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Abstract
Computational intelligence, particularly deep learning, offers powerful tools for discriminating and generating samples 
such as images. Deep learning methods have been used in different artistic contexts for neural style transfer, artistic style 
recognition, and musical genre recognition. Using a constrained manifold analysis protocol, we discuss to what extent spaces 
induced by deep-learning convolutional neural networks can capture historical/stylistic progressions in music and visual art. 
We use a path-finding algorithm, called principal path, to move from one point to another. We apply it to the vector space 
induced by convolutional neural networks. We perform experiments with visual artworks and songs, considering a subset of 
classes. Within this simplified scenario, we recover a reasonable historical/stylistic progression in several cases. We use the 
principal path algorithm to conduct an evolutionary analysis of vector spaces induced by convolutional neural networks. We 
perform several experiments in the visual art and music spaces. The principal path algorithm finds reasonable connections 
between visual artworks and songs from different styles/genres with respect to the historical evolution when a subset of 
classes is considered. This approach could be used in many areas to extract evolutionary information from an arbitrary high-
dimensional space and deliver interesting cognitive insights.
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Introduction

Computational  intel l igence (CI)  and cognit ive 
computations are relatively young fields in science and 
engineering, with the first ideas dating back to Turing 
[1]. Some of the most successful CI systems are based 
on deep artificial neural networks and their variations, 
which model networks of neurons to solve tasks such 
as pattern recognition, learning, memorization, and 
generalization [2]. Recently, the community has become 
interested in other creative and innovative applications 
of deep artificial neural networks. These applications 
include cognitive tasks such as sentiment analysis, neural 
language processing, neural style transfer, artistic style 
recognition, and musical genre identification. They 

require that different network architectures are addressed. 
Convolutional neural networks (CNNs) [3, 4] are a kind 
of deep artificial neural network. CNNs are particularly 
effective for tasks like the recognition, analysis, and 
classification of images and videos [5–8].

In the field of sentiment analysis, works like [9–11] 
and many others have tried to transform abstract 
concepts like emotions into images and sounds. Neural-
style transfer applications use CNNs to recombine the 
content of one image with the style of another, like in 
[12]. In terms of recognizing styles of visual art, some 
of the most interesting solutions have been proposed by 
Lecoutre et al. [13], Karayev et al. [14], and Tan et al. 
[15], who achieved promising results using two publicly 
available CNN architectures (AlexNet [7] and ResNet 
[16]) with the same dataset (Wikipainting).

Recently, two papers [17, 18] addressed the problem 
of how learning systems perceive visual art aspects, such 
as stylistic properties when compared to human-derived 
artistic principles.

Regarding the classification of musical genres, 
Bahuleyan recently proposed a particularly interesting 
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Fig. 1  Schematic representation of the presented protocol. Step 1: 
featurization with CNNs. Step 2: principal path on the induced vec-
tor space with different s values and model selection with the elbow 
criterion. For each s value, one can obtain a principal path and the 

corresponding variance on waypoints interdistance for that path. The 
elbow is the furthest point from the line which connects the first and 
the last points. Step 3: visualization of the best principal path
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solution using CNNs [19].  This approach uses 
spectrograms (visual representations of the time and 
frequency information of an audio signal) generated from 
a subset of songs in Audio Set [20].

Music and visual art share a fundamental trait, 
namely their historical evolutionary nature. Cultural 
and historical events influence changes in visual art 
movements and musical genres. They can thus be 
considered in evolutionary terms.

Here, we propose to understand and navigate the 
manifolds induced by previous CNN architectures 
focusing on the historical evolutionary changes from one 
song/visual artwork to another. To achieve this, we used 
a recently devised algorithm [21, 22] to navigate and 
analyze vector spaces, with a start point and an end point 
as input. This protocol can be used to assess the quality 
of the embeddings and to detect relevant transitions and 
relations within samples [22].

At a technical level, first we extracted features from 
the penultimate layer of the CNN model to represent each 
song/visual artwork as a point in an n-dimensional space, 
then we explored this n-dimensional space. Clearly, the 
more classes in each dataset, the more complex the 
problem and the more difficult it is to provide reliable 
results. This is particularly relevant given that the CNN-
induced space is not necessarily optimal for this task. 
We therefore simplified the problem by considering one 
subset of classes (styles or genres) at a time. We chose 
the principal path (PP) [21] as a method to capture the 
local topology of the data [23].

PP is analogous to a principal curve [24] with 
predefined start and end points. It can be informally 
defined as a smooth path connecting two samples 
and passing through the local support of the data 
distribution [21]; in other words, we solve a locally 
constrained manifold learning problem. Being inspired 
by the minimum free energy path concept of statistical 
mechanics, PP can be used to infer maximal probability 
morphing between samples in data space.

The PP is constructed as a discrete curve where 
intermediate waypoints are connected by straight 
segments. These waypoints represent subsequent steps in 
the underlying morphing process; therefore, it is crucial 
to analyze and visualize them. Here, we classify them by 
considering their neighbors, and we visually represent 
them in a low-dimensional embedding obtained through 
the t-Distributed stochastic neighbor embedding (t-SNE) 
projection method [25].

In Section 2, we describe each step of our protocol 
in detail. Section  3 is devoted to the results of our 
experiments in the music and visual art contexts. In 
Sections 4 and 5, we discuss possible future application 
fields of our protocol and offer some final remarks.

Methods

The proposed protocol has three main steps elucidated in 
Fig. 1: 

1. In the first step, a CNN is used as a featurization tool.
2. In the induced vector space, we run the PP algorithm 

from historically stylistically meaningful end points.
3. Lastly, we visualize the paths and data distribution via 

t-SNE and comment on the consistency of the recovered 
waypoints with respect to the true historical evolution in 
style.

Hereafter, we detail each step of the protocol.

Embedding Generation

The first step of our protocol involves using existing CNN 
architectures to produce features from their penultimate 
layer. As mentioned, CNNs have obtained excellent 
results in large-scale image recognition; they are similar 
to ordinary neural networks, but with layers of convolving 
filters applied to local features [26]. Convolutional layers 
are followed by pooling layers, forming modules. These 
are followed by fully connected layers, as in the standard 
feedforward neural networks.

Convolutional layers allow the extraction of features. 
They comprise neurons arranged in feature maps. Each 
neuron has a receptive field, which is connected to a 
neighborhood of neurons in the previous layer by a set of 
trainable weights. Input images are convolved with the 
trained weights to create a new feature map. The convolved 
results are then sent through a nonlinear activation function 
[6]. Formally, the k-th output feature map Yk can be 
computed as:

where x is the input image; Wk is the convolutional filter 
related to the k-th feature map, ∗ is the 2D convolutional 
operator, and f(⋅ ) represents the nonlinear activation function 
(sigmoid, hyperbolic, or rectified linear units - ReLUs) [6].

Pooling layers reduce the spatial resolution of the 
feature maps; max pooling aggregation layers are typically 
used. They propagate the maximum value to the next layer 
within the receptive field [6]. Finally, fully connected 
layers unroll the intermediate maps to get a classical linear 
feature representation. The softmax operator is usually 
used for the classification task as the very last neuron for 
each class [6].

In this work, we used two existing CNN architectures, 
which are widely used for image classification, namely 
ResNet-50 [16] and VGG-16 [27].

(1)Yk = f (Wk ∗ x)
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The VGG-16 architecture differs from the original ConvNet 
architecture [7] because it has more layers (sixteen), but very 
small (3x3) convolution filters. As a result, the network has 
better performance and accuracy. However, increasing the 
network depth is not always beneficial. Beyond a certain 
point degradation issues arise and the number of training 
errors grows larger. Such problem is successfully addressed 
by the ResNet-50 architecture introducing deep residual 
learning framework blocks. In particular, if one denotes by 
H(x) the desired underlying mapping of a few stacked layers, 
with x being the input to the first of these layers, and if one 
hypothesizes that multiple nonlinear layers can approximate 
any function, one can assume that the residual functions 
H(x) − x can be learnt correctly. The stacked layers can thus 
approximate a residual function F(x) = H(x) − x and the 
original function becomes F(x) + x . The latter formulation 
can be realized by feedforward neural networks with shortcut 
connections, which simply perform identity mapping. Their 
outputs are then added to the outputs of the stacked layers. 
This network produces substantially better prediction results 
than previous networks and is deeper [16].

Table 1 shows the original configurations for VGG-
16 [27] and ResNet-50 [16]. Here, we used the original 
ResNet-50 architecture for the visual art space experiments 
[28]. For the music space experiments, we used the 
architecture proposed by Bahuleyan in [19], with the original 
VGG-16 core connected to a new feedforward neural 
network. Here, we ignore the predicted labels of the CNNs; 
instead, we extract the output from the last pooling layer. We 
used it to represent each entry of the input datasets (songs 
and visual artworks) as points in an n-dimensional space.

Evolutionary Analysis

The second step of the proposed protocol is to navigate the 
previously produced vector space using the PP. As previ-
ously mentioned, the PP helps extract relevant information 
about the data topology. More specifically, a smooth mor-
phing between two data samples is obtained solving the fol-
lowing minimization problem:

where N is the number of samples, Nc is the number of 
waypoints, Φ(⋅) ∶ ℝ

d
→ ℝ

d� is the (possibly nonlinear) 
transformation mapping of the d-dimensional input space, 
xi is a sample/row of the N × d matrix X, wj is a waypoint/
row of the N × d� matrix W, and �(ui, j) is the Kronecker 
delta where ui are waypoint memberships.

This functional, formally, is an extension of the k-means 
clustering, where the first and last clusters are constrained (i.e. 
w0 and wNC+1 ) and the other clusters are evolved according to 

(2)min
W,u

N�

i=1

Nc�

j=1

‖�(xi) − wj‖2�(ui, j) + s

Nc�

i=0

‖wi+1 − wi‖2

the regular k-means cost function plus the added regularization 
term, which induces a string topology. All the clusters are 
waypoints for the path and are topologically connected by 
a chain of springs [21]. The hyper-parameter s regulates 
the trade-off between data-fitting and the smoothness of the 
inferred path. To solve the minimization problem, it is possible 
to derive an expectation maximization (EM) algorithm, which 
generalizes the well-known EM for the original k-means. 
Additionally, being a kernel method, an EM algorithm was also 
defined without an explicit notion of the transformed space 
implied by Φ(⋅) . It is worth stressing that a PP is quite invariant 
against a large range of Nc values [21]. In our experiments, 
we arbitrarily set Nc to 50, which we found to be a reasonable 
value to understand and visualize morphing paths of interest.

In this work, the PP algorithm was run several times with 
decreasing values of the regularization parameter s on an evenly 
spaced log scale from 105 to 10−5 , without changing start and 
end points. In this way, one obtains several PPs for each pair of 
start/end samples. To choose the best one, we devised a fast and 
simple model selection strategy that we explain below. Given 
a PP, call it W, let li,i+1 = ||wi − wi+1|| be the length of the 
segment connecting two subsequent waypoints wi , wi+1 and let 
Var(li,i+1) be the variance of this quantity along the PP.

Table 1  VGG-16 and ResNet-50 standard architectures

VGG-16 ResNet50

16 weight layers 50 weight layers
Input 224x224 RGB image Input 224x224 RGB image
Conv3-64 Conv7-64
Conv3-64
Maxpool Maxpool
Conv3-128 Conv1-64 X3
Conv3-128 Conv3-64

Conv1-256
Maxpool
Conv3-256 Conv1-128 X4
Conv3-256 Conv3-128
Conv3-256 Conv1-512
Maxpool
Conv3-512 Conv1-256 X6
Conv3-512 Conv3-256
Conv3-512 Conv1-1024
Maxpool
Conv3-512 Conv1-512 X3
Conv3-512 Conv3-512
Conv3-512 Conv1-2048
Maxpool Avgpool
FC-4096 FC-1000
FC-4096
FC-1000
Soft-max Soft-max
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For large values of s, we expect to get Var(li,i+1) = 0 
since the algorithm asymptotically finds the trivial path 
connecting w0 to wNc+1

 with an evenly sampled straight line. 
For small value of s, the algorithm instead finds an arbitrary 
noisy path, usually leading to high values of Var(li,i+1) and 
collapsing to a regular k-means result.

For each experiment, we decided to select the best PP, 
Wbest , using the elbow criterion [29] on the plot of Var(li,i+1) 
vs s (see model selection in Fig. 1 for further details). In our 
experience, this simple heuristic is able to select nontrivial 
paths with equally spaced waypoints, which seamlessly 
translate into regularly sampled morphing processes.

Path Interpretation and Visualization

The protocol’s third step is to analyze the PP obtained in the 
previous step. Two different strategies to achieve this aim are 
explored.

The first strategy is to use t-SNE [25] to provide a 2D data 
visualization of the data points, the waypoints of the PP, and the 
points of a trivial path. A trivial path is here defined as a mere 
linear connection of the end points and is used as a reference 
to prove that results are not obvious. In order to improve t-SNE 
efficiency, the principal component analysis (PCA) [30] 
algorithm is used to reduce the dimensionality before t-SNE 
itself.

Fig. 2  Labeling and 2D visualization of the principal path in visual art 
space. a Labels of the nearest artwork for each waypoint of the prin-
cipal path (top) and the trivial path (bottom). On the left, results for 
the following classes: Baroque, Neoclassicism, Realism, Expression-
ism. On the right, results for the following classes: Early Renaissance, 
Baroque, Romanticism, Abstract Art. b 2D representation of the prin-
cipal path and the trivial path through four different styles: Baroque, 

Neoclassicism, Realism, Expressionism (on the left); Early Renais-
sance, Baroque, Romanticism, Abstract Art (on the right). The x and 
the y coordinates are the output of the dimensionality reduction per-
formed with t-SNE [25]. The start point and the end point are the most 
recent and the oldest visual artworks, respectively. The principal path 
is composed of 50 intermediate points (waypoints) plus the boundaries
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The second strategy is to detect the sample songs and 
visual artworks nearest to the waypoints of the PP and to the 
points of the trivial path.

Results

In this section, we report the results of our evolutionary 
analysis in the visual art and music spaces. The 
implementation was written in the Python/Keras [31] 
framework with Tensorflow [32] as backend. The code to 
reproduce all the experiments is available on github. In 
particular, users can find the code to perform the featurization 
at [33, 34] and the code to reproduce the results at [35]. We 
ran all the experiments on a high performance computing 
cluster node equipped with a nVidia P100 GPU and 2 Intel 
Xeon E5-2650 v4 CPUs.

Visual Art Space Experiments

In terms of the visual art space, the manifold induced by the 
network defined in [13] was analyzed, without performing 
any retraining procedure. The network implementation is 
the one in [28] because it was explicitly trained to recognize 
visual art styles, and because the aim of the present analysis 
was to understand the relations among them.

As dataset, we used the Wikipainting dataset, which is a 
large and widely used dataset collection from the WikiArt 
website [36]. It comprises 80,000 images, each tagged 
with one of the following 25 styles: Abstract Art, Abstract 
Expressionism, Art Informel, Art Nouveau (Modern), 
Baroque, Color Field Painting, Cubism, Early Renaissance, 
Expressionism, High Renaissance, Impressionism, Magic 
Realism, Mannerism (Late Renaissance), Minimalism, Naive 
Art (Primitivism), Neoclassicism, Northern Renaissance, Pop 
Art, Post-Impressionism, Realism, Rococo, Romanticism, 
Surrealism, Symbolism and Ukiyo-e. The featurization led 
to 2048 variables from the penultimate layer of the network.

We navigated this space using the PP, selecting three or 
four classes at a time with a reasonable historical distance 
to simplify the analysis and using the most recent and the 
oldest visual artworks as start/end points. We generated a 
path comprising 50 waypoints plus the start and end points. 
To understand the transitions, we retrieved the nearest picture 
for each waypoint. To check the significance of the results 
and for comparison, we generated a trivial path by connecting 

the start and end points with a straight line and splitting it 
into 50 equally distributed points. Figure 2a shows the class 
(the true style label) of the retrieved nearest pictures for the 
PP and for the trivial path, considering different styles.

To visualize the points together with the paths, we reduced 
the dimensions via PCA (sklearn implementation with 
n_components = 50 and random_state = 5) [30] followed 
by t-SNE (sklearn implementation with n_components=2, 
random_state=20, perplexity=50 and learning_rate=300) 
[25]. PCA reduced the number of features from 2048 to 50, 
improving the t-SNE algorithm’s efficiency (Fig. 2b). Within 
this simplified and class-reduced setting, the PP recovered 
the historical evolution of the artistic style together with 
the content of the visual artworks. This indicates that these 
CNN-induced spaces at least partially reflect the historical 
evolution of the styles. In contrast, the trivial path moved 
blindly and jumped from the start class to the end class 
without any interesting intermediate. These aspects are 
emphasized when the start and end points are the historically 
oldest and newest visual artworks, respectively.

Additionally, we generated other paths by perturbing the 
start/end points (e.g. using the second/third most recent and 
the second/third oldest visual artworks as start/end points). 
The results of these analyses are available in our github 
repository [35] (folders /results/images/mode=2_1-22-18-
25 and /results/images/mode=2_22-14-17-3) and show that 
the PP is robust to perturbations. The PP’s ability to capture 
the historical evolution of visual art is highlighted when we 
select and plot the nearest visual artworks to the points of the 
two paths, as shown in Fig. 3, where repeated consecutive 
artworks along the path were not shown in this and all the 
subsequent figures for clarity of representation.

In Fig. 3a, the PP finds visual artworks that depict people 
and then landscapes. The style varies from black and white 
to color, with a gradual change from dark cool colors to 
light warm ones. With the exception of some noisy visual 
artworks, the evolution of the classes reflects the historical 
evolution of the art (i.e. Baroque ∼17th–18th century, 
Neoclassicism ∼18th–19th century, Realism ∼19th century, 
Expressionism ∼20th century). In contrast, the trivial path 
passes through two visual artworks that have different 
styles and content and that belong to the first and last class, 
respectively. The same gradual morphing can be observed in 
Fig. 3b. The evolution of the pictures reflects the historical 
evolution of the art (i.e. Early Renaissance ∼14th–16th 
century, Baroque ∼17th–18th century, Romanticism ∼
18th–19th century, Abstract Art ∼20th century), with the 
colors and content gradually changing from one artwork to 
the next. There is an interesting jump from romanticism to 
abstract art, with a strong similarity in terms of shape: the 
man and the sculpture are both in the center of image, and 
the top of the sculpture resembles the hat of the man in 
the portrait. Once again, the trivial path passes through two 

Fig. 3  Principal path visual artworks. Nearest visual artworks to the 
waypoints of the principal path and the trivial path, removing con-
secutive repeated artworks and considering four classes: (a) Baroque 
(blue), Neoclassicism (orange), Realism (green), Expressionism 
(red); (b) Early Renaissance (blue), Baroque (orange), Romanticism 
(green), Abstract Art (red).

◂

576 Cognitive Computation (2021) 13: –582570



 

Fig. 4  Historical evolution is not always correctly recovered. a On the 
left, labels of the nearest artworks for each waypoint of the principal 
path (top) and the trivial path (bottom). On the right, 2D representa-
tion of the principal path and the trivial path through four different 
styles: Early Renaissance, Mannerism, Baroque, Impressionism. The 
x and the y coordinates are the output of the dimensionality reduction 
performed with t-SNE [25]. The start point and the end point are the 

most recent and the oldest visual artworks, respectively. The principal 
path comprises 50 intermediate points (waypoints) plus the bounda-
ries. b Nearest visual artworks to the waypoints of the principal path, 
removing consecutive repeated artworks and considering four classes: 
Early Renaissance (blue), Mannerism (orange), Baroque (green), 
Impressionism (purple)
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visual artworks with different styles and content that belong 
to the first and last class, respectively.

The historical evolution is not always found by the PP 
solution, as shown in Fig. 4. In this case, among a subset 
of five classes (Early Renaissance, Mannerism, Baroque, 
Neoclassicism and Impressionism), the PP retrieved only 
visual artworks belonging to the Early Renaissance and 
the Impressionism, with a little deviation to the Baroque. 
Even if the historical evolution is not respected, the PP is 
clearly able to perform a gradual morphing from the start 
to the end points. This is particularly clear when compared 
to the performance of the trivial path, which once again 
passes through two visual artworks with different styles and 
content that belong to the first and last class, respectively. 
Further results in the visual art space are freely available 

in our github repository [35]. For example, we provide the 
results of experiments with different subsets of classes, 
where the start/end points can be selected manually by 
visual inspection, set as the most recent and the oldest 
visual artworks, or set as the centroids of the clusters that 
correspond to the youngest and oldest historical periods in 
the subset of classes/styles.

Music Space Experiments

In the music space, we repeated the above experiments, 
analyzing the manifold induced by the network defined in 
[19] and available at [37]. This time, we trained the network 
to recognize music genres. In contrast to the visual art context, 
the literature contains music experiments that used datasets 
with very different traits. The best-known datasets with audio 
tracks include RWC (465 entries) [38, 39], GZTAN genre 
(1000 entries) [40], Magnatagatune (25863 entries) [41], 
and AudioSet (40540) [20]. We used the Magnatagatune 
dataset [41] for our music experiment instead of the AudioSet 
[20] used by [19]. We have chosen this dataset as it is one 
of the largest with available audio tracks; additionally it is 
enriched with tag annotation files that assign a list of genres 
and instruments to each song. Specifically, we selected all 
the songs belonging to one of the following genres: Baroque, 
Classical, Jazz, Medieval, Opera, Rock. We established a 
univocal class for each song by choosing the most specific 
genre (e.g. a song labeled as Baroque and Classical becomes 
Baroque). In this case, the featurization led to 512 features 
from the penultimate layer of the network.

We randomly split the dataset into training (80%) and 
test (20%) sets. The validation set was 10% of the training 
set. We trained the model for no more than 20 epochs using 
the same batch size (100) and using the ADAM optimizer 
(default learning rate = 0.001)[42]. Figure 5 shows the 

Fig. 5  Learning curves for model selection. Epoch 6 minimizes the validation loss

Table 2  Principal path vs. trivial path: music space experiments. 
Number of songs found by the principal path and the trivial path 
along their way (without duplicated samples and grouped by classes). 
Baroque, Opera, Classical, Jazz, Rock (on the top), Medieval, 
Baroque, Jazz, Rock (on the bottom)

Principal path Trivial path

Baroque 3 1
Opera 3 1
Classical 8 3
Jazz 2 -
Rock 11 1
Total 27 6

Principal path Trivial path
Medieval 4 1
Baroque 6 0
Jazz 6 1
Rock 16 5
Total 28 7
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learning curves of the model. We selected the best model 
as the one obtained at the sixth epoch. This model had the 
highest accuracy and the lowest loss on the validation set. 
Finally, we tested the best model on the test set for accuracy, 
F-score, area under the curve (AUC) and Matthews 
correlation coefficient (MCC), obtaining 0.86, 0.55, 0.9, 
and 0.77, respectively.

Again, we navigated these spaces using the PP and the 
trivial path, considering three or four classes at a time with 
a reasonable historical distance, with the start/end points 
selected visually and generating 50 intermediate waypoints. 
Figure 6a compares the class variation for the nearest song 
to each waypoint (as class we considered the true style 

label of each nearest song). Figure 6b shows the 2D visual 
representation of the two paths. This was obtained by reducing 
the number of features from 512 to 50 with the PCA algorithm 
(sklearn implementation with n_components=50 and random_
state=5) [30], then reducing the number of features from 
50 to 2 with the t-SNE algorithm (sklearn implementation 
with n_components=2, random_state=20, perplexity=50 
and learning_rate=300) [25]. We have omitted the resulting 
spectrograms because they are difficult to interpret. The 
corresponding songs are listed in our github repository [35], 
and Table 2 shows a summary of the ones we found.

Figure 6a highlights the PP’s ability to navigate the space, 
taking into account the evolution of the musical genres, 

Fig. 6  Labeling and 2D visualization of the principal path in music 
space.  a  Labels of the nearest songs for each waypoint of the prin-
cipal path (top) and the trivial path (bottom). On the left, results for 
the following classes: Baroque, Classical, Opera, Jazz, Rock. On 
the right, results for the following classes: Medieval, Baroque, Jazz, 
Rock. b  2D representation of the principal path and the trivial path 

through three different styles: Baroque, Classical, Opera, Jazz, Rock 
(on the left); Medieval, Baroque, Jazz, Rock (on the right). The x 
and the y coordinates are the output of the dimensionality reduction 
performed with t-SNE [25]. The start point and the end points are 
selected visually. The principal path comprises 50 intermediate points 
(waypoints) plus the boundaries

Cognitive Computation (2021) 13: –582570 579



despite the complexity of the problem. The trivial path seems 
to find intermediate genres between the start and end classes. 
However, analyzing Table 2, one can observe that the PP 
performs a smooth transition finding different songs along 
its way. In contrast, the trivial path finds few songs and the 
transition from the start point to the end point is not gradual.

Other examples using different classes and start/end 
points are freely available in our github repository [35].

Discussion

The principal path concept was inspired by the minimum 
free energy path in statistical mechanics as a principle 
to define a path in space. Here, we have shown that, in a 
simplified reduced-class setting, this tool coupled with 
CNNs can capture the evolutionary/historical connections 
in the image/music space. This simplified setting has been 
used because the topological value of the CNN-induced 
spaces is suboptimal for this task. Further research can 
be done in this direction. The findings, however, might 
suggest that many evolutionary processes could be studied 
by approaching them as a minimum free-energy path-
finding problem. This would not be the first time that 
machine learning and statistical mechanics had profound 
points of connections, with the Boltzmann Machine [43] 
and Boltzmann generators [44] being prominent examples. 
In terms of cognition, this raises the question of whether 
minimum free energy paths are how humans connect ideas. 
If we generalize the concept of start and end points to ideal 
objects (ideas), then one could ask whether the way we 
think can be formalized as an attempt to move from one 
idea to another via maximal probability moves (namely 
minimum free energy regions, or regions which bear many 
ideas, as probability is linked to the number of points/ideas 
in the space) [45]. This ultimately is connected to the notion 
of cognition and intelligence, if one defines intelligence as 
reading through things (from Latin intus legere), that is, 
connecting ideas via paths. The conjecture is that maximal 
probability paths, the ones we seek with the PP algorithm, 
can describe many phenomena including idea morphing, 
which is ultimately a creative cognitive process. It would 
be interesting to understand to what extent this principle is 
general and what it can retrieve when applied to image/song 
spaces, as done here.

The presented model is implicitly generative due to the 
presence of waypoints, even though a probability density 
function is not available. The explicit creation of new objects 
would require reversing the CNN representation; this could 
be achieved in future via variational autoencoders for 
instance. We used a nearest neighbor strategy to associate 

an existing song or visual artwork to each waypoint and to 
analyze the morphing from the start point to the end point.

As noted above, this first attempt has some limitations, 
mainly because the shape of the CNN manifolds is less 
than ideal for this task, thus preventing the method’s full 
application to several classes. Music and visual art are 
just two of the many potential fields of application. In the 
field of sentiment analysis and affective computing, the PP 
concept has been used to inspect the topology of the concept 
distribution in the embedding space, as shown in [22, 46].

In the music context, our method could work as a playlist 
creator. In fact, the PP is able to provide a list of songs that 
are a gradual morph from one initial song to another. The 
PP can thus work as a recommendation system for music. 
A similar idea based on a different algorithm is presented 
in [47].

Our method could also be useful in any context 
where it makes sense to reason in terms of evolutionary 
connections between data points, or in terms of a 
pseudo-time that connects data points in succession. One 
interesting example would be quantitative biological 
datasets (e.g. transcriptomics or metabolomics) to 
better understand time-dependent phenomena, such 
as tumor evolution, cell cycle, cell differentiation, 
and organogenesis, which is an area on which we are 
working. In particular, the method could potentially 
be used to identify transition states between different 
tumor stages, and thus to identify molecular markers 
of cancer progression. This would have important 
clinical implications for the early detection of tumors or 
staging in general. Additionally, given the recent ascent 
of single-cell resolution in transcript quantification 
(scRNA-Seq), our method could potentially be used to 
identify transitional states in processes such as induced 
differentiation, transition between cell cycle phases, and 
the onset of drug resistance mechanisms. Efforts in some 
of these areas are already underway [48].

Conclusion

In this paper, we combined CNN-induced vector spaces and 
the principal path (PP) concept to navigate the spaces of music 
and visual art. Along the paths, we identified waypoints that 
represent a gradual morphing from the start point to the end 
point. Based on our results, the PP found reasonable connections 
between visual artworks and between songs from very different 
genres, partially respecting their historical evolution in a 
simplified setting. In future, we believe that this approach could 
be used to perform experiments in many different application 
contexts in which an evolutionary analysis makes sense.
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