
X
t +A1

tdt

= σDtX
γ
t f

(1) (Xt) dB
D
t + σDtX

γ−1
t h(1) (Xt)

√
Xt(1−Xt)dB

X
t

+A1
tdt

dP
(2)
t = σDt(1−Xt)

γf (2) (Xt) dB
D
t +A2

tdt+ σDt(1−Xt)
γ−1×(

−γf (2)(Xt) + (1−Xt)f
(2)′(Xt)

)√
Xt(1−Xt)dB

X
t

= σDt(1−Xt)
γf (2) (Xt) dB

D
t +

σDt(1−Xt)
γ−1h(2) (Xt)

√
Xt(1−Xt)dB

X
t +A2

tdt.

for some adapted processes A1, A2. Hence,

d
〈
P (1)

〉
t

dt
= σ2D2

tX
2(γ−1)
t

((
Xtf

(1)(Xt)
)2

+
(
h(1)(Xt)

)2
Xt(1−Xt)

)
d
〈
P (2)

〉
t

dt
=

σ2D2
t (1−Xt)

2(γ−1)
((

(1−Xt)f
(2)(Xt)

)2
+
(
h(2)(Xt)

)2
Xt(1−Xt)

)
d
〈
P (1), P (2)

〉
t

dt
=

σ2D2
tX

γ
t (1−Xt)

γ
(
f (1)(Xt)f

(2)(Xt) + h(1)(Xt)h
(2)(Xt)

)
.

and the claim follows by (4.5).
(iv) Again, the proof focuses on region 1, as the argument for region 2 is

analogous. As P
(1)
t = DtX

γ
t f

(1)(Xt) where f (1) are defined in (4.1), Ito’s
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formula yields

dP
(1)
t = Xγ

t f
(1)(Xt)dDt +DtX

γ−1
t

(
γf (1)(Xt) +Xt

(
f (1)

)′
(Xt)

)
dXt

+Xγ−1
t

(
γf (1)(Xt) +Xt

(
f (1)

)′
(Xt)

)
d 〈D,X〉t

+
1

2
DtX

γ−2
t

(
γ(γ − 1)f (1)(Xt) + 2γXt

(
f (1)

)′
(Xt)

+X2
t

(
f (1)

)′′
(Xt)

)
d 〈X〉t

= DtX
γ−1
t

((
µXtf

(1)(Xt) + κ(w −Xt)

(
γf (1)(Xt) +Xt

(
f (1)

)′
(Xt)

)
+
σ2

2
(1−Xt)

(
γ(γ − 1)f (1)(Xt) + 2γXt

(
f (1)

)′
(Xt)

+X2
t

(
f (1)

)′′
(Xt)

))
dt+ σXtf

(1)(Xt)dB
D
t

+σ
√
Xt(1−Xt)

(
γf (1)(Xt) +Xt

(
f (1)

)′
(Xt)

)
dBXt

)

and therefore,

dP
(1)
t

P
(1)
t

− σdBDt − σ
√

1−Xt

Xt

(
γ +Xt

(
f (1)

)′
(Xt)

f (1)(Xt)

)
dBXt =(

µ+ κ
w1 −Xt

Xt

(
γ +Xt

(
f (1)

)′
(Xt)

f (1)(Xt)

)
+

σ2

2

1−Xt

Xt

(
γ(γ − 1) + 2γXt

(
f (1)

)′
(Xt)

f (1)(Xt)
+X2

t

(
f (1)

)′′
(Xt)

f (1)(Xt)

))
:=

µ
(1)
t −

D
(1)
t

P
(1)
t

dt

which proves the claim.

Next, under Assumption 4.2, closed-form expressions of f (i) in terms of hyper-
geometric functions follow (cf. the formulas derived by Hurd and Kuznetsov
[30] for related functionals of the Jacobi process).
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Proposition A.3 Let Assumptions 3.4 and 4.2 hold. Then

f (1)(x) =
2

σ2ω(1)

(
Γ

(1)
1

1 + c1 − γ
F

(1)
1 (x)G

(1)
1 (1) +

Γ
(1)
2

1 + c1 − γ
x2−γF

(1)
2 (x)G

(1)
1 (x)

+
Γ

(1)
2

2− γ
F

(1)
1 (x)

(
G

(1)
2 (1)− x2−γG(1)

2 (x)
))

f (2)(x) =
2

σ2ω(2)

(
Γ

(2)
1

1 + c2 − γ
F

(2)
1 (1− x)G

(2)
1 (1)

+
Γ

(2)
2 (1− x)2−γ

1 + c2 − γ
F

(2)
2 (1− x)G

(2)
1 (1− x)

+
Γ

(2)
2

2− γ
F

(2)
1 (1− x)

(
G

(2)
2 (1)− (1− x)2−γG

(2)
2 (1− x)

))
,

where

F
(i)
1 (x) := 2F1(a, b; ci;x),

G
(i)
1 (x) := 3F2(ci − a, ci − b, 1 + ci − γ; ci, 2 + ci − γ;x),

F
(i)
2 (x) := 2F1(b+ 1− ci, a+ 1− ci; 2− ci;x),

G
(i)
2 (x) := 3F2(1− b, 1− a, 2− γ; 2− ci, 3− γ;x),

a :=
−
(
1− 2κ

σ2

)
+

√(
1− 2κ

σ2

)2 − 8θ
σ2

2
, b :=

−
(
1− 2κ

σ2

)
−
√(

1− 2κ
σ2

)2 − 8θ
σ2

2
,

ci :=
2κwi
σ2

,

Γ
(i)
1 := Γ (a+b+1−ci)Γ (1−ci)

Γ (a+1−ci)Γ (b+1−ci) , Γ
(i)
2 := Γ (a+b+1−ci)Γ (ci−1)

Γ (a)Γ (b) , and the Wronskian

constant ω(i) is

ω(i) :=

(
ϕ(i)(y)

(
F

(i)
1

)′
(y)−

(
ϕ(i)

)′
(y)F

(i)
1 (y)

)
(1− y)

2κ(1−wi)
σ2 y

2κwi
σ2

with ϕ(i)(x) = 2F1(a, b; a+ b+ 1− ci; 1− x) and hypergeometric functions 2F1

and 3F2

2F1(a, b; c;x) :=

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
,

3F2(a, b, p; c, q;x) :=

∞∑
n=0

(a)n(b)n(p)n
(c)n(q)n

xn

n!
,

where (p)n := p · (p+ 1) · · · (p+ n− 2) · (p+ n− 1).
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Proof. The proof focuses on region 1, as the formulae for region 2 follow by
replacing x with 1−x and w1 with w2. First, characterize the function f (1) in
terms of the density function and speed measure of the process X:

E
[∫ ∞

0

e−θsX1−γ
s ds

∣∣∣∣X0 = x

]
=

∫ ∞
0

e−θs
(∫ 1

0

y1−γp(s;x, y)m(y)dy

)
ds

=

∫ 1

0

y1−γ
(∫ ∞

0

e−θsp(s;x, y)ds

)
m(y)dy

(A.6)

where p(s;x, y) is the density function with respect to the speed measure
m(dy) = m(y)dy. The representation of the Green function for scalar diffusions
(e.g. Borodin and Salminen [9, II.10-11]) yields m(x) = 2

σ2x
c1−1(1− x)a+b−c1

and ∫ ∞
0

e−θsp(s;x, y)ds =

{
1

ω(1)F
(1)
1 (x)ϕ(1)(y), x ≤ y,

1
ω(1)F

(1)
1 (y)ϕ(1)(x), x ≥ y,

where F
(1)
1 and ϕ(1) are the fundamental solutions of the ordinary differential

equation (
x− x2

)
g′′(x) +

2µ

σ2
(w − x)g′(x) =

2θ

σ2
g(x),

with the respective boundary conditions

F
(1)
1 (0+) > 0,

(
F

(1)
1

)′
(0+) · s(0+) = 0,

ϕ(1)(0+) = +∞,
(
ϕ(1)

)′
(0+) · s(0+) > −∞

ϕ(1)(1−) > 0,
(
ϕ(1)

)′
(1−) · s(1−) = 0,

F
(1)
1 (1−) = +∞,

(
F

(1)
1

)′
(1−) · s(1−) > −∞

where s(x) := 2
σ2x

c1−1(1 − x)a+b−c1 = x(1 − x)m(x). Thus, (A.6) further
simplifies to

E
[∫ ∞

0

e−θsX1−γ
s ds

∣∣∣∣X0 = x

]
=

2

σ2ω(1)
×(

2F1(a, b; a+ b+ 1− c1; 1− x)

∫ x

0
2F1(a, b; c1; y)(1− y)a+b−c1yc1−γdy

+2F1(a, b; c1;x)

∫ 1

x
2F1(a, b; a+ b+ 1− c1; 1− y)(1− y)a+b−c1yc1−γdy

)
.

Note that Assumption 4.2 ensures that the first integral in the right-hand side
converges. Applying the identities for hypergeometric functions in Abramowitz
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and Stegun [1, Chapter 15.3], the expression for f (1) simplifies as follows

E
[∫ ∞

0

e−θsX1−γ
s ds

∣∣∣∣X0 = x

]
=

2

σ2ω(1)

(
Γ

(1)
1 · 2F1(a, b; c1;x)

∫ x

0
2F1(a, b; c1; y)(1− y)a+b−c1yc1−γdy

+ Γ
(1)
2 · x1−c12F1(b+ 1− c1, a+ 1− c1; 2− c1;x)×∫ x

0
2F1(a, b; c1; y)(1− y)a+b−c1yc1−γdy

+ Γ
(1)
1 · 2F1(a, b; c1;x)

∫ 1

x
2F1(a, b; c1; y)(1− y)a+b−c1yc1−γdy + Γ

(1)
2 ×

2F1(a, b; c1;x)

∫ 1

x
2F1(b+ 1− c1, a+ 1− c1; 2− c1; y)(1− y)a+b−c1y1−γdy

)
=

2

σ2ω(1)

(
Γ

(1)
1 · 2F1(a, b; c1;x)

∫ 1

0
2F1(c1 − a, c1 − b; c1; y)yc1−γdy + Γ

(1)
2 ×

x1−c12F1(b+ 1− c1, a+ 1− c1; 2− c1;x)

∫ x

0
2F1(c1 − a, c1 − b; c1; y)yc−γdy

+Γ
(1)
2 · 2F1(a, b; c1;x)

∫ 1

x
2F1(1− b, 1− a; 2− c1; y)y1−γdy

)
=

2

σ2ω(1)

(
Γ

(1)
1 2F1(a, b; c1;x)

1 + c1 − γ
3F2(c1 − a, c1 − b, 1 + c1 − γ; c1, 2 + c1 − γ; 1)

+ Γ
(1)
2

x2−γ

1 + c1 − γ
2F1(b+ 1− c1, a+ 1− c1; 2− c1;x)

× 3F2(c1 − a, c1 − b, 1 + c1 − γ; c1, 2 + c1 − γ;x)

+ Γ
(1)
2

1

2− γ 2F1(a, b; c1;x)
(
3F2(1− b, 1− a, 2− γ; 2− c1, 3− γ; 1)

− x2−γ3F2(1− b, 1− a, 2− γ; 2− c1, 3− γ;x)
))

which yields the claim for f (1).
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A.3 Proof of Theorem 4.3

(i) Note that

P̄
(1)
t = Et

[∫ ∞
t

e−β(s−t)
(
Ds

Dt

)1−γ
Dt

Ds
D(1)
s ds

]

= Et

[∫ ∞
t

e−β(s−t)
(
Ds

Dt

)1−γ

Xsds

]
Dt

= Dt

∫ ∞
t

e−β(s−t)Et

[(
Ds

Dt

)1−γ
]
Et [Xs] ds

= Dt

∫ ∞
t

e−θ(s−t)Et [Xs] ds = Dt

∫ ∞
t

e−θ(s−t)E [Xs|Xt] ds

= Dtf(Xt).

where the last equality follows by the Markov property of (Xt)t≥0, and f is
defined as

f(x) :=

∫ ∞
t

e−θ(s−t)E [Xs|Xt = x] ds =

∫ ∞
0

e−θsE [Xs|X0 = x] ds. (A.7)

where the second equality again uses the Markov property. Integrating (3.2)
and taking the expectation yields E[Xt|X0 = x] = e−κtx + w1(1 − e−κt).
Therefore, (A.7) further simplifies to

f(x) =

∫ ∞
0

e−θs
(
e−κsx+ w1

(
1− e−κs

) )
ds =

1

θ + κ
x+

κ

(θ + κ)θ
w1,

whence the price of asset 1 is

P̄
(1)
t = f(Xt)Dt

=
1

θ + κ
XtDt +

κ

(θ + κ)θ
w1Dt =

1

θ + κ
D

(1)
t +

κw1

(θ + κ)θ

(
D

(1)
t +D

(2)
t

)
=

1

θ

(
θ + κw1

θ + κ
D

(1)
t +

κw1

θ + κ
D

(2)
t

)
and the price of asset 2 follows analogously.

As e
∫ t
0
rsdsM̄t = e

∫ t
0
(rs−β)ds(Dt)

−γ is a local martingale and

d
(
e
∫ t
0
(rs−β)ds (Dt)

−γ
)

= (rt − β) e
∫ t
0
(rs−β)ds (Dt)

−γ
dt

−γe
∫ t
0
(rs−β)ds (Dt)

−γ
(
µ+

(−γ − 1)σ2

2

)
dt+ Lt

= e
∫ t
0
(rs−β)ds (Dt)

−γ
(
rt − β − γ

(
µ− (γ + 1)σ2

2

))
dt+ Lt,
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for some local martingale L, it follows that rt = β + γµ− γ(γ+1)σ2

2 .
(ii) For the welfare, note that

U t = Et
[∫ ∞

t

e−β(s−t)
c1−γs

1− γ
ds

]
= Et

[∫ ∞
t

e−β(s−t)
(Ds)

1−γ

1− γ
ds

]

=
D1−γ
t

1− γ
Et

[∫ ∞
t

e−β(s−t)
(
Ds

Dt

)1−γ

ds

]

=
D1−γ
t

1− γ

∫ ∞
t

e−β(s−t)Et

[(
Ds

Dt

)1−γ
]
ds =

D1−γ
t

1− γ

∫ ∞
t

e−θ(s−t)ds

=
D1−γ
t

1− γ
1

θ
.

(iii) In the integrated market, recalling that a0 and bi are defined in Theo-

rem 4.3, P̄
(1)
t = a0DtXt+ b1Dt and P̄

(2)
t = a0Dt(1−Xt) + b2Dt. Ito’s formula

yields

dP̄
(1)
t = (µ(a0Xt + b1)Dt + a0κ(w1 −Xt)Dt) dt

+ σ(a0Xt + b1)DtdB
D
t + σa0Dt

√
Xt(1−Xt)dB

X
t (A.8)

dP̄
(2)
t = (µ(a0(1−Xt) + b2)Dt − a0κ(w1 −Xt)Dt) dt

+ σ(a0(1−Xt) + b2)DtdB
D
t − σa0Dt

√
Xt(1−Xt)dB

X
t (A.9)

whence

d
〈
P̄ (1)

〉
t

dt
= σ2D2

t

(
(a0Xt + b1)

2
+ a20Xt(1−Xt)

)
d
〈
P̄ (2)

〉
t

dt
= σ2D2

t

(
(a0(1−Xt) + b2)

2
+ a20Xt(1−Xt)

)
d
〈
P̄ (1), P̄ (2)

〉
t

dt
= σ2D2

t

(
(a0Xt + b1) (a0(1−Xt) + b2)− a20Xt(1−Xt)

)
.

and the claim follows by (4.5).
(iv) Equations (A.8)-(A.9) yield

dP̄
(1)
t

P̄
(1)
t

=

(
µ+

a0κ(w1 −Xt)

a0Xt + b1

)
dt+ σdBDt + σ

a0
√
Xt(1−Xt)

a0Xt + b1
dBXt

dP̄
(2)
t

P̄
(2)
t

=

(
µ− a0κ(w1 −Xt)

a0(1−Xt) + b2

)
dt+ σdBDt − σ

a0
√
Xt(1−Xt)

a0(1−Xt) + b2
dBXt

whence the expected returns are

µ̄
(1)
t = µ+

a0κ(w1 −Xt)

a0Xt + b1
+

Xt

a0Xt + b1
= µ+ θ

µ̄
(2)
t = µ− a0κ(w1 −Xt)

a0(1−Xt) + b2
+

1−Xt

a0(1−Xt) + b2
= µ+ θ
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A.4 Proof of Proposition 5.1

The proof focuses on region 1, as region 2 is analogous.

In the segmented market the pricing formula in Proposition A.3 yields

lim
t→∞

E

[
P

(1)
t

D
(1)
t

]
= lim
t→∞

E
[
Xγ−1
t f (1)(Xt)

]
=

∫ 1

0

xγ−1f (1)(x)m(x)dx

=

∫ 1

0

2xc1+γ−2(1− x)a+b−c1

σ2ω(1)B(a+ b− c1 + 1, c1)
×(

Γ
(1)
1 · 2F1(a, b; c1;x)

∫ 1

0
2F1(c1 − a, c1 − b; c1; y)yc1−γdy + Γ

(1)
2 x1−c1×

2F1(b+ 1− c1, a+ 1− c1; 2− c1;x)

∫ x

0
2F1(c1 − a, c1 − b; c1; y)yc1−γdy

+Γ
(1)
2 · 2F1(a, b; c1;x)

∫ 1

x
2F1(1− b, 1− a; 2− c1; y)y1−γdy

)
dx

=
2

σ2ω(1)B(a+ b− c1 + 1, c1)
×(

Γ
(1)
1

∫ 1

0
2F1(c1 − a, c1 − b; c1;x)xc1+γ−2dx×∫ 1

0
2F1(c1 − a, c1 − b; c1; y)yc1−γdy

+ Γ
(1)
2

∫ 1

0

xγ−12F1(1− b, 1− a; 2− c1;x)×(∫ x

0
2F1(c1 − a, c1 − b; c1; y)yc1−γdy

)
dx

+ Γ
(1)
2

∫ 1

0
2F1(1− b, 1− a; 2− c1; y)y1−γ×(∫ y

0

xc1+γ−22F1(a, b; c1;x)dx

)
dy

)
=

2

σ2ω(1)B(a+ b− c1 + 1, c1)

(
Γ

(1)
1

G
(1)
1 (1)

c1 + 1− γ
G

(1)
3 (1)

c1 + γ − 1

+Γ
(1)
2

∫ 1

0

xc1F
(1)
3 (x)

(
G

(1)
1 (x)

c1 + 1− γ
+

G
(1)
3 (x)

c1 + γ − 1

)
dx

)
.
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Vice versa, in the integrated market, Theorem 4.3 implies that

lim
t→∞

E

[
P̄

(1)
t

D
(1)
t

]

= lim
t→∞

E
[

1

θ + κ

(
1 +

κw1

θ

1

Xt

)]
=

1

θ + κ

(
1 +

κw1

θ

∫ 1

0

1

x
m(x)dx

)
=

1

θ + κ

(
1 +

κw1

θ

∫ 1

0

xc1−2(1− x)a+b−c1

B(a+ b− c1 + 1, c1)
dx

)
=

1

θ + κ

(
1 +

κw1

θ

a+ b

c1 − 1

)
=

1

θ + κ

(
1 +

κw1

θ

(
2 κ
σ2 − 1

2κw1

σ2 − 1

))
,

where m(x) := xc1−1(1−x)a+b−c1

B(a+b−c1+1,c1)
.

A.5 Proof of Proposition 5.2

The real exchange rate is the ratios between the stochastic discount factors

in the two countries, i.e., pt =
M

(1)
t

M
(2)
t

. Under segmentation, Proposition A.2

yields that pt =
e−βt(D

(1)
t )−γ

e−βt(D
(2)
t )−γ

, and Proposition 5.2 follows by recalling that

D
(1)
t = DtXt and D

(2)
t = Dt(1−Xt).

A.6 Proof of Proposition 6.1

Because of the market clearing condition (6.1) and the obtained optimal con-
sumption (6.2), the stochastic discount factor M̄t solves

Dt = c
(1)
t + c

(2)
t =

(
y(1)eβ1tM̄t

)− 1
γ

+
(
y(2)eβ2tM̄t

)− 1
2γ

.

Solving the above quadratic equation gives

M̄
− 1

2γ

t =
−
(
y(2)eβ2t

)− 1
2γ +

√(
y(2)eβ2t

)− 1
γ + 4Dt

(
y(1)eβ1t

)− 1
γ

2
(
y(1)eβ1t

)− 1
γ

=

(
y(2)

)− 1
2γ

2
(
y(1)

)− 1
γ

e(
β1
γ −

β2
2γ )t

−1 +

√√√√1 +
4
(
y(1)

)− 1
γ(

y(2)
)− 1

γ

Dte
β2−β1
γ t


With the stochastic discount factor M̄t, the wealth process Y (i) of agent i is

M̄tY
(i)
t = Et

[∫ ∞
t

M̄uc
(i)
u du

]
.
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Thus, the ratio of wealth becomes

Y
(2)
t

Y
(1)
t

=
Et
[∫∞
t
M̄uc

(2)
u du

]
Et
[∫∞
t
M̄uc

(1)
u du

] =

(
y(2)

)− 1
2γ(

y(1)
)− 1

γ

Et
[∫∞
t
M̄

1− 1
2γ

u e−
β2
2γ udu

]
Et
[∫∞
t
M̄

1− 1
γ

u e−
β1
γ udu

]

= 2

Et

[∫∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)1−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]

Et

[∫∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)2−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

] ,
(A.10)

where K is a positive constant dependent on y(i) and γ only.

To establish an upper bound (respectively, lower bound) for the expectation
in the numerator (respectively, denominator), consider first the case of µ −
1
2σ

2 + β2−β1

γ > 0. On one hand,

Et

[∫ ∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)1−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]

≤ Et

∫ ∞
t

2 +

√
KDue

β2−β1
γ u

KDue
β2−β1
γ u

2γ−1

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu


≤ 22γ−2Et

[∫ ∞
t

(
22γ−1

(
KDue

β2−β1
γ u

)1−2γ
+
(
KDue

β2−β1
γ u

) 1−2γ
2

)
×

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]
= Et

[∫ ∞
t

(
K1e

−β2uD1−2γ
u +K2e

( β1
2γ (1−2γ)−

β2
2γ )uD

1−2γ
2

u

)
du

]
= K1D

1−2γ
t

∫ ∞
t

e−β2ue((1−2γ)µ−γ(1−2γ)σ
2)(u−t)du

+K2D
1−2γ

2
t

∫ ∞
t

e(
β1
2γ (1−2γ)−

β2
2γ )ue(

1−2γ
2 µ− 1

2
1−2γ

2
1+2γ

2 σ2)(u−t)du

= K1e
−β2tD1−2γ

t +K2e
( β1

2γ (1−2γ)−
β2
2γ )tD

1−2γ
2

t , (A.11)

where K1 and K2 are some positive constants independent of t, while the

first inequality follows from (
√

1 + x − 1)−δ = (
√
1+x+1
x )δ ≤ ( 2+

√
x

x )δ for all
x > 0, δ ≥ 0 and the second inequality from the version Jensen’s inequality
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(x+ y)δ ≤ 2δ−1(xδ + yδ) for all x, y ≥ 0, δ ≥ 1. On the other hand,

Et

[∫ ∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)2−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]

≥ Et
[∫ ∞

t

(
KDue

β2−β1
γ u

)1−γ
e(

β1
γ (1−2γ)− β2

γ (1−γ))udu

]
= K1−γEt

[∫ ∞
t

e−β1uD1−γ
u du

]
= K3e

−β1tD1−γ
t , (A.12)

where K3 is a positive constant independent of t and the first inequality follows
from −1 +

√
1 + x ≤

√
x. With (A.11) and (A.12), (A.10) becomes

Y
(2)
t

Y
(1)
t

≤ 2
K1e

−β2tD1−2γ
t +K2e

( β1
2γ (1−2γ)−

β2
2γ )tD

1−2γ
2

t

K3e−β1tD1−γ
t

= K1e
(β1−β2)tD−γt +K2e

β1−β2
2γ tD

− 1
2

t

= K1D
−γ
0 e−γ(µ−

1
2σ

2+
β2−β1
γ )t−γσWt +K2D

− 1
2

0 e−
1
2 (µ− 1

2σ
2+

β2−β1
γ )t− 1

2σWt

which tends to zero as t→∞ because µ− 1
2σ

2 + β2−β1

γ > 0.

Now, consider the case of µ− 1
2σ

2 + β2−β1

γ < 0. On one hand,

Et

[∫ ∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)2−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]

≤ Et

∫ ∞
t

2 +

√
KDue

β2−β1
γ u

KDue
β2−β1
γ u

2γ−2

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu


≤ Et

[∫ ∞
t

(
K1

(
Due

β2−β1
γ u

)2−2γ
+K2

(
Due

β2−β1
γ u

)1−γ)
×

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]
= Et

[∫ ∞
t

(
K1e

( β2
γ (1−γ)− β1

γ )uD2−2γ
u +K2e

−β1uD1−γ
u

)
du

]
= K1e

( β2
γ (1−γ)− β1

γ )tD2−2γ
t +K2e

−β1tD1−γ
t ,

where K1 and K2 are positive constants independent of t. On the other hand,

Et

[∫ ∞
t

(
−1 +

√
1 +KDue

β2−β1
γ u

)1−2γ

e(
β1
γ (1−2γ)− β2

γ (1−γ))udu

]

≥ Et
[∫ ∞

t

(
KDue

β2−β1
γ u

)1−2γ
e(

β1
γ (1−2γ)− β2

γ (1−γ))udu

]
= K1−2γEt

[∫ ∞
t

e−β2uD1−2γ
u du

]
= K3e

−β2tD1−2γ
t ,
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where K3 is a positive constant independent of t and the first inequality holds
due to −1 +

√
1 + x = x

1+
√
1+x
≤ x. Then, (A.10) becomes

Y
(2)
t

Y
(1)
t

≥ 2
K3e

−β2tD1−2γ
t

K1e
( β2
γ (1−γ)− β1

γ )tD2−2γ
t +K2e−β1tD1−γ

t

=
1

K1e
β2−β1
γ tDt +K2e(β2−β1)tDγ

t

=
1

K1D0e
(µ− 1

2σ
2+

β2−β1
γ )t+σWt +K2D

γ
0 e
γ(µ− 1

2σ
2+

β2−β1
γ )t+γσWt

,

which tends to +∞ as t→∞ because µ− 1
2σ

2 + β2−β1

γ < 0.
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