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Abstract: Ovarian cancer is one of the most dangerous gynecologic cancers worldwide and has a
high fatality rate due to diagnosis at an advanced stage of the disease as well as a high recurrence rate
due to the occurrence of chemotherapy resistance. In fact, chemoresistance weakens the therapeutic
effects, worsening the outcome of this pathology. Solute Carrier Family 7 Member 11 (SLC7A11,
also known as xCT) is the functional subunit of the X−

c system, an anionic L-cystine/L-glutamate
antiporter expressed on the cell surface. SLC7A11 expression is significantly upregulated in several
types of cancers in which it can inhibit ferroptosis and favor cancer cell proliferation, invasion
and chemoresistance. SLC7A11 expression is also increased in ovarian cancer tissues, suggesting
a possible role of this protein as a therapeutic target. In this review, we provide an overview of
the current literature regarding the role of SLC7A11 in ovarian cancer to provide new insights on
SLC7A11 modulation and evaluate the potential role of SLC7A11 as a therapeutic target.

Keywords: SLC7A11; ovarian cancer; chemoresistance; nuclear factor erythroid 2-related factor 2
(NRF2); oxidative stress; reactive oxygen species (ROS); non-coding RNAs; p53; compounds; xCT

1. Introduction

Gynecologic cancers are common among older women. Almost 50% of ovarian cancers
occur in women aged >65 years and are the major cause of death since most diagnoses
are often made when the disease is already at an advanced stage [1]. Although the most
common risk factors for developing ovarian cancer are genetic and epigenetic factors,
environmental factors and lifestyle also have important roles in its etiopathogenesis [2,3].

In fact, the depletion of ovarian function during aging not only leads to a reduced
reproductive capacity but also increases the risk of ovarian cancer. This cancer can therefore
be considered an aging-related disease [4].

Ovarian cancer can be subdivided into three types: epithelial ovarian cancer (EOC,
representing most ovarian cancers diagnosed), ovarian germ cell tumors and stromal cell
ovarian tumors. EOC can be further subdivided into four different histological subtypes:
serous (the most common), endometrioid, clear cell and mucinous [5,6].

Surgery followed by platinum/taxane chemotherapy is the current treatment for
advanced ovarian cancer, but the survival rate is very low, and many patients relapse
within 18 months due the occurrence of chemoresistance [5].
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Platinum-derived drugs (cisplatin, carboplatin and oxaliplatin) interact with DNA
to form mono-adducts and intra- and inter-strand crosslinks that block DNA synthesis
and transcription, leading to cell death [7]. In addition, treatment with platinum-derived
drugs induces the formation of reactive oxygen species (ROS), leading to DNA damage
and apoptosis [8]. Due to this latter mechanism of action of platinum-derived drugs, the
glutathione (GSH) content of the cells plays a key role in drug efficiency since GSH can
efficiently inactivate the increased ROS induced by platinum-derived drugs [8].

Taxanes (e.g., Paclitaxel) exert their anticancer effects by preventing tubulin depoly-
merization. This process inhibits microtubule shortening during anaphase, which blocks
sister chromatid separation, leading to cell death [9]. One of the most common mech-
anisms of taxane resistance, which is also involved in platinum-based chemotherapies,
is the pumping out of the drug by efflux transporters, such as the ATP-binding cassette
transporter (known as ABCB1, P-glycoprotein, P-gp or MDR1) [10,11]. In addition to this
mechanism, the anticancer effects of paclitaxel can be counteracted by the activation of
pro-mitotic factors, such as the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)
pathway [12], and an increase in the expression of the anti-apoptotic members of B-cell
lymphoma 2 (Bcl-2) family [13,14].

Finding novel diagnostic biomarkers and therapeutic targets is a major challenge in
oncology [15,16]. Thus, identifying new biomarkers in ovarian cancer is urgently required
due to the high aggressiveness of this neoplasm in order to improve the outcome of this
disease by avoiding/delaying the onset of chemoresistance.

Oxidative stress is characteristic of the cancer cell microenvironment, and cancer
cells protect themselves by increasing their antioxidant defenses [17–20]. Cysteine can
be involved in maintaining redox homeostasis since it is used by the cells to synthesize
glutathione (GSH) [21,22]. Intracellular cysteine can be produced by recycling it from
degraded proteins or by de novo synthesis [23]. In tumor cells, neither the recycling of
proteins to produce cysteine nor its de novo synthesis is sufficient; therefore, cancer cells
rely on nutrient transporters to import cystine (the oxidized form of cysteine) from the
extracellular microenvironment [23–25].

Solute Carrier Family 7 Member 11 (SLC7A11, also known as xCT) is the functional
subunit of the X−

c system, an anionic L-cystine/L-glutamate antiporter expressed on the
cell surface. The SLC7A11 requires that solute carrier family 3 member 2 (SLC3A2) import
extracellular cystine in exchange for intracellular glutamate at a 1:1 molar ratio [26,27].
Although SLC3A2 can serve as a chaperone protein for other amino acid transporter
systems, SLC7A11 is specific for the X−

c system [26,27]. SLC7A11 imports extracellular
oxidized cystine into the cell, and it is then converted to cysteine [23,28]. The subsequent
synthesis of GSH reduces intracellular ROS levels, thereby blocking lipid peroxidation and
ferroptosis [29].

A schematic representation of the function of SLC7A11 is shown in Figure 1.
Since SLC7A11 expression is upregulated in several types of human cancers, it could

be an important therapeutic target for cancer treatment [23,28,30].
The aim of this review is to provide an overview of the current literature regarding

the role of SLC7A11 in ovarian cancer in order to provide new insights into SLC7A11
modulation and to evaluate the potential role of SLC7A11 as a therapeutic target.
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Figure 1. Representation of the function of SLC7A11. SLC7A11 imports extracellular cystine, which
is reduced to cysteine and is used in conjugation with glutamate to form γglutamylcysteine (reaction
catalyzed by GLC). γGlutamylcysteine is conjugated with glycine (via GSS) to produce GSH, which is
used as a cofactor for enzymes, such as GPX4, that protect cells from lipid peroxidation. In particular,
GPX4 uses GSH to reduce lipid hydroperoxides (a ferroptosis inducer) to lipid alcohols, suppressing
ferroptosis. In this reaction GSH is oxidized to GSSG. GSH also protects cells from ROS exposure
by decreasing ROS levels. Thus, high SLC7A11 levels in cancer cells cause cell proliferation, drug
resistance, cancer progression and metastasis.

2. SLC7A11 in Chemotherapy-Resistant Ovarian Cancer

Qin and colleagues reported that SLC7A11 protein expression was significantly in-
creased in ovarian cancer tissues and cisplatin-resistant A2780/DDP and SKOV3/DDP cells
compared to the cisplatin-sensitive cells [31]. These data are in disagreement with those
reported by Yin and colleagues who reported a significant downregulation of SLC7A11
mRNA in platinum-resistant tissues compared to the platinum-sensitive ones. Authors
also found that SLC7A11 gene expression was an independent prognostic factor for overall
survival [32].
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Thus, although SLC7A11 could be a potential therapeutic target in ovarian cancer
treatment, more studies are required to evaluate the role of SLC7A11 expression as a
biomarker in ovarian cancer management.

Another study found that patients with epithelial ovarian cancer (EOC) and a high
co-expression level of SLC7A11 and GPX4 had a 60-fold higher risk of developing platinum
resistance compared with patients with a low level of co-expression. In addition, a high
co-expression level of SLC7A11 and GPX4 was an independent prognostic factor of poor
overall survival and poor progression-free survival. Moreover, expression levels of both
SLC7A11 and GPX4 were upregulated in platinum-resistant A2780/DDP and SKOV3/DDP
cells compared with the platinum-sensitive A2780 and SKOV3 parental ovarian cancer cells.
Interestingly, the silencing of SLC7A11 or GPX4 significantly decreased platinum resistance.
Thus, high expression levels of SLC7A11 and GPX4 are associated with platinum resistance
in EOC patients and may be significant independent prognostic factors and potential
therapeutic targets in EOC patients with platinum resistance [33].

A combined platinum and paclitaxel chemotherapy regimen after surgery is a first-line
treatment for ovarian cancer patients, but resistance frequently occurs, causing chemother-
apy failure [34]. Competing endogenous RNAs (ceRNAs) are RNA molecules that can
bind to miRNA response elements (MREs) located on the 3′UTRs of mRNAs and can thus
compete with other molecules for miRNA binding. CeRNAs include lncRNA, circRNA
and mRNA [35]. An interesting study found that, in three autophagy-related databases,
SLC7A11 gene expression was significantly decreased in drug-resistant ovarian cancer
tissues and in two paclitaxel-resistant cell lines (HeyA8-R and SKOV3-R) compared to the
paclitaxel-sensitive ovarian cancer tissues and cell lines (HeyA8 and SKOV3). Interestingly,
the overexpression of SLC7A11 significantly increased the paclitaxel sensitivity of HeyA8-
R cells, inhibited colony formation and induced apoptosis. Furthermore, low SLC7A11
expression was correlated with poor overall survival, progression-free survival and post-
progression survival in ovarian cancer patients. Mechanistically, SLC7A11 modulated cell
autophagy via a competing endogenous RNA (ceRNA) that interacts with the autophagy
genes syntaxin 17 (STX17), RAS-associated binding protein 33 B (RAB33B) and ultraviolent
(UV) irradiation resistance-associated gene (UVRAG). In fact, SLC7A11 was strongly and
positively co-expressed with these three genes in drug-sensitive and -resistant ovarian
cancer tissues. The authors also found that SLC7A11 induced the expression of autophagy
genes, such as LC3, Atg16L1 and Atg7. Moreover, the expression of these three autophagy
genes was further increased when the cells were treated with paclitaxel. Thus, SLC7A11
can modulate autophagy via ceRNA interactions with the autophagy genes STX17, RAB33B
and UVRAG in ovarian cancer [36].

Thus, SLC7A11 expression is inconsistent in paclitaxel- and cisplatin-resistant ovar-
ian cancer since SLC7A11 expression is high in cisplatin-resistant but low in paclitaxel-
resistant ovarian cancer, suggesting that SLC7A11 plays distinct roles in these two cases of
chemotherapy resistance, possibly due to its modulation of different signaling pathways.

L-Alanosine (an amino acid analogue drug) and geldanamycin are two antibiotics
with anticancer activity [37,38]. However, their effects can be modulated by SLC7A11
expression. In fact, an interesting study found that the inhibition of the X−

c transport
system via the silencing of SLC7A11 expression (with siRNA) in SKOV3 ovarian cancer
cells decreased sensitivity to L-alanosine, supporting the hypothesis that L-alanosine is
an SLC7A11 substrate. In addition, SLC7A11 silencing increased geldanamycin efficiency,
possibly due to the lowered intracellular glutathione levels. Thus, SLC7A11 regulates the
cellular uptake of L-alanosine but confers resistance to geldanamycin by supplying cystine
for glutathione maintenance. Therefore, an evaluation of SLC7A11 expression could be
a predictor of a cellular response to L-alanosine and glutathione-mediated resistance to
geldanamycin, suggesting that SLC7A11 could be a target in multi-drug chemotherapy [39].

Looking at the studies discussed in this section, it is possible to highlight the con-
trasting results reported in SLC7A11 expression in chemotherapy-resistant tissues and cell
lines. In fact, two studies [31,33] reported an increased expression of SLC7A11, while two
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different studies [32,36] reported a decreased expression of SLC7A11 in chemotherapy-
resistant ovarian cancer tissues and cell lines. These contrasting results could be due to the
different techniques used to analyze SLC7A11 expression (protein or mRNA). Thus, further
studies are necessary to evaluate the expression of SLC7A11 (possibly at both the mRNA
and protein levels) in chemotherapy-resistant tissues and cell lines.

3. SLC7A11 Modulation by Natural and Synthetic Compounds in Ovarian Cancer

Natural and synthetic compounds are widely used to treat several cancerous and
noncancerous diseases [34,40–46]. Both these types of compounds can be used alone or in
combination with chemotherapy to improve treatment outcomes or counteract the side
effects of chemo- and radiotherapy in several types of cancers, including ovarian cancer.

Agrimonolide is a natural compound isolated from Agrimonia pilosa Ledeb, a tra-
ditional Chinese medicinal herb with important anti-inflammatory, anticancer and an-
tioxidant activities [47–50]. It has been reported that agrimonolide significantly inhibited
the proliferation, migration and invasion of A2780 and SKOV-3 cells and also promoted
apoptosis in these cells. Moreover, agrimonolide induced ferroptosis, resulting in the
downregulation of sterol CoA desaturase (SCD1), SLC7A11 and GPX4 expression and an
increase in ROS, total iron and Fe2+ levels [51]. SCD1 is a lipid-regulating enzyme that
converts saturated fatty acids to ∆9-monounsaturated fatty acids [52]. SCD1 is highly ex-
pressed in several cancer types and modulates cancer cell initiation, represses apoptosis and
promotes cancer cell proliferation [52]. In addition, SCD1 modulates ferroptosis in ovarian
cancer [53]. Interestingly, SCD1 overexpression in A2780 and SKOV-3 cells significantly
increased SLC7A11 and GPX4 protein expression. Thus, agrimonolide acts as an apoptosis-
and ferroptosis-inducing agent in ovarian cancer cells and induces ferroptosis through the
modulation of the SCD1/SLC7A11/GPX4 axis [51].

Cancer stem cells (CSCs) are cancer cells that are characterized by a high capacity for
self-renewal and can be found in several liquid and solid cancers, thereby contributing to
the onset, progression, recurrence and metastasis of these cancers [54]. The authors of an
interesting study determined whether the ferroptosis pathway could be involved in the
metabolism of fructose in ovarian CSCs by evaluating the expression of ferritin heavy chain
subunits (FTH), which are subunits of an intracellular iron storage protein that contributes
to the ferroptosis process [55,56], and SLC7A11, which acts as a negative regulator of
ferroptosis [23]. These authors found that the treatment of spheroids comprising A2780 and
SKOV3 CSCs with fructose significantly decreased SLC7A11 expression, while the increased
expression of FTH resulted in an enrichment of the ferroptosis pathway (demonstrated via
KEGG functional analysis). Therefore, fructose may be associated with ferroptosis and may
modulate SLC7A11 expression in ovarian CSCs [57].

Eriodictyol is a flavonoid abundantly present in plants, fruits and vegetables with im-
portant anti-inflammatory, antitumor, cardioprotective and hepatoprotective effects [58,59].
The nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor involved
in the antioxidant response [41,60]. It is known that NRF2 plays a key role in carcinogene-
sis, promoting tumor cell proliferation, invasion and chemoresistance in several types of
cancers [43,61–63]. It has been reported that eriodictyol can regulate NRF2 expression and
ferroptosis [64,65]. An interesting study evaluated the effects of eriodictyol on CaoV3 and
A2780 ovarian cancer cells. It was found that eriodictyol treatment suppressed cell viability
and induced apoptosis in both cell lines. Moreover, eriodictyol treatment significantly
increased the Fe2+ content and ROS production and significantly decreased SLC7A11 and
GPX4 protein expression. Finally, eriodictyol downregulated NRF2 expression in tumor
tissues in mice xenograft models. Thus, eriodictyol regulated ferroptosis, ROS levels and
cell viability and modulated NRF2 signaling in ovarian cancer [66]. These data are very
important and are in agreement with two important studies [67,68] reporting that SLC7A11
is a prognostic ferroptosis-related gene in ovarian cancer. In fact, both these studies showed
that low expression of SLC7A11 was associated with a poor overall survival in ovarian
cancer patients [67,68]. Thus, the ferroptosis-related gene signature could predict over-
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all survival in ovarian cancer patients and improve therapeutic treatments with a more
personalized therapy.

Poly (ADP-ribose) polymerases (PARP) are a family of proteins involved in a vari-
ety of cellular processes, such as DNA repair, DNA methylation and programmed cell
death [69–71]. Pharmacologic inhibition of PARP is the primary therapeutic strategy for
BReast CAncer gene (BRCA) mutant ovarian cancer, but most patients carry wild-type
BRCA1/2 and show no clinical benefits from PARP inhibitors [72,73]. The TP53 gene en-
codes the p53 tumor suppressor protein and is the most frequently mutated gene in human
cancer, leading to the survival of cancer cells, ineffective therapeutic responses and unfa-
vorable prognoses [74]. Importantly, it has been reported that p53 can repress SLC7A11
expression, which favors ferroptosis [75]. An interesting study found that ferroptosis is
involved in the efficacy of olaparib, a PARP inhibitor. In fact, pharmacological inhibi-
tion of PARP by olaparib in HEY and A2780 ovarian cancer cells (which carry wild-type
BRCA1/2 [76]) significantly downregulated the expression of SLC7A11 and GPX4 and
increased p53 expression, which promoted ferroptosis and DNA damage and led to cell
apoptosis. Furthermore, it has been hypothesized that p53 could transcriptionally repress
SLC7A11 expression, promoting ferroptosis in response to ROS-mediated stress (due to
olaparib). This hypothesis was demonstrated by treating the p53-deficient ovarian cancer
cell line SKOV3 with olaparib. In fact, olaparib reduced PARP1 protein expression without
affecting SLC7A11 protein levels. The effect of p53 on SLC7A11 expression was further
validated by deleting p53 in wild-type p53-expressing HEY cells using the CRISPR/Cas9
system. According to the authors’ results, olaparib significantly downregulated SLC7A11
expression in control cells carrying the p53 protein but not in p53 knockout cells. Thus,
olaparib represses SLC7A11 transcription primarily through the upregulation of p53 in
ovarian cancer cells. Thus, combined treatment with a PARP inhibitor and a ferroptosis
inducer could significantly improve the treatment of BRCA-proficient ovarian cancer [77].

Lidocaine is a local anesthetic drug with antimicrobial, antiarrhythmic and anti-
inflammatory properties [78–80]. However, increasing evidence shows that lidocaine
could interfere in the development of several cancers, including ovarian cancer [81]. An
interesting study found that lidocaine can increase ferroptosis and thereby repress ovarian
cancer progression. In fact, lidocaine treatment induced the accumulation of Fe2+ and
increased ROS levels, which suppressed the proliferation, invasion and migration of SKOV-
3 ovarian cancer cells and also promoted apoptosis in these cells. Mechanistically, the
authors found that lidocaine treatment significantly downregulated SLC7A11 expression
by enhancing miR-382-5p levels. In fact, the overexpression of miR-382-5p decreased
SLC7A11 expression. The authors also found that the inhibition of miR-382-5p blocked
lidocaine-induced ferroptosis in SKOV-3 cells. Thus, lidocaine can promote ferroptosis by
modulating the miR-382-5p/SLC7A11 axis in ovarian cancer cells [82].

Multidrug resistance (MDR) is the primary cause of the failure of chemotherapeu-
tic treatments and the low survival rates of ovarian cancer patients [83]. ABCB1 (also
known as P-glycoprotein or MDR1), is a transmembrane protein involved in drug transport
across the plasma membrane. ABCB1 plays a key role in cancer, and its overexpression
reduces the accumulation of intracellular chemotherapeutics, leading to chemoresistance
against several antineoplastic agents [84–89]. In fact, it has been proved that an increased
expression of ABCB1 is involved in the occurrence of MDR in ovarian cancers treated
with taxane drugs (e.g., Paclitaxel) [88,90–92]. Thus, the inhibition of ABCB1 may re-
store the sensitivity of ABCB1-substrate chemotherapeutic agents. Erastin is a ferroptosis
inducer that inhibits SLC7A11, preventing cystine import and GSH depletion [93]. An
interesting study found that cotreatment with erastin and docetaxel significantly decreased
cell viability, promoted cell apoptosis and induced cell cycle arrest at the G2/M stage
in docetaxel-resistant ovarian cancer (A2780/Taxol) cells (which overexpress the ABCB1
protein). Mechanistically, erastin binds ABCB1 and antagonizes its drug-efflux function,
increasing the amount of intracellular docetaxel. In addition, the inhibition of SLC7A11
by erastin decreases the intracellular GSH content, further improving docetaxel efficiency.



Int. J. Mol. Sci. 2024, 25, 587 7 of 17

Thus, erastin could reverse ABCB1-mediated docetaxel resistance in ovarian cancer and
improve chemotherapy efficiency in these patients [94].

The studies discussed in this section are summarized in Table 1 and clearly show that
natural and synthetic compounds can efficiently regulate SLC7A11 expression in ovarian
cancer cells.

Table 1. SLC7A11 modulation by natural and synthetic compounds in ovarian cancer.

Modulator Model Result Ref.

Agrimonolide
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4. Intracellular Modulators of SLC7A11 in Ovarian Cancer

Many chemotherapeutic agents (e.g., platinum-derived drugs) rely on the induction
of oxidative stress, which leads to cell damage and cancer cell death [95,96]. For this
reason, targeting redox regulation in cancer cells is a promising strategy to overcome drug
resistance. The transcription factor erythroblastosis virus E26 oncogene homolog 1 (Ets-1)
is a transcription factor associated with chemotherapeutic resistance in ovarian cancer
cells since an increased expression of Ets-1 leads to a decreased sensitivity to cisplatin
treatment [97]. It has been found that the overexpression of Ets-1 in the human ovarian
carcinoma cell line 2008 decreased intracellular ROS and increased intracellular GSH, GPX
antioxidant activity, and SLC7A11 expression and activity. Under basal conditions, the
inhibition of SLC7A11 by sulfasalazine decreased GPX activity in Ets-1 overexpressing cells.
However, under oxidative stress, the intracellular GSH levels decreased significantly in
correlation with increased Ets-1 expression following sulfasalazine treatment. Thus, Ets-1
regulates the enhanced SLC7A11 activity under oxidative stress [98].

CCAAT enhancer binding protein gamma (CEBPG) is a member of the C/EBP family
of transcription factors, which is involved in cell differentiation and proliferation. CEBPG
is an important regulator in tumor development and is highly expressed in cancer cells [99].
An interesting study found that CEBPG expression was increased in ovarian cancer tissues
compared to normal ovarian tissues and was also associated with a poor prognosis. The
knockdown of CEBPG inhibited the proliferation and invasion of A2780 and Hey ovarian
cancer cells, promoting ferroptosis. Interestingly, CEBPG knockdown in A2780 and Hey
ovarian cancer cells significantly decreased GPX4 and SLC7A11 expression. Moreover, the
authors found that CEBPG could inhibit ferroptosis and promote the transcription of the
SLC7A11 gene by binding to its promoter region. Thus, CEBPG favors cancer progression
by inhibiting ferroptosis through an increase in SLC7A11 expression [100].

AT-rich interacting domain containing protein 1A (ARID1A; also known as BAF250a
and SMARCF1) is a component of the SWItch/sucrose non-fermentable (SWI/SNF)
chromatin-remodeling complex, which makes chromatin accessible for transcription factor
binding factor, allowing gene transcription [101,102]. ARID1A is frequently mutated in
several cancers [103], including ovarian cancer, where ARID1A mutations/deletions are
found in up to 80% of clear cell ovarian cancers (CCC), 40% of endometroid ovarian can-
cers and 30% of mucinous ovarian cancers. However, no ARID1A mutations/deletions
have been reported in high-grade serous ovarian cancer [104]. An interesting study found
that ARID1A-deficient cancer cells are specifically vulnerable to the inhibition of the
glutamate-cysteine ligase synthetase catalytic subunit (GCLC), an important enzyme for
GSH synthesis. In fact, the inhibition of GCLC significantly decreased GSH in ARID1A-
deficient TOV21G ovarian cancer cells, leading to apoptosis (due to increased ROS levels).
Interestingly, the authors found that the vulnerability of ARID1A-deficient cancer cells is
caused by low basal GSH levels due to a decreased expression of SLC7A11. Importantly,
the authors demonstrated that the overexpression of ARID1A in TOV21G cells significantly
increased SLC7A11 protein expression. Thus, ARID1A-deficient ovarian cancers may be
susceptible to drugs targeting GCLC since their efficiency is enhanced by a low SLC7A11
expression that keeps GSH content at low levels [105].

SNAI2 (also known as Slug) is a zinc-finger transcription factor that plays a key role in
cancer onset, progression and metastasis, and an increased expression has been reported
in several cancers [106], including ovarian cancer [107,108]. Jin and colleagues reported
that an increased SNAI2 expression and ferroptosis were observed in SKOV3, A2780 and
CAOV3 ovarian cancer cells compared to normal human ovarian surface epithelial (OSE)
cells. SNAI2 knockdown decreased cell migration and invasion and promoted cell apoptosis
and ferroptosis in SKOV3 cells. Interestingly, the authors found that SNAI2 directly binds
to the promoter of the SLC7A11 gene and decreases its expression. SLC7A11 expression
was also decreased after erastin treatment. Thus, SNAI2 can inhibit ferroptosis by blocking
SLC7A11 expression and can therefore promote ovarian cancer progression [109].
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The 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) is a E3 ubiquitin ligase
that plays an essential role in the ubiquitination and dislocation of misfolded proteins [110].
However, HRD1 can also target normally folded proteins for degradation. HRD1 is also
involved in cancer progression, favoring cancer cell proliferation and growth in several
types of cancers [110]. An interesting study found that HRD1 expression was significantly
low in ovarian cancer tissues, and the overexpression of HRD1 inhibited the proliferation
of SKOV3 and A2780 ovarian cancer cells by promoting apoptosis and ferroptosis. The
authors also demonstrated that HRD1 interacted with and promoted the degradation of
SLC7A11. Thus, HRD1 inhibited tumor formation and promoted ferroptosis in ovarian
cancer cells by enhancing SLC7A11 degradation [111].

Long non-coding RNAs (lncRNAs) are non-coding RNA sequences that sponge and
sequester microRNAs (miRNAs). Both lncRNAs and miRNAs regulate important cell pro-
cesses in cancerous and noncancerous diseases [112–115]. It has been reported that lncRNA
ADAMTS9-AS1 plays a key role in the progression and development of several types of
cancer, including lung [116], glioma [117], bladder [118], breast [119] and prostate [119].
An interesting study found that the expression of lncRNA ADAMTS9-AS1 was signifi-
cantly increased in ES-2, OVCAR3, SKOV3 and CAOV-3 ovarian cancer cells compared
to normal human ovarian surface epithelial (OSE) cells. Interestingly, knocking down
lncRNA ADAMTS9-AS1 by transfecting OVCAR3 and CAOV3 cells with siRNAs signif-
icantly increased miRNA-587 and decreased SLC7A11 expression. Moreover, knocking
down lncRNA ADAMTS9-AS1 inhibited the proliferation and migration of ovarian cancer
cells by promoting ferroptosis. The same results were obtained when miRNA-587 was
overexpressed. Thus, lncRNA ADAMTS9-AS1 can attenuate ferroptosis by targeting the
miR-587/SLC7A11 axis in ovarian cancer cell lines, thereby providing a new therapeutic
target for the treatment of these patients [120].

Another study proved that SLC7A11 expression can be regulated by the lncRNA
As-SLC7A11 [121], which is an antisense lncRNA (a lncRNA transcribed from the opposite
strand of genes) [122]. In this study, the authors found that the level of lncRNA As-SLC7A11
was significantly decreased in epithelial ovarian cancer (EOC) tissues compared to normal
tissues. In addition, lncRNA As-SLC7A11 levels were decreased in OVCA433, OVCA429
and TOV112D ovarian cancer cell lines compared with normal human ovarian surface
epithelial (OSE) cells. The silencing of lncRNA As-SLC7A11 expression enhanced the cell
migration and invasion of OVCA433 and OVCA429 cells, while the overexpression of
lncRNA As-SLC7A11 induced apoptosis and decreased the expression of the SLC7A11
protein, suggesting that lncRNA As-SLC7A11 regulates the expression of SLC7A11 in
ovarian cancer cells [121].

In addition to the lncRNAs, miRNA can also be regulated by circular RNAs (circR-
NAs), which are single-stranded covalently closed RNA molecules that regulate gene
expression by interacting with miRNA [123,124]. CircRNAs play key roles in tumorigen-
esis and chemoresistance [123,124]. Qin and colleagues reported that cisplatin-resistant
SKOV3/DDP and A2780/DDP cells show an increased expression of SLC7A11, GPX4
and circSnx12 compared to the cisplatin-sensitive SKOV3 and A2780 cells. Interestingly,
the silencing of circSnx12 in SKOV3/DDP and A2780/DDP cells increased the expres-
sion of miR-194-5p, while decreased SLC7A11, GPX4 and GSH levels increased cisplatin
sensitivity and ferroptosis. Moreover, miR-194-5p overexpression significantly decreased
SLC7A11 expression. Thus, circSnx12 regulates ferroptosis and chemoresistance via the
miR-194-5p/SLC7A11 pathway by sponging miR-194-5p [31].

The studies discussed in this section are summarized in Table 2 and show that SLC7A11
expression can also be efficiently modulated by cellular modulators, such as non-coding
RNAs, Ets-1, CEBPG, ARID1A, SNAI2 and HRD1.
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Table 2. Cellular modulators of SLC7A11 expression in ovarian cancer.

Modulator Model Result Reference

Ets-1 2008

The overexpression of Ets-1 decreased intracellular ROS and
increased intracellular GSH, GPX antioxidant activity and
SLC7A11 expression and activity. Under oxidative stress, the
intracellular GSH levels decreased significantly in correlation
with increased Ets-1 expression following sulfasalazine (a
SLC7A11 inhibitor) treatment. Ets-1 regulates the enhanced
SLC7A11 activity under oxidative stress.

[98]

CEBPG A2780 and Hey ovarian
cancer cells

The knockdown of CEBPG decreased GPX4 and SLC7A11
expression, inhibited cancer cell proliferation and invasion and
promoted ferroptosis. CEBPG inhibited ferroptosis and
promoted the transcription of the SLC7A11 gene by binding its
promoter region.

[100]

ARID1A TOV21G ovarian cancer cells

ARID1A-deficient cells showed a decreased expression of
SLC7A11 and are more sensitive to GSH inhibition treatments.
The overexpression of ARID1A significantly increased
SLC7A11 protein expression.

[105]

SNAI2 SKOV3, A2780 and CAOV3
ovarian cancer cells

SNAI2 knockdown decreased cell migration and invasion and
promoted cell apoptosis and ferroptosis. SNAI2 directly binds
to the promoter of the SLC7A11 gene, decreasing its expression.
SLC7A11 expression was also decreased after erastin treatment.

[109]

HRD1 SKOV3 and A2780 ovarian
cancer cells

The overexpression of HRD1 inhibited proliferation and
promoted apoptosis and ferroptosis. HRD1 interacted with
SLC7A11 and promoted its degradation.

[111]

LncRNA ADAMTS9-AS1

ES-2, OVCAR3, SKOV3,
CAOV-3 and normal human

ovarian surface epithelial (OSE)
cell line

LncRNA ADAMTS9-AS1 expression was increased in cancer
cells. The knockdown of lncRNA ADAMTS9-AS1 in cancer
cells inhibited cellular proliferation and migration by
promoting ferroptosis, and miRNA-587 increased, while
SLC7A11 expression decreased. The same results were
obtained when miRNA-587 was overexpressed. LncRNA
ADAMTS9-AS1 attenuates ferroptosis by targeting the
miR-587/SLC7A11 axis.

[120]

LncRNA As-SLC7A11

OVCA433, OVCA429,
TOV112D ovarian cancer cell

lines and normal human
ovarian surface epithelial (OSE)

cell line

LncRNA As-SLC7A11 levels were decreased in ovarian cancer
cell lines compared to normal OSE cells. The silencing of
lncRNA As-SLC7A11 enhanced ovarian cancer cell migration
and invasion, while its overexpression induced apoptosis and
decreased SLC7A11 protein expression.

[121]

CircSnx12

Cisplatin-resistant
SKOV3/DDP and A2780/DDP

cells, and cisplatin-sensitive
SKOV3 and A2780 cells.

SKOV3/DDP and A2780/DDP cells showed increased
expression of SLC7A11, GPX4 and circSnx12 compared to the
cisplatin-sensitive cells. The silencing of circSnx12 in
SKOV3/DDP and A2780/DDP cells increased the expression of
miR-194-5p and decreased SLC7A11, GPX4 and GSH levels,
thus increasing cisplatin sensitivity and ferroptosis. MiR-194-5p
overexpression decreased SLC7A11 expression. CircSnx12
regulates ferroptosis and chemoresistance via the
miR-194-5p/SLC7A11 pathway by sponging miR-194-5p.

[31]

5. Conclusions

Ovarian cancer is among the most lethal gynecologic cancers and is characterized
by high mortality and relapse rates due to late diagnosis and the frequent development
of chemoresistance. Looking at the studies discussed in this review, it was revealed that
SLC7A11 expression is significantly higher in ovarian cancer compared to normal tissues,
but its expression in chemotherapy-resistant ovarian cancer tissues and cell lines is still
a matter of debate since there are contrasting results (see Section 2), possibly due to the
different techniques used to quantify SLC7A11 expression (protein or mRNA). The studies
that evaluated SCL7A11-mediated cisplatin resistance suggest that this chemoresistance
could be due to the high GSH content (due to the high expression of SCL7A11) in the cells
that were studied. In fact, GSH decreases the efficiency of the ROS produced in response to
cisplatin treatment, thus inhibiting ferroptosis (a ROS-mediated process).
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Interestingly, the studies discussed in this review also showed that SLC7A11 ex-
pression can be downregulated by natural (agrimonolide, fructose and eriodictyol) and
synthetic (olaparib, lidocaine and erastin) compounds (see Table 1), suggesting a potential
use of these compounds in ovarian cancer treatment. It deserves to be mentioned that
the function of the SLC7A11 protein can also be inhibited by several inhibitors or antag-
onists, such as sulfasalazine [125], HG106 [125], imidazole ketone erastin (IKE) [126] and
sorafenib [127].

The problem of how to treat elderly patients who frequently have chronic medical
illnesses will become more and more relevant in the next few years. At present, elderly
cancer patients are not treated in the same manner as their younger counterparts not only
for age-related organ failure but also for concomitant diseases. Thus, natural compounds
could represent tolerable treatments for those patients whose comorbidities prevent them
from undergoing radical surgery, which is the standard of care for this pathology [1]. In
addition, important cellular modulators, such as non-coding RNAs, Ets-1, CEBPG, ARID1A,
SNAI2 and HRD1 (see Table 2), could significantly regulate SLC7A11 expression in ovarian
cancer cells, suggesting that these modulators could be potential therapeutic targets in
ovarian cancer patients.

A schematic representation of SLC7A11 modulation in ovarian cancer is reported in
Figure 2.
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Figure 2. Representation of SLC7A11 modulation in ovarian cancer cells. SLC7A11 expression can
be regulated by natural (in black outside the cell) and synthetic (in red outside the cell) compounds.
In addition, SLC7A11 expression can be regulated by cellular modulators, such as miR-382-5p,
miR-587, miR-194-5p, circSnx12, lncRNA ADAMTS9-AS1, lncRNA SLC7A11, sterol CoA desaturase
(SCD1), SNAI2, erythroblastosis virus E26 oncogene homolog 1 (Ets-1), CCAAT enhancer binding
protein gamma (CEBPG) and AT-rich interacting domain containing protein 1A (ARID1A). Decreased
expression of SLC7A11 causes a decrease in intracellular glutathione (GSH) levels, which favors
ferroptosis, apoptosis and drug sensitivity.
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In conclusion, SLC7A11 could be a potential therapeutic target in ovarian cancer since
it plays a key role in improving cancer cells’ response to chemotherapeutic agents in both
sensitive and resistant ovarian cancer cells. Thus, specific clinical trials assessing the effects
of SLC7A11 modulation (e.g., with natural or synthetic compounds) in ovarian cancer
patients are needed to improve the outcomes of this disease.
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