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Abstract

Energy efficiency is of paramount importance for the sustainability of HPC systems. Energy consumption limits the
peak performance of supercomputers and accounts for a large share of total cost of ownership. Consequently, system
owners and final users have started exploring mechanisms to trade off performance for power consumption, for example
through frequency and voltage scaling.

However, only a limited number of studies have been devoted to explore the economic viability of performance scaling
solutions and to devise pricing mechanisms fostering a more energy-conscious usage of resources, without adversely
impacting return-of-investment on the HPC facility. We present a parametrized model to analyze the impact of frequency
scaling on energy and to assess the potential total cost benefits for the HPC facility and the user. We evaluate four
pricing schemes, considering both facility manager and the user perspectives. We then perform a design space exploration
considering current and near-future HPC systems and technologies.

Keywords: High Performance Computing, Energy-Efficiency, Power Consumption, Pricing Schemes

1. Introduction

Energy consumption poses a great challenge for the
growth of worldwide HPC installations. As supercom-
puters increase their peak performance, so do their power
consumption, leading in turn to increased energy costs.
Hence, the last few years saw a shift from a “performance
at all costs” mentality to a more balanced and energy ef-
ficient perspective [1, 2, 3].

Several methods aim at curtailing the power consump-
tion through a trade-off between the computing perfor-
mance and power consumption, for example via frequency
and/or voltage scaling (DVFS ) [4]. The main draw-
back of this technique is the decreased computing speed
that leads to increased application run times. This is-
sue is partially mitigated because several HPC applica-
tions and benchmarks are not CPU-bound but present a
memory and I/O bottleneck [5, 6, 7]; reducing the fre-
quency of the computing units used by these jobs does
not impact severely their time-to-solution (TtS)[8]. For in-
stance, memory or I/O bound application are less sensitive
to power reduction. See differences between CPU-heavy
benchmarks such as HPL[9] and the memory bandwidth
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constrained HPCG[10]. While in the rest of the paper we
will refer explicitly to frequency scaling, our conclusions
can also be applied Intel’s Running Average Power Limit
(RAPL) [11], that does not directly change the computing
nodes clock frequency but indirectly does so by enforcing
a socket-level power cap. This technique is analogous to
DVFS since the power bound leads to increased run times
[12, 13].

While applications of DVFS in power capped contexts
have been widely studied, very little attention has been
dedicated to the economic aspect of the frequency scal-
ing. For example, a very common accounting scheme in
HPC centers consists in linking the price paid by final
users to the time-to-solution of their application multi-
plied by the requested resources [14]; this scheme is there-
fore directly affected by techniques altering the applica-
tions run time. The rapid depreciation of computing fa-
cilities pushes against any policy that stretches job ex-
ecution time. Moreover, decreasing the computing unit
performance leads to lower power consumption, but this
does not guarantee lower energy consumption, due to the
longer durations.

In this paper we take steps to address these issues. We
introduce a parameterized model representing a HPC sys-
tem, based on a real Top 500 supercomputer on the tier-0
Fermi supercomputer, hosted at the CINECA computing
center[15]. We use the model to understand the economic
impact of frequency scaling, from the point of view of both
the facility manager (maximizing the overall gain and re-
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ducing the total cost of ownership – also called TCO) and
of users (minimizing the costs paid for resource per hour).
We present four different pricing schemes and we evaluate
their economic viability, given the parameters characteriz-
ing the Fermi supercomputer and the hosting facility. We
consider how DVFS impacts both the energy costs (The
electricity cost paid by the facility to operate the IT in-
frastructure plus the cooling system) and the generated
income; we explore mechanisms that can be used to foster
a reduction in energy costs while maintaining a profitable
condition for both users and owners. We also extend our
parametric analysis considering how the pricing schemes
could generate different outcomes with different systems
and operating conditions.

The rest of the paper is organized as follows: Section 2
provides an overview on the related works in the area of
frequency scaling in HPC and a brief discussion on energy-
aware pricing schemes found in the data center literatures.
Section 3 describes the parameterized models and evalu-
ates the proposed pricing schemes. Section 4 discusses the
alternative scenarios and explores the design space. Fi-
nally, Section 5 summarizes the paper and provides the
concluding remarks.

2. Related Works

In this section we briefly describe the state-of-the-art
techniques aiming at energy efficiency (in particular fre-
quency scaling). We then present an overview of the liter-
ature regarding pricing schemes found in data centers and
targeted at fostering energy efficient solutions.

2.1. Power/Energy Efficiency

Since the HPC community widely recognizes the need to
reduce power consumption in supercomputers, several re-
search avenues have been explored for this purpose. Many
techniques have been proposed to bound the power con-
sumption of HPC machines, ranging from Dynamic Volt-
age and Frequency Scaling (DVFS) [16], energy propor-
tional systems [17], over-provisioning [18], turning off idle
resources [19], exploiting components variability [20]. In
this paper we are going to focus on frequency scaling and
socket-level power capping (RAPL) because they are well-
known solutions that have been adopted in several HPC
systems [21, 22, 4, 23, 24, 25].

Nowadays, many supercomputers employ some form of
DVFS[22, 26], i.e. they exchange processor performance
for lower power consumption. With DVFS, a processor
can run at one of the supported frequency/voltage pairs
lower than the maximum one. The main issue with DVFS-
based approaches is the trade-off between power savings
and decrease in performance: reducing the clock frequency
clearly increases the TtS of the applications. To overcome
this issue, several methods try to apply DVFS only in pe-
riods of low system activities or in particular phases of a
job execution. For example, in [27], Freeh et al. study the

energy-time trade-off of high performance cluster nodes
with several power states available. They conclude that
applying DVFS to applications with memory or commu-
nication bottlenecks does not imply large time penalties.
This strategy strongly relies on the nature of the running
applications, which must be known and modeled in ad-
vance, before their actual execution. In [28], Hsu et al.
propose to solve this problem through a power-aware adap-
tive algorithm which does not employ any application-
specific information a priori, but implicitly gathers such
information at run-time.

Etinski et al. [29] extend the well-known EASY-
backfilling scheduling policy to limit a supercomputer
power consumption through DVFS. Their results are
promising in terms of energy savings and also a better
utilization of the system and reduced waiting time for the
users, thanks to the possibility to execute more jobs con-
currently if their frequency (thus power) is reduced. The
same authors introduce also another approach in [30]: in
the latter work they propose a novel scheduling policy
based on integer linear programming (ILP). This method
offers better performance in terms of average job wait time
over various power budget. These two works focus exclu-
sively on the effect of frequency scaling on applications
run times while we are mainly concerned with the energy
consumption and its economic impact.

RAPL provides a software configurable and hardware
enforced power cap. Instead of setting a specific frequency,
this mechanism takes as input the power budget for a
socket and subsequently forces the power consumption to
be within the limit. For instance, Ellsworth et al. [31]
present a scheme to decide the power allocated to each
node in a supercomputer (Dynamic Power Sharing). Ini-
tially the overall available power budget is uniformly di-
vided among all nodes; periodically the algorithm adjusts
the allocated power depending on actual consumptions,
i.e. if a node consumes less power than the allocated one
the exceeding capacity can be transferred to a different
node which needs it. RAPL is used to enforce the node
power limit at run time. The main drawback of RAPL
is the same that troubles DVFS mechanisms, namely the
indiscriminate power reduction implies an increase in TtS
(performance loss).

The main limitation of the related works in the re-
search literature is that they focus (almost) exclusively
on the energy-savings and time-to-solution considerations
while discounting the cost aspects. All the considered ap-
proaches can influence the HPC system revenues exclu-
sively through the reduction of energy/power spending and
therefore overlook a critical component of the facility costs,
the non negligible depreciation costs. In our paper we
consider both elements that determine the supercomputer
TCO.

Real HPC applications have different sensitivities to-
wards frequency & voltage scaling; memory or I/O bound
application are less sensitive to frequency reduction. For
instance, see differences between CPU-heavy benchmarks
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such as HPL[9] and the memory bandwidth constrained
HPCG[10]. We consider for simplicity an “average” job
sensitivity and sweep it as a parameter.

2.2. Pricing Schemes

Another important area of research deals with the prob-
lem of finding optimal pricing schemes for the resources
composing a supercomputer. The current state-of-the-art
for pricing schemes in HPC systems is somewhat lacking,
whilst researchers in the data center community investi-
gated this issue in a more thorough manner[32, 33, 34].
Generally speaking, data centers operate with a slightly
different set of assumption w.r.t. HPC facilities and there-
fore they are not directly comparable to the method pro-
posed in this paper.

Chase et al. [35] present a new architecture to man-
age resources in a data center, with the goal of energy
efficiency. The main idea is to implement a bidding mech-
anism where the services running in the system bid for
resources as a function of delivered performance. After-
wards, resource prices are regulated through a greedy algo-
rithm to balance supply and demand, allocating resources
to their most efficient use.

Zhang et al. [36] consider the issue of minimizing the
electricity bill of a network of data centers; for this pur-
pose they devise an approach that leverage the different
electricity prices in different geographical locations to dis-
tribute workloads among those locations. Their work ex-
plicitly models the effects of the power demands induced
by cloud-scale data centers on electricity prices and the
power consumption of cooling and networking in the mini-
mization of electricity bill. Although the proposed solution
is very interesting, the vast majority of nowadays HPC sys-
tems do not have a distributed nature similar to the one
considered in this work.

Wang et al. [37] tackle the problem of optimizing data
center electric utility bill under uncertainty in workloads
and real-world pricing schemes. They consider a data cen-
ter where the power consumption of the IT equipment can
be modulated via control knobs. The key assumption of
the model they propose is that the power effects of most
IT control knobs can be seen as dropping and/or delaying
a portion of the power demand, i.e. through dynamically
modulating the workload. They propose a hierarchical in-
frastructure to manage system resources and workload; the
hierarchical structure allows to separate the abstract layer
specifying the optimization policy from the lower level that
implements the actual power-modulation knobs. The main
drawback back of this work (and several others found in
the literature) is that it disregards the total cost of own-
ership and the depreciation costs.

3. The HPC System Model

In this section we introduce the parameterized model,
used to describe the cost, energy, performance trade-off

in a generic supercomputer. The parameters configu-
ration considered in this section is based on the Fermi
supercomputer[38]. The proposed model abstracts the en-
semble of computing resources as a composition of alloca-
ble elements. As the considered system was composed of
multi-cores, we referred to them as “core”. This is done to
simplify the analysis but nothing prevents the addition of
different resources to the model to extend our approach. In
our analysis we do assume that scheduling and allocation
decisions have been taken by a higher-level scheduler. This
is normal in supercomputer infrastructures[39, 40, 41, 42].

We assume that the considered machine is capable of
decreasing the power consumption of computing units in
exchange for reduced performance through frequency &
voltage scaling, which may lead to an increased run-time
of the involved applications, accordingly to their proper-
ties. We model the power consumption of each computing
resource with two contributions: the idle power and the
active power. The idle power is a constant power term
needed to keep the resource on, the active power is only
consumed when the resource is active and executes a job.
The absolute value is proportional to the clock frequency.
The dependency of the active power to the frequency is
monotonic and superlinear with an exponent alpha depen-
dent on the technology[43].

3.1. Model Description

The key parameters composing the model are listed in
Table 1. From these base parameters we compute the val-
ues of a set of intermediate variables, presented in Ta-
ble 2. In Table 3 we report the output, or target, param-
eters. The main output parameters are used to evaluate
the pricing schemes discussed in Section 3.3. We chose
two main parameters: 1) the system gain (the difference
between the income obtained by the system owner and
the operating costs); 2) the price paid by users for their
application (measured as the price paid per hour and per
single resource usage). These outcomes are relative to the
considered time frame θ. The model parameters are linked
through the mathematical expressions exposed in the ta-
bles. Some parameters are self explaining; we give here
details to illustrate the less obvious ones. Part of the pa-
rameters presented in Table 1 describe the HPC facility.
In our case, their values depend on the supercomputer
we took as example; different configurations can model
different systems. Other parameters are instead used to
represent the applications.

There are two main parameters that define the be-
haviour of the system (how system gain and job price are
affected) when frequency scaling is applied:

• the scaling factor, ϕ, indicates how much power con-
sumptions are decreased (the same factor is applied
to each slowed down jobs);

• the job sensitivity, σ, modulates the duration increase
due to the power scaling (again, same value applied
to all slowed jobs)
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The system might be not fully used (not enough jobs,
resource bottlenecks, SLAs constraints..) but its cores are
occupied only up to a certain percentage U . In the pro-
posed model we consider also the case where the power
consumption is scaled down only for a fraction of the jobs;
β tells the percentage of jobs that are not subject to slow
down (conversely 1− β indicates the fraction of jobs with
a reduced power consumption). The alpha factor α is
a technology-dependent parameter and affects the reduc-
tion in power consumption following a frequency reduc-
tion. Given a core base power consumption at maximum
frequency, the idle power percentage ι indicates the pro-
portion of consumption due to the idle power (when the
core is not used). Lower values of ι indicate a more energy
proportional system, i.e. systems where power tends to
near-zero values when frequency tends to zero.

The scaling factor, ϕ, specifies the ratio between the
maximum and reduced frequency and it directly modu-
lates the power consumption variation (decrease). It is a
real number and, given a maximum frequency fmax and
the scaled one fscaled, is computed as ϕ = fmax/fscaled.
The job sensitivity, σ, modulates the time-to-solution in-
crease due to the power scaling. The job sensitivity embeds
both the nature of the application (ranging between CPU-
bound or memory-bound) and the fact that a HPC job
can be composed by several sub-tasks with relative depen-
dencies: an application with many intertwined tasks may
experience higher performance degradation when subject
to frequency scaling.

The idle and active power consumed by each core at
maximum frequency (P I and PA) are obtained by di-
viding the total energy consumed by the IT infrastruc-
ture – derived from the yearly energy cost CYEI – by the
total number of core and the hours of utilization. The
power consumption of a job at maximum frequency is com-
puted as the sum of idle and power consumption for each
core (at maximum frequency) multiplied by the number
of requested cores (νj). In Table 2 we also observe how
the time-to-solution and the power consumption of a job
change if the power is scaled down; the scaling factor ϕ
and the job sensitivity σ are the only parameters affecting
the outcome – we assume that α remains constant in the
whole time frame (besides being the same for all cores).

The parameter Ra indicates the number of resources
(only cores in our model) that are used in the system by
the running applications; it is computed as the number of
total resources available in the system multiplied by the
system utilization U .

The table contains also the derived parameters which
are directly involved in the computation of the final out-
put variables, in particular the total cost, depreciation
payment plus energy consumption, per time frame. We
assume that the depreciation cost is constant in the time
period CθS , the energy cost for the cooling is proportional
to the IT energy cost, the latter being the sum of the en-
ergy consumption of each job. As discussed earlier, only
a percentage of jobs undergo a slow down, therefore the

energy consumption of each job is a combination of TtS
× power at maximum frequency (non-slowed down jobs)
and TtS × power at scaled frequency (slowed down jobs).
The sum of all job energies is multiplied by the electricity
cost to infer the energy costs (Eε/1000). We assume that
the energy costs are going to be identical for each pric-
ing scheme presented in Section 3.3 (the pricing scheme
influences only the system income and not its expenses).

The ROI is an input parameter representing the
expected Return-On-Investment desired by the system
owner. κT stands for the baseline hourly cost per re-
sources, derived from ROI, depreciation and estimated
energy cost. κE is defined similarly but discarding the en-
ergy cost. The maintenance costs and the value of money
are embedded in the depreciation costs and Return-Of-
Investment.

3.2. Energy Saving Potential

A fundamental aspect impacting the system cost – hence
system gain and price paid by users – is the energy cost.
We must consider two issues: 1) does decreasing speed
(clock frequency) actually reduce energy consumption? if
that is the case, certainly the energy cost would go down;
2) even if the above is true, does this lead to reduced sys-
tem TCO? This may not happen because of depreciation
costs. In this section we are going to answer to the first
question, while Sec. 3.3 deals with the second issue.

In general, when we decrease the power consumption of
a set of computational resources the HPC jobs that are
using them will suffer a performance loss and thus they
might require more time to complete. The power decrease
and time-to-solution increase are clearly intertwined and
their relation strongly depends on the nature of the appli-
cation; for instance, a memory-bound application would
experience a smaller TtS increase. This may lead to an
actual energy consumption increase since the energy E as-
sociated to a job is computed as: E = π×δ, where π is the
power consumption of the job and δ is its time-to-solution.

To answer the question we can analyze the ratio between
the energy consumed by a job at maximum frequency and
the energy consumed at the reduced frequency. The energy
ratio value is expressed by the following equation:

Eratio =
πM × δM
πS × δS

=
νj(P

I + PA)× δM
νj(P I + PA

ϕα )× (δM + δM (ϕ− 1)σ)

=
(ιP + (1− ι) · P )× δM

(ιP + (1−ι)·P
ϕα )× (δM + δM (ϕ− 1)σ)

=
1

(ι+ (1−ι)
ϕα )× (1 + (ϕ− 1)σ)

(1)

The numerator and the denominator represent, respec-
tively, the energy consumed by an application at maximum
frequency (TtS multiplied by power, πM×δM ) and the en-
ergy consumed at the reduced frequency (πS × δS). The
rest of the equation is obtained by substituting the TtS
and power values with their corresponding expressions, as
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Name Symbol Unit

Time frame θ Days
Number of cores in the system NCT NA
Power Usage Efficiency PUE NA
Electricity cost Eε €/ KWh
System lifetime LF Years
System installation cost CTS €
Estimated energy cost (IT) per year CYEI €
Return On Investment (≥ 1) ROI NA
Percentage of system utilization U NA
Idle power as % of power at max. frequency ι NA
Alpha factor α NA

Job TtS (Time-to-Solution) at maximum frequency (estimate) δM Hours
Number of requested cores per job νj NA
Frequency scaling factor ϕ NA
Job sensitivity σ NA
Percentage of non-slowed jobs β NA

Table 1: Model Base Parameters

Name Symbol Expression Unit

System cost per year (depreciation) CYS CTS /LF €
Cooling Energy Cost per Year CYEC CYEI · (PUE − 1) €
IT energy cost - Lifetime CTEI CYEI · LF €
Cooling energy cost - Lifetime CTEC CYEC · LF €
Total energy cost - Lifetime CTE CTEI + CTEC €
System cost (depreciation) - Time frame CθS CYS /365 · θ €

Coefficient - Total κT
ROI·CTS+CTE
NCT ·LF ·24·365 NA

Coefficient - System Only κE
ROI·CTS

NCT ·LF ·24·365 NA

Core Power (max frequency) P
1000·CYEI/Eε
NCT ·365·24 W

Core Idle Power (max frequency) P I ιP W
Core Active Power (max frequency) PA (1− ι) · P W
Job power consumption at max frequency πM νj(P

I + PA) W

Job TtS at scaled frequency δS δM + δM (ϕ− 1)σ Hours

Job power consumption at scaled frequency πS νj(P
I + PA

ϕα
) W

Number of resources active Ra NCT × U # Cores

Table 2: Model Derived Parameters

described in the Tables 1 and 2. We assume that the pa-
rameters that do not appear in Eq. 1 have fixed values.

We observe two facts: 1) values ≥ 1 are better since
they imply that the energy of the job decreases when we
scale down its power; 2) the only involved variables are the
alpha factor α, the idle power expressed as percentage of
the total core power (at maximum frequency) ι, the scaling
factor ϕ and the job sensitivity σ. To further simplify our
analysis we now assume that the scaling factor is fixed to
a particular value ϕ > 1 (it must be greater than one if we
want to study the power savings effect); as we are going
to see, setting the scaling factor to a constant value does
not invalidate our conclusions.

In Figure 1 we have a three-dimensional plot represent-
ing the isosurface of value 1 corresponding to the energy
ratio described in Eq. 1. The x-axis, y-axis and z-axis con-

tain, respectively, the idle power percentage ι, the the job
sensitivity σ and the alpha factor α. An isosurface is a
surface that represents points of constant target value (it
is the 3-d analog of an isoline or contour line); points above
the isosurface have values larger than the target one, points
below the surface have value smaller than the target. The
red arrow indicates the volume of space formed by points
above the isosurface. For example, in the graph of Fig. 1
the point with coordinates (0.2, 0.2, 2.0) is above the iso-
surface, hence its corresponding energy ratio is larger than
1, which basically means that reducing the clock speed is
convenient energy-wise; conversely, the point with coor-
dinates (0.8, 0.8, 1.5) is situated below the isosurface and
corresponds to an energy ratio lower than 1.

Figure 1 reveals that indeed there are some combination
of values for which reducing the job’s power consumption

5



Name Symbol Expression Unit

Income per time frame Iθ Sec. 3.3 €
IT energy cost per time frame CθEI [(1− β)πSδS + βπMδM ] · Eε

1000
€

Cooling energy cost per time frame CθEC CθEI · (PUE − 1) €
Total cost per time frame CθT CθS + CθEI + CθEC €

System gain per time frame γθ Iθ − CθT €

Average job price χθ
Iθνj
Ra

€

Table 3: Model Output Parameters

Figure 1: Energy Savings: isosurface with energy ratio = 1

leads to energy savings. For example, as one could have ex-
pected, low values of job sensitivity imply a larger energy
ratio (saving): if the job TtS increases only marginally
when the power is reduced the outcome is an energy sav-
ing. We can also notice that better (higher) energy ratios
are associated to lower values of ι: this happens because
if the idle power component has a relatively smaller influ-
ence, decreasing the operating frequency of the computing
nodes leads to greater power savings – the idle power con-
sumption is not affected by the scaling-down action. How-
ever, it is also clear that there are many configurations
where frequency (and power) reduction does not reduce
energy.

As a first result of the proposed model: cost reduction
policies based on performance scaling make sense only if
the system is operated in the area above the isosurface, de-
fined by (ι, σ, α). σ depends on the application slack which
is defined based on the target architecture and applications
set. ι and α are instead technological parameters: α is de-
termined by the technology while ι depends on the system
architecture and on the leaking components present in the
compute node (i.e. Fans, HDDs, NIC, etc).

In Figure 2 we displayed different isosurfaces along with
the one corresponding to an energy ratio of 1. The addi-
tional isosurfaces correspond to energy ratios of 2, 3 and 4;

Figure 2: Energy Savings: multiple isosurfaces with different ratio
values

as noted before, a higher energy ratio means more poten-
tial energy saving and thus combinations of (ι, σ, α) leading
towards the new isosurfaces are preferable.

Figure 3 shows what happens if we also change the value
of the scaling factor parameter ϕ; the figure presents again
isosurfaces of value 1. As we anticipated before, the scal-
ing factor influences the energy ratio as revealed by the
different gradients of the surfaces but the overall shape of
the isosurfaces remain similar. One thing that can be no-
ticed is that when the scaling factor increases the alpha
factor impact slightly decreases – the surface varies less
along the z-axis.

From Fig. 1, 2 and 3 we can draw a positive conclu-
sion. Reducing the power consumption of the application
in a HPC system can lead to energy savings, depending on
some the parameters characterizing the system and the ap-
plication. As a general rule, we can say that facility owner
as well as user should target the reduction of power con-
sumption of the less sensitive jobs, i.e. those jobs whose
time-to-solution will not be too affected by the power re-
duction (for example memory, I/O and communication
bound applications). This conclusion is more prominent
in installations in which the idle power is a large compo-
nent of the total power consumption; In this case reducing
the operational frequency can increase the consumed en-
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Figure 3: Energy Savings: isosurfaces with ratio = 1, different scaling
factor ϕ values

ergy.

3.3. Pricing Schemes

The results of the previous section suggest that, depend-
ing on the characteristics of applications (jobs) and of the
supercomputer infrastructure, it is possible to decrease
the energy consumption of the HPC system by slowing
it down. We have not determined yet: 1) if the energy
reduction leads to lower costs for the facility manager and
for the users; 2) how to perform accounting in order to
foster the adoption (by the facility manager and users) of
the energy-efficient operating condition.

We will now discuss four different pricing scheme to see
how they impact the TCO and the system total gain and
the average job price. In addition to the variables intro-
duced in Table 3, we are also going to consider normalized
values for the two most interesting variables: 1) normal-
ized system gain γθN and 2) normalized job price χθN . The
normalized gains and costs are computed w.r.t. to the
Pricing Scheme 1 (see 3.3.1), with a scaling factor equal to
1, a situation that we assume is our baseline. The normal-
ized gain (cost) for any given combination of parameters
and pricing scheme is obtained by dividing the resulting
gain (cost) by the baseline gain (cost). Since in all the re-
maining discussion we are going to focus on system gains
and average job prices (and related parameters) computed
in time frame θ we are going to omit the time frame ref-
erence from the mathematical notation, for the sake of
clarity (for example γθ → γ).

In Table 4 the different ways to compute the system
time frame income implied by the different pricing schemes
are summarized. The table final three columns serve to
quickly summarize the scheme features. Coeff. indicates
the cost coefficient used to give a price to resource per
hour; it can include both the depreciation costs (derived
from the system installation cost) and the energy cost

(“Depreciation+Energy”) or consider only the deprecia-
tion cost (“Depreciation”). The TtS column specifies the
time-to-solution used in the price formula; allowed values
are: the real TtS, the oracle TtS (the time-to-solution at
maximum frequency) and the scaled time-to-solution (the
real TtS divided by the scaling factor).

Finally, the Energy columns tells how the energy is taken
into account; “explicit” means that the energy costs is
directly covered by the users, “implicit” means that the
cost is included in the price coefficient (see the numerator
of κT in Table 2).

Since we are interested in understanding the influence
of frequency scaling, we begin by focusing our analysis on
the parameters that mostly impact its effect, namely the
scaling factor (ϕ) and job sensitivity (σ).

We then observe the target output as a function of these
two variables, keeping all remaining parameters fixed. The
scaling factor is the main variable the system manager and
the users can use as a knob to regulate the power con-
sumption; in our analysis we consider values ranging from
1 (no scaling) to 5 (aggressive power reduction). As an
example in today high end CPUs it is common to see the
clock frequency ranging from 3.6 GHz (Turbo mode) to
1.2GHz. The job sensitivity has a big influence on the out-
come due to the direct impact on the job time-to-solution
when the power is reduced; we let the job sensitivity vary
from 0, that is an idealized case where reducing the power
consumption does not entail a TtS increase, to 1, when
the TtS increase is proportional to the power reduction.
Job sensitivity values closer to 0 represent memory or I/O
bound jobs while moving closer to the opposite end of the
range the application are getting more CPU-bound.

When looking at the normalized system gain values
larger than one indicate that the considered price model
with the specified scaling factor and job sensitivity (tu-
ple < price model, ϕ, σ >) leads to larger gains w.r.t. to
the baseline. Conversely, normalized system gains smaller
than 1 and negative values indicate that the baseline pro-
duces better results; negative values are possible because
for some pricing scheme and parameters combination the
system gain can actually be negative – the system is los-
ing money due to the fact that the cost is higher than the
income. With the fixed parameters configuration used in
the following subsections the baseline does produce pos-
itive net gain for the system. The same discussion can
be applied to the normalized job price, with the exception
that the latter can never be negative – the minimum value
for the average cost of a job is zero.

One last point to address before introducing the pric-
ing schemes is the issue of the TtS increase. Users might
not accept the fact that the TtS of their application is
stretched over a certain point due to the frequency scal-
ing. This is mitigated by the fact that when users submit
their job, they typically provide estimated TtS that are
longer than the actual TtS; stretching their application but
maintaining them under their estimated TtS would gener-
ate no complaints. Using historical data from a tier-0 su-
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Scheme Expression Coeff. TtS Energy

Scheme 1 κTR
a
(
(1− β)δS + βδM

)
Depreciation + Energy Real Implicit

Scheme 2 κTR
a
(
δM

)
Depreciation + Energy Oracle Implicit

Scheme 3 κTR
a
( (1−β)δS

ϕ
+ βδM

)
Depreciation + Energy Scaled Implicit

Scheme 4 RaκE
(
(1− β)δS + βδM

)
+ Depreciation Real Explicit

+
(
(1− β)πSδS + βπMδM

)
· Eε
1000

Table 4: Income functions with different pricing strategies

Figure 4: Scaling Factor VS Job Sensitivity for acceptable TtS in-
creases

percomputer we discovered that the average ratio between
estimated TtS and real TtS is 1.5 (considering only jobs
which run longer than 1 hour to exclude very short appli-
cation that would skew the mean value). This acceptable
TtS increase corresponds to the values of scaling factor
ϕ and job sensitivity σ displayed as dashed black lines in
the following two-dimensional figures and as a black line
in the three-dimensional ones. Points below the line cor-
respond to acceptable TtS increase. This information can
be used while devising pricing scheme in order to account
also for the user satisfaction (for instance, not selecting
scaling factor values that would exceedingly slow down an
application).

This acceptable TtS increase corresponds to the values
of scaling factor ϕ and job sensitivity σ displayed in Fig-
ure 4; points below the line correspond to acceptable TtS
increase. This information can be used while devising pric-
ing scheme in order to account also for the user satisfaction
(for instance, not selecting scaling factor values that would
exceedingly lengthen an application).

3.3.1. Scheme 1

This is the pricing model employed in most HPC facili-
ties. Users pay a price based on the amount of requested
resources and the real time-to-solution (wall time) of their
job multiplied by the coefficient κT . The total income for

the HPC facility is therefore given as the sum of the prices
of all jobs that run during the time frame.

In this case (as in the two following ones discussed in
Sections 3.3.2 and 3.3.3) the energy costs are entirely cov-
ered by the facility managers, energy savings or increase
do not modify the job price for the user which only de-
pends on the TtS. The system owners address this issue
by including worst-case estimated energy costs in the cost
coefficient κT .

In Figure 5 we observe the normalized system gain for
the Pricing Scheme 1. Fig. 5a shows in the x-axis the
scaling factor ϕ and the job sensitivity σ in the y-axis; the
different colored contours (the lines of points with the same
value) indicate the normalized system gain. The same
information is presented in three dimensions in Fig. 5b;
here the x-axis and y-axis indicate again the scaling fac-
tor and job sensitivity while the z-axis shows the normal-
ized system gain. This kind of coupled plots is used also
to look at the normalized job price (Figure 6) and for
the remaining models (see corresponding figures in Sec-
tions 3.3.2, 3.3.3 and 3.3.4).

The dotted black line plotted in the two-dimensional
graphs is the same line seen in seen in Fig. 4; combinations
of (ϕ, σ) above that line represent conditions where the
frequency scaling would make the job TtS longer beyond
the point where the user notice the difference (and loss of
quality of service – QoS).

It is quite straightforward to see that with Pricing
Scheme 1 the system owner gains more when the scaling
factor increases, especially with higher job sensitivity. This
happens because the price paid by the users increases due
the longer TtS of the jobs. This is clearly shown by Fig. 6,
where the normalized (average) job price rises rapidly to-
gether with the scaling factor. If the scaling factor is set to
one, the job sensitivity loses its influence and the system
gain and job price do not differ from the baseline. This
happens with all pricing models. Although this pricing
scheme is very enticing from the facility owner point of
view, the steep price rises facing the users make its actual
implementation almost impossible.

3.3.2. Scheme 2

In this strategy the price paid for each job is given by
multiplying number of requested cores by the same co-
efficient of Sec. 3.3.1 and by the job time-to-solution at
maximum or nominal frequency. Clearly, the latter quan-
tity can be only known a posteriori or by means of an
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Figure 5: Pricing Scheme 1 : System Gain Normalized

oracle, a priori. Very precise application and architectural
models and monitoring tools could be used to obtain an ac-
curate estimate. The results in this section motivate that
this technology would enable power management solutions
leading to a win-win situation for the system owner and
final users. The income is computed as the sum of all jobs
prices. In this case the price per job remains constant, i.e.
it is not affected by the reduction in power consumption;
for this reason we did not include the corresponding figure.
When compared with the default pricing (Pricing Scheme
1 ) this scheme benefits the supercomputer users while the
gains from the system owner’s point of view depend on the
application scaling factor and job sensitivity.

In Figure 7 we can observe the normalized system gain
for Pricing Scheme 2. As previously noted, with this
scheme the price paid by users for each job does not change
with the scaling factor because it depends only on the ap-
plication’s estimated TtS while running at maximum fre-
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Figure 6: Pricing Scheme 1 : Job Price Normalized

quency. The job price is therefore equal to the baseline
one, hence the normalized job price is equal to one in ev-
ery point. Aside from this relatively trivial consideration,
it is worth to note that while the job price remain constant,
the system gain drastically changes: when the scaling fac-
tor and job sensitivity are relatively low Pricing Scheme
2 leads to a larger gain compared to the baseline. This
happens because in this case the real job time-to-solution
is not too different from the estimated ones and therefore
the income loss is lower than the cost saved on energy
consumption thanks to the reduced power consumptions.
Conversely, when the scaling factor increases the system
gain drops since the energy savings does not balance the
loss of income relative to the baseline.

As a final remark, it must be noted from Fig. 7a that
the area where the system owners achieve a gain (under
the red-line with 1.00 marker) is below the user noticeable
level (black dashed line). Meaning that the system owner
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Figure 7: Pricing Scheme 2 : System Gain Normalized

can achieve a gain without inducing QoS loss. In this
scheme it is essential for the system owner to identify the
area delimited by combinations of application sensitivity
(σ) and scaling factor (ϕ) leading to a gain. The system
owner assumes the risks for failing it. To summarize, the
actual implementation of this price scheme requires the
development of tools for identifying job sensitivity and es-
timating the application time-to-solution at the maximum
frequency.

3.3.3. Scheme 3

This pricing model closely resembles the one of Sec. 3.3.2
but tries to solve the problem of estimating the jobs du-
ration at maximum frequency by employing the real job
TtS at a scaled frequency with scaling factor ϕ. This is
done taking advantage of the observation that when re-
ducing a processor frequency of a scaling factor ϕ, the
time-to-solution can increase at maximum of a factor ϕ.
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Figure 8: Pricing Scheme 3 : System Gain Normalized

For this reason the price of jobs with reduced frequency is

discounted by the scaling factor ( (1−β)δS
ϕ ).

From Figure 9 we can notice that this approach is highly
favourable from the users point of view, since it leads to
markedly diminishing cost when the scaling factor and the
job sensitivity increase. The smaller average job price is
due to the division by the scaling factor applied to the
price of the slowed down jobs. However, for the considered
system configuration, this causes a lower system gain w.r.t.
the baseline (Pricing Scheme 1 ) since the energy-related
savings are much smaller than the decrease of revenues
(see Fig. 8).

3.3.4. Scheme 4

With this last pricing schemes, in opposition to the pre-
vious ones, the energy cost is not paid by the system owner
but it is directly included in the job price. Also in this case
the income is given as the sum of all job prices and now
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Figure 9: Pricing Scheme 3 : Job Price Normalized

each price is composed by two components. The first one
depends on the number of requested cores times the TtS
(scaled and not scaled) multiplied by the cost coefficient
κE ; this coefficient is computed excluding the estimated
energy costs – users would not agree to cover the energy
costs twice. The second component is the cost of the en-
ergy of the job, given as the TtS multiplied by the power
consumption times the price of the energy (Eε).

The system gain with Pricing Scheme 4 is constant and
therefore also the normalized system gain does not change
and it is always equal to the baseline (hence the corre-
sponding figures are not displayed). The possible benefits
deriving from the adoption of this pricing scheme stems
from the reduction of average job price, as revealed by Fig-
ure 10. With lower values of scaling factor and job sensitiv-
ity the normalized job price is smaller than the baseline;
when these parameters start rising, the job price follow
them accordingly and therefore it surpasses the baseline.
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Figure 10: Pricing Scheme 4 : Job Price Normalized

Differently from Pricing Scheme 2 , this approach shifts
the gains and the risks to the final user.

It does not require estimating the jobs TtS at maximum
frequency but only needs a per job energy accounting sys-
tem. Clearly, users would need tools for selecting and ap-
plying the right power reduction to their applications.

3.3.5. Pricing Schemes Comparison

In Table 5 we can see an example of the results of the
pricing schemes. Starting from the previous configuration
– based on Fermi – we modified a subset of the input pa-
rameters (idle percentage ι, scaling factor φ and job sen-
sitivity σ); we also varied the amount of cost (per θ) due
to system depreciation – expressed as percentage of the
total cost. As output we present the difference w.r.t. the
baseline, showing both system owner gain and price paid
by users, for each pricing scheme. The values in bold high-
light the pricing schemes that, under the given condition,

11



manage to bring benefits for both owners and users. From
the point of view of the system owner positive values are
preferable (increased gain), while users prefer negative val-
ues (price decrease).

Considering a set point resembling a memory bound ap-
plication (TtS increase of 20% as effect of a 2x in frequency
reduction) we notice that: 1) Pricing Scheme 1 increases
the system gain but penalizes the final user; 2) Pricing
Scheme 3 is beneficial for the user (who gets a discount of
20%) but generates significant revenue loss for the system
owner; 3) Pricing Scheme 2 and Pricing Scheme 4 instead
lead to noticeable saving without harming the counterpart
– favouring, respectively, the facility manager and the fi-
nal user. Lowering the idle power improves the savings
of 2/3 while reducing the depreciation cost of 1/3 dou-
bles the revenues and price reductions achievable by power
management strategies. This can reach the 10% of the to-
tal revenues in case of low idle power and long machine
turnaround.

The challenge in implementing the Pricing Scheme 2 is
the need to predict what would have been the real ap-
plication TtS if no power management strategy had been
applied; Pricing Scheme 4 only requires the support for
accurate per job energy accounting.

4. Future HPC Scenarios

So far, we focused on an existing HPC system with its
particular parameters. In this section we are going to ex-
plore different scenarios that can be envisioned as near-
future evolutions of current supercomputers. As we have
seen in Section 3 two of the main factor impacting the costs
faced by system owners are idle power aspects hindering
the convenience of frequency scaling, namely the non-null
percentage of power consumed by computing units in idle
state (the idle power consumption remains constant even
if the operating frequency is reduced) and the depreciation
costs. The depreciation costs is not influenced by the fre-
quency scaling: if the energy savings are not big enough
to compensate the lost income the system owner will face
an overall loss. In the system considered as a case study
for this work the depreciation costs have a notable impact
and they correspond to the 67% of the total per-time frame
expenses. We consider two cases: 1) energy proportional
systems (where the idle power consumption is very low)
and 2) low depreciation costs.

Since the behaviours of the pricing schemes Pricing
Scheme 1, Pricing Scheme 2 and Pricing Scheme 4 in the
new scenarios are not substantially different than those
observed in Sec. 3.3 we concentrate on Pricing Scheme 3.
Now we want explore the design space to understand if
under different conditions this scheme can generate profit
also for the system owners; as we have seen before this
is the best scheme from the user point of view because it
lowers the price paid per job. In the following sections
we are going to evaluate the economic viability of Pricing
Scheme 3 in the case of alternative HPC systems, with low

idle power consumption (4.1) and low depreciation costs
(4.2).

4.1. Energy Proportional Systems

Several research works have pointed in the direction of
energy proportional systems as a possible solution towards
improvements in terms of energy efficiency [44, 17, 45]. In
an energy proportional system the power consumed by its
computing nodes scales down proportionally with the load.
In our model, this kind of system can be simulated by set-
ting a very low percentage of idle power consumption ι.
We analyze the profitability for the system owner using
Pricing Scheme 3 ; the scheme generates profit if the in-
come for time frame is larger than the expenses (energy
costs plus depreciation). We are going to consider the
isosurface corresponding to the points where the function
CθT /I

θ (total costs divided by income) is equal to 1. Points
below the surface represents parameters combinations that
are profitable for the system.

Figure 11 considers the system profitability with vary-
ing depreciation costs, while maintaining a fixed (very low)
value for the idle power percentage (ι = 0.01). In the x and
y axis we have the alpha factor α and the scaling factor ϕ;
the z-axis presents instead the system life time LF . This
parameter is a very good proxy for the depreciation costs
impact, since a shorter life time means that the installa-
tion costs must be recovered more quickly, hence higher
depreciation costs. In the figure, the life time varies in a
range of [1, 50] years, with a corresponding percentage of
depreciation costs (w.r.t. the total time frame costs) of
[88%, 13%]. We observe that, with a negligible idle power,
the depreciation costs strongly impacts the system gain:
with lower life time values is much harder for the system
to be profitable. This happens because if the deprecia-
tion costs are the biggest expense source the energy saved
through frequency scaling gets negligible while the income
loss – due to dividing the price paid by users by the scaling
factor – becomes preponderant.

4.2. Low Depreciation Costs

The second parameter strongly influencing the feasibil-
ity of a pricing scheme is the depreciation cost, or more
precisely the fraction of the total time frame costs that
serve to cover the initial investment expenses. The de-
preciation costs are regulated by the system installation
cost CTS and by the expected life time LF , that is gener-
ally a few years. The continuous quest towards maximum
computing performance tends to increase the system in-
stallation costs and to squeeze the machines lifetime, but
as more nuanced approaches more focused on energy effi-
ciency are gradually taking hold, it is possible to envision
slightly different systems where the installation costs de-
crease and the life time increases. This shift would lead
to systems where the depreciation costs impact is less pre-
dominant w.r.t. to the energy expenses sustained to oper-
ate the machine.
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Depreciation ι ϕ σ
Scheme 1 Scheme 2 Scheme 3 Scheme 4

Gain Price Dif. Gain Price Dif. Gain Price Dif. Gain Price Dif.

67%
20% 2.0 0.2 16% 10% 4% 0% -21% -20% 0% -4%
10% 2.0 0.2 19% 10% 6% 0% -19% -20% 0% -5%

47%
20% 2.0 0.2 27% 10% 9% 0% -26% -20% 0% -6%
10% 2.0 0.2 30% 10% 12% 0% -23% -20% 0% -8%

Table 5: Example: Pricing Schemes Results; the Gain and Price Dif. columns represent, respectively, the system gains and the price difference,
expressed as percentage

Figure 11: System Profitability with low idle power %

In Figure 12 we see the system profitability surface in
case of depreciation costs close to zero (≤ 0.01% of the
time frame costs). The three axes x, y and z represent,
respectively, the alpha factor α, the scaling factor ϕ and
the idle power percentage ι. The points below the surface
(i.e. < 2.5, 3.0, 0.2 >) form the region where the system
gain is positive (the costs are smaller than the income); as
we proceed further from the surface the gain gets higher.
With no frequency scaling (ϕ = 1) the system is always
gaining, due to the remaining model parameters being con-
figured to assure a net profit at maximum frequency (as
a baseline). As it was expected, low idle power percent-
age leads to bigger benefits for the system owner since
it allows to consume less power if the frequency is scaled
down. We can also notice that higher α values are better
for the system owners; this happens because a larger al-
pha factors means that scaling down the frequency leads to
greater energy savings. Finally, we notice an asymptotic
behaviour w.r.t. scaling factor: the benefits of decreasing
the frequency tend to get thinner and thinner.

5. Conclusion

In this paper we tackled the issue of understanding the
impact of energy-aware mechanisms in HPC machines.
More precisely, we considered frequency scaling as a tech-

Figure 12: System Profitability with low depreciation costs

nique to exchange the power performance of computing
nodes in exchange for lower power consumption. Fre-
quency scaling has a clear impact on the energy expenses
sustained by a supercomputing facilities and at the same
time it strongly influence the accounting mechanism (the
price paid by users for using system resources). Our goal
was then to provide an instrument capable to analyse the
costs and benefits obtained through frequency scaling in a
HPC system.

We then devised a parametric model inspired by a real
supercomputer to simulate the impact of frequency scaling
on the system revenue and energy-related costs. We pro-
posed four different pricing schemes and evaluated their
effectiveness including the perspectives of both the facil-
ity owner and the system users. Our preliminary results
indicate that is indeed possible to save energy and curb
operational costs via frequency scaling and, at the same
time, not to penalize users from a economic point of view.

As a final takeaway the most valuable strategy to push
towards green computing is to shift the cost of the energy
consumption to the final user while at the same time pro-
viding her instruments for accounting her job energy con-
sumption and scaling the performance level. Letting the
system owner play this knob still requires research progress
in order to estimate the TtS of applications not perturbed
by frequency scaling. In future energy proportional sys-
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tems, with a longer turn-around, simpler estimation meth-
ods will start to pay off as well.
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